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Local assemblages are embedded in networks of communities connected by dispersal, 
and understanding the processes that mediate this local–regional interaction is cen-
tral to understanding biodiversity patterns. In this network (i.e. metacommunity), the 
strength of dispersal relative to the intensity of environmental selection typically deter-
mines whether local communities are comprised of species well-adapted to the local 
environment (i.e. species sorting) or are dominated by regionally successful species 
that may not be locally adapted (i.e. mass effects), which by extension determines the 
capacity of the landscape to sustain diversity. Despite the fundamentally spatial nature 
of these dispersal-mediated processes, much of our theoretical understanding comes 
from spatially implicit systems, a special case of spatial structure in which patches are 
all connected to each other equally. In many real systems, both the connections among 
patches (i.e. network topology) and the distributions of environments across patches 
(i.e. spatial autocorrelation) are not arranged uniformly. Here, we use a metacommu-
nity model to investigate how spatial heterogeneities may change the balance between 
species sorting versus mass effects and diversity outcomes. Our simulations show that, 
in general, the spatially implicit model generates an outlier in biodiversity patterns 
compared to other networks, and most likely amplifies mass effects relative to spe-
cies sorting. Network topology has a strong effect on metacommunity outcome, with 
topologies of sparse connections and few loops promoting sorting of species into suit-
able patches. Spatial autocorrelation is another key factor; by interacting with spatial 
topology, intermediate-scale clusters of similar patches can emerge, leading to a reduc-
tion of regional competition, and hence maintenance of gamma diversity. These results 
provide a better understanding of the role that complex spatial landscape structure 
plays in metacommunity processes, a necessary step to understanding how metacom-
munity processes relate to biodiversity conservation.
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Introduction

Understanding the processes underlying biodiversity pat-
terns across local and regional scales is one of the central 
challenges in ecology. In recent decades, the role of spatial 
heterogeneity in the environment interacting with disper-
sal processes has been increasingly recognized as critical to 
ecological outcomes (Crowley 1981, Chesson 2000, Chase 
and Leibold 2002, Amarasekare 2003, Witman et al. 2004, 
Cottenie 2005, Randin et al. 2006, Kadmon and Allouche 
2007, Harrison and Cornell 2008, Myers and Harms 2009, 
Heino 2011). These research themes have been unified under 
the metacommunity ecology framework (Kneitel and Chase 
2004, Leibold et al. 2004, Vellend 2016), expanding the scope 
of local-scale community ecology to landscapes and regions. 
Leibold  et  al. (2004) delineated four major archetypes in 
metacommunity ecology that represent different classes of 
ecological dynamics: patch dynamics, neutral dynamics, spe-
cies sorting and mass effects. These dynamics emerge from 
the interplay of more fundamental processes (sensu Vellend 
2016), i.e. dispersal, drift, selection and speciation, which 
in turn reflect the interaction of biological aspects with the 
physical environment of the landscape. Understanding how 
the relative strengths of these processes contribute to higher 
level dynamics remains an essential goal of the field (Leibold 
and Loeuille 2015, Thompson et al. 2020).

A key early result in metacommunity ecology relates to 
the transition between ‘species-sorting’ and ‘mass-effect’ 
archetypes as dispersal increases (Mouquet and Loreau 2002, 
2003, Loreau et al. 2003, Cadotte 2006, Shanafelt et al. 2015, 
Thompson and Gonzalez 2016, Leibold et al. 2017). Under 
species sorting, species generally exist in patches where they 
are highly adapted and few places where they are subopti-
mal. This leads to relatively high beta diversity and low alpha 
diversity, as the landscape becomes a mosaic of locally well 
adapted species. At very high dispersal, regional competition 

is too strong for local selection to overcome inputs from dis-
persal, leading to ‘mass effects’. As species that tend to be bet-
ter competitors across the entire landscape become abundant, 
the metacommunity becomes both more homogenized and 
more depauperated. The transition between species-sorting 
(local selection only) and mass-effect (dispersal dominant) 
regimes can occur as a consequence of two processes related 
to dispersal: source–sink effects and regional competition. 
The source–sink effect, a process in which dispersal from 
an adjacent source to sink populations leads to an increased 
opportunities for local coexistence (higher alpha diversity) 
(Amarasekare and Nisbet 2001), allows for stable mal-adap-
tations (Dias 1996). Alternatively, regional competition can 
be the dominant process and reduce regional diversity by 
allowing only the most fit species (with fitness averaged across 
heterogeneity in the landscape) to persist in the metacom-
munity, while many locally superior but regionally inferior 
species are excluded. (Mouquet and Loreau 2002) (Fig. 1).

