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ABSTRACT: π-Extended helicenes constitute an important class of polycyclic
aromatic hydrocarbons with intrinsic chirality. Herein, we report the syntheses of π-
extended [7]helicene 4 and π-extended [9]helicene 6 through regioselective
cyclodehydrogenation in high yields, where a “prefusion” strategy plays a key role in
preventing undesirable aryl rearrangements. The unique helical structures are
unambiguously confirmed by X-ray crystal structure analysis. Compared to the parent
pristine [7]helicene and [9]helicene, these novel π-extended helicenes display
significantly improved photophysical properties, with a quantum yield of 0.41 for 6.
After optical resolution by chiral high-performance liquid chromatography, the chiroptical properties of enantiomers 4-P/M and 6-
P/M are investigated, revealing that the small variation in helical length from [7] to [9] can cause an approximately 10-fold increase
in the dissymmetry factors. The circularly polarized luminescence brightness of 6 reaches 12.6 M−1 cm−1 as one of the highest
among carbohelicenes.

■ INTRODUCTION

Carbohelicenes constitute a unique class of polycyclic aromatic
hydrocarbons with benzene rings that are angularly annulated
in the ortho-configuration. The helical structures lead to
intrinsic chirality and allow applications in asymmetric
catalysis, nonlinear optics, and molecular machines.1,2

Theoretical studies have shown that the dissymmetry factor
(g) of single-stranded [n]carbohelicenes increases with the
helical length n.3 Therefore, tremendous efforts have been
made to synthesize higher [n]helicenes since the first report of
[6]helicene by Newman and Lednicer in 1956.4−7 To date, the
longest carbohelicene reported is [16]helicene, which was
synthesized by Fujita and co-workers in 2015.8 The low yield
of the final photocyclization step (7%), however, hinders a
further increase of the helical length by this approach.
Another research direction in helicene chemistry is the

lateral extension of π-conjugated systems.9−20 With more
extensive conjugation, π-extended helicenes can be regarded as
nanosolenoids and are predicted to possess intriguing
electronic, magnetic, and spin properties.21−23 In addition,
their fascinating chiroptical features, such as circular dichroism
(CD) and circularly polarized luminescence (CPL), have been
intensively studied and are valuable for circularly polarized
organic light-emitting diodes and bioimaging applications.24−27

An ideal CPL emitter should possess both a high emission
quantum yield (Φ) and a large luminescence dissymmetry
factor (glum), but these properties are often difficult to achieve
simultaneously. One rare cylindrical molecule with D4
symmetry was reported to possess a Φ of 0.80 and an
exceptional |glum| of 0.152 by Isobe et al.28 Hexa-peri-

hexabenzocoronene (HBC) and perylene diimide (PDI)
have been commonly used as the skeletons for π-extension.
However, the potential of such π-extended helicenes as CPL
emitters has not been well explored. For example, an excellent
Φ (>0.80) was achieved by a HBC-fused oxa[7]superhelicene,
but its glum was only 2 × 10−4 (Scheme 1A);10,29 a moderate
glum (2 × 10−3) and a low Φ (0.098) were reported for another
HBC-based undecabenzo[7]superhelicene (Scheme 1B);9,23

and in a series of PDI-embedding double [8]helicenes, only
moderate values of glum (up to 2 × 10−3) and Φ (up to 0.30)
were observed (Scheme 1C).19 After the initial submission of
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Scheme 1. π-Extended Helicenes and Their CPL Properties
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this manuscript, Santoro, Schuster, Nuckolls et al. reported
amplified CD signals by extending the helical length, but did
not study the CPL performance.27 Therefore, the design and
synthesis of π-extended helicenes with a good balance between
fluorescence performance and dissymmetry factors are highly
desired.
In this study, we targeted a series of π-extended [n]helicenes

with various helical lengths n. The tribenzo[fg,ij,rst]-
pentaphene, a segment of HBC, is selected as the π-extension
motif, which is expected to inherit the merits of HBC in terms
of optoelectronic and photophysical properties.30 In our first
attempt to synthesize π-extended [7]helicene 4 from precursor
1, heptagon-bearing [5]helicene 2 was selectively obtained due
to unexpected aryl rearrangement during cyclodehydrogena-
tion (Scheme 2A).31 Computational studies of the reaction

