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ABSTRACT 

Mosquitoes are medically the most important group of insects, transmitting a number of deadly 
diseases, including malaria. Female mosquitoes transmit them while feeding on human blood, 
which is required to mature eggs. It is important to understand vector population dynamics in 
order to effectively control them. Sampling larval populations is one of the methods to estimate 
mosquito requirements for site selection for oviposition and survival.  
Our survey took place from 10th of June to 1st July in the area of village Chano, located in the 
Southern Nations, Nationalities and Peoples Region in Southern Ethiopia. Mosquito larvae were 
collected using standard dipping method once a week in three different land cover categories. 
Water physical parameters were recorded on site and the chemical analysis was performed at the 
laboratory of The Institute of Health and Nutrition in Addis Ababa. 
We found Anopheles arabiensis to be the only anopheline species present at the end of the rainy 
season in the surveyed area. There was no significant association detected between presence of 
Anopheles mosquito larvae and abiotic and landscape characteristics. However, we found that the 
density of early instar stages was increasing with increasing conductivity (p=0.01) and dissolved 
oxygen (p=0.02) and when habitats contained aquatic vegetation. Such habitats were associated 
with pastures. Late larval instars were positively associated with turbidity (p=0.003) and such 
habitats were more numerous in the settlement. We conclude that Anopheles arabiensis females 
were ovipositing more intensively in habitats that were more stable, but the survival in such 
habitats was lower. We suggest that water quality may be not the main factor influencing site 
selection for oviposition when the climatic conditions are not favorable for the survival of the 
adult and immature stages. This knowledge could be applied in the development of vector 
control strategies, aiming at the mosquito populations when they are mostly vulnerable.  
 
 
Keywords: Anopheles arabiensis; larvae; density; breeding habitats; dipping; landscape; 
Ethiopia;   
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POPULAR SCIENCE SUMMARY 

MOSQUITOES BREED IN UNFAVORABLE SITES TO SURVIVE DRY SEASON 
 
Malaria remains the most serious and widespread vector borne disease, responsible for the death 
of nearly a million people annually. It is caused by protozoan which is transmitted through the 
bite of female Anopheles mosquitoes.  
There has been a great effort to control malaria prevalence using different approaches focused on 
vector control. The most frequently used and effective methods include indoor spraying with 
insecticides and the use of insecticide impregnated bed nets. However, mosquitoes show a 
tendency to change their biting and resting behaviour, as well as to develop resistance to widely 
used insecticides. Another challenge is climate change, which may allow mosquitoes to spread 
into wider areas and higher altitudes due to increased temperatures and precipitation rates.  
These alarming processes increase the pressure to develop alternative vector control strategies. 
For this matter we need to deepen our knowledge of mosquito ecology, to better understand the 
factors which influence the size and distribution of vector populations.  
Sampling mosquito larvae is one of the methods to estimate mosquito requirements for site 
selection and survival, because mosquitoes actively select suitable habitats rather than randomly 
colonize them. Choice of the site will determine distribution pattern, density, development time, 
body size, survival and influence the performance of the emerging adults.  
To better understand larval density dependence on environmental factors, we conducted a study 
around Chano, a malarious village located in Southern Ethiopia. Mosquito larvae were collected 
with a dipper from standing water bodies, such as puddles, tire tracks, roadside ditches and ponds 
which were distributed within three different land cover categories: settlement, agricultural land 
and the pastures along the lake shore. The physical and chemical properties of the water, such as 
temperature, pH, salinity and ion content were also tested. While carrying out statistical analysis, 
we divided the four larval stages into two groups: early and late instars, as density of early instar 
larvae might indicate the rate of egg-laying, while the density of late instar larvae may represent 
the rate of survival. 
We found only one anopheline species, Anopheles arabiensis, present in the surveyed area. The 
density of early instar stages was increasing with increasing conductivity and dissolved oxygen 
content and when habitats contained aquatic vegetation. Such habitats were bigger in size, more 
permanent and located in pastures closer to the lake. Surprisingly, such sites have been 
previously reported as less favorable. On the other hand, late larval instars were positively 
associated with turbidity and such habitats were small and more numerous in the settlement.  
We conclude that female mosquitoes were ovipositing more intensively in habitats that were less 
prone to desiccation, but the survival in such habitats was lower, most likely due predation. This 
phenomenon most likely occurred as a strategy of mosquitoes to survive dry season. Firstly, the 
preferred small habitats were rapidly desiccating, giving too little time for the immature stages to 
complete their cycle.  Secondly, adult mosquitoes might have been retreating from the 

2 
 



settlement, because the area around the lake provided the stable source of water needed to 
survive desiccation stress. We suggest that water quality may be not the main factor influencing 
site selection for oviposition when the climatic conditions are not favorable for the survival of 
the adult and immature stages.  
Our survey is a small contribution to a larger effort to understand vector ecology in Southern 
Ethiopia. Further research will provide an improved understanding of how larval populations 
vary in space and time. This knowledge could be implemented into developing vector control 
strategies, aiming at the mosquito populations when they are mostly vulnerable. 
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INTRODUCTION 

Mosquitoes (family: Culicidae) are holometabolous insects which undergo a complete 
metamorphosis in their life history. It includes 4 stages: egg, larva, pupa and adult, of which 
most are exclusively aquatic (Capinera, 2008). The eggs are oviposited singly (Anopheles) or in 
batches (e.g. Culex, Coquillettidia) on the surface of water or into the moist from which they 
hatch (Becker et al., 2010). The following larval stage is restricted to an aquatic environment 
where it goes through four instars (Smith, Macklin, & Thomas, 2013). The larval stage is 
followed by short pupation, during which adult structures are developed. Finally, mosquitoes 
emerge as adults ready to disperse in order to find food and mate. Adult mosquitoes are capable 
of flying distances of 3 to 5 kilometers (Rozeboom & Stone, 1943; Smith et al., 2013), but most 
of the flights are within 1 km radius (Le Menach, McKenzie, Flahault, & Smith, 2005).  
 
Female mosquitoes require one or more blood meals every 2-3 days in order to mature eggs after 
mating (Godfray, 2013; N. Minakawa, Mutero, Githure, Beier, & Yan, 1999). Male mosquitoes 
do not take blood meals but feed on plant sugars (Smith et al., 2013), while adult females rely on 
this food source between gonotrophic cycles (Becker et al., 2010; Gary, 2005). The requirement 
for a blood meal makes the mosquitoes medically the most important group of insects (Okwa et 
al., 2007; Thielman & Hunter, 2007), transmitting a number of diseases and causing great health 
problems (Araújo, Gil, & De-Almeida, 2012). Mosquitoes are responsible for spreading human 
diseases such as Japanese encephalitis, West Nile virus, yellow fever, dengue fever, filariasis and 
most importantly malaria (Araújo et al., 2012; CDC, 2007; Foote & Cook, 1959; Godfray, 2013). 
 