While dispersal is clearly a key mediator of the transition 
from species-sorting to mass-effect dynamics, we have much 
to learn about other factors that may affect this transition. 
Moreover, there may be factors that prevent the realization of 
certain metacommunity states, such as local coexistence. The 
Mouquet and Loreau model (M&L model hereafter) is an 
eminently rational starting point for investigating metacom-
munity dynamics containing a number of simplifications. 
The constraints set for the simplifications need further explo-
ration to evaluate the generality of the results. Previous work, 
for example, has extended the M&L model by exploring the 
effects of species-level variation in dispersal rate (Loreau et al. 
2003), time-varying environments (Shanafelt  et  al. 2015) 
and the impact of harvest by humans (Shanafelt et al. 2018).

One key limitation of the M&L model is the spatially 
implicit assumption. Metacommunity models are inher-
ently spatial, in the relationship between local and regional 
dynamics, with dispersal rates linking local dynamics 

Figure 1. Overview of the metacommunity framework in this study. (a) Relationship between species-sorting and mass-effect archetypes and 
metacommunity processes. (b) Biodiversity patterns suggested by the M&L model. This biodiversity patterns predicted by the M&L model 
corresponds to the trajectory shown with dashed arrows in panel (a).
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(Tilman 1994). However, many of the foundational theoreti-
cal results are based on a spatially implicit metacommunity 
structure (Mouquet and Loreau 2003, Loreau  et  al. 2003, 
Shanafelt et al. 2015). Studies using the M&L model with 
spatially implicit assumption predict that local diversity can 
increase at an intermediate dispersal rate and decreases after 
the threshold, when regional competition becomes signifi-
cant. In other words, there are three phases in the diversity–
dispersal curve: a) low alpha diversity with local selection 
dominant at small dispersal rate, b) higher alpha diversity 
(local coexistence, with stable mal-adaptations) with both 
local selection and source–sink effect dominant at a larger 
dispersal rate smaller than the threshold and c) lower alpha 
diversity due to regional competitive exclusion at a dispersal 
rate larger than the threshold (Fig. 1). Altogether, these gen-
erate a hump-shaped relationship between the local diversity 
and dispersal rate with a peak at the intermediate dispersal 
rate, indicating local coexistence of locally optimal and mal-
adapted species. Here, communities are separated from each 
other, but in a homogeneous way that does not reflect varia-
tion in inter-patch distances or allow for non-random patterns 
in how environments are distributed across the landscape. In 
contrast, real systems have patches that are connected in com-
plex ways, reflecting the physiographic structure of the world 
and the movement of organisms across landscapes (Legendre 
and Fortin 1989, Wiens 1989, Leibold and Norberg 2004, 
Hillebrand and Matthiessen 2009, Heino et al. 2015).

Several previous studies highlighted the significance of 
complex spatial structures in metacommunity dynamics. 
Among theoretical studies, Economo and Keitt (2008) sug-
gested that explicit spatial structure can yield higher gamma 
diversity compared to a well-mixed metacommunity of the 
same size. Muneepeerakul  et  al. (2007) and Morrissey and 
de Kerckhove (2009) also found that dendritic systems com-
pared to linear or two-dimensional lattice landscapes support 
higher genetic diversity. Thompson et al. (2017) showed that 
dispersal rate influences the relative contribution of species 
sorting and mass effects to spatial insurance, while focusing 
on overall dispersal rate as the main parameter in metacom-
munity dynamics. In a large and complex spatial structure, 
environmental heterogeneity can be measured by spatial 
autocorrelation in environment, which is another parameter 
that affects population dynamics (Petchey  et  al. 1997). In 
addition to such theoretical studies, Chisholm et al. (2011) 
empirically showed that spatial structure alters biodiversity 
levels in metacommunity, which becomes more evident 
when environmental heterogeneity is present. These studies 
highlight that complex spatial structure in nature, includ-
ing the structure of dispersal and spatial autocorrelation, 
can play a key role in governing metacommunity assembly. 
They also demonstrate that network approaches are power-
ful ways to represent complex spatial structures and explore 
these structure’s effects. Moreover spatial ecological net-
works have important relevance for biodiversity conservation 
(Gonzalez et al. 2017).

Despite these advances which point toward the impor-
tance of spatially explicit processes in metacommunity 

dynamics, we have no clear understanding of how complex 
spatial structure mediates transitions between metacommu-
nity archetypes. Here, we extend the M&L model to accom-
modate two aspects of complex spatial structure: variation in 
network topology, and spatial autocorrelation in the environ-
ment. We ask, when considering the balance between species 
sorting and mass effects a) whether the lessons of the spa-
tially implicit model hold when considering more complex 
spatially explicit environments, and specifically b) what the 
roles of network topology and spatial autocorrelation are in 
the transition between species sorting and mass effects. We 
address these questions using a simulation approach to probe 
the dependence of spatial organization of biodiversity (alpha, 
beta, gamma) on dispersal rates and on different spatially 
explicit models.

