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ABSTRACT
Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, 
different mitigation systems have been applied in various regions of the world. In this article, a system for detecting 
animals on highways is presented using computer vision and machine learning algorithms. The models were trained to 
classify two groups of animals: capybaras and donkeys. Two variants of the convolutional neural network called Yolo 
(You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out 
using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% 
and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by 
reducing or preventing accidents with animals.
Keywords: Machine-learning. Vehicle-animal collisions. Computational vision.

RESUMO
As colisões entre veículos e animais representam um sério problema na infraestrutura rodoviária. Para evitar tais acidentes, 
medidas mitigatórias têm sido aplicadas em diferentes regiões do mundo. Neste projeto é apresentado um sistema de 
detecção de animais em rodovias utilizando visão computacional e algoritmo de aprendizado de máquina. Os modelos 
foram treinados para classificar dois grupos de animais: capivaras e equídeos. Foram utilizadas duas variantes da rede 
neural convolucional chamada Yolo (você só vê uma vez) — Yolov4 e Yolov4-tiny (versão mais leve da rede) — e o 
treinamento foi realizado a partir de modelos pré-treinados. Testes de detecção foram realizados em 147 imagens e os 
resultados de precisão obtidos foram de 84,87% e 79,87% para Yolov4 e Yolov4-tiny, respectivamente. O sistema proposto 
tem o potencial de melhorar a segurança rodoviária reduzindo ou prevenindo acidentes com animais.
Palavras-chave: Aprendizado de máquina. Acidentes rodoviários com animais. Visão computacional.
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Introduction
Several studies have shown that vehicle-animal collisions 

are a global problem. The most serious accidents involve larger 
body size animals of both native and naturalized species, 
such as wild and feral swine and different deer species in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cadernos Espinosanos (E-Journal)

https://core.ac.uk/display/429517384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0804-9928


2/10

Braz J Vet Res Anim Sci. 2021;58(special issue):e174951

Europe and the United States (Hothorn et al., 2015; Pynn & 
Pynn, 2004; Rodríguez-Morales et al., 2013; Sullivan, 2011), 
wolves in eastern Canada (Lesmerises et al., 2013), elephants 
in Malaysia (Wadey et al., 2018), camels in Arab countries 
(Al-Ghamdi & AlGadhi, 2004; Al-Sebai & Al-Zahrani, 1997), 
and donkeys in the Northeast Brazil1.

These accidents are responsible for the injuries and 
deaths of people and animals every year. Also, the monetary 
losses amount to billions of dollars (Bruinderink & 
Hazebroek, 1996; Huijser et al., 2013; Olson et al., 2014; 
Sullivan, 2011). A previous study established that from 
2010 to 2016, 25,075 accidents involving fauna occurred 
on Brazilian federal highways, resulting in 613 recorded 
human deaths, 2,933 serious injuries, and 7,559 minor 
injuries (Tavares et al., 2017).

To reduce accidents, several mitigating actions have 
been proposed. The infrastructure of underpasses and 
overpasses (Dodd et al., 2004; Tissier et al., 2016), electronic 
devices with presence sensors (Biblioteca Virtual FAPESP, 
2020; Grace et al., 2017), and lighting and odorous devices 
(Bíl et al., 2018; D’Angelo & van der Ree, 2015; Kušta et al., 
2015) are some examples.

Computational vision systems for animal detection 
have been applied to different purposes (Christiansen et al., 
2014; Rangda & Hanchate, 2014; Sharma & Shah, 2017). 
Concerning transportation activities, computational vision 
animal detection systems have been developed in cars 
(Agrawal & Singh, 2020; Consumer Reports, 2020) and 
railway networks (Ye et al., 2018; Yu et al., 2018). Because 
of the evolution of computational power and convolutional 
neural networks, the algorithms are now capable of realizing 
real-time object detection with the use of video cameras. 
For example, Japan is using around 13,000 video cameras 
and artificial intelligence to monitor highways to detect 
traffic problems and increase safety (Fujitsu Blog, 2019).