Malaria is still one of the world’s most serious and widespread human diseases (Becker et al., 
2010; Speight, Hunter, & Watt, 2008), causing around 500000-900000 deaths annually (WHO, 
2011). Nearly 40% of the world’s population live in regions where malaria is endemic with the 
highest mortality occurring in the Sub-Saharan region in Africa (Speight et al., 2008; Tesfaye et 
al., 2011; WHO, 2011). Human malaria is caused by a parasitic protozoan from the genus 
Plasmodium (Bomblies, 2009) which can only be transmitted by mosquitoes that belong to 
Anopheles genus (Muriu et al., 2013; Sinka, 2013). Malaria epidemiology is directly linked to 
population dynamics of the mosquitoes. Mosquito reproductive success is reflected by the fitness 
and amount of emerging adults, determining vector density, biting rate and life expectancy 
(Himeidan & Kweka, 2012). These influence vectorial capacity (Garrett-Jones & Shidrawi, 
1969), which determines the stability and intensity of disease transmission (Kiszewski et al., 
2004). 

Reproductive success 

The key processes influencing successful development of mosquito larvae are considered to be 
site selection of gravid females and the survival of the larvae (Fillinger et al., 2009; Hanafi-Bojd 
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et al., 2012). Both of them depend on the suitability and productivity of the habitat, being a key 
element for mosquito population dynamics (Kenea, Balkew, & Gebre-Michael, 2011; 
Rejmánková et al, 2013), which is a function of a complex interaction of a range of ecological, 
climatic and environmental variables (J. Shililu, Ghebremeskel, Seulu, et al., 2003; Silver, 
2008b) (Figure 1). 
 
 

Oviposition 

Mosquitoes are thought to actively select suitable habitats rather than randomly colonize them 
(Minakawa et al., 2004) in order to maximize offspring survival and fitness (Yoshioka et al., 
2012). Oviposition plays a crucial part in population dynamics of the mosquitoes, since choice of 
the site will determine distribution pattern, density, development time, body size, survival and 
further performance of the emerging adults (Adebote, Oniye, & Muhammed, 2008; Animut, 
Gebre-Michael, Balkew, & Lindtjørn, 2012; Fillinger et al., 2009; Hanafi-Bojd et al., 2012; Le 
Menach et al., 2005; Munga, Minakawa, Zhou, Githeko, et al., 2006; Yoshioka et al., 2012) with 
significant demographic consequences carried over to the community level (Kiflawi, Blaustein, 
& Mangel, 2003; Spencer, Blaustein, & Cohen, 2002). 
 

Figure 1. Relationships between larval development and environmental factors 
on both habitat and ecosystem level (Rejmánková et al., 2013). 
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The key components involved in location and selection of an oviposition site include visual, 
olfactory, and tactile cues (Bentley & Day, 1989). Visual cues may allow female mosquitoes to 
identify available habitats and their characteristics on a landscape level, while olfactory and 
tactical cues become more important as mosquitoes approach the oviposition site (Bentley & 
Day, 1989). Olfactory cues involve volatile substances released by microorganisms (Sumba, 
Ogbunugafor, Deng, & Hassanali, 2008), larval habitat materials, larvae themselves as well as 
predators (Munga, Minakawa, Zhou, Githeko, et al., 2006; Vonesh & Blaustein, 2010), which 
may attract or deter the oviposition. Experiments in the laboratory have revealed that gravid 
females avoid laying eggs in habitats that contain predators and competitors (Adebote et al., 
2008; Kiflawi et al., 2003; Munga, Minakawa, Zhou, Githeko, et al., 2006; Ogbunugafor & 
Sumba, 2008; Van Dam & Walton, 2008; Warburg et al., 2011; Vonesh & Blaustein, 2010). 
Physical factors recognized to be extremely important in site choice include color and optical 
density of the site, site texture, temperature, and reflectance (Bentley & Day, 1989). Selection of 
the breeding site is species specific (Hanafi-Bojd et al., 2012) as mosquitoes differ in their 
preference for the type, size, turbidity, algal cover and stability of the habitat (Animut et al., 
2012). For example, Anopheles plumbeus breeds in tree holes (Foote & Cook, 1959), Anopheles 
arabiensis from the gambiae s.l. complex prefers small and temporary breeding sites, while A. 
melas from the same complex prefers saline flooded areas (Smith et al., 2013). The occurrence of 
A. funestus larvae is restricted to larger, semipermanent or permanent habitats with aquatic 
vegetation (Noboru Minakawa et al., 2005). 

Survival 

Another important aspect in population dynamics is the survival of immature stages which 
depends on the quality of the environment in which they develop (Ye-Ebiyo, Pollack, Kiszewski, 
& Spielman, 2003). The quality of the habitat is represented by a number of biotic and abiotic 
factors: nutrient content, physicochemical environment, intra- and interspecific competition and 
predation (Araújo et al., 2012; Depinay et al., 2004; Mala & Irungu, 2011; Yoshioka et al., 
2012). A complex interaction between these factors determines the survival and, therefore, 
reproductive success of mosquitoes (Le Menach et al., 2005; Rejmánková et al., 2013).  
 
Larval survival differs among habitats as a result of the presence or absence of predators, 
parasites and pathogens (Koenraadt, Githeko, & Takken, 2003). Predation has the potential for 
dramatic effects on mosquito populations (Spencer et al., 2002) by suppressing abundance of 
mosquito larvae directly (Minakawa et al., 1999) or through competition (Mokany & Shine, 
2003). Natural predators of mosquito larvae include the tadpole stages of amphibians, 
planktivorous fishes and aquatic insects (Rejmánková et al., 2013). 
 
Another known major regulator of vector populations is nutrient competition, usually occurring 
at both inter- and intraspecific level (Depinay et al., 2004; Munga, Minakawa, Zhou, Githeko, et 
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al., 2006). Both quantitative and qualitative aspects of larval nutrition are important to 
mosquitoes (Araújo et al., 2012) with the impact to development success, rapidity of 
development, and the body size of emerging adults (Aboagye-Antwi & Tripet, 2010; Adebote et 
al., 2008; Araújo et al., 2012; C J M Koenraadt et al., 2003; Ye-Ebiyo et al., 2003). Interspecific 
competition lengthens the time mosquitoes require to reach the pupal stage and reduces the size 
of the resulting adult mosquitoes (Gimnig et al., 2002; Munga et al., 2006a). 
 