Methods

Model construction

The model we use is based on the one suggested by Mouquet 
and Loreau (2002, 2003), which is a lottery model (Chesson 
1985, Muko and Iwasa 2000) with discrete time steps. It 
focuses upon the characteristics of certain sessile or seden-
tary marine organisms such as corals that mass spawn (syn-
chronized spawning) and disperse passively. This model also 
assumes that local communities have infinite carrying capac-
ity, and the main response variable is the relative abundance 
of species, not the absolute population size. This removes the 
influence of finite size effects such as demographic stochastic-
ity, and thus the model has deterministic dynamics. These 
assumptions (from the original M&L model) allow us to 
highlight the effects of dispersal on species sorting and mass 
effects while excluding confounding factors such as the behav-
ioral complexities of active dispersal and stochastic finite-size 
effects. We extend their model to metacommunity systems 
with explicit spatial structure in addition to a complete net-
work, which corresponds to a spatially implicit model. We 
assume that the settlement success of each species is perfectly 
proportional to the species abundance based on individu-
als in the pre-settlement phase after dispersal. However, this 
model could be easily modified into a stochastic model by 
introducing multinomial sampling. The metacommunity 
model is coded in Julia (Bezanson et al. 2017).

We use a metacommunity of N = 100 patches with unique 
environmental conditions and S = 20 species. Let alk be the 
dispersal rate from community l to k. The network struc-
ture of the metacommunity enters the model through the 
matrix of all alk describing the dispersal of individuals across 
the metacommunity. We assume that after the reproduction 
process within each community, the fraction 1

,
-

¹åk k l

N
lka  

of individuals in community l stay in the community, and alk 
disperse from community l to community k.

The simulated processes were reproduction in each 
local community, dispersal between local communities, 



4

immigration from the regional species pool to local patches, 
and settlement. Note that dispersal and settlement processes 
are distinguished, such that dispersers first arrive at a local 
patch and then all or some of them settle. We refer to individ-
uals in the pre-settlement stage as the ‘local pool’ of its local 
community. Let Pik(t) be the fraction of sites occupied by spe-
cies i in community k at time t, and qik(t) as the number of 
individuals of species i in the local pool of local community 
k. Through the reproduction process, the fraction of species i 
in local community l becomes Pilcil, where cil is the reproduc-
tion rate of species i in community l, which hence reflects its 
fitness. Then the fraction 1

=1,
-( )¹å j j k

N
kja  of all the indi-

viduals in a community stay, and 
j j k

N
kja

=1, ≠∑  leave for the 
regional pool. These processes can be written as follows:

reproduction : ( ) = ( )q t c P tik ik ik 	 (1)

dispersal : ( ) = ( ) 1
=1, =1,

′ ( ) + −







≠ ≠
∑ ∑q t a q t aik

l l k

N

lk il
j j k

N

kj



q tik ( ) 	(2)

immigration reg: 1| =Pr q q Pik ik i¢ + ¢{ } n 	 (3)

ν is the immigration rate from the regional pool to each com-
munity, and Pi

reg  denotes the relative species abundance in 
the regional pool. We assume that all individuals are replaced 
by offspring every generation. Therefore, the number of indi-
viduals of species i in community k after dispersal becomes

¢ + -
æ

è
ç
ç

ö

ø
÷
÷

¹ ¹
å åq t a c P t a c Pik

l l k

N

lk il il
j j k

N

kj ik ik( ) = ( ) 1
=1, =1;

(( )t 	 (4)

The matrix notation of this equation is

q t C P A Z C P¢¢( ) = ( )� � �+ 	 (5)

where Z is a S-by-N matrix, Z = I − U, U is a S-by-N matrix, 
u aik j

N
kj=1

=1
-å  , and akk = 0. I is a S-by-N matrix, with ele-

ments all equal to 1. ∘ denotes the Hadamard product.
Assuming the lottery system for competition over space 

(i.e. random allocation of unoccupied sites to pre-settlement 
individuals) the probability that an individual of species i is 
randomly chosen and occupies an unoccupied site in com-
munity k (rik) becomes proportional to ¢q tik ( ) :

r q qik ik
i

S

ik= /
=1

¢ ¢å 	 (6)

The right-hand side can be written in matrix notation as

q I¢¢ ¢¢� ( )q 	 (7)

where ⊘ is the Hadamard division.
With the immigration process described in Eq. 3,

r q q Pik ik
i

S

ik i= (1 ) /
=1

- ¢ ¢ +ån n reg 	 (8)

The right-hand side can be written in matrix notation as

(1 ) ( )- +n nq reg¢¢ ¢¢� Iq 1P T 	 (9)

where 1 is a S-by-1 column vector of ones, and Preg is a S-by-1 
column vector whose i-th element is Pi

reg .
The frequency Pik in this deterministic model in genera-

tion t + 1 will then become

P q Iq 1Preg
t t t+ - +1 = (1 ) ( )n n¢¢ ¢¢� T 	 (10)

We chose to evaluate a closed metacommunity (ν = 0) for our 
experiments as immigration from the outside simply raised 
the minimum diversity levels without changing the overall 
patterns and conclusions.

