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ABSTRACT 

 

 

My PhD is funded by the Solanaceae Pollen thermotolerance – Initial 

Training Network (SPOT-ITN) in the frame of the European Marie Curie 

Actions.  

The consortium aims to investigate fundamental and applied aspects 

contributing to the protection of pollen at increased environmental 

temperatures, deciphering the underlying of pollen development and its 

response to heat stress, starting from analyses on Tomato. Obviously, the 

findings are supposed to be a guideline, and the procedures to be 

applicable to other plants in the future.  

In the light of the SPOT-ITN project objectives, and to provide a 

comprehensive bioinformatics infrastructure to support extensive 

genomics analyses in tomato, we collected, processed and integrated 

different resources; and organized them into dedicated databases with 

appropriate query user interfaces. This bioinformatics effort required the 

design of the most adequate software to reconcile the manifold resources 

from different cell information levels (genomics, transcriptomics, 

epigenomics). This is fundamental for data integration and analysis.  

The development of appropriate tools to mine the data from the “omics” 

approaches employed to trace the pollen development and the heat stress 

response has also been necessary to the project. 

In this thesis, the main efforts undertaken and the analyses conducted on 

the basis of such resources with the strategies and approaches developed 

are reported in details.
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1 Introduction 

The development of Bioinformatics has been tightly linked to international 

collaborations in genome sequencing projects and to efforts of the 

pharmaceutical industry in its drive for drug discovery and development.  

Bioinformatics strongly evolved also thanks to several outstanding steps 

forward in the “omics” methodologies. With the advent of new sequencing and 

high-throughput technologies in the last years, large-scale genome projects have 

significantly changed the face of biology enhancing the role of structural and 

functional genomics research [1, 2]. The sequencing of whole genomes in short 

time together with detailed definition of molecular information acquired from 

the genome functionality caused a revolution in biological sciences for their 

contribution to the study of molecular processes and of the mechanism 

underlying the context of cellular systems [3]. Having deep information from 

data describing genome organization and its modifications, the transcripts 

expression, from the protein coding and non-protein coding context, and the 

different substances within a test sample provides novel, unexpected overviews 

of molecular aspects of Systems Biology [3, 4].  

Powerful tools were organized and are still necessary to organize the data and, 

for example, to study genome structure and regulation covering aspects such as 

definition and analysis of genomic sequences, gene structure prediction, 

modeling of transcriptional and translational control and large scale 

comparative analyses [5].  
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1.1 Aims and scope 

My PhD is funded by the Solanaceae Pollen thermotolerance – Initial Training 

Network (SPOT-ITN) in the frame of the European Marie Curie Actions. The 

project initiated in 2012, it includes 9 partner institutions in which 3 from the 

private sector. Five peers from 4 European member countries   and one non-

European partner are involved. The consortium aims to investigate fundamental 

and applied aspects contributing to the protection of pollen at increased 

environmental temperatures, deciphering the underlying of pollen development 

and its response to heat stress, starting from analyses on Tomato. Obviously, the 

findings are supposed to be a guideline, and the procedures to be applicable to 

other plants in the future. 

This bioinformatics effort required data exchange and the design of the most 

adequate software to reconcile the manifold resources from different cell 

information levels (transcriptomics, proteomics, metabolomics, epigenomics). 

This is fundamental for data integration and analysis. The development of 

appropriate tools to mine the data from the “omics” approaches employed to 

trace the pollen development and the heat stress response has also been 

necessary to the project (Figure 1). 
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Figure 1: The SPOT-ITN Bioinformatics Platform Schema 

 

My activities, in this thesis work, was the set-up of the bioinformatics platform 

for data sharing with a specific focusing to the organization and management of 

data from genomics and transcriptomics. I also contributed with the 

implementation of tools accompanying or integrating the already existing ones 

for improving data quality and supporting data analysis and supporting specific 

biological investigations useful to understand structure organization and 

functionalities of the tomato genome in the framework of the SPOT-ITN project. 

1.2 Bioinformatics and “omics” Collections 

1.2.1 Genome References 

A genome reference is a sequence of DNA nucleotides (bases) assembled from 

the sequencing of DNA from a model species. With the advent of Next 

Generation Sequencing Technologies on 2005 [6] a new window to deliver fast, 

inexpensive and accurate genome information was opened [7]. Moreover, with 
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the advancement of such technologies and the number of genome sequencing 

projects working on different organisms and species, an increasing number of 

genome sequences for model and non-model organism were made available.  As 

an example in the plant sciences, 18 genome sequences from Algae, one from 

Bryophytes, 59 for Eudicots and 19 for Monocots were made available 

(https://en.wikipedia.org/wiki/List_of_sequenced_plant_genomes). 

1.2.2 Gene/Genome Annotation 

Sequencing new genomes also involved the definition of their gene content. In 

fact, gene annotation is one of the main and routine steps in the genome analysis  

when the genome sequence becomes available. It is normally carried out before 

the genome sequence is deposited in the GenBank [8]. Several specific or 

general bioinformatics gene annotation pipelines also exist in the field [9-12].   

Several pipelines (e.g.: EuGene-PP, SEGMA etc.) are used to predict the genes 

during the genome sequencing project while some others (such as RefSeq) are 

meant to collect the annotated genes later with some curations included. 

NCBI's reference sequence (RefSeq) database  [13] is a curated non-redundant 

collection which stores, organizes and provides access to the public sequences 

representing genomes, transcripts and proteins. On 13 July 2015, RefSeq 

database included 52,494,032 proteins, 11,803,354 transcripts and 55,267 

organisms (RefSeq release 71). As a hub, RefSeq offers the integrated 

information from different resources and represent a current description of the 

sequence and its features if available [13]. RefSeq offers a reviewed collection 

in which the input from expert users and the other accessory details from the 

relevant scientific communities were combined. GenBank RefSeq collection is 

one of the main reference collections used in the research community. 

https://en.wikipedia.org/wiki/List_of_sequenced_plant_genomes


5 

1.2.3 Transcriptome Sequencing 

The possibility of fast sequencing consistent transcriptome collections strongly 

contributed to gene annotation and to the understanding of differential 

expression in different biological context (tissues, stages, stress and 

pathologies) for several different species. 

Several worldwide available resources collect transcriptome data in the form of 

sequences such as dbEST [14] and the Sequence Read Archive (SRA) [15]  

dbEST is a division of GenBank [8], established on 1992 by the National Center 

for Biotechnology Information (NCBI), which is meant to collect raw reads and 

does not accept assembled sequences. In October 2015, the dbEST includes over 

74 million Expressed Sequence Tag (EST) sequences from 2473 organisms. 

SRA is also another repository, established at NCBI on 2007, which includes 

DNA sequencing data from public collections especially in the form of short 

reads (normally less than 1,000 bp in length) produced by high throughput -

sequencing (e.g.: RNAseq, ChipSeq, MethSeq etc.).  As of October 2015, the 

SRA included over four quadrillion bases in its database. 

1.2.4 Expressed Sequence Tags (ESTs) 

Expressed Sequence Tags (ESTs) are small and error-prone RNA sequence 

pieces (normally ranging from 200 to 500 nucleotides) [16]. ESTs are derivative 

fragments produced by single sequencing pair sequencing [17] which are either 

generated by sequencing of one or both ends of an RNA molecule of all 

expressed genes. They are performed on randomly selected clones from cDNA 

libraries. ESTs are Small fragments of the mRNA that represent genes 

expressed in certain cells, tissues, or organs from different organisms, fishing 

of a gene out of a portion of genomic DNA is done by the “tags” matching base 

pairs (Figure 2) [18].  
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Figure 2: EST sample preparation for the sequencing (picture from [18]) 

 

Therefore, ESTs provide experimentally based important resources for 

comparative and functional genomic studies and represent reliable information 

for the annotation of genomic sequences [16].  

1.2.5 Next Generation Sequencing Data 

According to the materials used in this thesis, RNAseq and MACE techniques 

for the expression data, and MethSeq technique for the genome modification 

purposes are presented as follow: 
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RNAseq Data 

RNAseq is a recently developed deep-sequencing technology exploiting Next 

generation sequencing technologies for parallel transcriptome profiling. It 

offers a significant level of precision comparing to the other methods in 

quantification of the produced transcripts and their isoforms [19]. 

Generally, an RNA population is converted to a cDNA fragments library. 

Depending on the protocol or approach selected, adaptor sequences are attached 

to one or both ends of the fragmented cDNAs (Figure 3). In most cases, an 

amplification process is subjected to the whole population. Depending on the 

sequencing technique, one end (single-end) or both ends (pair-end) is 

conducted. The reads typically range from 30 to 400 bases. Illumina 

(http://www.illumina.com/), Applied Biosystems SOLiD 

(http://www.appliedbiosystems.com/absite/us/en/home.html) and Roche 454 

Life Science systems (http://www.454.com/) are the example of such 

sequencing techniques applied for this purpose [19].  
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Figure 3: A typical RNAseq experiment (picture from [19]) 

 

Respectively, the resulted reads are mapped on the reference genome for the 

downstream analyses. When the genome reference is not available, assembly de 

novo of the transcript fragments is done to produce a genomic map of the 

sequenced species (This approach is also valid for the EST sequences). In both 

cases, several downstream analyses can be conducted such as expression 

quantification, structural and functional investigation etc. 
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MACE Data 

Massive Analysis of cDNA Ends (MACE) [20] is a digital gene expression 

profiling technique and one of the latest advancement of tag-based gene 

expression analysis methods recently introduced by GenXPro Company in 

Germany [20]. It is also based on Next generation sequencing technologies. In 

MACE technique, a cDNA population is first linked to a streptavidin matrix via 

3’-biotin. The cDNA sequences are then fragmented into 50 to 500 bp pieces. 

One of the key point is that all the unbound fragments are discarded from the 

consequent analyses. A high-throughput sequencing is done on the bounded 

fragments starting from the bounding site.  

 

 

Figure 4: MACE reads alignment mapping on the genome representing different alternative 

transcripts and isoforms 

 

Since MACE technique sequence the end of the transcripts (attached to the poly 

A tail), it can be a good way to detect the alternative transcripts and isoforms in 

the genomic loci (Figure 4). However the method is not able to provide/suggest 

the structure of the transcript. 
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Non-coding RNAs (Small- and Micro-RNAs) 

The non-coding RNAs are referred to the class of RNAs that do not encode for 

any protein. They also represent a relevant component of the transcriptome level 

with relevant roles that are recently going to be more understood in molecular 

biology [21-25]. This class of RNAs are contributing (though still not well 

discovered and characterized) in various biological processes and complex cell 

control activities. Small-RNAs, including the silencing through homologous 

sequence interactions, can be named as short interfering (si)RNAs [26], small 

temporal (st)RNAs [27], heterochromatic siRNAs [28], tiny noncoding RNAs  

[29] and microRNAs (miRNAs) [30, 31]. Epigenetic modifications of the 

specific genomics regions, transposon silencing, RNA stability or translation 

are of those processes controlled by these classes of non-coding RNAs. 

Identification of the Small-RNAs and evolutionarily conserved RNA-mediated 

silencing pathways opened a new window to the understanding of the genomic 

processes in the field [32, 33]. 

MethSeq Data 

Methylation-sensitive restriction enzyme assisted DNA methylation deep 

sequencing [34] (so called MethSeq) is one of the epigenomics approaches for 

detection of methylated and not methylated DNA sites. It is able to detect 

genome-wide CG methylation along the genome sequence. In this approach, 

HpaII is used as the methylation-sensitive enzyme, recognizing non-CpG-

methylated CCGG sites. After this digestion process by HpaII, the size selected 

DNA fragments are subjected to the sequencing (Figure 5). 
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Figure 5: CG site cutting by enzyme in MethSeq methodology (picture taken from [35]) 

 

DNA methylation can be involved in the regulation of gene expression [36-38], 

protein function [39, 40] and mRNA processing [41, 42]. DNA methylation is 

also associated with the silencing of repeated regions, known also to cause 

genome instability in the plants and animals [43]. Hence, the detection of the 

DNA modification events associated to methylation is an important step to 

understand the role they can play in gene expression. 