mechanism indicated that the rearrangement occurred in the
first step of dehydrogenation and was favored over direct C−C
bond formation for 4. To prevent this undesired yet highly
efficient aryl rearrangement, we herein adopted a new strategy
that employs precursors 3 and 5 by prefusing the tetraphenyl-
benzene moiety (Scheme 2B). Targeted π-extended helicenes
4 and 6 were thus successfully obtained by regioselective
cyclodehydrogenation in high yields. The helical structures of
4 and 6 were confirmed by NMR spectroscopy and X-ray
crystallography. Their high isomerization barriers (>40 kcal/
mol) enabled the separation of enantiomers 4-P/M and 6-P/M
by chiral high-performance liquid chromatography (HPLC).
Intriguingly, the combination of the elongated helical length
and extended π-conjugation empower 6 as a promising CPL
emitter with a Φf of 0.41 and a glum of 7.4 × 10−3,
distinguishing it from π-extended carbohelicenes in the
literature.

■ RESULTS AND DISCUSSION
As depicted in Figure 1A, the syntheses of π-extended
helicenes 4 and 6 started from dibromo-functionalized
1,2,3,4-tetraphenyl benzene 7, which was reported in a
previous paper.31 Compound 7 was treated with 2,3-

dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoro-
methanesulfonic acid (TfOH) in dry dichloroethane at 30 °C
under nitrogen to produce dibromo tribenzo[fg,ij,rst]-
pentaphene 8 as the prefused building block in 49% yield.
Compound 8 was then coupled to 2-naphthyl groups by the
Suzuki reaction to yield precursor 3. Compared to those in
precursor 1, the phenyl rings in 3 were fully fused and thus
incorporated into the polycyclic lattice, leaving only the
naphthyl groups for the subsequent Scholl reaction. The final
cyclodehydrogenation using DDQ and TfOH proceeded
regioselectively at 0 °C, affording the desired π-extended
[7]helicene 4 as a yellow solid in 76% yield. Similarly,
precursor 5 functionalized with phenanthryl units was
synthesized from 8. The subsequent regioselective cyclo-
dehydrogenation of 5 resulted in π-extended [9]helicene 6 in a
high yield of 84%. The regioselective cyclodehydrogenation of
3 and 5 could also be achieved in similar yields (72% and 79%,
respectively) by using FeCl3 as oxidant at room temperature,
but no reaction was observed in oxidative photocyclization by
iodine without heating. Notably, the conditions of highly
regioselective Scholl reaction (DDQ/FeCl3) of the phenanthr-
yl units in this work are much milder than the previously
reported oxidative photocyclization (100 °C for 24 h).32

The chemical structures of π-extended helicenes 4 and 6
were fully characterized by standard spectroscopic techniques.
In high-resolution matrix-assisted laser desorption/ionization-
time-of-flight mass spectrometry (MALDI-TOF MS), 4 and 6
displayed strong signals at m/z = 736.3110 and 836.3443,
respectively, with isotopic distribution patterns consistent with
the calculated spectra (Figures S8 and S16). With the aid of
1H−1H correlation spectroscopy measurements, all proton
peaks of 4 and 6 in the aromatic region were assigned (Figure
1B and C). Notably, the proton signals corresponding to the
end of the helices (peaks 9, 10, and 11 in 4; peaks 11′, 12′, and
13’ in 6) exhibited pronounced upfield chemical shifts (δ =
5.57−7.00 ppm) due to the shielding effects induced by spatial
overlap with other benzene rings.
Single crystals of precursor 3 as well as π-extended helicenes

4 and 6 were grown by slow diffusion of ethanol vapor into
their chloroform solutions (Figures 2 and S17). The helical
structures of 4 and 6 were thus confirmed by X-ray diffraction.
Due to the rigidification provided by the tribenzo[fg,ij,rst]-
pentaphene subunits, the torsion angles in the helices were
similar, with values of 20.6° for 4-M (atoms a−b−c−d) and
20.9° for 6-M (atoms a′−b′−c′−d′), as depicted in Figure 2A
and 2C. The helical pitch, which was determined from the
centroid−centroid distance of the overlapping benzene rings
(Figure 2B and 2D), was 3.95 and 3.54 Å in 4 and 6,
respectively. These lengths are slightly larger than the values
for parent [7]helicene 9 (3.87 Å; CCDC: 852537) and
[9]helicene 10 (3.52 Å; CCDC: 1051158) reported in the
literature (the chemical structures of 9 and 10 are shown in
Scheme S1).8,33 P/M enantiomer pairs were identified in the
molecular packing, where enantiomers with the same chirality
(P or M) are packed in a columnar fashion in both 4 and 6
(Figure 2E and F). However, pronounced intermolecular π−π
interactions were suppressed by the twisted helical sub-
structure.
The absorption and emission spectra of 4 and 6 in THF

solutions were investigated and exhibited similar shapes
(Figures 3A and S18). The absorption maximum (λabs) of 4
was at 441 nm, and its emission peak (λem) was centered at
495 nm. Because of its increased helical length n, 6 possesses