Mosquito larvae are filter feeders (Godfray, 2013) that rely on few sources of food. The most 
important are bacteria and algae within surface microlayers (Gimnig et al., 2002; Gimnig, 
Ombok, Kamau, & Hawley, 2001; Tuno et al., 2005) and the soil (Okech et al., 2007). 
Mosquitoe larvae are also known to feed on protozoa, invertebrates and suspended organic 
material, such as maize pollen (Araújo et al., 2012; Capinera, 2008; Gimnig et al., 2002; Munga, 
Minakawa, Zhou, Mushinzimana, et al., 2006; Tuno et al., 2005; Ye-Ebiyo et al., 2003). 
 

AIMS AND OBJECTIVES 

Since survival rate of the vector is one of the key factors for transmission dynamics, it is 
important to understand mosquito ecology and population dynamics (Smith et al., 2013). Despite 
intensively ongoing research on mosquito ecology, relatively little is known about the 
environmental factors determining mosquito population size. Anopheline mosquitoes have broad 
habitat tolerances and can be found in many different types of water bodies, while equally can be 
absent from some apparently suitable pools (Muriu et al., 2013). Moreover, mosquitoes from 
different geographic locations might differ significantly in their behaviors (Ogbunugafor & 
Sumba, 2008). 
 
A thorough understanding of larval population dynamics and spatio-temporal variation requires 
deep knowledge on ecological parameters involved in habitat selection by proliferating species 
(Kenea et al., 2011; Mala & Irungu, 2011; Sérandour et al., 2010). This understanding is needed 
to effectively model and map vector populations and develop sustainable and cost-effective 
insect management strategies (Bentley & Day, 1989; Overgaard, Ekbom, Suwonkerd, & Takagi, 
2003; Thwing, Fillinger, Gimnig, Newman, & Lindsay, 2011). It can improve epidemiological 
understanding and control capabilities (Adebote et al., 2008). 
 
Such analyses may allow us to make predictions about how anopheline fauna will change as a 
result of landscape changes and it may give us clues how landscapes could be managed to 
suppress populations of disease vectors (Overgaard et al., 2003). Accurate identification of the 
habitat requirements of the immature stages of mosquitoes is desirable as it can assist in 
designing focused and cost-efficient control programmes within a resource-limited environment 
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(Silver, 2008a; Vanwambeke et al., 2007). Larval abundance and density may indicate the 
suitability and productivity of the habitat, as a result of oviposition preference and the survival 
rate. It is important to analyze mosquito population dynamics in landscape level not only because 
landscape might influence physicochemical environment of the habitats, but also may contain 
characteristics in the landscapes themselves.  
 
We hypothesize that the quality of the aquatic habitat, which is a result of the processes at 
landscape level, affects oviposition and survival rates hence, the occurrence and abundance of 
Anopheles mosquitoes.  
The aim of the study was to investigate habitat preferences and density dependence of Anopheles 
mosquitoes on abiotic parameters and landscape features in a malarious village in Southern 
Ethiopia. 
 
Objectives: 
1. Identify species composition of Anopheles mosquitoes in the area. 
2. Determine if the habitats are heterogeneous in regards to physicochemical environment 

through landscape structure and physical characteristics of the habitats. 
3. Identify which environmental parameters are important for the presence of mosquito larvae 

in the habitat. 
4. Identify which environmental parameters contribute to higher larval densities as a result of 

increased oviposition rate and survival 
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MATERIALS AND METHODS 

Malaria in Ethiopia 

Ethiopia is among the most affected countries, as malaria is unstable and occurs as intraanual and 
interannual epidemics (Olana et al., 2011). Approximately 70% of Ethiopia’s population (84.3 
million) lives in areas at risk of malaria (FMOH, 2006; Loha & Lindtjørn, 2012; PMI, 2013). 
The intensity of malaria transmission is heterogeneous across the continent (Kelly-Hope, 
Hemingway, & McKenzie, 2009). It is influenced by mosquito species’ compositions, vector 
competence and demographic and environmental factors, such as topography and climate 
(Abeku, Oortmarssen, Borsboom, Vlas, & Habbema, 2003; Kelly-Hope et al., 2009; Olana et al., 
2011). The diverse eco-climatic condition in the country makes the malaria transmission pattern 
seasonal and unstable with frequent focal and cyclic widespread epidemics (FMOH, 2006) 
(Figure 2). As the western, central and eastern highlands and highland-fringe areas along the Rift 
Valley are especially prone to periodic malaria epidemics (Abeku et al., 2003), malaria remains 
the leading cause of outpatient morbidity in the southern part of the country (Loha & Lindtjørn, 
2012).  
 

 
Figure 2. Distribution and seasonality of malaria in Ethiopia (PMI, 2013). 
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Around 68% of malaria cases in Ethiopia are caused by Plasmodium falciparum, the most 
virulent human parasite in the continent (Lindsay & Martens, 1998; Ndenga, Simbauni, Mbugi, 
Githeko, & Fillinger, 2011), while remaining are P. vivax infections (Abeku et al., 2003; Tesfaye 
et al., 2011).  
There are 43 Anopheles species recorded in Ethiopia (Gaffigan et al., 2013), but few are 
considered as important vectors for malaria transmission. Anopheles arabiensis Patton, which 
belongs to A. gambiae s.l. complex, is considered as the primary vector (Kenea et al., 2011; Loha 
& Lindtjørn, 2012; Olana et al., 2011; PMI, 2013; Tirados, Costantini, Gibson, & Torr, 2006), 
while A. funestus Giles and A. nili Theobald as secondary vectors (Krafsur & Armstrong, 1978; 
PMI, 2013). Anopheles pharoensis has also been reported as an important vector in the country 
(Kibret, Petros, Boelee, & Tekie, 2007; Massebo, Balkew, Gebre-michael, & Lindtjørn, 2013).  
Anopheles gambiae s.l. is one of the most important and best-known vector species in Africa 
(Afrane, Githeko, & Yan, 2012; Muriu et al., 2013; Sinka et al., 2010). It is a group of seven 
sibling species, which are morphologically indistinguishable (Godfray, 2013) but have variations 
in some of the ecological characteristics, such as preference for site selection and feeding 
behavior. The members of this complex are known to breed in shallow sun-exposed pools that 
dry up after rains and develop very rapidly (Rozeboom & Stone, 1943). Larvae of A. gambiae s.l. 
have broad tolerance for breeding conditions (Muriu et al., 2013), such as reduced nutritional 
quality (Okech et al., 2007) and are able to utilize a great variety of locations (Sinka et al., 2010). 
The majority of larvae are found in fresh waters while several species (A. melas and A. merus 
from the gambiae complex) show high salinity tolerance and are associated with coastal malaria 
transmission (Rejmánková et al., 2013). The larvae of A. arabiensis can occur in water bodies 
reaching extremely high temperature levels. A. arabiensis is considered to prefer dry, savannah 
environments (Kirby & Lindsay, 2009; Lindsay & Martens, 1998; Sogoba et al., 2007), yet 
occurring in forested areas with recent land disturbance (Muriu et al., 2013). Yohannes et al. 
(2005) and Fornadel et al. (2010) describe A. arabiensis as highly antropophilic mosquito 
species. Other sources report this mosquito to show both zoophilic and antropophilic biting 
behaviours, with high proportion of meals from non-human hosts such as cattle, sheep and goats 
(Mahande, Mosha, Mahande, & Kweka, 2007; Massebo et al., 2013; Prior & Torr, 2002; Tirados 
et al., 2006).  