Data processing and assembly 

The quality of data and the way it is processed have great impacts on the 

outcomes [1]. Most analytical tools assume that the input data has an accepted 

level of reliability, while for the sequencing data, both in genomics and in 

transcriptomics, due to technical or biological issues, that goes from machine 

biases, contaminations or several other aspects, the data should be quality 

assessed and pre-processed before any further analytical steps [2]. Besides of 

the data cleaning and trimming from usual factors (e.g.: additional sequences 
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used for sequencing purposes, vector sequences, low quality or missing bases), 

relying on the frequency of an evidence is also a common approach to enhance 

data reliability. To this end, the assembly of identical and overlapping sequences 

from the same reference as well as the definition of consensus from specific 

overlapping cut-offs are of those common methodological approaches to obtain 

high quality and reliable sequences. Sequence assembly and the clustering of 

sequences sharing identical or highly similar regions are also methodologies 

leading to the definition of variances such as those due to the Single Nucleotide 

Polymorphisms (SNPs) or splicing. 

1.2.5.1.1 Sequence Cleaning and Trimming  

In almost all the sequencing approaches, a piece of an additional sequence due 

to the technique (eq. vector sequences for the ESTs or barcode and adapter for 

the RNAseq data) contaminate the resulting target sequence(s) of interest. Based 

on the technique and the protocol used, the type of this sequence can vary. The 

need to remove the added sequences should be removed from the target 

sequence fragment is fundamental. Based on the type of data and the specific 

sequencing technology, several tools are developed to clean and trim such 

sequences from the raw sequence data. As an example for the EST sequences, 

LUCY2 [44] and SeqTrim [4] are some of the tools to detect and remove the 

vector sequences from the EST. Sometimes the guided tools such as 

RepeatMasker [45] and the use of vector databases as the masking collections 

can be alternative approaches. 

1.2.5.1.2 Quality Assessment 

The trimming can result in very short sequences which should be discarded from 

the consequent analyses according to user defined specific cutoffs. 
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The length and the quality of the resulting sequences is a relevant aspect to be 

considered for several reasons. Due to technological or chemical issues and 

depending on the sequencing machine, the quality of the sequenced nucleotides 

may drop after a specific number of nucleotides. For the same reason, some 

sequences can also contain errors which should be considered depending on the 

proportion and position of the error occurrence. On the other hand, if the 

trimming of the sequence from adapters, vectors, or because of low quality 

nucleotides defines too short sequences, this will reduce their specificity. 

Indeed, the probability of similarity of short sequences compared to the longer 

ones, is higher, introducing bias to sequence assignment and to the definition of 

its role, such as in assembled sequences or in the detection of the correct 

reference genomic region when the sequence itself will be mapped. However 

this has a direct effect on the computational costs in terms of time complexity. 

Several quality assessment and correction tools [46-48] were developed to allow 

the quality assessment and low quality sequences removal by setting different 

options and cut-offs. Independently from these tools, several analytical 

pipelines also offer options to set length thresholds before further exploit ing the 

resulting collection [49-52]. 

1.2.5.1.3 Tentative Consensus (TCs)  

A Tentative Consensus (TC) sequence is the result of multiple sequences 

alignments. A consensus sequence has higher reliability because it is confirmed 

by several fragments that can also elongate the resulting product. The lack of a 

unique consensus can contribute information about variants or alternative 

splices.  

CAP3 [50] is one of the most commonly used sequence assembly programs 

(offering different options such as overlapping cut-off, quality filtering and 

expansion thresholds etc.) used for the assembly from the EST collections and 

for TC definition. 
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The collections of all the tentative consensus from a transcriptome sequencing 

can be usually referred as unigene collections since a unigene should represent 

the unique reference for a transcript, thanks to the assembly process. 

 

 

Figure 6: Tentative Consensus Assembly from EST sequences. Those not confirming a 

similar structure are left as singletons. 

 

Based on the definition a TC is always defined at least by two sequences. The 

sequences from a library not contributing in any TC assembly are often referred 

as singletons (Figure 6). Some resources such as ISOL@ [53], NexGenEx-Tom 

[54] offer the TC collections separating the singletons to flag the most reliable 

sequences since they can be independently investigated from their EST 

collections, but some others such as SGN [55], PlantGDB [56] and DFCI [57] 

provide the TC collections including the singletons together. 
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Considering the data from NGS, similar strategies are applied. Indeed the main 

difference is mainly due to the need of manipulating a higher number sequence 

fragments per analysis. In the field of transcriptome assembly, several tools and 

pipelines (e.g. Denovo Trinity [51], Velvet [58], SOAPdenovo [59], cufflinks 

[60], SSAKE [61] etc.) try to create the overlapping and consensus sequences 

from the short reads to assemble the entire transcript. Other tools (such as 

BedTools [62]) are also developed to create consensus sequences on the bases 

of reads overlapping on the genomic regions.  

Quantification 

In the NGS data quantification, an important summary statistic is the number of 

reads in a class (genomic feature such as gene, mRNA, exon etc.). The read 

count has indeed a linear function of the target abundance that is being 

measured: in RNAseq it can measure transcript abundance, or, in MethSeq, it 

can indicate absence of methyl group for sites that can be potentially methylated 

(eg. CpG dinucleotides).  

There are two main approaches to follow to quantify a specific read amount 

from NGS approaches. In the genome reference based analyses, the reads are 

first mapped (aligned) on the genome sequence [60]. After the mapping, reads 

can be counted on the base of their occurrence on genomic features if available 

(e.g.: gene, mRNA, exon etc.). When the annotation is not available, an 

annotation free analyses based on different strategies may support the creation 

of reference genomic regions. 

When a genome reference is not available, often a de novo assembly is done to 

have reference sequences as models [63]. In this case, the quantification of reads 

can be done by calculating the abundance of reads mapped on a specific model 

[51, 64]. 
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In both case, the number of fragments (reads) counted is a quantity that may 

refer to that target abundance. This is valid for protein coding or non-coding 

transcripts. However, in terms of non-coding RNAs, often the genomic region 

or the class the reads will be assigned to, are not already available from the 

genome annotation. These regions, however, can be defined by identifying 

overlapping fragments mapped on the genome reference sequence [65]. In this 

approaches, often an offset of neighboring (e.g. a 100 window) for creating the 

reference feature is also considered. Furthermore, these clusters may be also 

intersected with other genomic features (e.g. coding regions, Transposon 

Elements etc.) for further downstream analyses [44, 66, 67] to localize the 

specific read amount on the genomic feature. 

1.2.5.1.4 Raw Reads 

The raw reads count is the simplest measure of quantitation for the high-

throughput sequencing data. It counts up the reads within or overlapping a 

specific genomic region or a probe. There are several tools and packages which 

allow the fast and customized summarizing of the reads count for genomic 

features. Among all, HTSeq-count [68] and featurecounts [69] are the most 

common and user-friendly packages. 

HTSeq-count is a Python script available in the HTSeq package developed to 

work with the NGS short reads (fastq). It is a fast and efficient software to 

summarize (assign) the reads mapped on a genomic reference to an overlapping 

genomic feature or class allowing several specific settings. HTSeq-count is of 

those summarizing tools which prefers to relay on the most certain evidences, 

and the discarding of ambiguous and multiple mapped reads is one of its 

principle procedures.  
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Figure 7: Reads Counting options in HTSeq-count software (figure from http://www-

huber.embl.de/users/anders/HTSeq/doc/count.html) 

 

Figure 7 visually described the read assignment of the HTSeq-count package to 

the reference genomic feature using different parameters of union, 

intersection_strict and intersection_nonempty. As it can be observed, when the 

read “A” is overlapping with both “gene A” and “gene B”, it is reported as 

ambiguous in all the cases. 

featurecounts is also another tool developed in C environment for the short 

reads summarization. It is a highly efficient general-purpose software that 

allows the detailed counting of the mapped reads for various genomic features. 

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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Against HTSeq, featurecounts can also deal with the multiple mapped reads and 

ambiguous features in which, the read will account for all the overlapping 

genomic elements. It also can deal with the genomic bins and chromosomal 

locations. featurecounts is available in the form of SourceForge Subread 

package or the Bioconductor Rsubread package [69]. 

Using any read to feature assignment tool for the quantification purposes, the 

summary statistic is normally calculated for all the class members per each 

replicate, creating a quantification matrix. As an example for the expression data 

of twenty genes of tomato in six different conditions (one replicate per each), a 

summary expression matrix of 20 × 6, excluding the headers and row names, 

will be produced. 

 

 

Figure 8: Snapshot of an expression matrix for 20 example genes in 6 conditions  
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Figure 8 shows an example of a summary statistic table for 20 genes in 6 

different conditions in the form of a gene expression matrix. As it can be 

observed, the name of the genes (here the genes of tomato) are listed as the row 

names while the conditions are the columns. The expression values 

corresponding to each gene in each condition is reported respectively. This 

summary statistic table (matrix) is then used for the gene expression analyses 

and profiling. However, as mentioned at the beginning of this topic, correction 

of the nonlinear effects that might be introduced due to the experimental 

conditions should be put into consideration for the quality purposes [70]. 

Normalization 

Although it was claimed that RNA sequencing technology has a significant 

reduction of variability in comparison to microarrays, it is demonstrated that the 

unwanted and obscuring variability similar to what was first observed in 

microarrays can be also observed in the RNAseq data. [71]. In addition, the 

current limits in the sequencing technologies introduce a variety of biases to the 

data [72-75] suggest that normalization approaches are necessary to make the 

samples comparable. The aim of normalization approaches are to remove 

systematic technical effects with in the data, and minimize the impact of 

technical biases on the results [76]. Here, some of the most commonly used and 

popular normalization approaches used for the NGS data analyses are presented. 

 

Reads Per Kilobase per Million (RPKM) mapped reads is a normalization 

allowing the comparison of the genes within a sample or between different 

samples by re-scaling the gene counts corrected for differences in both library 

sizes and gene length [77]. Although it has been shown that the correction of 

differences in gene length can introduce a bias in the differential analysis 
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especially for the lowly expressed genes [73], RPKM is still a popular and 

commonly used normalization approach in many practical applications. 

 

𝑅𝑃𝐾𝑀 =
𝑛 ∗ 1000 𝑏𝑝 ∗ 10^6

(𝐿 ∗ 𝑁)
 

Where n is the number of mapping reads, L is the length of transcript and N is 

the number of total reads in the sample collection. This method is a library size 

concept normalization approach. 

 

Transcript Per Million (TPM) is the analogous approach of normalization to 

RPKM to correct the library size when the length of the transcript is not put into 

consideration.  

 

𝑇𝑃𝑀 =
𝑛 ∗ 1000 𝑏𝑝 ∗ 10^6

𝑁
 

Where n is the number of mapping reads and N is the number of total reads in 

the sample collection. 

This method is a library size concept normalization approach. 

 

The reads assigned to a class or genomic feature (eg. gene or exon etc.) are 

divided by the total number of reads mapped on the genome (library size) for 

that specific lane (replicate/sample). The result is then multiplied by the total 

count mean across all the replicate/samples of the dataset. 

Upper Quantile (UQ) in principle is very similar to Total Count (TC) where the 

total read counts are replaced by the upper quartile of non-zero counts in the 

normalization factors calculation [78]. 
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Median (Med) is also similar to TC where the total read counts are replaced by 

the non-zero median counts in the normalization factors calculation. 

DESeq method is a normalization method included in the R Bioconductor 

package (version 1.6.0) [79]. As for many other normalization approaches, the 

method is based on the hypothesis that most genes are not differentially 

expressed. This assumption leads to this that the non-DE genes should possess 

similar number of reads across all the samples, with the approximate ratio of 1. 

Hence, to estimate the correction factor to be applied to all read counts of a lane 

to support this hypotheses, the median of the ratio for each of the genomic 

features or classes of its reads counts over its geometric mean across all the lanes 

are calculated as the scaling factor. “sizefactors()” and “estimateSizeFactors” 

are the functions calculating this factor in the DESeq package. Eventually, the 

final gene expression is calculated by dividing of the raw counts by this factor 

for each genomic feature or class in the corresponding lane. 