Stationary condition

We ran each simulation until the community dynamics 
reached a stationary state that satisfied the following condition:

i k
ik tP

,
,å £ tolerance 	 (11)

where tolerance was 0.0000001 × S × N (S = 20: the 
total number of species, N = 100: the number of local 
communities).

Reproduction rate
Species’ traits are characterized by xi ∈ [0,1]. El denotes the 
environmental condition in community l (El ∈ [0,1]). xi and 
El are unique to species and patches, respectively. The poten-
tial reproduction rate cil is defined as

c
h

E x
hil

l i= 1
2

( )
2

2

p
exp- - 	 (12)

This indicates that the species with xi closer to El in commu-
nity l is more successful in the competition. h corresponds 
to the variance in a Gaussian distribution, so a larger h cor-
responds to weaker local selection. This model assumes that 
the difference in reproduction rate between species is the only 
interspecific difference that directly makes the chance of set-
tlement different among species.
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Diversity measure

We calculate alpha (local), beta (between-patch) and 
gamma (regional) diversity based on the outputs of meta-
community simulations on five different spatial topologies 
at different levels of spatial autocorrelation and different 
strengths of local selection. These diversity indices were 
calculated based on the multiplicative partition of the 
effective number of species (Hill 1973) with the Gini–
Simpson index (Jost 2006, 2007, Jost et al. 2010) (Fig. 4) as  
well as species richness (Fig. 5). The Gini–Simpson index 
is 1 − λ, where λ is the Simpson concentration, which  
is defined as

l =
=1

2

i

S

ijpå

This is also known as the probability of identity. Note that pij 
is the relative species abundance of species i in community j, 
that is, the proportion of occupied sites by species i in com-
munity k, where Qik is the number of individuals of species i 
in community k:

p Q Qik ik
i

S

ik= /å
Jost (2006) showed that the gamma and alpha components of 
the Simpson concentration can be written as

lg =
=1 =1

2

i

S

j

N

j ijw på å
æ

è
ç
ç

ö

ø
÷
÷

	 (13)

and λα = /
=1

2

=1

2

=1

2

j

N

j
i

S

ij
j

N

jw p w∑ ∑ ∑








 	 (14)

The multiplicative partition in terms of the Simpson concen-
tration becomes

l l lb g a= / 	 (15)

We set wj = w for all j, so that the diversity measure satisfies 
the condition for strict concavity, i.e. average local (alpha) 
diversity does not exceed global (gamma) diversity. For the 
beta diversity to have a monotonic relation with the degree of 
differentiation between N communities, the weights should 
be equal to 1/N.

Taking the inverse of each component of the Simpson 
concentration, 1/λγ, 1/λα and 1/λβ become gamma, alpha and 
beta diversity, respectively.

Network construction

We use five different network topologies: Watts–Strogatz 
(‘small-world’) (Watts and Strogatz 1998), grid, linear, 
tree and complete networks (Fig. 3). Kininmonth  et  al. 
(2010) investigated the larval connectivity model of reef 
fish estimated by James et al. (2002) and showed that the 
network resembled a small-world network with hub struc-
ture. The linear topology is a network structure with 100 
nodes arranged on a line, the grid topology is a 10 × 10 
grid, and complete network is a network in which each 
node is connected to all other nodes, which corresponds 
to the spatially implicit network often used in previous 
studies (Mouquet and Loreau 2002, 2003). We generated 
these five types of networks with 100 nodes and edges 
whose weights are equal in a topology and defined such 
that the total dispersal rate becomes the same on all five 
different topologies. We used the grid topology to observe 
the effect of having alternative paths to get one com-
munity to another, in comparison with linear network. 
We used NetworkX in Python3 (Hagberg  et  al. 2008), 
to generate a small-world network and a tree network. 
For the small-world network, we used the function con-
nected_watts_strogatz_graph (n = 100, k = 4, p = 0.1; n: 
the number of nodes, k: each node is joined with its k 
nearest neighbors in a ring topology, p: the probability of 
rewiring each edge). For the tree topology, we first gener-
ated a rooted tree with the function balanced_tree (r = 3, 
h = 4), and randomly removed leaf nodes (nodes with a 
single neighbor), so that the total number of nodes in the 
tree network becomes 100. The matrix A in Eq. 5, where 
alk represents the dispersal rate from community l to k, 
reflects network topology. We used total dispersal rates 
0.0005, 0.005, and from 0.05 to 0.4 with interval 0.05. 
Here, the total dispersal rate is the fraction of the entire 
metacommunity that disperses in each generation. Since 
the networks vary in the number of total links, the disper-
sal strengths of each link were adjusted (by downweighting 
links in networks with more connections) to equalize the 
number of total dispersers and provide a fair comparison 
among topologies.