Vector control in Ethiopia 

Since 2005 The President’s Malaria Initiative (PMI) has been launched in order to reduce 
malaria-related mortality in 15 high-burden countries in sub-Saharan Africa (PMI, 2013). The 
most widely used methods for vector control are insecticide treated nets (ITN) and indoor 
residual spraying (IRS), targeting the host-seeking adult mosquitoes (PMI, 2013).  
However, even high demographic coverage with these measures is not likely to completely 
eliminate malaria. Bed nets are of little advantage, as the peak indoor and outdoor activities of 
malaria vectors were found to be during the early period of the night, coinciding with the 
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evening activities of the people (Kibret et al., 2010). What is more, adult vectors have been 
reported to change their behavior by switching to feed on cattle or rest outdoors, therefore 
evading insecticide contact (Sattler et al., 2005; Thwing et al., 2011; Yohannes et al., 2005). The 
development of insecticide resistance is also a looming threat to the sustainability of IRS and 
ITNs (Balkew, Elhassen, Ibrahim, Gebre-Michael, & Engers, 2006; Massebo et al., 2013). 
Moreover, the warming climate could increase metabolic rate with increasing temperature 
(Afrane et al., 2012; Chen, Githeko, Zhou, Githure, & Yan, 2006). Highlands are especially 
vulnerable as warming environment could allow the spread of vector to higher elevations, while 
increased precipitation could produce more breeding sites. Animut et al. (2012) and Shililu et al. 
(2003) reported A. arabiensis breeding above 2000 m.a.s.l., which was previously reported as the 
upper limit for malaria incidence (Lindsay & Martens, 1998).  

Study Area 

The study area is located in the Southern Nations, Nationalities, and People's Region, Gamo 
Gofa Zone in the Great Rift Valley. It lies north from city Arba Minch, West of the Lake Abaya, 
the second largest of the Ethiopian rift valley (Clark, 2010) (Figure 3). The area is categorized as 
malarious lowlands with seasonal transmition (PMI, 2013). The sampling took place in the 
surrounding area of village Chano, located to the north of town Arba Minch. It lies at 6°6.6660 N 
and 37°35.7750 E, at altitude of around 1200 m.a.s.l., close to Abaya Lake. The human 
population size in the village is reported to be 6661 (Massebo et al., 2013). 
The area lies within the monsoon region with the Indian Ocean winds bringing the main rains 
during March-May and the Atlantic Ocean winds bringing more rain during the September-
November wet season. Malaria is more prevalent after the end of the rainy season (SAC & ICF 
International, 2012). The average maximum temperature is 30˚C, while the average minimum is 
17˚C. January to March is the hottest time of the year, while the months of November and 
December are usually the coolest (Clark, 2010).  
The natural vegetation in the study area consists of thorn shrubs and bushes such as a commonly 
found Acacia (Massebo et al., 2013). The major cash crops cultivated in the area include bananas 
(Musa acuminata Coll.), maize (Zea mays L.) and mango (Mangifera sp.). Domestic animals 
such as cattle and goats are common to graze in the area.  
The water from river Hare is directed via three permanent canals, passing through the village to 
irrigate the agricultural land. The incidence of falciparum malaria was reported to be 3.57/10,000 
person with 29.1% of all falciparum malaria episodes occurring among temporary residents or 
visitors (Loha & Lindtjørn, 2012).  
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Figure 3. Map of the study area. Sampling sites are labeled with identification numbers that were assigned in 
chronological order of each visit. 
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Mosquito sampling 

All potential mosquito breeding habitats were identified along accessible roads in the 
surrounding area of Chano village. The sampling took place from 10th June to 1st July, using a 
standard dipping method. Dipper is the most commonly used tool for collecting mosquito larvae 
from a wide variety of habitats (Silver, 2008b). Dippers vary in size and shape depending on 
local availability. We used a soup ladle with a diameter of 9 cm and approximately 250 ml 
capacity for larval sampling (Figure 4). The study area was visited once a week for 4 successive 
weeks and 12 to 17 sites were sampled during each visit.  Ten dips were taken from each site in 
intervals along the edge of ponds and roadside ditches and randomly in pooled water bodies and 
tire tracks.  The distance of at least 30 meters was kept between sampled sites. The larvae from 
each site were pooled into a plastic container. To avoid predators, the samples were filtered 
through a plastic sieve. The collected larvae were brought to the laboratory for estimating 
quantities of each instar. The number of larvae was expressed as counts of larvae per 10 dips.  
 

 
Figure 4. A soup ladle used for mosquito sampling. 

Species identification 

The number of larvae was counted in the laboratory of Arba Minch University. Then by using 
the water from natural habitat, larvae were poured into plastic trays where they developed to 
pupal stage (Figure 5, left). Pupae were transferred to mosquito cages until they emerged as 
adults (Figure 5, right). The adults were collected with a suction tube and placed in the freezer 
for 15 minutes. Individuals were morphologically identified to species level following the key of 
Gilles & Coetzee (1987). The adults were placed in vials and kept in the freezer before they were 
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transported to the Swedish University of Agricultural Sciences for further identification. 
Specimens that belonged to An. gambiae complex were identified to subspecies level using 
polymerase chain reaction (PCR) analysis. It was performed for one randomly selected adult 
from each site. 
 

Larval habitat characterization 

The potential Anopheles mosquito breeding sites with stagnant water identified were classified 
according to their nature. These included four habitat types (Figure 6):  
Pooled water – ephemeral and shallow water bodies, formed as a result of rainwater or irrigation 
water pooled on the surface depression.  
Tire track – small habitats in the marks of passed trucks or motorbikes, fed by rainwater.  
Pond – semi- permanent, bigger in size and deeper habitats, clustered in the grazing area, mostly 
fed by rainwater. 
Roadside ditch – more stable habitats on the side of the road with the main water source deriving 
from land irrigation. 
 

Figure 5. The setup of mosquito rearing to adults in plastic trays (left) and cages (right). 
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Figure 6. Four types of habitats that were identified in the study area: a) Pond; b) Pooled water; c) 

Roadside ditch; d) Tire track. 

 
The sites were also classified according to the land use, based on dominating features in the 
landscape (Figure 7).  These include:  
Agricultural area– land used for agricultural purposes. Maize and bananas are most common to 
grow, with scattered fruit, such as mango, trees; 
Pasture – area along the Abaya Lake, dominated by shrubs, where the cattle graze during the day 
time.  
Settlement – the inhabited area in the village. 
 