Trimmed Mean of M-values (TMM) method is a normalization approach also 

implemented in the edgeR Bioconductor package (version 2.4.0) [76]. This 

method like DESeq is based on the assumption that most genes are not 

differentially expressed. In the TMM normalization one lane is considered as 

reference sample and all the others as the test samples. After excluding most of 

the expressed genes and the genes with the largest log ratios, the weighted mean 

of log ratios between the test and the reference sample is calculated. This factor 

should be marginal to 1, otherwise a correction factor will be estimated as the 

library sizes. This scaling size factor is calculated by “calcNormFactors()” 

function is the edgeR Bioconductor package. To obtain the normalized counts 

per each genomic feature or class, raw reads counts are divided by the 

normalization factors re-scaled by the mean of the normalized library sizes. 



22 

Post-Processing and Interpretation 

In system biology, understanding the interactions within a living cell can lead 

to the characterization of molecular components and common functionalities 

[80, 81]. As a matter of fact, a major challenge in biology is to decipher the 

dynamics observed in complex intracellular networks of interactions which lead 

to the structure organization and function of living cells [80]. Correlation based 

approaches and cluster analyses the two major strategies used for the 

construction of such interaction networks and profiling. Here we provide a brief 

description of such approached applied in the field of biology. 

1.2.5.1.5 Correlation Analyses 

Correlation networks are used widespread in bioinformatics in which describes 

the correlation patterns among components (genes, proteins etc.) across the 

different samples conditions, levels etc. [82]. Nowadays, it is hardly found a 

bioinformatics tool or package developed for the co-expression or co-regulation 

analyses in which, the correlation analyses was not deployed in it e.g.[82-85].  

1.2.5.1.6 Cluster Analyses 

 As well as the “Correlation Analyses”, clustering approaches have proven to 

be useful to identify the molecular components with similar behavior [86]. In 

statistics, clustering is a process in which the data is divided into similar or 

homologous groups, objects or categories minimizing the variance within each 

cluster [87]. It is an active field of research mainly used in for the pattern 

recognition and machine learning. Due to the specificity and sensitivity of 

statistical models and the type of data subjected to the cluster analyses, various 

clustering algorithms has recently emerged in the field. Hierarchical Clustering 

(a connectivity based model), K-menas algorithm (a centroid model), clique 
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algorithm (a graph based model) are of those commonly used approaches in the 

field of life sciences. Providing a comprehensive review on the clustering 

approaches available is a major effort which is out of the topic of this work, but 

here we suffice to the introduction of few commonly clustering algorithms used 

in the “omics” data analyses. 

Hierarchical clustering is a very popular and commonly used clustering 

approach in which, a similarity or dissimilarity measure (Euclidean distance, 

Squared Euclidean distance, Manhattan distance etc.) is used to link the objects 

together in a greedy way [88]. In other words, a dendrogram is formed 

representing the similarity or dissimilarity of objects where the distance 

between the linkages is the measure of their dissimilarity. Based on the way the 

data is traversed to be grouped together, the Hierarchical Clustering can be 

divided into Agglomerative (bottom up) or Divisive (top down) categories. The 

Hierarchical Clustering is available in the stats package implemented in R. 

Although there are some packages such as pvclust [89] in which a cluster 

number can be assigned to partition the dendrogram into different clusters based 

on different parameters (such as p-value for the pvclust package), the principle 

Hierarchical Clustering approach is independent from the number of clusters to 

be specified.  

k-means clustering [33] is a hard clustering technique (each object falls into one 

cluster only) in which given a specific number of k, where k represents the 

number of clusters, the objects will be divided into k disjoint groups with 

maximum similarity and dissimilarity within the cluster and between the 

clusters respectively [90]. 

In k-means clustering, each cluster is represented by a centroid (c i) which is the 

mean or weighted average of its data points.  

𝐸 =  ∑ ∑ |𝑂 − 𝜇𝑖
|2

𝑂∈𝑐𝑖

𝑘

𝑖=1
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Where O is a data object in cluster Ci, μi is the centroid (mean of objects) of Ci, 

and E is the objective function to be minimized.  

  

The objective function E tries to minimize the sum of the squared distances of 

objects from their cluster centers. 

 

As observed above, k-means clustering only works on the numeric data but not 

categorical. In general, the decrease in the number of clusters results to lose 

some fine information but simplify the procedure to a great extend [87]. 

K-means clustering is one of the most used approaches in terms of gene 

expression profiling and pattern partitioning. 

 

 

Figure 9: Demonstration of k-means clustering as a hard clustering technique (picture from 

[91] 
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As presented in Figure 9, the data points are categorized into different groups, 

in which each data point belongs to a specific cluster. Each cluster has a centroid 

that is the mean of all the data points within that cluster. Depending on the cases, 

different distance metric are used as a measure of variance for each cluster. 

C-means clustering is a fuzzy clustering approach which was first presented on 

2001 for text and image segmentation [12]. Like other fuzzy clustering methods, 

c-means is a soft clustering, in which each data object can fall into multiple 

clusters possessing a degree of membership. Obviously, a hard clustering or 

grouping of objects using a specific number of cluster can be done on the soft 

clustering considering the membership level of each element in each cluster. 

Fuzzy C-means clustering also is implemented in package “e1071” of R 

environment. 

 

 

Figure 10: Demonstration of c-means clustering as a soft clustering technique (picture from 

[92]) 

 

As presented in Figure 10, the clustering topology in c-means clustering is 

presented. As it can be observed, each data point can belong to different clusters 
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possessing different degrees of membership depending on its distance to each 

cluster center. 

Self-Organizing Map (SOM) approach was first introduced by Teuvo Kohenen 

in 1998. It is an effective visualization tool for relevant mapping of a high-

dimensional distribution onto a low-dimensional grid. Hence, it is able to 

convert complex, nonlinear statistical relationships among high-dimensional 

data objects into simple geometric relationships on a low-dimensional display 

[93]. SOM is an excellent tool in exploratory phase of data mining [94] which 

is vastly applied to the omics data analyses [72, 74, 75, 80-82, 95]. 

Besides of the original toolkit developed by Teuvo Kohenen [93] for the SOM, 

several other packages are also implemented in R packages such as kohonen, 

som etc. 

 

 

Figure 11: Self-organizing map clustering schema (picture from [96]) 

 

As depicted in Figure 11, the self-organizing map of n different inputs (here 

defined as vector) scattered on a two dimensional map is presented. In this 

methodology, similar data points converge while the dissimilar points diverge. 
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1.2.5.1.6.1 Optimal number of clusters 

A simple method to determine the number of clusters for a sample population 

of objects is the “Rule of thumb” [83] which is formulated as follow: 

 

𝑘 ≈  √
𝑛

2
 

Where k is the number of clusters and n is the total number of objects to be 

clustered. 

 

This method is not very precise or flexible but still is a popular and common 

method to be used for simple calculation of k at the first place to have an idea 

of the data behavior.  

1.2.5.1.6.1.1 The Elbow method 

The “Elbow method” is another approach for identifying the number of clusters 

for a group of objects subjected to the cluster analyses which can be traced back 

to 1997 [83]. By plotting the percentage of variance explained by each cluster 

against the number of cluster (analogous to F-Test), a curve will appear that in 

might signifies a drastic change (lowering) in the percentage if variance 

explained in the clusters (Figure 12). Obviously in this method the number of 

clusters have chosen is always with a level of ambiguity [84]. 
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Figure 12: Elbow method for defining the number of clusters in a sample data (Picture from 

[97]) 

 

Here we presented some common clustering algorithms used in “omics” data 

analyses and two simple but popular approach for choosing the proper number 

of clusters in a population. A comprehensive survey on the clustering algorithms 

can be found at [89, 98]. 

1.2.5.1.7 Enrichment Analyses 

GO Enrichment Analyses is the identification of the class of genes or proteins 

mainly over- but sometimes also under-presented in a set [99]. Functional 

analysis of large gene lists mostly resulted from high-throughput methodologies 

is a big challenge Gene annotation enrichment analysis is a promising approach 

in which the likelihood GOs associated to the resulted gene list is  a measure of 

identifying the biological processes relevant to the study [100]. 

Since the inception of GO Annotation Project [101], the gene product function 

on the bases of Gene Anthology representing the relevant biological knowledge 
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was made available gradually. This data is now available at AmiGO 2 Database 

(http://amigo.geneontology.org/amigo) providing access to these information in 

various ways (query, database service, web services etc.). Ensembl BioMarts 

[102] as another reference resource provides dedicated GO Anthology 

collections to the research communities. 

Moreover to better exploit these resources and information, several Enrichment 

Analytical tools and packages were developed during the last years [99, 103-

108].  

Some tools such as Blast2Go [109] also provide some pipelines for the 

annotation of GO using the GO Anthology resources based on the gene product 

functional annotation by tuning several pipelines. 

GO Terms Enrichment Analysis are based on some statistical approaches to 

detect the over- and sometimes under-presented GO terms. Here we present 

Fisher Exact Test as one of the most commonly used statistical methodologies 

for the GO Terms Enrichment Analyses. 

1.2.5.1.7.1 Fisher Exact Test  

Fisher test is a statistical test of significant on a contingency table (Table 1).  

Table 1: an example of a contingency table 

 

 

A contingency table is a matrix form table in a in which the (multivariate) 

frequency distribution of the variables are summarized. 

http://amigo.geneontology.org/amigo
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Table 2: variables representation for the contingency table elements to conduct fisher test 

 

 

With respect to the labeling reported in (Table 2), the formula to calculate the 

Fisher Exact Test significance level is as follow: 

 

𝑃 =  
(𝑎+𝑏

𝑎
)(𝑐+𝑑

𝑐
)

( 𝑛
𝑎+𝑐

)
=  

(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑛!
 

 

Due to the formulation of Fisher Exact Test and usage of factorial notations, 

however the formula is valid for any sample, the analyses can be directly done 

only on a small sets. To overcome this issue, many tools use the Stirling 

approximation to estimate the factorial for large numbers. 

 

𝑊 = log
𝑁!

√2𝜋
 ≅ (𝑁 + 

1

2
) log(𝑁) − 𝑁 𝐿𝑜𝑔 (𝑒) 

𝑊 = 𝐴 + 𝐵 

𝑁! =  √2𝜋  × 10𝐴  × 10𝐵  

Or 

𝑁! = 𝐶 ∗ 10𝐴  𝑤𝑖𝑡ℎ 𝐶 =  √2𝜋  ×  10𝐵   
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Where A is the integer part and B is the decimal part of W. Hence, any N can be 

calculated as follow: 

 

𝑁1! 𝑁2!

𝑁3!
=  

𝐶1 × 10𝐴1  ×  𝐶2 × 10𝐴2  

𝐶3 × 10𝐴3 
=  

𝐶1 × 𝐶2

𝐶3

 × 10𝐴1+𝐴2+𝐴3 

 

In this way, all the multiplication and division of factorials with the same base 

is possible in a simple but estimated way.  

1.2.6 Orthology 

Identification of ortholog/paralog genes is an important issue in molecular 

biology that supports structural, functional and evolutionary inferences [110-

123]. Detection of ortholog/paralog genes has a wide range of applications in 

functional investigations and comparative genomics [113, 124]. As an example, 

a common procedure to characterize the genes in a newly sequenced genome is 

to investigate the orthology relationships for transferring functional information 

from the genes in the model organisms [125-127]. It can also highlight the 

species specific peculiarities. As another example, paralogy also allows to 

understand the expansion or reduction of some gene families or functionalities 

in the evolution process.  

Due to the importance such approach can convey, several bioinformatics 

pipelines for detection of ortholog genes have been developed during the last 

years. Inparanoid [128] and OrthoMCL [129] are of those commonly used. 