A video is a moving picture sequence defined by its 
temporal resolution in frames per second (fps). Therefore, 
the object detection algorithms used for this purpose must 
be fast to compute many detections per second. In recent 
years, the development of object detection frameworks like 
Yolo (Bochkovskiy et al., 2020), Mask R-CNN (He et al., 
2017), and Single Shot Multibox Detector (Liu et al., 2016), 
has made real-time detection possible. Also, using infrared 
thermal cameras makes it possible to detect the animals 
at night or in low visibility weather conditions (e.g., fog, 
rain, snowfall) (Christiansen et al., 2014; Perissinotto et al., 

1 Gameiro MBP, Clancy C, Zanella AJ. Between freedom and abandonment: 
social representations of free-roaming donkeys in the Brazilian Northeast. 
Anthrozoos. 2020. [under evaluation].

2009; Oishi et al., 2018; Zhou, 2013). Here we describe a 
system developed for detecting the presence of animals on 
highways using computational vision and machine learning 
in an embedded system.

Materials and Methods

Model training

For model training, 2,000 images of capybaras and equines 
(donkeys and horses) were downloaded from Google Images, 
1,000 for each group, using a batch download extension 
(Chrome Web Store, 2020). The objects of interest (animals) 
in each image were labeled with bounding boxes using the 
LabelImg software (Tzutalin, 2015) given the capivara class 
name for capybaras, and equidae class name for equines. 
The labeling process for object detection consists of delimiting 
the pixels that represent the object of interest in the image 
and assigning it a class name. After drawing a bounding 
box around the object, the label software writes the object’s 
pixel coordinates in an external file. Figure 1 provides a 
visualization of the labeling process and coordinates file 
content generated.

For example, the center frame provides a visualization 
of an xml (Extensible Markup Language) file content and 
the right frame a txt (text) file content. The content of the 
files are the drawn bounding box coordinates.

The dataset was divided into two groups: training (n = 1800) 
and validation (n = 200). The Yolov4 (Bochkovskiy et al., 
2020), an artificial convolutional neural network (Convnet), 
was selected for the classification training. The framework 
used to set up the training was the Darknet (Bochkovskiy, 
c2020). Two different training sessions were carried out, the 
full version of Yolov4 and a lighter version called Yolov4-tiny, 
using pre-trained models (Bochkovskiy, 2020). The Yolov4 was 
trained in cloud computing ambient (Google, 2020) (GPU 
Nvidia Tesla k80 24GB)  and Yolov4-tiny in a desktop computer 
(AMD Ryzen 2700x, 16GB RAM, GPU Nvidia GTX 1050ti 
4GB), up to 8,000 iterations for each model.

Performance evaluation

After training, 147 images were used to test the detector 
performance. These images were not used in the training 
and were labeled using the LabelImg software (Tzutalin, 
2015). This labeling is realized to generate the ground-
truth files that have the coordinates (bounding boxes) 
about object localization in each picture. The detection 
results (bounding boxes) are then compared with the 
information for each object. The comparative results between 
detections and ground-truth coordinates were computed 
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with the software mAP (Cartucho, 2015; Cartucho et al., 
2018) and were performed according to the Pascal VOC 
Challenge 2012 metrics modified (Everingham & Winn, 
2012). In addition to the precision results graphics, the 
mAP software records comparative bounding boxes in 
each image for visual analysis. We configured the mAP 
software to present green bounding boxes as true positive 
detections, red as false positives, and yellow for undetected 
objects (false negatives). The ground-truth bounding boxes 
are presented in blue.

The results of the detection are classified by decreasing 
confidence level and compared to the ground-truth data. 
The detection result is considered positive when the value 
of Intersection over Union is greater or equal to 0.1 (IoU ≥ 
10%). Multiple detections for the same object are counted 
as false positives. The IoU is calculated by the Equation 1:
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where 𝐵𝑝 is the predicted bounding box area and 𝐵g𝑡 the 
ground-truth. Figure 2 provides a visual explanation of 
the IoU.

From the results of IoU, a precision/recall curve with 
precision monotonically decreased by setting the precision 
for recall r to the maximum precision obtained for any recall 
r’ > r is computed. The average precision (AP) for each class is 
calculated as the area under this curve by numerical integration. 
No approximation is involved since the curve is piecewise 
constant. The precision of all classes is presented as the mean 
average precision (mAP) calculated by the mean of all AP’s.