A B 

C D 
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Figure 7. Different landscapes in the study area: a) Agricultural area; b) Pasture; c) Settlement. 

Several additional habitat characteristics were estimated on site: 
Exposure to sunlight – each site was identified as exposed, partly exposed or shaded.  
Aquatic vegetation – expressed as the presence or absence of aquatic vegetation.  
Algae – expressed as the presence or absence of filamentous algae in the aquatic medium. 
Water depth – the average depth of water, measured with a plastic ruler at six sampling points 
of each habitat.  
Surface area was calculated from approximate estimations of width and length of the habitat, 
expressed in m2.  

A 

B 

C 
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Water physical analysis 

The physical analysis of water in the breeding habitats was performed in situ. The parameters 
recorded are listed in Table 1. These were obtained using HACH HQ40d portable multi-
parameter meter and AquaFluor® Handheld Fluorometer/Turbidimeter after the larval samples 
were collected.  
 
Table 1. Water physical parameters recorded in the field. * obtained using Hach HQ40d; ** obtained 
using AquaFluor®. 

Parameter Unit Range 
Temperature* ˚C 10 – 110 
pH* pH units 2 – 14 
Salinity* ppm 0 – 42 
Turbidity** NTU  0.5 – 1000 
Conductivity* μS/cm 0.01 – 2*105 
DO (dissolved oxygen)* mg/l 0.01 – 20 
TDS (total dissolved solids)* mg/l 0.01 – 5*104 
Chlorophyll A** μg/l 0.3 - 300 

 

Water chemical analysis 

A water sample of 300 ml was taken from each site and kept in the fridge at 1˚C in the laboratory 
of Arba Minch University. The samples were later taken to the The Ethiopian Health and 
Nutrition institute, located in Addis Ababa, where analysis of water chemical composition was 
carried out from 8th to 17th July. The following ions were estimated: Mg+, Ca2+, K+, Cl-, Na2+, 
PO4

3-, NO2
-, F-. Total hardness was calculated from the Mg+ and Ca2+ content. All ion 

quantities were expressed in mg/l.  

Data analysis 

As the distributions of all recorded continuous variables did not fulfill the requirement of 
normality, non-parametric Kruskal-Wallis tests were used to compare heterogeneity of the 
landscape. The median of each continuous variable was compared between the categories of 
habitat types and land use.  
PCA (principal component analysis) was carried out prior to running regression tests to identify 
correlated variables, which were removed from regression models in order to avoid collinearity. 
Hardness, Mg+ and Ca2+ were strongly intercorrelated, therefore only hardness was used as the 
representative variable, as it reflected the content of both magnesium and calcium ions. Strong 
correlation was also observed between salinity, conductivity, TDS and Cl-. We chose 
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conductivity as the representative variable for easier comparison with other published research, 
where conductivity was used to reflect the salinity of the water medium. Dissolved oxygen was 
strongly related with Chlorophyll A and the former was left in the model.  
Sampled sites were categorized into two classes: 1) sites with and 2) sites without Anopheles 
mosquito larvae. Binary logistic regression was ran for these categories to estimate if any of the 
recorded physicochemical parameter was crucial for mosquito oviposition preference.  
The larval density data were further investigated for the sites that were positive of Anopheles 
larvae. Regression of generalized linear model with quasipoisson family was applied for the 
count data. Regression was performed for total larval counts and for early and late instar counts 
separately. Early instars included first two, while late instars included last two larval stages. The 
models were simplified using backward selection.  
Larval densities were also compared in regards to landscape features recorded on sites. Kruskal-
Wallis tests were used to compare median larval densities between habitat type, land cover and 
shading category. Mann-Whitney U-test was used to compare median larval densities between 
sites where aquatic vegetation was present to those that had no aquatic vegetation.  
All statistical operations were performed on Minitab 16 Statistical Software, except for 
quasipoisson regression, which was carried out using R (version 3.0.2).  
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RESULTS 

A total of 57 sites have been sampled during the 4 week data collection, yielding a number of 
450 larvae. Out of these sampled sites, 46 were positive of anopheline larvae.  
24% (108) of collected larvae were first instars, 34.44% (155) - second instars, 25.12% (113) – 
third 113 and 16.44% (74) – fourth instar larvae. Early instars comprised 58,4%, late instars 
41.56% of total collected larvae. 
 
The temperature in mosquito breeding sites ranged from 24,3 to 35˚C. The lowest pH value was 
7.93, while the highest was 10.25. Turbidity ranged from 4.251 to 314.4 NTU. Salinity [0.04; 
9.73] ppm, DO [1.05 to 40] mg/l, Chlorophyll A [57.19; 3174] μg/l, TDS [0.508; 9390] mg/l, 
hardness [100; 1670], Mg [0; 255.36] mg/l, Ca [16.032; 252.500] mg/l, Na [0.4; 129.5] mg/l, K 
[0.3; 143.5] mg/l, Cl [0; 3623.9] mg/l, PO4 [0; 31.707] mg/l, NO2 [0.0074; 3.4373] mg/l and F 
[0, 3.566] mg/l. 
 
The most numerous habitat type (n=22) found in the study area was tire track, followed by ponds 
(n=14), pooled water (n=13) and roadside ditches (n=9). The potential breeding habitats were 
most abundant in pastures (n=25), less were detected in agricultural area (n=19) and settlement 
(n=11).  

Species composition 

Out of 450 mosquito larvae 40 (8.9%), which were collected in 14 sites, survived to adulthood in 
the laboratory. These covered all habitat types and land use areas. All individuals belonged to A. 
gambiae complex. PCR analysis was successful for 12 out of 14 individuals (86%), which 
resulted in all individuals belonging to A. arabiensis. The PCR analysis was repeated for the two 
failed specimens that PCR amplification had failed, but again yielded no results.  

Larval abundance 

Binomial regression showed that probability to detect Anopheles mosquitoes was decreasing 
with increasing fluoride ion content (p<0.05) (Table 2). Few more parameters were close to 
significance. It was more likely to find anopheline larvae in habitats with harder water (p=0.17), 
which was strongly positively correlated with Ca ion content (r=0.9; p<0.01). Nitrate 
concentration also positively affected (p=0.14) the abundance of anopheline larvae. However, the 
binomial regression model was weak with probability of 0.022 that all slopes in the model are 
zero.  
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Table 2. Results from binomial logistic regression, showing association between physicochemical 
variables and the presence of anopheline larvae. Coefficients show increasing or decreasing probability to 
detect anopheline larvae with increasing value of the predictor, while p-value indicates the significance of 
each predictor. 