Consequently, several platforms also offer ortholog resources to the research 

community. Among all, PLAZA [130], Phytozome [58], Ensemble Plant 

BioMart BioMart [59],Inparanoid [61] and OrthoMCL [131] are the most 

comprehensive plant resources in the field. 
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1.3 Solanaceae and S. lycopersicum (Tomato) 

The availability of the tomato genome and the gene annotation together with 

different “omic” resources such as collections from Expressed Sequence Tags 

(ESTs), Tentative Consensuses (TCs), Transcript Indices (unigenes) and the 

NGS data opened a new window to the research community to further and better 

investigate the genomic resources on the tomato genome space. However, the 

completion of a genome sequencing effort is never at an end, and the need of a 

reliable annotation is fundamental to fully exploit the acquired knowledge 

(section 2.3).  

1.4 Resources for Tomato 

Various biological databases and platforms such as ISOLA platform [53], 

SolEST database [109], TomatEST [132], PlantGDB [56] and Dana-Farber 

[57], KafTOM [133], MiBase [134] were providing relevant transcriptomics 

data (ESTs and TCs) collections for tomato to the community even before the 

release of the tomato genome. With the sequencing of the tomato genome, its 

annotation and other high-throughput data collections offering deep and 

comprehensive information for this plant species, the advancement of some 

existing or introduction of new collections providing manifold  resources for 

this important crop was pushed forward prominently. 

The Solanaceae Genomic Network (SGN) website [55] as a reference website 

is offering different resources and tools for the tomato genomics. Various 

resources such as the tomato genome sequence and its annotation (different 

versions), datasets for phenotyping, markers and maps, genes and pathways, and 

several other major collections are available on this reference website. It also 

includes some information and datasets from relevant plant species such as 

Potato, Eggplant, Tobacco and Arabidopsis to support the comparative 
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genomics. SGN also offers the combined results from RNAseq from unspecified 

collections in the form of short reads mapped onto the genome and accessible 

by a genome browser interface as coverage plots.  

The Tomato Functional Genomics Database (TFGD) [135] is also a website 

specifically aimed to provide a representative resource for gene expression 

collections from tomato, including data from heterogeneous platforms (ESTs, 

microarrays, RNAseq).  

To our knowledge, the Tomato Genomic Resources Database (TGRD) [136] is 

the other tomato related resource also providing the RNA-seq based expression 

of tomato genes in selected tissues (leaf, root, flower and fruit) from the Heinz 

reference collection [137] . 

Major reference databases such as NCBI, UniProt and RCSB together with some 

tomato dedicated resources such as SGN [55] and TFGD [135] and ProMEX 

[138] offer proteomic data collections for this crop species.   

In terms of the metabolomics and pathway information, besides of the tomato 

dedicated reference websites such as SGN [55] and TFGD [135] offering 

dedicated resources to this plant species, general metabolomics and pathway 

databases such as KEGG: kyoto encyclopedia of genes and genomes [139] and 

Plant Metabolic Network (PMN) [140] offer precious information to the 

resource community. 

Availability of different tools such as Genome Browse (Gbrowse) [141] and 

Integrative Genomics Viewer (IGV) [142] could also enable the fast and easy 

investigation of different transcriptomic levels on the bases of a viewer to 

browse the genome with its “omics” annotation and content with some specific 

query input formats. 
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1.5 Thesis organization 

This chapter is followed by other three chapters representing the materials and 

methods (chapter 2), results and discussions (chapter 3), and conclusion 

(chapter 4). Chapter 2 includes all the materials in this work. It also includes all 

the methodologies and implementations to setup our required resources and 

conduct our analyses. Chapter 3 represents the result of our effort introducing 

the major bioinformatics tools and platforms designed, and the results produced 

during this work. Eventually, chapter 4 provides a conclusion on the discussed 

topics highlighting the major key points in this effort. The cited references are 

all listed in the “Reference” section at the end of the thesis. 

1.6 Summary 

An introduction to the field of bioinformatics, its application and the impact it 

has on the biology area (specifically in plant) was provided in this chapter. In 

addition, the research line I followed during my PhD in the frame of the SPOT-

ITN project, including the objectives and responsibilities, were introduced. 

Eventually, different relevant technologies, data types, methods and approaches 

as the prerequisite to better understand the foundation of this research topic was 

described and presented. The thesis organization and chapters content was also 

presented in brief. 
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2 Materials and Methods 

2.1 Introduction 

The materials and methods used in this thesis work are here presented. During 

the course of this PhD and at the light of the SPOT-ITN project, various public 

data collections relevant to our work were collected. In addition, several private 

collections from the SPOT-ITN partners were also considered to be organized 

in dedicated platforms. Different methodologies and approaches to collect, 

reconcile, and integrate these collections were also designed and implemented. 

The platforms and tools to store and analyze these data also to support our 

analytical objectives were also developed and built. Here, the description of 

these resources, the tools, platforms and methods to deal with these data are 

presented in details. 

2.2 Experimental Design in the SPOT-ITN 

In the specific framework of the SPOT-ITN, a leader experiment was considered 

for a common study from which different collections from transcriptomics, 

epigenomics, proteomics and metabolomics analyses were made available to the 

whole consortium. 

Tomato plants (S. lycopersicum cv. Red Setter) were grown under controlled 

conditions in a glasshouse (Agrobios; Metapontum, Italy) and pollen samples 

were collected at three development stages—tetrads (T) (Pollen mother cells), 

post-meiotic (PM) stage (microspores) and mature stage (M) (binucleate 

pollen)— harvested according to the length of anthers (T: 4-6 mm, PM: 6-10 

mm, and M: >10 mm). Three independent experiments were performed during 
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three consecutive days. Samples derived from one day were treated as biological 

replica. For heat stress (HS) experiments, HS plants were transferred in a 

preheated growth chamber and exposed to 38oC for 1 hour. The temperature 

was decreased to 25oC gradually within 30 minutes and plants were allowed to 

recover for an additional hour at 25oC. Untreated plants (control) were kept in 

the growth chamber for the same time period at 25oC. 

GenXPro Company (Frankfurt Germany) provided the MACE, MethSeq and 

Small-RNA sequence collections from the common experiment, which was 

conducted in Metapontum (Bari, Italy). The partners at the Vienna University 

are in charge of the proteomic data (LCMS and GCMS) from the same samples. 

The partners from the Wageningen University are in charge of metabolomics 

data production (LCMS and GCMS) from the same sample, and its assignment 

to the corresponding pathways of interest.  

2.2.1 Collection  

MACE libraries were prepared as described by a protocol established by 

GenXPro GmbH (Frankfurt, Germany). We received 18 libraries of illumina 

HiSeq sequences for each of MACE, Small-RNA and MethSeq sequences (3 

biological replicates for each of the Tetrad, Post-meiotic and Mature pollen 

developmental stages, each stage for 2 conditions of physiological and heat 

stress) cleaned from the adapters and barcode sequences, and low quality bases. 

Details on the sample preparation are presented in ANNEX III. 

2.3 Genome Reference for Tomato 

With attention to the tomato plant which is the focus of the SPOT-ITN project, 

and to set up a genome centric infrastructure to allow genome based analyses, 

the reference sequences for tomato were collected and analyzed. The reference 
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sequences were then charged into our infrastructure and used for any relevant 

investigation and analyses. 

2.3.1 Chromosomes and BAC Sequences 

Both versions of the 2.40 [137] and 2.50 [143] of the 12 pseudomolecules 

sequences representing the reference tomato genome, S. lycopersicum cv Heinz, 

together with the chromosome zero, which includes all the contig sequences not 

assigned to any other chromosome yet, were downloaded from the SGN website 

[55]. 

Version 2.40 is the most commonly used version before the newly released 

version of the 2.50. To understand the differences and peculiarities of the two 

genomes, a sequence based comparison between the two versions was carried 

out. The result of the comparison is presented in the chapter 3.  

One hundred and twelve (112) BAC sequences not anchored along the reference 

genome (pseudomolecules) as independent resources which could be 

investigated in it gene content based on the different annotation tracks were 

downloaded from SGN website [55]. In fact, 1227 tomato BACs (among the 

1338 in total) were anchored along the pseudomolecules. 

2.4 Annotations for Tomato 

To understand the genomic content of the tomato genome sequence, different 

annotations available for this plant species were collected. In some cases such 

as the tomato gene annotation, some efforts to improve its quality were also 

undertaken. First, the collections and datasets collected for tomato genome 

annotation are presented. Then the effort for revision of the tomato gene 

annotation and the effort to improve its quality will be described in details.  
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The official gene annotations of tomato, iTAG 2.3 and iTAG 2.4, each 

representing 34,727 and 34,725 gene loci respectively provided by the 

International Tomato Genome Consortium (ITAG), was downloaded from SGN 

website [55].  

The RefSeq 2.3 gene annotation representing 25,946 gene loci for tomato was 

downloaded from NCBI RefSeq database [13]. The initial downloaded files from 

RefSeq database were in GenBank format that were parsed and converted into 

gff3 format using an in-house parser. 

The SGN infernal (insilico predicted small-RNA regions, produced by Infernal 

[144] software) version 2.3 and 2.4 were downloaded from the SGN ftp resource 

[55]. 

The iTAG 2.3 and iTAG 2.4 repeat annotations (normal repeat and repeat 

aggressive) representing the repetitive regions of the tomato S. lycopersicum 

genome were downloaded from the SGN ftp resource [55]. 

One hundred and ten (110) identified and known micro-RNA sequences for the 

Tomato S. lycopersicum were downloaded (April 2015) from the MirBase [85] 

database for the downstream analyses. 

2.4.1 Efforts on the improvement of Annotation (Guided/Revised gene 

Annotation) 

The iTAG 2.3 predicted loci were intersected with the same annotation to detect 

the overlapping genes. They were also intersected with the iTAG 2.3 repeat 

aggressive annotation to identify the genes predicted in the repeated regions. All 

the iTAG 2.3 transcripts were also remapped along the tomato genome using 

GenomeThreader [49] (version 1.6.5), a software tool to compute gene structure 

predictions using a similarity-based approach via spliced alignments. Each 

mapped sequence was then compared and labelled according to the reference 

gene annotation. A blast versus the UNIPROT reviewed database (downloaded 
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on February 2013) was also conducted on the same mRNA collection. Further 

analyses on the resulting data revealed ambiguous or miss-located loci that will 

be discussed extensively in chapter 3. 

Validation and Confirmation 

The iTAG 2.3 predicted loci were intersected with all the tomato ESTs, TCs and 

unigenes collections available in the Tomato Genome Platform organized 

within this effort. RNAseq expression signaling of each iTAG 2.3 predicted loci 

was checked on the bases of Heinz expression collection available at NexGenEx-

Tom [54] platform. 

All the predicted iTAG 2.3 loci were also intersected with the RefSeq 2.3 gene 

annotation. Each locus was then flagged with its type (Figure 13) and coverage 

of overlapping. 
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Figure 13: Different flags for labelling the different overlapping status of 2 genomic feature 

or transcript 

 

 As presented in Figure 13 all the possible overlapping types are defined by a 

flag. The percentage of coverage for the query with respect to the subject locus 

is calculated as follow: 

 

𝑐 =  
𝑞. 𝑙 − 𝑠𝑜 − 𝑒𝑜

𝑠. 𝑙
 × 100  

Where q.l is the query length, so is the start offset, eo is the end offset and s.l is 

the subject length.  
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Coding Process (mapping descriptor) 

A combinational coding system was applied for summarizing the information 

into a short descriptor. The descriptor is a multi-part identifier explaining the 

features of a transcript, and the way it is mapped on the genome. As an example 

for the Gene ID Solyc00g00500.1.1, the ID “Solyc00g00500.1.1_7M2” or 

“Solyc00g00500.1.1_7Mch02: 098555:095668” can be produced. The 

methodology to assemble such tags is explained in Table 3, Table 4,Table 

5,Table 6. 