The accuracy (Ac) of the models was calculated by the 
Equation 2:
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where detTP  is the total number of true positives detected, 
Gt  is the total number of objects in the ground-truth data, 
and detFP  is the total number of false positives detected. The 
speed test was performed with recorded videos were carried 

out for capybaras and donkeys in a desktop computer with 
GPU GTX 1050Ti and are presented in frames per second.

Embedded system

The embedded system consists of a video camera, an 
Nvidia Jetson TX2 processing unit, a traffic signboard 
with an adapted light signal, and a solar panel power 
supply. For the luminous alert function, a modification 
was made in the darknet_video.py algorithm (Bochkovskiy, 
2020) using PyFirmata library (Bruijn, 2020), to establish 
communication with an Arduino 2560 mega-development 
board. During tests on video files, the operation of the light 
alert was observed experimentally using light-emitting 
diodes (LED). Figure 3 shows the assembly scheme and 
Figure 4 a virtual view of the proposed system.

Results and Discussion
The comparative detection results are presented in 

Figure 5.
Considering both models, the capybara class presented 

a higher number of false positives (n=49) compared to the 

Figure 2 – Intersect over Union. Intersection over Union is an 
evaluation metric used to measure the accuracy of an 
object detector on a particular dataset. In the numerator, 
the area of overlap between the predicted bounding 
box (green) and the ground-truth bounding box (blue) 
is computed. The denominator is the area of union, 
which is the sum of the area of both bounding boxes.

Figure 1 – Labeling the object of interest in an image. After drawing a bounding box around the object of interest (left frame), the 
label software generates a file with its coordinates. The format of the file depends on the chosen algorithm requirements.
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equidae class (n=31). This may be related to the greater number 
of individuals in the group and which may not have been 
labeled in the ground-truth data but were detected during 
the tests. Undetected objects are the main problem for an 
alert system for the presence of animals on the highways. 
In this case, the equidae class presented a higher number 
of undetected objects (n = 40) compared to the capybara 
class (n=7). Nevertheless, analyzing the detections frame by 
frame, in most images that have undetected objects (false-

negatives – FNs), there are also TP detections. Thus, from 
the point of view of alerting to the presence of animals on 
the highway, such occurrences in real-time would not result 
in a problem of the absence of an alert if there is at least a 
positive detection in the scene. Also, it is possible to verify 
that the majority of false-positive (FP) detections occurred 
in frames with true-positive (TP) detections. Two examples 
of these occurrences are presented in Figure 6.

Different challenges, such as occlusion, varied lighting 
conditions, spatial position, and scale, must be handled 
by the algorithm during object detection. False positives 
commonly occur due to localization error, confusion with the 
background or similar objects, and an insufficient amount 
of overlap (IoU). A false negative can be the result of low 
confidence attributed to the object, occlusions, truncation, 
small size, or unusual point of view (Ponce et al., 2006; 
Hoiem et al., 2012; Pathak et al., 2018).

The metric used in object detection challenges to 
assess model performance is based on the localization of 
the object in the image according to the IoU threshold 
(Common Objects in Context, 2020; PASCAL VOC Project, 
2012; Russakovsky et al., 2015). Furthermore, we decided Figure 3 – Assembly scheme of the embedded system.

Figure 4 – Virtualization of the final signboard light alert system. Generated with Autodesk® Fusion 360 Educational license.

Figure 5 – Comparative detection results between Yolov4 and Yolov4-tiny. Source: author. TP – true-positives; FP – false-positives; 
FN – false-negatives; Gt-capivara – number of objects in ground-truth. Gt-equidae – number of objects in ground-truth. 
Data computed in mAP (IoU ≥ 0.1) (Cartucho, 2015).
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to use a lower overlap value (IoU ≥ 0.1) in the detection 
evaluations instead of the one recommended in the Pascal 
VOC Challenge 2012 (IoU ≥ 0.5) to increase sensitivity. 
Thus, true-positive detections are computed even when 
only part of the animal’s body is detected. Subsequently, the 
system performance evaluation metric must be modified 
to consider as true-positive the entire frame if any object 
of interest is detected.

Detection errors can be minimized by adjusting 
the training hyper-parameters (anchoring, resolution, 
optimizers), normalizing the dataset, using negative samples, 
and increasing the volume of samples by class (Chu et al., 
2016; Alshalali & Josyula, 2018). Also, the Yolov4 presents 
a list of these adjustments that can be set up to improve the 
detection accuracy of custom models (Bochkovskiy, c2020).