Predictor Coef SE Coef Z p-value Odds Ratio  
Constant -14.8858 10.0792 -1.48 0.140 

 
 

Depth (cm) -0.13089 0.14998 -0.87 0.383 0.88  
Surface -0.03694 0.03584 -1.03 0.303 0.96  
t 0.12445 0.21050 0.59 0.554 1.13  
pH 1.14330 1.12460 1.02 0.309 3.14  
Turbidity 0.00490 0.00660 0.74 0.457 1.00  
DO 0.10128 0.12625 0.80 0.422 1.11  
Hardness 0.00859 0.00629 1.37 0.172 1.01  
Na -0.00922 0.01765 -0.52 0.602 0.99  
K -0.01128 0.02162 -0.52 0.602 0.99  
PO4 -0.03045 0.10271 -0.30 0.767 0.97  
NO2 5.40333 3.70183 1.46 0.144 222.14  
F -1.04765 0.50637 -2.07 0.039 0.35  

 

Larval density 

The total larval density varied from 1 to 46 larvae / 10 dips. Poisson regression on all larval 
stages showed that conductivity (p=0.018) and dissolved oxygen (p=0.015) had a significant 
positive effect on the abundance of Anopheline larvae of all stages (Table 3), while depth, 
turbidity and sodium (Na) ion had an effect close to significance.  
 
 

Table 3. Results from Poisson regression on the densities of different larval stages 

 Estimate Std. Error t value Pr(>|t|)  
Total larvae      
(Intercept) 1.939000 0.629700 3.08 0.00384 ** 
depth -0.130500 0.074310 -1.756 0.08718 . 
turbidity 0.003419 0.001935 1.767 0.08525 . 
conductivity 0.000067 0.000027 2.47 0.01811 * 
DO 0.051220 0.020130 2.545 0.01511 * 
Na -0.012100 0.006129 -1.974 0.05567 . 
Young instar larvae      
(Intercept) 0.735000 0.293700 2.503 0.0164 * 
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conductivity 0.000078 0.000030 2.593 0.0131 * 
DO 0.047230 0.019390 2.435 0.0193 * 
Late instar larvae      
(Intercept) 0.089060 0.485900 0.183 0.85549  
turbidity 0.006674 0.002169 3.076 0.00377 ** 
conductivity 0.000089 0.000035 2.587 0.01344 * 
Na -0.015560 0.008434 -1.845 0.0725 . 

 
Regression was further applied to early and late instar larval densities separately. Poisson 
regression showed conductivity and dissolved oxygen to have a significantly positive effect on 
the density of young instar larvae.   
Density of late instar larvae were significantly increasing with increasing turbidity (p<0.01) and 
conductivity (p<0.05), while Na ion content negative effect (p=0.0725) on larval density.  
The scatterplots in figures 8, 9 and 10 show association between larval densities and 
physicochemical variables that had a significant effect. 
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Figure 8. Relationship between larval density and conductivity. Conductivity is shown on a logarithmic 
scale. 
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Figure 9. Relationship between larval density and the amount of dissolved oxygen.  
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Figure 10. Relationship between larval density and turbidity.  
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Larval densities were further compared between the categories of habitat type, land use and 
shading using non-parametric Kruskal-Wallis test, while the larval densities in habitats with and 
without aquatic vegetation were compared using Mann-Whitney U-test. Habitat type did not 
have any significant effect on the density of the larvae (Table 4). There was a significant 
difference among land use types in the density of early instar larvae.  
 
Table 4. Kruskal-Wallis* and Mann-Whitney** test results, comparing median larval densities between 
categories that describe different habitat characteristics.  

Category n Median 
Early Late Total 

Habitat type*     
Pond 10 5.0 2.0 6.5 
Pooled water 11 4.0 2.0 6.0 
Roadside ditch 5 3.0 1.0 4.0 
Tire track 18 2.0 1.50 3.5 
p-value  0.15 0.741 0.502 

Land use*     
Crop 19 2.0 1.0 4.0 
Pastures 25 4.0 2.0 5.5 
Settlement 11 0.0 2.0 4.0 
p-value  0.008 0.305 0.409 

Shading*     
Exposed 34 2.5 2.0 4.5 
Partly shaded 7 2.0 1.0 3.0 
Shaded 3 0.0 2.0 3.0 
p-value  0.559 0.607 0.663 

Aq. Vegetation**     
No 32 2.0 2.0 4.0 
Yes 12 5.5 1.5 8.0 
p-value  0.013 0.927 0.144 

Algae**     
No 39 2.0 2.0 4.0 
Yes 5 2.0 2.0 4.0 
p-value  0.671 0.506 0.941 

 
The density of early instar larvae was significantly affected by land cover type (p=0.008). The 
median was lowest in the settlement, while highest in pastures. The median of late instar larvae 
did not differ significantly between the land cover areas (Figure 11). 
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Shading and presence of algae in the habitat had no significant effect on larval densities. 
Presence of aquatic vegetation had a positive effect on density of early instars (p=0.013), but not 
on late instars.  
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Figure 11. Mean densities of early (left) and late (right) instar larvae in different land use areas. 
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HABITAT HETEROGENEITY 

All physicochemical parameters of the habitats were compared between land use areas and 
habitat types using non-parametric Kruskal-Wallis test. The results are summarized in Table 5 
and Table 6.  
 
Table 5. Kruskal-Wallis tests applied to compare medians of water physicochemical parameters (WPP) in 
sites within different land cover categories. 

WPP Crop Grazing Settlement p 
n 19 25 11  
depth [cm] 6 7.583 5.5 0.049 
t [˚C] 30.2 29.4 27.5 0.079 
surface area [m2] 2 20 1.5 0.000 
pH  8.8 9.42 8.25 0.000 
turbidity [NTU] 134 98.15 151.2 0.026 
conductivity [μS/cm] 1137 2920 629 0.001 
salinity [ppm] 0.47 1.38 0.3 0.001 
DO [mg/l] 4.82 10.79 3.24 0.000 
chlorophyll A [μg/l] 487.4 788.4 346.3 0.019 
TDS [mg/l] 432 625 284 0.059 
hardness 400 290 350 0.014 
Mg [mg/l] 24.32 12.16 17.02 0.180 
Ca [mg/l] 120.24 80.16 100.2 0.079 
Na [mg/l] 15 12.5 5.5 0.041 
K [mg/l] 15.5 10 12.5 0.197 
Cl [mg/l] 24.9 34.7 18.1 0.010 
PO4 [mg/l] 30.7 28.4 22.4 0.387 
NO2 [mg/l] 30.1 26.1 28.6 0.708 
F [mg/l] 26.5 31.8 22.1 0.218 

 
 
More than half of the measured parameters differed significantly between different land use 
categories. These include depth, surface area, pH, turbidity, conductivity, salinity, dissolved 
oxygen, chlorophyll A, hardness and the amount of Na and Cl ions.  
The depth differed significantly between the land use categories, with the highest median in 
pastures. Surface area in the pastures was about ten times higher compared to the other land 
cover categories. Pastures also had the highest pH value. Water was most turbid in the 
settlement, followed by crop land and pastures. The three correlating parameters: conductivity, 
salinity and Cl ion content had the highest values in the pastures, followed by agricultural fields 
and settlement. The same was true for dissolved oxygen and Chlorophyll A. The water was 
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hardest in the crop land and softest in the grazing area. Ca and Mg ion content follow the same 
pattern, but without significant differences.  
 