Environmental conditions and spatial 
autocorrelation

As defined in Eq. 12, the environmental condition Ek affects 
the reproduction rate of species i in community k, cik. We 
define the species trait value as xi+1 = xi + 1/S, (x1 = 0) for i = 1, 
…, S − 1. Environmental condition, Ek also takes a value 
between 0.0 and 1.0; Ek = Ek−1 + 1/N, E1 = 0 for local com-
munity k.

To assign each Ek value to a specific local community k, 
we first optimized spatial arrangement of environmental 
conditions using spatial autocorrelation as the target of opti-
mization. We conducted this optimization on all networks 
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except the complete network because there is only a single 
level of spatial autocorrelation that a complete network can 
take. We defined the spatial autocorrelation of a network as 
the inverse of ρ, the sum of the difference in environmen-
tal conditions between every connected pair of patches, as 
denoted below:

r =
,k l

N

k l klE E aå - ´ 	 (16)

where akl = 1 if patch k and l are connected and akl = 0 oth-
erwise. For a complete network, ρ = 1666.5 regardless of the 
spatial arrangement of environmental conditions. The opti-
mization algorithm is as follows: 1) randomly assign Ek to 
each patch and calculate ρ; 2) randomly choose two pairs 
of patches (patch i and j, k and l); 3) see if swapping the 
environmental conditions between both pairs (i and j, k and 
l) decreases ρ; 4) if ρ decreases (and hence increases spatial 
autocorrelation), update the environmental condition by 
adopting the arrangement after the swapping; 5) repeat 1–4 
for 11 000 times. We ran this algorithm five times on each 
network topology and observed ρ asymptotically decreased 
(Fig. 2).

Based on this result, we chose three arrangements of envi-
ronmental conditions for each topology: a random arrange-
ment (lowest spatial autocorrelation), the arrangement 
chosen by the above optimization (highest spatial autocor-
relation), and the first arrangement in the optimization that 
had ρ < 20 (intermediate spatial autocorrelation). Note that 
the value ρ for the lowest and highest spatial autocorrelation 
depends on the topology (Fig. 3).

Results

We observed the previously known (Mouquet and Loreau 
2002, 2003) hump-shaped relationship between alpha diver-
sity and dispersal rate for the complete network when h = 0.1 
(Fig. 4, 5, second rows), but this relationship was hardly 
observed on other topologies and alpha diversity remained 
small across different dispersal rates. For smaller h, there 
was a pronounced difference in alpha diversity for the com-
plete network when calculated using Gini–Simpson (Fig. 4) 
and richness-based (Fig. 5) diversity measures. In contrast, 
we observed the general trend of declining gamma diver-
sity with increasing dispersal rate on all topologies. We also 
found slower and more gradual declines in beta diversity with 
increasing dispersal on the four networks compared to the 
complete network.

We investigated how spatial topology affected the balance 
between local and regional competitions by manipulating the 
parameter h (the smaller h, the stronger local selection) and 
spatial autocorrelation of environmental conditions. Gamma 
diversity decreased as h increased (first columns in Fig. 4). 
When local selection was weak (especially when h = 10), 
gamma, alpha and beta diversities all became close to 1 as 
dispersal increased. In other words, all the local patches, or 
the entire metacommuntiy, retained few species and became 
homogenized except for the high spatial autocorrelation case 
simulated using the linear and tree networks. Under weaker 
local selection (third and fourth rows in Fig. 4), gamma and 
beta diversity on non-complete networks, especially for linear 
and tree topologies, became higher with increased environ-
mental autocorrelation.

Figure 2. Changes in ρ (1/spatial autocorrelation) during the optimization process.
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Figure 3. Network topologies and spatial arrangements of environmental conditions with three different levels of spatial autocorrelation 
(S.A.). (a) Linear, (b) grid, (c) small-world, (d) tree networks. In the complete topology each node is connected to all the other nodes. Thus, 
the complete network can take only one level of spatial autocorrelation, ρ = 1666.5.

Figure 4. Diversity measures across different h values and three different levels of spatial autocorrelation simulated using linear, grid, small-
world and tree networks. We observed topology-dependence of alpha, beta, gamma diversity. Note that diversity measured on the complete 
network (dashed lines in lighter colors) is more so extreme than general. Networks that consist of line-shaped components, such as linear 
and tree, tended to generate high beta diversity. Note that the spatial autocorrelation level on complete network is a fixed value. Diversity 
values were calculated based on the Gini–Simpson index, and we used multiplicative beta diversity (Jost 2006, Jost et al. 2010). See Figure 6 
for an alternative view to associate biodiversity patterns with mass effects and species sorting.
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Figure 6 provides an alternative view of the biodiversity 
patterns generated through simulations, in a manner corre-
sponding to Fig. 1. The trajectory followed by metacommu-
nities with the complete network followed is clearly different 
from other spatial topologies.