  

Table 3: transcript coding representation for the remapped sequences in multiple locations 

 

 

As presented in table 3 for the Gene ID “Solyc00g00500.1.1_7M2”, the 

transcript Solyc00g00500.1.1 has mapped seven times on the genome in which 

this locus (the one used as the example) is the 2nd locus of those mappings 

(because of the number 2 after character “M”). Using the tag including the 

chromosomal start and ends, the location of the transcript for this specific 

mapping position is provided.  
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Supplementary code: 

To provide comprehensive information regarding the transcript, another 

combinational tag representing the general overview of the transcript is 

provided as follow: 

 

Table 4: code letters used for the type of mapping (identity and coverage measure) for a 

transcript 

 

 

As an example, “Solyc00g00500.1.1_7M1_1A2B1C3D” lists that this transcript 

with 7 mappings has 1 perfect map (A = 100% coverage and 100 % identity), 2 

Good Maps (B = 95% coverage and 95% identity), 1 Moderate Map (C = 90% 

coverage and 90% identity) and 3 Maps (D = 90% coverage and 80% identity) 

on the genome. Extra flags can be added due to the combinational coverages 

and identities if required. 

 

Binary Quality Identifier:  

To specify the quality of each mapped transcript on the genome, a binary quality 

code was proposed to be placed in the quality column of the GFF3 file. 

According to the coding presented before, a binary bit location based score is 

used to provide quality measures for all the transcripts. This coding helps to 

filter out those transcripts with specific quality and keep those of interest. The 

quality score can be also added to the identifier as another tag. 
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Table 5: binary representation of the quality for a transcript 

 

 

As an example for the identifier “Solyc00g00500_7M1_1A2B1C3D_8”, number 

8 as the last flag is the indication of flag “A” which represents the 100% identity 

and coverage. This number will be stored in the quality column of the GFF3  

file to be used for the filtering purposes. 

As the last flag to fulfil our ambitious goal for providing exhaustive information 

related to each transcript, the overlapping of the locus with other transcripts or 

being located in the void region (no overlapping with any other locus) is also 

added to the identifier. 

As an example, for the identifier “Solyc00g00500_7M1_1A2B1C3D_8_NO”, 

no overlapping with any other locus for this mapping is reported. The type of 

flags are presented as bellow: 

 

Table 6: overlapping labels for a mapped transcript 

 

 

As presented in table 6, the overlapping status of a transcript when mapping on 

the genome can be presented. “_NO” represents that the transcript is not 
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overlapping any other locus while “_OVP85” represents that the query 

transcript has 85% of overlap with another locus. 

We parsed these info into the GFF3 file format to be easily used for the genomic 

tools and the associated analyses considering this multi-part ID as the locus 

identifier. The GFF3 is the standard file format for representing the genomic 

features in text file (http://gmod.org/wiki/GFF3). 

2.4.2 Joint annotation 

Besides checking the remapping status of the tomato iTAG predicted genes to 

assess the quality of annotation, we also tried to take advantage of different 

resources for better flourishing of the tomato genome annotation. Here we 

present different methods for joining and complementing the two gene 

annotations available for the tomato genome (iTAG and RefSeq).  

ITAG Preferred 

With the aim of complementing iTAG annotation with the information available 

in RefSeq, the RefSeq loci not available in iTAG were extracted and added to the 

iTAG gene annotation. In the sense of those loci overlapping between the two 

annotations, the priority was given to the iTAG as the reference, and those of 

RefSeq overlapping any iTAG loci were discarded from the collection.  

RefSeq Preferred 

The same strategy was carried out to have a RefSeq reference based annotation 

complemented by iTAG predicted genes. 

http://gmod.org/wiki/GFF3
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Joint (loose) annotation 

Both annotations of iTAG and RefSeq were merged together in one unified 

GFF3 file. 

2.5 Supportive Transcriptome Collections 

To include comprehensive and exhaustive transcriptome resources for the 

tomato in our bioinformatics infrastructure, the following procedure was 

undertaken. 

2.5.1 Expressed Sequence Tags 

Twenty different EST collection (Table 7) were downloaded from the GenBank 

database [8]. Each collection was then subjected to the data processing defined 

in “ESTs, TCs and Unigenes data processing” part of this section. 
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Table 7: Expressed Sequence Tag (EST) collections stats 

 

 

From here on, we refer to each species using the “Species Code” defined in the 

table above. 
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2.5.2 Tentative Consensus Collections 

Twenty Tentative Consensus (TC) Collections resulting from the assembly of 

the EST collections described in “ESTs, TCs and unigenes data processing” of 

this section to create more reliable and extended sequences were also included 

in the platform. The singleton sequences not included in this collection, since 

they are available from the corresponding species EST collection. 

2.5.3 Unigenes 

Three S. lycopersicum collection of unigenes were downloaded from SGN [55], 

Dana-farber (DFCI) [57] and PlantGDB [56] websites each representing 

42257, 52502 and 56845 transcript sequences respectively. Besides the 

sequence collections, the functional annotation of each collection was also 

downloaded to be charged into the platform. It is important to note that TCs and 

singletons are put together in these unigene collections.  

2.5.4 ESTs, TCs and Unigenes data processing 

Each of the twenty EST collections were cleaned from the vector sequences 

available at NCBI's Vector database 

(ftp://ftp.NCBI.nih.gov/blast/db/FASTA/vector.gz) downloaded on February 

2013. They were also masked from the repeat sequences available in RepBase 

repeat database downloaded from http://www.girinst.org/ on February 2013. 

RepeatMasker software [145] was used for both vector trimming and repeat 

masking procedure.  

To have the more reliable transcript collections, assembly of the EST sequences 

from each collection to create Tentative Consensus (TCs) was carried out using 

the ParPEST pipeline [16].  

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/vector.gz
http://www.girinst.org/
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Each EST, TC and unigene collection was then mapped independently versus 

the S. lycopersicum 2.40 and 2.50 genome sequences and the un-mapped BACs 

(see 2.3.1) using Genome Threader [49] software (identity >= 0.90 and 

coverage >= 0.80). In term of the unigenes, the functional annotation provided 

by each data source downloaded from the reference website was used for the 

annotation of the loci.  

Each of the ESTs, TCs and unigenes were then blasted versus the 

SwissProt/UniprotKB database (downloaded on February 2013) using 10E-3 

and the first 10 best hits were collected for further functional investigat ions. 

2.6 NGS data 

To enrich our platforms with the NGS expression data, major available 

collections were collected, processed and charged into our infrastructure. 

Several private collections were also included in the platform to support specific 

analyses. Here we present the collection’s properties and the procedure they 

underwent. 

2.6.1 RNAseq 

Different RNAseq data collections used in our analyses are presented in terms 

of species, SRA accession number, stages of plant, and the number of replicates. 
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Table 8: The RNAseq collection information representing the species, the number of 

replicates for each tissues/stages and the associated SRA accession number.  
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As presented in Table 8, the Illumina HiSeq 2000 [146] RNA-seq data collection 

of Solanum lycopersicum cv. Heinz [137] including 20 libraries, each one 

representing one of two biological replicates from 10 different tissues and stages 

in physiological conditions; a collection from physiological conditions of 

Solanum pimpinellifolium, including 8 libraries [137]; and a collection from 

physiological conditions of Solanum lycopersicum cv. Ailsa Craig, including 

20 libraries [147],  were downloaded from NCBI SRA archive [15]. 

RNAseq Data Processing 

Raw Illumina reads were cleaned from adaptor sequences and those with a 

quality lower than Q20 were discarded using trim galore [47]. Reads shorter 

than 20bp were also discarded. Filtered and cleaned reads were indexed by 

bowtie2 [148] and mapped onto the Tomato pseudomolecules using Tophat2 

[52], with default parameters (up to 2 mismatches and intron length of 50 to 

50,000 nt). Ambiguous matches were filtered out, i.e. reads with multiple 

matches on the genome were eliminated. 

In terms of the differentially expression analyses, DESeq [79] a Bioconductor 

R package using negative binomial distribution and a significance threshold of  

false discovery rate (FDR) <= 0.05 was used. 

2.6.2 SPOT-ITN Data Collections for Pollen 

Three different NGS data collections of MACE, Small-RNAs and MethSeq from 

the three developmental stages of Pollen under physiological and heat shock 

stress conditions that was on the basis of SPOT-ITN experiment described in the 

section 2.2 were provided from the GenXPro Company (Frankfurt, Germany) 
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Table 9: the SPOT-ITN NGS data collections per techniques representing the number of 

replicates and conditions for each developmental stage 

 

MACE data analysis 

The three stage/tissue/condition samples of MACE sequences (Tetrad, Post-

meiotic, and Mature) were mapped versus the tomato genome (version SL2.40) 

[55, 137] using Tophat2 (version v2.0.11) [52] considering the default 

parameters. All the reads mapped multiple times on the genome were discarded 

from the consequent analyses. 

2.6.2.1.1 Annotation Based 

Conventionally, using gene annotation (ITAG 2.3) [55, 137], the abundance of 

transcripts in each samples for each gene loci was calculated using HTSeq-count 

package [68]. DESeq R packages [79] was then used for the differentially 

expression analyses of the pair-wise tissue/stage/condition comparisons. To 

account for multiple testing, an FDR<0.05 was considered. 

2.6.2.1.2 Annotation Free 

Based on several issues we observed in the tomato gene annotation that will be 

discussed in details in chapter 3; and also due to the fact that a large number of 

reads were mapping on the void regions of the genome (regions with no gene 

annotation), we also decided to analyze the data in a different way independent 
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from the gene annotation. We developed a pipeline called Tracker (see Error! 

Reference source not found.), in which the detection of changing sites (e.g.: 

gene locus, methylation site, small-RNA cluster etc.) can be performed 

independent from the annotation. 
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Figure 14: MACE differentially expression analyses using Tracker pipeline 
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After the mapping procedure, the tissues/stages/conditions that are supposed to 

be compared will be merged together (e.g.: all tetrad stages from control and 

heat together) (Figure 14). Using the Tracker pipeline, each merged collection 

is subjected to the cleaning (SAM file re-organization to make it a correct format 

for the consequent analyses), sorting (sorting the file based on the chromosome, 

start and end location), indexing (collapsing the identical reads in the sense of 

location, length, mapping type, quality etc.) and creating track references by 

collapsing the index files for the selected input. At the end, for each merged 

collection, a file including all the genomic regions with expression signaling 

(assembled if overlapping) is created in a tabular format. In this case, a reference 

annotation specific for the comparison of the merged tissues/stages/conditions 

will be provided for the quantification purposes. Eventually the counting on the 

basis of the corresponding reference annotation files for each of the replica for 

that stage is performed using the HTSeq-count. The results are then organized 

in a count matrix for the consequent analyses. 

MethSeq data analyses 

The MethSeq data was also analyzed on the basis of the CCGG sites and the 

Tracker based analyses. The procedure is defined as follow: 

2.6.2.1.3 Annotation Based 

The three stage/tissue/condition samples of MethSeq sequences were mapped to 

the tomato genome (SL2.40). For each genomic HpaII site (CCGG), reads 

starting at this position were quantified in each library. To account for multiple 

testing, the sites with FDR<0.05 were considered differentially methylated. 
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2.6.2.1.4 Annotation Free 

As well as the annotation free analyses for the MACE data, the same procedure 

for the MethSeq data was considered. In this case, the methylation quantification 

is not always based on a single CCGG site, but if close enough (less than 100 nt 

neighboring), a cluster of adjacent CCGG sites will be considered for the 

methylation quantification (CpG islands detection and quantification). 

2.6.3 Integration Process 

Aligned with the main objective of the SPOT-ITN project to understand the 

mechanism implied in the heat stress during the pollen developmental stages in 

tomato, we further integrated the MACE and MethSeq data on the basis of our 

annotation free analyses. Using the Overlapper (section…), we intersected the 

detected regions differentially changing their expression and methylation status 

versus the each other. This supports the understanding of the expression and 

methylation mechanism when pollen is under heat stress during the 

developmental stages.  

We also demonstrated the chromosomal distribution of the differentially 

expressed and methylated sites using the Map Chart [149]. 

The results of our annotation free analyses, and its application for the integration 

of MACE and MethSeq data to understand the mechanism of heat stress in 

tomato pollen will be presented in chapter 3. 