Both models showed a similar precision performance, with 
a slight advantage for the full version of Yolov4. The results 
of average precision by class (AP) and the average detector 
precision (mAP) of each model are presented in Figure 7.

Considering the adopted performance evaluation metric, 
the precision results presented for both classes, in both models, 
were satisfactory. The accuracy results were 84.87% and 
79.87% for Yolov4 and Yolov4-tiny, respectively. Analyzing 
the dataset used for training, although the same number 

of images were selected for each class, a greater number of 
objects of the capivara class (n = 2412) were labeled than 
the objects of the equidae class (n = 1541). This explains the 
differences in detection results between the classes. One of 
the most important steps for image classification is the 
management of data for learning (Munappy et al., 2019). 
During tests on a highway, it will be possible to increase the 
dataset by obtaining new images and promote reinforced 
learning. Besides, other species of animals could be added 
to training according to local necessity.

Although there are many datasets available for download 
on the internet (Abu-El-Haija et al., 2016; Fei-Fei et al., 
2010; Huang et al., 2007; Khosla et  al., 2011; Lin et al., 
2014), finding a large number of images for specific classes 
is a significant challenge. The models were trained using 
pre-trained weights, a technique called transfer learning. 
During training, the learned data is stored in files called 
weights. Transfer learning is the use of information from one 
domain and transferring it to another related domain. This 
technique is used when dataset building can be difficult or 
expensive (Weiss et al., 2016; Zhuang et al., 2019). Although 
it has been demonstrated that predictive results can be 
obtained with high precision in an image classification model 
without the use of pre-trained weights (He et al., 2019), a 

Figure 6 – Examples of false-positive and undetected objects. Source: author. Bounding-boxes: green – true-positive; red – false-
positive; yellow – false-negative. Generated with mAP (Cartucho, 2015).

Figure 7 – Comparative precision results of Yolov4 and Yolov4-tiny. Source: author. mAP – mean average precision for all classes; 
AP – average precision of each class. Data computed in mAP (IoU ≥ 0.1) (Cartucho, 2015).
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large volume of samples was used for training and validation 
(35,000 images for training and 5,000 images for validation). 
When a test was performed with many images similar to 
this work, there was an excess of adjustment in the model 
due to the limited number of samples, reducing the average 
precision value in the predictions (AP = 9, 9 - pre-trained 
model; AP = 3.5 model without pre-trained weights). Also, 
the transfer learning required less lead time to converge the 
weights to an asymptotic point, and a considerably smaller 
number of samples can be used for training (Chollet, 2016; 
Rawat & Wang, 2017).

The speed results were 40 fps using Yolo4-tiny and 28 fps 
using Yolov4. During the video tests, the luminous alert 
could be verified by a white LED (Light Emitting Diode) for 
equidae class and a red LED for capivara class as presented 
in Figure 8. The different colors of the light alert have been 
set up only for test purposes. The configuration will be 
modified for the embedded system and new experiments 
will be carried out.

Conclusions
The models presented high precision in detecting the 

objects tested. Despite both classes having high levels of 
a true positive detection, the equidae class presented a 
greater number of undetected objects (false negatives) 
compared with the capivara class. The issue related to the 
undetected objects is the most important one to consider 
in a highway collision avoidance system and needs to be 
adjusted accordingly. The precision results for the equidae 
class were lower than those of the capybara class because 
of the smaller number of samples that were used for 
classification in training. However, tests were performed 
on still images and video files. It is necessary to make 

corrections in the dataset for new training and perform 
experiments in real-time situations.

In the future, other animal species will be included, and 
real-time tests in various light and visibility levels will be 
carried out on the experimental roadway located near the 
Department of Preventive Veterinary Medicine and Animal 
Health (University of São Paulo - Pirassununga/SP). The length 
of the experimental road is 300 meters, and the detection 
system will be evaluated for donkeys, capybaras, dogs, 
bovines, and horses positioned at 100, 200, and 300 meters.

The system proposed in this work has the potential to 
contribute to improving animal welfare and road safety 
due to accidents involving animals. The next steps in the 
project will clarify whether the proposals discussed can be 
confirmed or rejected.
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