Discussion

Our analysis of how dispersal controls metacommunity 
dynamics in spatially complex environments adds impor-
tant corollaries to some central results in metacommunity 

Figure 5. Species richness-based diversity measures across different h values among the three different levels of spatial autocorrelation simu-
lated using linear, grid, small-world and tree networks. We observed topology-dependence of alpha, beta, gamma diversity. We calculated 
diversity values based on species richness and used multiplicative beta diversity with equal weights on all local communities (Jost et al. 
2010). We excluded the fraction of species i in local community k to calculate diversity when Pik < 0.01 to compare with the results from 
Mouquet and Loreau (2003). See Figure 6 for an alternative view in associating biodiversity patterns with mass effects and species sorting.

Figure 6. Beta–gamma diversity plot of simulation results on the five spatial structures for dispersal rates ranging between 0.4 (top right) 
and 0.0005 (bottom left). Biodiversity patterns on the different spatial topologies followed different trajectories between species-sorting and 
mass-effect regimes (see the leftmost panel and Fig. 1a). While the metacommunity with complete network (dashed line) reached the state 
of local coexistence (top left area) at the intermediate dispersal rate and shifted to a state of strong regional exclusion (bottom left), meta-
communities with other topologies directly shifted to regional exclusion without exhibiting local coexistence. Moreover, the linear and tree 
topologies particularly retained relatively high gamma and beta diversity, i.e. they did not shift from species sorting to mass effects as much 
as other topologies at the highest dispersal rate.
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theory. Specifically, we found that the nature of the tran-
sition between species-sorting and mass-effect regimes 
with increasing dispersal depends on both the pattern of 
dispersal connections across patches and autocorrelation 
in the environment. These two common features of real 
landscapes were not present in previous theoretical studies 
regarding the role of dispersal in controlling metacommu-
nity dynamics.

Spatial topology dependence of the effect of 
dispersal process

While our results using the complete network (equivalent 
to a spatially implicit model) showed trends similar to the 
known hump-shaped relationship (i.e. high alpha diver-
sity) (Mouquet and Loreau 2003), this relationship was 
not observed on other topologies. Moreover, by comparing 
biodiversity patterns calculated based on the Gini–Simpson 
index (Fig. 4) and species richness (Fig. 5), we showed that 
the hump-shaped relationship between alpha diversity and 
dispersal rate was more pronounced when measured with 
species richness as it is more sensitive to rare species than 
the Gini–Simpson diversity indices. The discrepancy in the 
diversity patterns observed between topologies implies that 
focusing on diversity patterns, particularly species richness, in 
a complete network gives an incomplete picture of metacom-
munity dynamics.

We also observed a trend that gamma diversity decreased 
as dispersal rate increased, indicating that regional competi-
tive exclusion became stronger with higher dispersal rates. 
However, this effect was mediated by both the strength of 
local selection and the pattern of dispersal connections. When 
selection was strong, increasing dispersal did not strongly 
depress gamma diversity, and the complete network main-
tained the highest gamma diversity relative to other topolo-
gies through high levels of alpha diversity. This is because 
the source–sink effect became strong relative to regional 
competition on the complete network, which maintained 
high alpha diversity. When selection was weaker, increasing 
dispersal depressed gamma diversity through the regional 
competition of species, and this was strongest on the com-
plete network relative to the other topologies (fourth rows 
in Fig. 4). In short, while the balance between source–sink 
effects and regional competition determines the biodiversity 
outcome, i.e. high local coexistence or regional exclusion, this 
balance was mediated by the strength of local selection and 
the pattern of dispersal connections.

While source–sink effects and local coexistence are often 
considered together as part of the mass-effect archetype with 
heterogeneous environment (Leibold  et  al. 2004), we have 
shown that the source–sink effect does not always support 
high local coexistence even when heterogeneous patches are 
connected by strong dispersal. Indeed, while high dispersal in 
the complete network effectively homogenized communities 
and reduced beta diversity to very low levels, beta diversity 
remained high in all the other networks even at high dispersal 
rates. In particular, gamma and beta diversity on the linear 

and tree networks were often much higher than other net-
work topologies for a given level of total dispersal, and more 
tolerant to strong dispersal. This shows that mass effects were 
significantly weaker on the linear network relative to other 
networks due to the pattern of connections alone, and hence 
local selection became relatively stronger on these networks.

Our results showed that the consequence of increasing dis-
persal to high levels – high local coexistence (i.e. high alpha) 
or regional competitive exclusion (i.e. low gamma, beta, 
alpha) – depends on local selection strength, spatial network 
topology and spatial environmental autocorrelation. Local 
coexistence was enhanced the most in metacommunities with 
a completely connected topology, followed by grid and small-
world, and linear or tree networks, depending on the level of 
spatial autocorrelation. This was reflected by beta diversity 
(gamma/alpha diversity), which is an indicator of heteroge-
neity in species composition across local communities.