Small-RNAs Data Analyses 

Due to the availability of the Small-RNA collection in the frame of the SPOT-

ITN, and the analyses I conducted for the paper “The Role of TE-Derived Small 

Interfering RNAs in Tomato Pollen Development”, here we present the small-

RNA analyses of the classes 21, 22 nt and 24 nt which can be expanded to other 
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size classes if necessary. The pipeline used in this analyses (Figure 15) is the 

adjusted version of the general Small-RNA pipeline I designed and presented in 

section 5.1.2 
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Figure 15: Small-RNA bioinformatics pipeline schema used for this analyses (DEC= differentially expressed clusters)  
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The Small-RNA sequences were mapped onto the tomato genome (version 

SL2.40) using Tophat2 (version v2.0.11) considering the default parameters. 

Sequences with exact match were considered. To extract the Small-RNA 

sequences located in repeat regions, mapped reads were intersected with the 

SL2.3 repeat aggressive annotation. None overlapping (even 1nt overlap is 

considered) reads were not considered in downstream analyses. 

A genomic clustering analysis was used to generate a reference of small-RNA 

clusters along the chromosomes, which was adapted from [32]. The mapped 

small-RNAs (21-22nt or 24nt separately) adjacent to each other (less than 100 

nts) were clustered together in one group. Only clusters comprising more than 

one small-RNA read were considered for downstream analysis. The small-RNA 

abundance in a cluster (unique and multiple separately) was calculated using 

featureCounts [69] package for each of the Small-RNA classes (21-22 nt or 

24nt) and samples at respective stages (Tetrad, Post-meiotic, and Mature). 

Differential expression analyses of small-RNA abundance in each cluster was  

carried out using DESeq [79] using the FDR <= 0.05. 

Finally, the MACE data and MethSeq data were reconciled to investigate “The 

Role of TE-Derived Small Interfering RNAs in Tomato Pollen Development”. 

Micro-RNA Detection and analyses 

The micro-RNA analyses of the sample was carried out by GeneXPro Company 

(Frankfurt, Germany). The results are organized in the “Tomato Pollen 

miRNAome” published at [150] and web accessible via 

(http://cab.unina.it/mirna-pollen) see 6.1 in ANNEX II. 

  

http://cab.unina.it/mirna-pollen
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2.7 Gene Ontology and Enrichment 

Gene to GO Terms associations for tomato were defined by combining two 

major reference collections: i) the GO reference collection of S. lycopersicum 

downloaded from the BioMart database [102] (release June 2014), ii) the results 

of the S. lycopersicum mRNA sequences Blast2Go [26] versus the NCBI non-

redundant database (nr). The two datasets were then combined removing 

duplicated terms. The GO annotations associated to the iTAG genes were 

uploaded into the devoted section of the platform. 

2.8 Platforms 

Aligned with my objectives in the frame of the SPOT-ITN project, and to set-up 

a genome centric bioinformatics infrastructure to properly organize and offer 

resources and tools for the genomic analyses, different platforms in a unified 

and integrated infrastructure was designed and implemented. Here, I present 

materials, methods and the architecture used to set up the major platforms and 

partitions of this collection. 

All the platforms presented in this work are implemented in a three-tier 

architecture schema: 1) Data Tier; 2) Logic Tier; 3) Presentation Tier. The 

platform works as a web based application running on the .Net Framework 4.0, 

querying embedded databases, designed and organized in a relational model and 

implemented in MySQL, version 5.6.14 InnoDB engine [151]. All key fields and 

query dependent tuples were indexed using the BTree indexing algorithm [152]. 

2.8.1 Tomato Genome Platform 

As presented in Figure 16, different resources for tomato were collected, 

processed and organized into dedicated databases. The platform includes 
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manifold resources crosslinked to each other providing several services in the 

form of query pages, web services and visualization interfaces. The tomato 

genome platform we present is a multi-level genome based infrastructure which 

is currently available under the SPOT-ITN Bioinformatics platform accessible 

via (http://cab.unina.it/SPOT-ITN-bioinfo/tracks/trck-search.aspx). 

http://cab.unina.it/spot-itn-bioinfo/tracks/trck-search.aspx
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Figure 16: The tomato genome platform architecture, workflow and data processing schema  
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The platform includes the EST and TC collections from the 20 Solanaceae 

species (section 2.4), the three unigne collections for the SGN, Dana-Farber 

and PlantGDB together with their functional annotation (2.4.5), and gene 

annotations available for tomato iTAG and RefSeq (2.2.1 and 2.2.2) processed 

for both genome versions, the SL2.40 and SL2.50 of tomato were included in 

the platform. 

The platform also is cross-linked to the expression platform which will be 

presented in the next section. It also implements a GBrowse [141] database and 

its dedicated interfaces. 

2.8.2 Tomato Gene Expression Platform 

We implemented NexGenEx- as a role based platform which enables the 

exploration of NGS based transcriptome collections. The platform was designed 

to provide enhanced tools for straightforward genome-wide gene expression 

analyses.
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Figure 17: NexGenEx-Tom platform architecture, workflow and data processing schema 
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Figure 17 describes the main data processing pipelines necessary to define the 

data to be included in the platform. The three processed NGS collections from 

S. lycopersicum cv. Heinz, S. pimpinellifolium, and S. Ailsa Craig (presented 

in 2.6.1) are available for the gene expression investigation. The Go Terms 

collections (combined Blast2Go and BioMart redundant removed represented 

in section 2.5.5) for the genome version 2.40 of tomato  were included into the 

devoted database. Several services and tools are provided in the platform. 

2.8.3 Orthologs Platform 

Here, the orthologs platform schema and its data processing pipeline is 

presented in details (Figure 18). The platform, at the current setting, includes 

three different collections (one public and 2 private) which are described as 

follow:  
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Figure 18 Orthologs platform architecture, workflow and data processing schema 
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Nature Collection 

The orthologs collection released with the tomato genome sequence release 

[137] including 3 different species of A. thaliana, S. lycopersicum and S. 

tuberosum was considered.  

Private Collection (Frankfurt, Germany) 

An orthologs collection including A. thaliana, S. lycopersicum and another 11 

different plant species, one moss, four monocots and six eudicots were received 

from Geothe University Frankfurt, Germany as a private collection (public upon 

publication) produced in the frame of SPOT-ITN project. The protein sequence 

collections are based on Phytozome v.9 [153] database.  

2.9 Summary 

As presented in this chapter, the materials used, and the methods to collect, 

process, reconcile and analyze them was presented in details. In terms of the 

bioinformatics platforms developed, the architecture used and the data sources 

included in each partition was also presented.
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3 Results and Discussion: Platforms, data processing pipelines and 

applications 

3.1 Introduction 

This section of my thesis is divided into three sub categories in which the main 

results of my work during the PhD are presented. Initially, the major 

bioinformatics tools that I developed for the data processing and analyses are 

presented in brief. The presentation of the tools is not a manual neither an 

exhaustive discussion. In this section the introduction to the tool, the motivation 

and the idea behind it, and the advantages it offers are presented. In many of the 

analytical steps in my work, the tools and pipelines presented here are deployed 

to achieve the results. In the second section, the major bioinformatics platforms 

and databases designed and implemented (mainly in the frame of the SPOT-

ITN) are presented in details. By providing snapshots and descriptions, here I 

try to demonstrate the functionality of the platforms and the services they offer. 

Eventually, the application of the methods and tools designed, the capability of 

the platforms, and the analyses conducted on different collections are presented 

for some example case studies. 
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3.2 Major Bioinformatics Tools Developed 

3.2.1 Tracker 

Motivation 

In NGS data analyses, it often happens that the genome sequence is not well 

annotated or the reads mapped on the reference sequence refer to a location in 

which no feature is predicted. Moreover, in most cases due to the necessity of 

pairwise comparisons between read counts among specific 

tissues/stages/conditions of interest, having a customized reference genomic 

feature annotation provided by unexpected tags along the genome can be an 

advantage to trace interesting regions, since many of the reads map there and no 

annotated feature is described. To this end, the availability of a software 

applications allowing users to customize the feature description traced by the 

NGS data mapped on the genome can be helpful. 

Description 

The Tracker pipeline is a multi-level software application which allows the 

organization, cleaning, sorting, indexing and creation of reference tracks 

(expanding and collapsing the overlapping fragments into one reference 

regions, called a track, and keeping the trace files) of the mapped reads. The 

pipeline results into a report of several statistical information regarding each 

generated track. Tracker is written in C# under mono IDE.net and Java 

languages and runs under both Windows and UNIX environments. 
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Figure 19: A brief workflow of Tracker pipeline with the possibility of intersecting the data 

for the modelling purposes 

 

As presented in Figure 19: A brief workflow of Tracker pipeline with the 

possibility of intersecting the data for the modelling purposes, a general 

workflow of the Tracker pipeline is presented. The pipeline accepts as input file 

the sam (sequence alignment map) files [154]. Depending on the parameters 

specified as input arguments (-pr y/n:  considering the read as one consecutive 

track or to divide it skipping the intronic regions), the tool aims to detect the 

splicing event and organize the reads into bins according to the CIGAR codes 

[18], i.e. the processed reads into  fragments or the read files are sorted. The 
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sorted files is indexed (the identical overlapping fragments/reads with similar 

start, end, quality score, CIGAR code etc.) will be collapsed into one 

representative sequence keeping the trace of the collapsing sequences. 

Consensus sequences (putative reference tracks) are then created from the 

indexed sequences resulting from the previous step. A reference file including 

several statistical information for each track, such as length, total reads, min 

reads, max reads as the pick, average of frequency, standard deviation of 

frequency, median, variance and fragment variance of the frequency in each 

index, is also provided as a final output. 
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Figure 20: Tracker sample reference tracks output file reporting the track id, track type, genomic location of each track, total reads , total length, min 

reads, max reads as the pick, average of frequency, standard deviation of frequency, median, variance and fragment variance of the frequency in each 

index.
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Example usage: Gene Annotation and Revision 

The Tracker pipeline can be used for several purposes in the NGS data analyses. 

Here, an example protocol pipeline for validation and revision of gene 

annotation supported by NGS data is presented.



73 

 

Figure 21: Validation, detection and correction of genes annotation 



74 

As presented in Figure 21: Validation, detection and correction of genes 

annotation, the track references are built from the RNAseq data files for the 

desired tissue/stage/condition. The reference regions (indeed representing 

possible exons since the reads come from transcripts) are then cross checked 

with the official gene annotation, available experimental transcript collections 

(EST, TC, Unigenes) for the specific species and the transcripts/genes lying in 

the same regions, if available. The majority of the exon references should 

normally confirm the exons from the gene annotation or transcripts 

experimental defined by ESTs, TC or Unigenes. Those newly detected tracks 

with differences from the official gene annotation can help to confirm the 

current gene annotation. Those not overlapping with any annotated genomic 

feature but having wide representation from the reads (number of reads 

contributing to the tracks and length) can be considered as putative novel exons 

or genes not yet predicted in the current annotation. 

The pipeline can be also used for the annotation free analyses. An example 

application of this approach is presented in sections 2.6.2.1.2 and 2.6.2.1.4. 

3.3 Contiger 

Motivation 

As it was discussed in the “Tentative Consensus and Assembly section…” 

generation of contigs or consensus sequences from the overlapping genomic 

features is a necessity in many bioinformatics analyses. There are tools such as 

ClusterBed implemented in BedTools package [128] able to define clusters of 

genomic features mapped on the genome. Though such tools already exists, the 

need for having more efficient tool with the possibility of keeping the different 

trace files and also transferring of all the info from the input file to the output 

file made us to develop Contiger.  
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Description 

Contiger is a tool in which the possibility of assembling the overlapping 

genomic features or the adjacent tracks (specifying the neighboring distance) 

can be done in a fast way. Moreover Contiger is efficient with the memory 

consumption since the number of records per memory can be specified as an 

input parameter. It keeps the trace of assembled features into a parent feature 

including the coverage index, and the information available in the input file are 

all transferred into the output for easier and more efficient tracing purposes. The 

tool works with any tab delimited file containing the chromosome name (or 

reference sequence identifier) and genomic start and end positions.
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Figure 22:The schema of contig generation by Contiger 
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Figure 22:The schema of contig generation by Contiger represents the two type 

of contig generation A) only for the overlapping and B) using the offset distance 

to create cluster of features. The tool is written in C# programming language 

under mono IDE and can be run under both Windows and UNIX environments. 