Table 6. Kruskal-Wallis tests applied to compare medians of water physicochemical parameters (WPP) in 
sites within different habitat types. 

WPP Pond 
Pooled 
water 

Roadside 
ditch 

Tire 
track p 

n 14 13 6 22  
depth [cm] 8.833 5.75 8.292 5.833 0.009 
t [˚C] 30.5 29.6 27 29.7 0.101 
surface area [m2] 19.813 3.5 38.75 2 0.000 
pH 9.515 8.59 8.68 8.8 0.000 
turbidity [NTU] 101.07 133.7 24.85 178.9 0.002 
conductivity [μS/cm] 7150 980 839.5 1053 0.000 
salinity [ppm] 3.66 0.46 0.38 0.44 0.000 
DO [mg/l] 13.02 6.97 8.01 4.81 0.000 
chlorophyll A [μg/l] 898.1 385.5 360.9 488.9 0.005 
TDS [mg/l] 1730 257 380.5 422.5 0.288 
hardness  260 330 295 360 0.170 
Mg [mg/l] 12.16 19.46 14.59 19.46 0.671 
Ca [mg/l] 68.14 80.16 88.18 100.2 0.258 
Na [mg/l] 9.325 13.5 13 9.5 0.703 
K [mg/l] 11.25 12 6.5 15.5 0.115 
Cl [mg/l] 259.92 34.99 12.5 27.49 0.005 
PO4 [mg/l] 3.304 2.18 1.357 1.904 0.650 
NO2 [mg/l] 0.3315 0.3388 0.3118 0.3388 0.851 
F [mg/l] 0.6257 0.48 0.5143 0.4543 0.278 

 
 
Habitat types differed significantly in nine recorded physicochemical parameters. Ponds and 
roadside ditches were deeper than pooled water habitats and tire tracks. Ponds and roadside 
ditches had the highest surface area, followed by pooled water and tire tracks. Ponds had the 
highest pH, conductivity, salinity and chloride content. Tire tracks were the most turbid habitats, 
followed by pooled water, ponds and roadside ditches. Ponds had much higher DO and 
chlorophyll A content compared to other three habitat types. The habitats did not differ 
significantly in other parameters.  
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DISCUSSION 

The study shows that landscape and its elements were important for productivity and distribution 
of mosquito breeding sites in the area of village Chano, where Anopheles arabiensis was the only 
collected anopheline species. The larvae were present in all land cover categories within habitats 
covering a wide range of physicochemical characteristics. However, female Anopheles showed 
preference for oviposition in more stable breeding sites located closer to the shore of Lake Abaya 
where the aquatic vegetation was present. We observed that the early Anopheles arabiensis larval 
stages were more abundant in the pastures, followed by agricultural land and settlement, while 
the density of late instar larvae did not differ significantly between the three different land cover 
categories. Densities of the early instar A. arabiensis larvae were positively associated with 
conductivity, concentration of dissolved oxygen and the presence of aquatic vegetation. These 
features were linked to larger and more stable habitats, clustered by the lake shore. In contrary, 
the density of late larval instars was increasing with increasing turbidity. Higher turbidity levels 
were recorded in habitats that were small and shallow.  
 
A number of studies has shown that A. arabiensis mosquitoes prefer shallow temporary habitats 
with bare soil and no aquatic vegetation (Fillinger et al., 2009; Gimnig et al., 2001; Huang et al., 
2006; Kenea et al., 2011; Munga, Minakawa, Zhou, Mushinzimana, et al., 2006; Ndenga et al., 
2011; Sattler et al., 2005; Wanji et al., 2009). Such temporary pools are more favorable for 
Anopheles mosquito survival, as they lack aquatic predators, which are the main regulators of 
larval populations (Ndenga et al., 2011; Wanji et al., 2009). There is also less interspecific 
competition for food sources with other aquatic insect and mosquito species, which are better 
adapted to shaded habitats. Despite their preference for temporary and small breeding sites, there 
is evidence that Anophelines are capable of ovipositing in grassy aquatic habitats when typical 
puddles with bare soil are unavailable (Huang et al., 2006). This supports the idea that due to dry 
climatic conditions and intense evaporation of small habitats during the sampling period, females 
were laying more eggs in less favorable habitats that were permanent and contained aquatic 
vegetation. In this way gravid females could offset the lack of small habitats by laying eggs in 
larger and more stable water bodies to make sure their progenies would have enough time to 
develop. This leads to observation that the gravid female mosquitoes oviposited more intensively 
at the breeding sites reported as less favorable, but the survival rate was lower at such sites as 
smaller proportion of larvae reached late stages.  
 
Another important aspect to take into account is the survival of the adult mosquitoes in dry 
conditions, which is strongly dependent on relative humidity (Gullan & Cranston, 2005). 
Rainfall is considered to play crucial role in mosquito population dynamics as it provides the 
medium for the immature stages, as well as increases the relative humidity and hence the 
longevity of the adult mosquito (Lindsay & Martens, 1998; Protopopoff et al., 2009). In the lack 
of precipitation, mosquitoes have to find strategies to avoid desiccation. Abogaye-Antwi and 
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Tripet (2010) found that access to water and food availability influences the survival of adult 
mosquitoes, as the use of water and body lipid reserves affect desiccation resistance. This could 
lead to clustering of the adults around areas with a permanent source of water, even though such 
areas would not provide favorable breeding sites. Here we can draw a conclusion that the spatial 
distribution of the breeding sites of Anopheles mosquitoes depends on local climatic conditions. 
The surroundings of Lake Abaya could support the survival of these mosquitoes in dry 
conditions, while the inhabited area could be more favorable during the rainy season, as the 
proximity to the blood meal is an important predictor of Anopheles larval distribution and 
densities (Kenea et al., 2011; Le Menach et al., 2005; N. Minakawa et al., 1999; Wanji et al., 
2009).  
 
The larvae of A. arabiensis were found in habitats with salinity up to 9.73 ppm. Though they are 
reported to be strictly limited to sites of low salinity (Jawara et al., 2008), they have been 
occasionally been found in brackish habitats (Sinka et al., 2010). However, no upper limit of 
salinity has been reported for this species. We found a positive association between the density 
of mosquito larvae and conductivity, which is an indicator of the salinity. This agrees with 
Gouagna et al. (2012) and Olayemi et al. (2010) who also found that the density of larvae 
correlated positively with conductivity. In contrast, Fillinger et al. (2009) reported that pools, 
which were characterized by low conductivity, were the most productive breeding sites. In our 
study, most of the breeding sites with the highest salinity values were located near the lake, 
which were more favored for oviposition due to geographical location as discussed above, rather 
than the salinity itself. This indicates how well Anopheles mosquito larvae are adapted to 
fluctuating environmental conditions. 
 