Scheme 2. Illustration of the Prefusion Strategy To Prevent
Aryl Rearrangement and Achieve the Desired π-Extended
Helicenes 4 and 6
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greater π-conjugation than 4, as supported by its red-shifted
absorption and emission bands (λabs = 452 nm and λem = 528
nm). Interestingly, 4 and 6 emitted strong greenish
fluorescence with Φ of 0.25 and 0.41, respectively, whereas 9
and 10 displayed much lower values (<0.02).34,35 This clearly
demonstrates the added value of the π-extension in terms of
photophysical properties. The transient PL spectra revealed an
average lifetime of 16.2 ns for 4 and 8.8 ns for 6, confirming

the prompt fluorescence nature of their emission (Figure S19).
Since similar nonradiative rates (knr) were observed for 4 and 6
(4.6 × 107 s−1 and 6.8 × 107 s−1, respectively), the higher
fluorescence Φ of 6 can be attributed to the increase in the
radiative rate constant (kr = 1.5 × 107 s−1 for 4 and kr = 4.5 ×
107 s−1 for 6). In addition, these π-extended helicenes were
also emissive in the solid state (Φ = 0.17 and 0.34 for 4 and 6,
respectively) with red-shifted bands (Figure S18) as a result of

Figure 1. (A) Synthetic route toward 4 and 6. (B and C) Aromatic regions of the 1H NMR spectra of 4 and 6 with peak assignments.

Figure 2. Single-crystal structures of (A and B) 4-M and (C and D) 6-M. (E and F) Molecular packing of 4 and 6. All hydrogen atoms and the tert-
butyl groups in (E and F) are omitted for clarity. The P- and M-enantiomers are highlighted in blue and red, respectively.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.0c13197
J. Am. Chem. Soc. 2021, 143, 4661−4667

4663

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c13197/suppl_file/ja0c13197_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c13197/suppl_file/ja0c13197_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c13197?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.0c13197?rel=cite-as&ref=PDF&jav=VoR


their nonplanar structures and thus suppressed intermolecular
π−π stacking. By means of time-dependent density functional
theory (TD-DFT) calculations, the first absorption peaks of 4
and 6 were assigned to the HOMO → LOMO transitions (H
→ L), where the electron cloud was distributed throughout the
whole molecule (Figure S22). The photophysical properties
and calculated major transitions of 4 and 6 are summarized in
Tables S1−S3.
To investigate the P/M racemization barriers of 4 and 6,

DFT calculations were performed to identify the transition
states with the highest Gibbs free energy, in which the terminal
benzene rings in the helix were oriented in a face-to-face
pattern (Figure S24). Accordingly, the P/M isomerization
barriers of 4 and 6 were calculated to be 42.4 and 41.6 kcal/
mol, respectively. These values are close to those reported for 9
and 10,36 indicating that π-extension barely affected the rigidity
of the helical backbones. Such high P/M isomerization barriers
are marked by the high thermal stability of their enantiomers.
No racemization was observed when the solutions of 4-M and
6-M were heated at 150 °C for 60 min (Figure S21).
Due to the high isomerization barriers, the enantiomers of 4

and 6 could be completely resolved by HPLC with a Daicel
Chiralpak IE column (Figure S20). The CD spectra of isolated
enantiomers 4-P/M and 6-P/M in THF solutions (10−5 M)
were measured. Upon comparing the experimental and DFT-
simulated CD spectra, the absolute configurations in the first
and second fractions of the chiral HPLC analysis were assigned
as the P- and M-enantiomers, respectively, for both 4 and 6.
Interestingly, because of the increase in the helical length n
from 7 to 9, π-extended [9]helicene 6 exhibited a much higher