3.3.1 Overlapper 

Motivation 

In transcriptome data analyses, the overlapping of different tracks or features 

can be important to draw useful conclusions. As an example, targeting of 

different micro-RNA sequences on the coding region, or the overlapping of the 

methylated sited on transposon elements or tracing a specific distance from the 

gene transcription start site (TSS) requires the overlapping of thousands or 

millions (in case of NGS data) of genomic regions versus each other. This 

requires appropriate tools to carry out the most appropriate intersection.   

Description 

Overlapper is a tool allowing the intersection of different genomic features (two 

collections per time). . Due to the sorting algorithm implemented in the tool 

(merge sort), it can handle bulky files in a memory efficient routine (user can 

define the load of memory) with the possibility of defining offsets for each start 

or end position. Possibility of choosing the specific features (e.g. only those 

records representing mRNA or exon feature etc.) to be compared is another 

advantage implemented in this software which also reduces the time of 

processing while discarding the non-relevant records. 

The software produces three output files. The log file summarizes the procedure 

and the overlapping statistics for the whole analyses. The Flags file providing 

the details information on the overlapping features including all the info from 
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the source collections together with the type of overlapping and the percentage 

of their overlap. The Overlaps file provides a summary of each input genomic 

region with the number of overlaps (if any, otherwise zero). Overlapper does 

not require any specific file format or order in the columns of the input file as 

far as it is tab delimited and includes the genomic locations (chromosome, start 

and end) of the track sequences. It transfers all the genomic information from 

the starting files to the output. It can also summarize each of the overlapping 

separately together with a summary table indicating how many overlaps a 

genomic feature intersects. The tool is written in c# under mono IDE and can 

run under both Windows and UNIX environments. 

3.3.2 RNAseq Analyses Pipeline 

Motivation 

In NGS data analyses, adapter removal, trimming of low quality bases, mapping 

of the short reads on the genome and counting of the mapped reads overlapping 

a genomic feature are the routine and fundamental approaches to carry out 

before the differential expressed genes analyses [60]. Normally each experiment 

contains several stages/tissues/conditions including different number of 

replicates for each one. In some cases, different adapters and barcoding 

sequences are used for each replicate. In general, biologists use bash files to 

automatize the process, but this requires all the parameters should be set one by 

one in each command line for each step. This can elongate the time required for 

the analyses drastically and reduce the precision due to human errors. On the 

other hand, the work should be done in a sequential way unless the commands 

are distributed manually on the cluster or grid machines. 
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Description 

To facilitate the NGS data analyses procedure and automatize all the steps from 

raw data to the expression count matrices, we developed a pipeline which 

implements different external tools (such as trim galore for trimming [47], 

cutadapt for adapter sequence removal [155], tophat2 [52] and bowtie2 [148] 

for the short reads mapping and Htseq-count for the features counting [68]) for 

each step in parallel to scrounge the time and increase the accuracy. The pipeline 

also allows the possibility of filtering out ambiguous reads (multiple mapped on 

the genome or overlapping with more than one genomic feature) during the 

process. The pipeline can manage both single and paired-end libraries with the 

possibility of having different adapter sequences for each individual replicate. 

It also produces different output files such as the complete SAM [154] file (from 

the Tophat bam file), the bam and index bam files to be directly used for the 

NGS data visualization in a genome browser [141] like platform, and the sam 

file cleaned from the ambiguous reads. 
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Figure 23: The automated and parallelized RNAseq processing pipeline schema 

 

The tool has been written in c# under mono IDE and can be run under both 

Windows and UNIX environments. 
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3.3.3 Differentially Expression Analyzer 

Motivation 

Detection of the genes differentially expressed or suppressed between two 

conditions is one of the common practice to highlight information useful to 

understand the mechanisms underlying a biological process [156].  There are 

several tools and packages (such as DESeq [79], EdgeR [157] etc.) developed 

for the DEG analyses which allows the comparison of two different conditions 

to identify the genes significantly changing the expression level. Most of these 

packages are implemented in an R environment and require basic knowledge of 

the R scripting language to conduct the comparisons. Moreover, the need to 

analyses different combination of pairwise comparisons independently requires 

time and human work, or in the best case, proper bash files scripting for each 

set of comparisons. 

Description 

To facilitate the Differentially Expression Analyses for multiple pairwise 

comparison, we developed a user-friendly Windows based application allowing 

to analyze multiple pairwise comparisons in an automatized way to enhance the 

procedure and decrease the human effort. The software application allows the 

pairwise comparison of a list of conditions (each can have one to several 

replicates) to be processed in an automatized way with different filtering 

possibilities implementing both EdgeR and DESeq packages. Aside from the list 

of DEG genes, it also creates several plots such as expressed genes Venn 

diagrams for each comparison, MA plots, Depression plot, box plot of the 

expressions. 
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Figure 24: Snapshot of the DEG analyses Windows application interface allowing th epairwise comparison of different stages/tissues/conditions in an 

automated and efficient way
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Snapshot of the differentially expression analyzer is presented in Figure 24: 

Snapshot of the DEG analyses Windows application interface allowing th 

epairwise comparison of different stages/tissues/conditions in an automated and 

efficient way. The software is using RScript from R environment and a 

dedicated R package that their path should be specified in the tool. 

It also requires an expression matrix representing the expression levels for the 

genomic features for different conditions (1.2.5.1.4). User should choose the 

output directory where the results should be saved, the path to save the running 

script, the FDR value to be used for the multiple testing correction, and the list 

of conditions in the expression matrix.  

1- If the number of replicates are fixed for each tissue/stage/condition, users 

can specify the total number of replicates and the number of replicates 

per each condition to accelerate the process. 

2- If the number of replicates per tissue/stage/condition are not fixed, the 

number of replicate per each tissue/sample/condition should be specified 

in front of the tissue name in the condition box. 

In case the user wants to run all the pairwise comparisons for the available 

tissues/stages/conditions, the pairwise checkbox should be checked before 

running the analyses. 

The final files (DEG list) can be collected using the “collect data” button to 

accelerate the process. Results will be reported separated together all in one file 

flagged by the comparison names. 

The tool is written in c# under mono IDE and can run under the Windows. 

3.4 Platforms 

With the aim of setting up a multi-dimensional (multi-genome including 

different “omics” data levels) genome reference based computational suit, 
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different omics data collections and the result of the analyses conducted on them 

were charged into dedicated databases allowing to access to these processed 

information via user-interfaces. Different platform sections offering several 

query pages and online tools to easily explore and exploit the available data 

were developed.  

The working version of this multi-level infrastructure is currently implemented 

as the SPOT-ITN Bioinformatics platform (http://cab.unina.it/SPOT-ITN-

bioinfo) enriched with several public and private collections to support the 

objective of the project described at 1.1. 

Here, the application and utility of the major platforms implemented in this 

infrastructure are presented in details. 

3.4.1 Genome Platform 

We setup a genome based computational environment to organize multilevel 

data for the tomato transcriptome. The platform currently includes the genome 

and transcriptome levels. The platform is set-up on the basis of both versions of 

the tomato genome reference sequences and their associated iTAG and RefSeq 

gene annotations. It also includes the EST and TC from different Solanaceae 

species, all the available unigene collections for tomato, and their functional 

annotation. It also entails several other annotation tracks available for tomato 

(see 2.4). The tomato genome platform offers a cross link to the NexGeneEx-

Tom [54] database allowing the gene expression investigation and profiling. It 

allows straightforward and comprehensive genomic center investigations on 

high quality data resources using several advanced user-interfaces. A Gbrowse 

[158] database and associated interface are also embedded in the platform. The 

Expression data from the collections available in the NexGenEx-Tom are also 

available in the implemented Gbrowse database for further gene expression 

profiling and visualization purposes. 

 

http://cab.unina.it/spot-itn-bioinfo
http://cab.unina.it/spot-itn-bioinfo
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Tomato Genome Platform 

A Genome Platform, for the tomato, was implemented allowing extensive 

transcriptome data investigation in the tomato genome space. The platform 

collects different resources and reconcile high quality data in a genomic center 

infrastructure in which, different transcriptomic data levels can be 

independently or collectively investigated and visualized. Cross comparison 

between different transcriptional datasets and levels is easily possible using the 

platform interfaces and the Gbrowse plugin implemented in the platform.  

3.4.1.1.1 User Interface and Database access 

A Graphical User Interface (GUI) is designed to provide access to the resources 

available in the genome platform. The query page in the genome platform can 

be tuned with different options to facilitate the user’s investigation (e.g.: 

choosing different genome versions, choosing different transcript collections to 

be investigated, searching by “Gene ID(s)”, “functional keywords”, “genomic 

region”, and “Protein ID”).
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Figure 25: The snapshot of the genome platform query page together with the sumamry of results for a query (here HSF keyword in all the available 

track collections mapped on the tomato genome version 2.50 for all) 
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As it is shown in Figure 25, A) the genome reference species (e.g.: tomato, 

potato etc.), B) the version of the genome (e.g.: SL2.40, SL2.5 etc.), C) the query 

type (by ID, functional keyword, genomic region, protein ID) can be specified 

to run the query (D). Depending on the collections available for each genome 

reference and version, a list of tracks will be available to be chosen for the 

investigation. The tomato genome platform is enriched with the annotations for 

the tomato (section 2.2) and the supportive transcript collections (section 2.4), 

and the available expression data (2.4.1, 2.4.2, and 2.4.3) in the genome 

browser. 

By tuning the mentioned parameters and running the query, a chromosomal 

distribution of the hits matching the users query categorized by each collection 

will be summarized in details (Figure 25). Detailed information for the hits 

found can be obtained by clicking on each hit number in the summary table 

(Figure 26). 
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Figure 26: Result representation of the specific collection tracks (here iTAG 2.3 predicted genes) by clicking on the number of hits found from the 

summary table (figure 23) 
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As presented in Figure 26, a sample snapshot of hit’s details for a specific query 

are presented. In the results section, the information regarding the transcript 

collection and its mapping reference, the genomic information for each hit (such 

as chromosome, start, end, strand and functional annotation) and several 

hyperlinks to provide further investigational options for that track are provided. 

Structure hyperlink provides the sub features details of each transcript (UTRs, 

exons, CDS, introns) (Figure 27).  

 

 

Figure 27: Snapshot of the representation of track structure, genomic coordinates and 

feature’s parent-ship for a specific track. 

 

Overlaps hyperlink lists all the tracks having overlap with this transcript on the 

genomic loci with in all the available collections. The Sequence link provides 

the sequence information (sequence, GC-Content, etc.) of the selected track in 

details (Figure 28).  
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Figure 28: Snapshot of track sequence and GC-content information for a specific track. 

 

GB hyperlink transfer the user to the genomic region of the selected track on 

the genome browser for the visualization purposes (Figure 29). 
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Figure 29: Snapshot of Gbrowse visualization of a specific genomic region with different track types (iTAG gene annotation, EST and TC tracks from 

tomato and potato, and RNAseq expression xyplot in the Heinz atlas collection) on that region  
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Info option provides the mapping information and the blast functional report 

regarding the selected track; and Expression hyperlink provides the RPKM 

expression of the selected track in all the available corresponding tissue/stages 

retrieved from the NexGenEx- database. 

The genome platform presented, for the tomato at its current setting, provides 

flexible tools and facilities to further investigate the genomic space of the 

selected species. 

3.4.2 NexGenEx- 

We implemented NexGenEx- as a role based platform which enables the 

exploration of NGS based transcriptome collections. The platform was designed 

to provide enhanced tools for straightforward genome-wide gene expression 

analyses. A Gbrowse [141] database and associated interface are also embedded 

in the platform.  