The enhanced local coexistence on the complete net-
work, coinciding with reduced regional exclusion, can be 
explained by the dense connections among patches. Local 
coexistence requires the dispersal of individuals of a particu-
lar species from their source patches to sink patches in suf-
ficient numbers to offset negative growth rates within those 
sink patches. This means that patches with very dissimilar 
environments need to be adjacent to each other. Because 
individuals are exchanged between all pairs of patches on the 
complete network despite the extremely low dispersal rate on 
each connection, the mixing of species between their optimal 
and unfavourable patches happens regardless of the spatial 
arrangement of environmental conditions. By contrast, spe-
cific spatial arrangements of environmental conditions are 
required on other more sparse topologies for species to dis-
perse to very dissimilar patches. Thus, such direct dispersal 
between very dissimilar patches is necessary for the source–
sink effect to become more significant and to drive the mix-
ing of local communities.

Emergence of environmental clusters at 
intermediate spatial scale

The linear and tree networks particularly enhanced local 
selection (Fig. 1a, 6). This enhancement was especially strong 
under weaker selection and higher spatial autocorrelation, as 
shown by their higher beta-diversity in species composition 
across local communities (third and fourth rows in Fig. 4). 
This can be explained by the formation of intermediate-scale 
dynamics as follows. Most nodes in the tree network and 
all nodes in the linear network are connected to few adja-
cent patches. Thus, on these networks it is more likely that 
adjacent patches have similar environmental conditions to 
each other than to other topologies, as long as spatial auto-
correlation is positive (e.g. on the complete network, where 
all patches are connected to each other, it is impossible for 
a patch to be connected to only similar patches). Within 
clusters of patches with similar environmental conditions, 
community composition may be more easily homogenized 
and thus allow individuals to survive after dispersal. At the 
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same time, environmental boundaries between intermediate-
scale clusters can separate them from each other and prevent 
homogenization between clusters, resulting in higher beta 
diversity.

The emergence of such environmental clusters is reflected 
by the different lower bounds in gamma diversity on differ-
ent topologies as well (Fig. 6). Furthermore, there is a rise in 
beta and gamma diversity at high dispersal rates on linear net-
work under the highest autocorrelation with h = 0.1 (leftmost 
panel in the second row in Fig. 4c). This rise is seemingly 
caused by strong dispersal between environmental clusters as 
boundaries are crossed, resulting in increased species sorting. 
Note that although network topologies and possible levels of 
spatial autocorrelation are tightly linked, there is a chance 
that such clusters can emerge within other network topolo-
gies in nature, especially when environmental heterogeneity 
among patches is limited. Also, the positive spatial autocor-
relation often observed in nature and used in our simula-
tions can on its own homogenize local communities between 
adjacent patches. However, what our results highlight is that 
for larger metacommunities and more heterogeneous envi-
ronment, whether communities are homogenized at the 
regional scale is not trivial. Overall, we suggest that spatial 
structures in which most nodes have only a few connections 
likely enhance intermediate-scale dynamics. Such intermedi-
ate-scale dynamics can enhance the homogenization of com-
munity composition at the intermediate scale but prevent the 
homogenization at the regional scale, resulting in limiting 
regional exclusion.

Improved overview of the dispersal effect in  
species-sorting and mass-effect archetypes: linking 
spatial structure and biodiversity patterns

Overall, our results suggest that the balance between species 
sorting and mass effects depends both on the spatial topology 
and spatial autocorrelation. The complete network enhances 
mixing of individuals between patches, leading to higher local 
coexistence and a shift toward mass effects, whereas linear 
and tree networks tend to enhance local selection, resisting 
the transition to mass-effect dominated regime even at high 
dispersal. This is summarized in Fig. 1 and shown in Fig. 6. 
In the 2D-space of beta and gamma diversity, given the deter-
ministic model dynamics assumed in the M&L model and 
the extended model used here, the right-top area corresponds 
to species sorting whereas the left area corresponds to mass 
effects. The transition from species sorting to mass effects can 
happen through a combination of source–sink effects and 
regional exclusion, as summarized in Fig. 1a. While dispersal 
rate is a main parameter that determines the balance between 
species sorting and mass effects under a given local selec-
tion strength, spatial topology and spatial autocorrelation 
are also involved in determining the trajectory of the transi-
tion. That is, whether the state of local coexistence (i.e. high 
alpha, high gamma and low beta) is realized, or both gamma 
and beta (thus alpha as well) monotonically decrease with 
increasing dispersal due to the dominant effect of regional 

exclusion with a lack of local coexistence. In other words, 
the prediction of the M&L model with its spatially implicit 
assumption seems to correspond to a particular case – when 
the mixing of communities between very dissimilar patches is 
significant relative to local selection strength. Such a situation 
is not always the case among a variety of spatial topologies. 
This trend – the higher local coexistence under the complete 
topology – seems analogous to the observation in a controlled 
experiment with fragmented moss-microarthropod systems 
in a heterogeneous environment by Chisholm et al. (2011), in 
which a continuous system in a heterogeneous environment 
supported higher alpha diversity than sparsely connected 
networks did. The mechanisms suggested here, that spatial 
topology and environmental autocorrelation affect biodiver-
sity patterns particularly at the level of local coexistence, may 
explain this empirically observed patterns. However, this does 
not exclude the possibility that other dynamics such as inter-
specific interactions contributed to the patterns as well.