We found higher densities of late anopheline stages with increasing turbidity. Some surveys 
found higher A. arabiensis mosquito densities in clear water (Robert, Awono-Ambene, & 
Thioulouse, 1998; Sattler et al., 2005; J. Shililu, Ghebremeskel, Seulu, et al., 2003), while other 
reported higher densities in turbid waters (Awolola, Oduola, Obansa, Chukwurar, & Unyimadu, 
2007; Fillinger et al., 2009; Mala & Irungu, 2011; Sinka et al., 2010). Ye-Ebiyo et al. (2003) 
observed better larval development in relatively clear water. They suggest that increased 
densities in turbid water may be a result of continued oviposition at the end of the seasonal rains, 
as the habitats evaporate and become more turbid and scarce. They add, that inert particles in the 
water medium may negatively affect young instar larvae by preventing them from feeding 
effectively and reducing the chance of survival. On the other hand, if turbidity is caused by 
suspended organic material, such as maize pollen, it may provide additional food source for the 
development of immature Anopheles stages. However, this was not the case in our survey, as 
maize was not flowering when sampling took place.  
 
Beside these factors, overall larval density was increasing with increasing levels of dissolved 
oxygen. DO might be important for cuticular respiration, allowing mosquito to cover their 
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demand of oxygen for survival. This could be beneficial not only for longer feeding on greater 
variation of food source in the water column, but also avoiding predators. Secondly, dissolved 
oxygen was strongly correlated with chlorophyll A content. Chlorophyll A reflects the amount of 
chlorophyll in living algal and cyanobacterial cells in water, which act as an important food 
source for Anopheles mosquito larvae (Gimnig et al., 2001; Mala & Irungu, 2011; J. Shililu, 
Ghebremeskel, Seulu, et al., 2003; Tuno et al., 2005). 
 
A. arabiensis was the only mosquito species present in mosquito positive habitats during the 
sampling period. Massebo et al. (2013) was collecting adult mosquitoes in the same Chano 
village. He regarded A. arabiensis as predominant species, comprising 75% of all Anopheles 
species caught in the area. Ribeiro et al. (1996) and Taye et al. (2006) also reported A. gambiae 
s.l., namely An. arabiensis as the principal vector species in another malarious village Sille, 
situated approximately 30 km South-West from our study area near lake Chamo. Other species 
reported by these authors include A. coustani, A. pharoensis, A. funestus,  A. nili, A. marshallii, 
A. garnhami and A. demeilloni, which differ in ecology and morphology (Gilles & Coetzee, 
1987). A. arabiensis could be the only anopheline species found due to the fact that the sampling 
took place in the end of the rainy season as the weather was getting hot and arid. Adult 
mosquitoes of the species A. arabiensis perform better under conditions of low relative humidity, 
compared to adults of other Anopheles species, and are better able to exploit drier areas and 
seasons (Kirby & Lindsay, 2009; C.J.M. Koenraadt, Githeko, & Takken, 2004; J. I. Shililu, 
Maier, Seitz, & Orago, 1998). Larvae are also reported to be better competitors in higher 
temperatures compared to other Anopheline larvae (Coetzee, Craig, & le Sueur, 2000; Sogoba et 
al., 2007).  On the other hand, Massebo et al. (2013), Ribeiro et al. (1996) and Taye et al. (2006) 
were collecting indoor and outdoor resting adult mosquitoes around human dwellings all year 
round, which could have resulted in bigger sample sizes and higher probability to detect more 
species during the season when climatic conditions are more favorable for dispersal of the adults 
as well as the breeding habitats are more numerous. Furthermore, we may not have sampled the 
habitats where other anopheline species would breed. For example, Anopheles funestus larvae are 
associated with larger, semi-permanent bodies of water containing aquatic vegetation and algae 
(Gimnig et al., 2001).  
 
We also do not exclude the possibility that there were more species in our samples, as only 8,9% 
of mosquitoes survived to adulthood, which were later identified to species level. However, our 
results agree with surveys from other localities in Ethiopia, which report A. arabiensis as the 
dominant vector species in the country with relative abundance ranging from 32% to 87% 
(Kenea et al., 2011; PMI, 2013; Tirados et al., 2006; Yohannes et al., 2005). Anopheles 
arabiensis has also been reported as predominant species in the neighboring Eritrea (Shililu et 
al., 2003b). Meanwhile Gimnig et al. (2001) report A. gambiae s.s. and A. arabiensis as the 
dominant Anopheles species in Kenya. They both belong to A. gambiae s.l. complex, but the 
former is not found in Ethiopia (Hunt, Coetzee, & Fettene, 2000). 
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CONCLUSIONS 

1. Anopheles arabiensis was the dominant vector species in the Chano village, located in the 
Southern Nations, Nationalities and Peoples Region.  

2. Many physicochemical characteristics of the breeding habitats varied throughout the 
landscape depending on the land cover or habitat type. The habitats located in pastures 
were characterized as the most saline, had highest pH values and highest DO and 
chlorophyll A content. Ponds and roadside ditches were significantly larger in surface 
area and deeper, while tire tracks and puddles were shallow and had highest turbidity.  

3. We did not detect significant association between presence of the Anopheles mosquito 
larvae and abiotic or landscape characteristics.  

4. Early instar larvae of A. arabiensis were more numerous in habitats that were more 
stable, but the survival in such habitats was lower. Water quality may be not the main 
factor influencing site selection for oviposition when the climatic conditions are not 
favorable for the survival of the adult and immature stages. Therefore, in order to 
understand the dynamics of mosquito larval populations, they should be studied 
throughout the year as seasonality plays an important role in the temporal and spatial 
variation of Anopheles mosquitoes in the area. This knowledge could be applied in vector 
control, aiming mosquito populations when they are mostly vulnerable. 

Taking into account that our survey was carried out at the end of the rainy season, it would be 
interesting to investigate the densities and distribution of Anopheles mosquitoes during the rainy 
seasons, when the rainfall is intense providing a number of breeding habitats and more favorable 
climatic conditions for the survival of the adult mosquitoes. Additional mosquito sampling 
techniques, such as sampling adult mosquito with carbon dioxide traps or light traps, could be 
carried out to provide more information on the distribution of adult mosquitoes as well as the 
species composition, as we might have overlooked or not accessed some of the potential 
breeding sites of other anopheline species. This could also provide information on relationship 
between the distribution of adults and larval populations.  
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