Δε than 4 in the long-wavelength region (Figure 3B). From
the UV−vis spectra, the absorption dissymmetry factors (gabs =
Δε/ε)37 of 4-P and 6-P at their absorption maximum peaks
were calculated to be 1.24 × 10−3 and 10.58 × 10−3,
respectively (Table 1). The dramatically higher value of gabs for
6 was also supported by the simulated CD spectra (Figure
S23A). For comparison, the CD spectra of non-π-extended
helicenes 9 and 10 were also simulated by TD-DFT at the
same level of theory. Unlike those of π-extended helicenes 4
and 6, the CD signal intensities of 9 and 10 were not
substantially affected by increasing the helical length n (Figure
S23B).3 According to the absorption peak assignment
discussed above, the first peak in the CD spectra originates
from the chirality of the whole molecule for both 4 and 6.
Consequently, the drastic changes in the dissymmetry factors
of our π-extended helicenes result from the combined effect of
lateral and helical extensions.
According to theory, gabs can be determined by the following

equation:

m
m

g 4 cosabs 2 2
μ

μ
θ= | || |

| | + | |

Therefore, the electronic (μ) and magnetic (m) transition
dipole moments, as well as the angle (θ) between μ and m, of
4-P and 6-P for their S0 → S1 transitions were determined by
means of TD-DFT calculations (Table 1). For organic
materials, the |m| value is normally much lower than the |μ|
value. The above equation can thus be simplified as gabs = 4 cos
θ |m|/|μ|. The higher |m|, lower |μ|, and larger cos θ of 6 than
of 4 all lead to an increase in the calculated absorption

Figure 3. (A) Absorption spectra and (B) CD spectra of 4 and 6 in THF solutions. Solution concentration: 10−5 M. (C and D) Transition dipole
moments of (C) 4-P and (D) 6-P for the S0 → S1 transition. The electric transition dipole moments (μ) are shown in blue, and the magnetic
transition dipole moments (m) are shown in red. The length of the m vector is amplified 200 times for clarity.

Table 1. Summary of the Chiroptical Properties of 4-P and 6-P

CDa S0→S1 transition
b CPLa

λ (nm)
Δε

(M−1 cm−1) Ε (M−1 cm−1)
gabs

(10−3)
|μ| (10−20 esu

cm)
|m|

(10−20 erg G−1) θ (deg)
gcal

(10−3)
λem
(nm)

glum
(10−3)

BCPL
(M−1 cm−1)

4-P 446 13.9 11 255 1.24 469.2 0.81 84.1 0.71 486 0.77 1.1
6-P 471 75.2 7108 10.58 407.0 2.24 69.6 7.60 532 7.44 12.6

aMeasured in a dilute THF solution. Concentration: 10−5 M. bCalculated by TD-DFT at the B3LYP/6-311G (d,p) level.
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dissymmetry factor (gcal) by a factor of 10 with respect to that
of 4, consistent with the trend observed experimentally.
Subsequently, the CPL spectra of 4-P/M and 6-P/M were

also measured to explore the potential of these compounds as
chiral emitters.37 Mirror images of the CPL spectra and glum
plots were observed for the P- and M-enantiomers of both 4
and 6 (Figure 4). Similar to the CD properties, the CPL

intensity (ΔI) and glum of 6 were significantly enhanced
(glum, 6‑P = 7.4 × 10−3) with a high signal-to-noise ratio.
Following the concept of fluorescence brightness, the CPL
brightness (BCPL) has recently been proposed to evaluate the
overall performance of CPL emitters:38

B
g

2fCPL
lumε= × Φ ×

With all the necessary chiroptical results in hand, the BCPL of 6
was calculated to be 12.6 M−1 cm−1, which is one of the
highest values among all carbohelicenes reported in the
literature,38 indicating that 6 may be an excellent emitter for
CPL applications.

■ CONCLUSION
In summary, two π-extended helicenes, 4 and 6, were
synthesized through regioselective cyclodehydrogenation in
high yields. The design of prefused precursors 3 and 5 plays a
key role in preventing undesirable aryl rearrangements. Studies
of the chiroptical properties of these compounds have revealed
the beneficial effect of their π-extension and helical subunits on
their dissymmetry factors. Approximately 10-fold enhance-
ments in gabs, glum, and BCPL were observed from 4 to 6,
indicating that 6 is a promising CPL emitter. More
importantly, 4 and 6 can be used as model compounds for
other π-extended helicenes with even higher helical lengths
currently under investigation in our laboratory following the
polymerization−cyclodehydrogenation approach. Because of
both extended π-conjugation and stable chirality, this series of

π-extended helicenes are expected to possess high potential for
spin transport39−41 and superior inductance.21
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dissymmetry factors of 4-P/M and 6-P/M in THF. Concentration:
10−5 M. Excitation: 380 nm for 4 and 425 nm for 6.
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