Our results link biodiversity patterns with different pro-
cesses and conditions in a complex metacommunity. Among 
all the results shown in Fig. 4, gamma diversity was highest 
for the complete network under the strongest local selection. 
However, as local selection became weaker, gamma diversity 
became more dependent on total dispersal rate and environ-
mental autocorrelation, and gamma diversity on linear and 
tree networks became higher than on other networks. In 
other words, when species are well adapted to the environ-
ment, densely-connected spatial structure maintains biodi-
versity the best through source–sink dynamics. By contrast, 
when species are less adapted to the environment, biodiversity 
becomes more sensitive to spatial processes and conditions 
(i.e. dispersal rate, dispersal trajectory and spatial arrange-
ment of environments), and regional competition tends to 
exclude many suboptimal species, which corresponds to little 
local coexistence.

These complex relationships between metacommunity 
parameters may be a source of the controversy over the effect 
on biodiversity of corridors connecting fragmented patches 
(Haddad  et  al. 2014). Such a process-based understanding 
with detailed knowledge about ecosystems should provide 
the basis for improved conservation planning. For instance, 
our theoretical analysis indicates that when a system is more 
dominated by species sorting than mass effects, increasing 
connectivity (i.e. complete network) likely improves gamma 
diversity by increasing the chance of local coexistence (i.e. 
increasing alpha diversity). Moreover, it suggests that real 
landscapes may be able to avoid the negative effects of too 
much connectivity implied by mass effects – that regionally 
superior species swamp out other species that may be locally 
competitive. We found that the heterogeneous structure of 
dispersal and clusters of environmental similarity are able to 
resist mass effects by facilitating persistence of locally supe-
rior but globally inferior species in different regions of the 
network.

Our analysis is limited in a number of ways that suggest 
directions for future work. First, we focused on the transi-
tion between species-sorting and mass-effect archetypes, but 
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did not consider patch-dynamics and the neutral archetypes. 
Although the roles of spatially explicit structure have been 
explored within these archetypes to some extent (for example, 
for neutral theory in networks, Economo and Keitt 2008, 
Muneepeerakul et al. 2008), little is known about what gov-
erns the transitions between the archetypes. In the population 
genetics literature for example, different network structures 
have been known to amplify or depress the strength of drift 
versus selection (Lieberman  et  al. 2005). Thus, one could 
expect that landscape structure could mediate the balance 
between ecological drift and competition and whether neu-
tral or deterministic competition dominates the dynamics. 
Likewise, the present analysis is based on adding a more com-
plex spatial structure to the M&L model. Meanwhile, there 
are other assumptions of the model that could be relaxed, 
such as adding finite size effects, variation-in and evolution-
of dispersal abilities, passive versus active dispersal and add-
ing different carrying capacities across species.

Conclusion

Our results provide new insight into the species-sorting and 
mass-effect archetypes suggested by Leibold et al. (2004) and 
highlighted by the seminal studies of Mouquet and Loreau 
(2002, 2003). We analyzed the effect of complex metacom-
munity spatial structure on diversity patterns, and investi-
gated how the balance between local and regional competitive 
dynamics are controlled by spatial structure. We found that 
as indicated by canonical results from Mouquet and Loreau 
(2003), increasing dispersal induced a transition from species 
sorting to mass effects across the metacommunity, as locally 
optimal species become increasingly replaced by regionally 
optimal species. However, the nature of that transition was 
highly dependent on the pattern of connections among local 
communities (network topology) and patterns of autocorrela-
tion in the environment. Our results suggest the highly con-
nected nature of a spatially implicit metacommunity results 
in dynamics that are not found in most spatially explicit 
structures. Notably, spatial structures with locally sparsely 
connected patches contribute to the emergence of interme-
diate-scale environmental clusters of patches. Such clusters 
can homogenize community composition at the intermediate 
scale. At the same time, the emergent boundaries between 
such clusters prevent homogenization at the regional scale, 
and this mechanism resulted in the reduction in mass effects. 
Understanding the effects of the spatial structure of dispersal 
and levels of environmental patchiness on biodiversity pat-
terns provides a better theoretical understanding in commu-
nity assembly, and has relevance for conservation problems.
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