NexGenEx-Tom 

NexGenEx-Tom is the dedicated partition for the organization of results from 

tomato NGS based transcriptomes. The platform was published in BMC Plant 

Biology journal on 2014 under the name of “NexGenEx-Tom: a gene expression 

platform to investigate the functionalities of the tomato genome”, and is freely 

accessible via (http://cab.unina.it/nexgenex-tom). An instant implementation of 

the platform is also available in the SPOT-ITN Bioinformatics platform 

(http://cab.unina.it/spot-itn-bioinfo/expression/exp-search.aspx) to support the 

objectives of the project. 

 

At the current release, the platform includes the processed gene expression 

datasets form one atlas and two other main publicly available RNAseq 

collections quantified and normalized with the main normalization approaches 

http://cab.unina.it/nexgenex-tom
http://cab.unina.it/spot-itn-bioinfo/expression/exp-search.aspx
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(see Normalization). The platform is also enriched with collective and processed 

Gene Ontology datasets from the main resources with the possibility of cross 

link to the associated database for further investigations. Aside from the main 

motivation and objective of the platform to provide rapid and comprehensive 

investigational access to the processed NGS data collections with different 

quantification measures, tools for the clustering and correlation analyses, and 

the GO term to gene association and Go Enrichment assessment are also 

implemented in the web interface. Using a dedicated Gbrowse [141] interface, 

the platform has access to all the transcriptomics tracks available in the tomato 

genome platform mentioned before. 

3.4.2.1.1 User Interface and Database Access 

In Figure 30, we report the query page of the NexGenEx- platform. The figure 

shows the main sections users are provided with when consulting the platform 

content. In the S. lycopersicum cv. Heinz dedicated partition (which is 

accessible selecting genome “Tomato”, reference “S. lycopersicum Version 

2.40”) the three available gene expression collections (Heinz, Ailsa Craig, S. 

pimpinellifolium) can be selected in the collection field. Crosslinks to reference 

raw collections and to the papers presenting them are also provided. 
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Figure 30: Main sections provided in the NexGenEx- platform query form. 1) Genome: the 

genome of interest, e.g. Tomato, 2) Reference: it indicates the reference genotype or cultivar 
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sequences of interest, e.g. Solanum lycopersicum cv Heinz, version 2.40; 3) NGS collections 

available in the platform, e.g.  the Heinz Illumina based RNA-seq collection in physiological 

condition; 4) link to the data source and paper for this collection; 5) available libraries 

(replicates/stages/tissues) included in the collection; 6) Feature type: represents the 

reference genome feature selected for read counting (e.g. mRNA, represents the exons in the 

locus); 7) Normalization method; 8) Matrix peak coloring, which defines the approach for 

color coding of the expression levels. This option assigns color frequencies to the cells of a 

heatmap view comparatively with the expression levels within the query result set (local) or 

within the whole selected libraries (global). 9) Transformation method: expression levels or 

their log2 transformed results can be accessed; 10) Correlation method: Pearson product-

moment correlation coefficient or Spareman’s correlation coefficient or Both; 11) Replicate 

view: defines the expression level by each libraries (Separate) or averaged between identical 

replicates (Average);  12)  Heatmap coloring: different heatmap coloring combinations are 

provided for expression level visualization; 13) Search in: searchable fields can be 

one/multiple locus ids (IDs), or simple/multiple functional keywords with advanced selection 

options (Keyword),  or genome regions (Region), and 14) the search area (Locus 

IDs/Functional keyword/Region): is the text area in which IDs or functional keywords may 

be listed, or a specific region of the genome may be specified. Accepted formats are 

described in the information pop-up from the website interface. “Info” buttons are available 

to support the users. 

 

The NexGenEx-Tom platform enables users to investigate expression of the 

reference tomato genes in different tissues and developmental stages from 

different collections in physiological conditions. Users can exploit the platform 

to investigate on a specific gene, or a set of genes. The query can be based on a 

list of Gene Identifiers (IDs) in the form of Solyc identifiers (e.g 

Solyc01g00500), or by indicating one or more functional keywords, or by 

specifying the boundaries of a chromosome region (indicating the specific 

directionality of transcription by selecting the strand option). Complex queries 

can be defined as indicated in the “info” links. 

The web-based list of results is organized in an accordion view in which each 

result set can be investigated in its corresponding section/tab.  
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Here, an example query including a list of 27 heat shock factor genes in tomato 

and the corresponding result views are presented.  

 

3.4.2.1.1.1 Annotation of the structure and functional annotation  

By running the query in the system (Figure 30), the list of the resulting loci 

associated to the query, including their functional annotation and accessory 

information from the current gene annotation is reported (Figure 31). 
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Figure 31: Snapshot of the annotation structure and functional annotation 
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The result set includes the Gene ID, the genomic location the locus on the 

genome, the strand of the transcript and the functional annotation associated to 

the resulted gene. A hyperlink from the gene to its genomic locus, visualized by 

the GBrowse, is available for each gene. 

 

3.4.2.1.1.2 Expression matrix and profiling  

As presented in Figure 32, the expression levels of each queried gene, based on 

the pre-settings of the query option provided by the user, can be investigated by 

the selected libraries, in the form of read counts per each locus, median 

normalized counts or RPKM. As an optional parameter, the average expression 

level of the replicates from each library can be investigated (Replicate view set 

to Average, in the query options). 
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Figure 32: Snapshot of expression matrix in NexGenEx- for a resulted gene set 
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In addition, a complementary set of statistics, such as the minimum, maximum, 

average, standard deviation and maximum fold change of the expression levels 

of each locus in the selected libraries are provided. Moreover, the number of 

times each of the expression values exceeds the boundaries of one standard 

deviation from the average is also shown. This value permits to efficiently 

investigate locus specificities [159]. This section provides a general abstract of 

the loci expression level behavior in the selected libraries. Moreover, by 

selecting only 2 different tissues for specific gene sets, bi-comparison of the 

gene expression fold change are delivered permitting to identify the differential 

expression levels.   

The expression matrix can also be downloaded in csv format.
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Figure 33: Snapshot of the result page for a gene’s expression level in all the available collections. 
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For each resulting gene, a button (further investigate) has been implemented 

which enables users to further investigate its gene expression in different 

conditions (Figure 33). Indeed, by clicking on this link, the expression level of 

the corresponding gene will be reported for all the available NGS collections in 

the platform, in all the available normalized forms, as calculated for each 

collection associated to the genome reference. This enables users to focus on 

the locus of interest with a complete overview of its behavior in any possible 

and available library per collection. 

 

3.4.2.1.1.3 Heatmap visualization 

Heatmaps provide a suitable view on gene expression levels. Customizable 

heatmaps are offered in the platform to highlight high- and low- expressed 

genes. This graphical approach is exploited in the platform to show the 

expression levels of one or multiple genes in different conditions. The data can 

be reported in the form of a matrix, where the level of expression can be marked 

by a specific color scaling, which may help to highlight high, medium and low 

levels of expression. The heatmap provided in the NexGenEx- platform (Figure 

32 and Figure 35) can be defined by a local or a global scaling, according to the 

preferred selection in the Matrix Peak Coloring option (Figure 30). The “local” 

heatmap option provides the expression level coloring ranging from the lowest 

to the highest expression levels resulting from the query. This facilitates the 

comparison of the specific gene expression levels in the selected set. The 

“global” coloring option defines the coloring range on the  basis of the lowest 

and highest expression levels in the whole libraries selected during the query. 

This enables users to identify the gene expression level when compared with 

the whole expression levels from all the genes in the selected library/ies. 

 

3.4.2.1.1.4 Expression profiling plot 

The Expression Profiling plot (Figure 34) shows gene expression variability in 

different samples from the collection under investigation.  
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Figure 34: Snapshot of the expression profiling plot for a selected gene set across the selected tissues/stages/conditions  



104 

This view depends on the number of libraries selected. The possibility to 

perform the analysis on specific collections of genes, selected by keyword or ID 

or by a genome region, allows the comparison of the expression profiles of 

several genes in a straightforward way. 

 

3.4.2.1.1.5 Correlation Matrix 

The Correlation matrix analysis illustrates the correlation between genes on the 

basis of the selected libraries (Figure 35). 
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Figure 35: Snapshot of the correlation matrix between the 27 HSF genes in tomato versus each other based on the selected tissues/stages/condition (a 

matrix of 27 ×27). 
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The analysis can be based on the Pearson product-moment correlation 

coefficient, or on the Spearman's rank correlation coefficient, or both at the 

same time; and the resulting values fluctuates between -1 to 1, providing the 

negatively or positively correlated genes (see 1.2.5.1.5).  

The correlation matrix can be also downloaded in csv format. 

 

3.4.2.1.1.6 Cluster Analyses 

NexGenEx-Tom provides a k-means clustering tool in which the clustering of 

the genes in the result set are easily possible on the bases of their expression 

profiling across the selected tissue/stages. The k-means clustering tool offered 

in NexGenEx-Tom is the online package of k-means Cluster Analyzer presented 

in section 1.2.5.1.6.  
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Figure 36: The k-means clustering (k=5) with 20 iterations and no rescaling on the 27 Heat Shock Factor genes in tomato.  



108 

As presented in Figure 36: The k-means clustering (k=5) with 20 iterations and 

no rescaling on the 27 Heat Shock Factor genes in tomato., the cluster analyses 

on the 27 heat shock factor genes in iTAG 2.3 annotation, across all the 

tissues/stages of the Heinz RNAseq (see Error! Reference source not found.) 

collection, was carried out organizing the genes with similar expression profile 

into five (5) distinct clusters. As it can be observed, the genes with similar 

expression trend are grouped together.  The clustering can be performed with 

different number of clusters on the normal or rescaled gene expression values.  

 

3.4.2.1.1.7 GO Terms Summary Table and their association 

As it is shown in Figure 37, a GO Term summary table and the gene to GO 

Term association to the queried genes is provided to the end users. Figure 37.A 

shows an example of a resulting GO Term summary table of the list of occurring 

GO Terms, type of GO (in terms of CC: Cellular component, MF: Molecular 

Function and BP: Biological Process), GO location and the specific GO 

descriptions. In addition, the enrichment of the GO in the resulting gene set is 

sorted by p-value for further investigation purposes. 
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Figure 37: Snapshot of A) the GO enrichment results and B) the GO to gene annotation for a 

selected gene set. 

 

Moreover, the genes to GO Terms association table (Figure 37.B) also provides 

the association list of the resulting genes with their GO Terms and their 

complete description. To further investigate the GO Terms, each GO is also 

linked to the AmiGO ontology and annotation database [160]. 

 

3.4.2.1.1.8 Genome Browser Crosslink 

NexGenEx-Tom is enriched with an embedded, customized and updated genome 

browser interface [141]. The genome browser used, Gbrowse, permits a genome 

based investigation of the structure of the gene loci included in the database and 

can be accessed by the selection of each locus from the query set (Figure 38). 
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Figure 38: Example of a Gbrowse based view. The gene locus, the xyplot coverage of the NGS reads and their mapping along the selected locus are 

shown.
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Figure 38 shows an example of a Gbrowse based view offered by the platform. 

This view enables users with in-depth investigation of the selected loci and their 

associated pattern of expression in the form of reads distribution along the 

genome sequence. Expression profile of the reads mapped on the genome for 

each tissue/stages is provided in the form of read tracks and coverage plot 

(xyplot). Another track defined on the basis of all the reads from the available 

libraries (combined) is also added to provide a general overview of the locus 

expression for each collection. The iTAG gene annotation is also accessible 

through the Gbrowse partition. Specifically, the NexGenEx-Tom Gbrowse 

partition is also enriched with all the annotation tracks included in the Tomato 

Genome Platform presented in the previous section. 

3.4.3 Orthologs Platform 

To allow the comparative analyses between different species, an orthologs 

platform was designed and implemented. The platform provides different query 

pages to investigate the ortholog groups and their associated functional and 

genomic information in details. An instant application of the platform and its 

interfaces are currently implemented in the SPOT-ITN Bioinformatics platform 

(http://cab.unina.it/SPOT-ITN-bioinfo/orthpar/orthpar-search.aspx). 

OrthPar-Tom 

The OrthPar-Tom platform, focused on the tomato orthology with different 

species. At the current setting, the platform represents the orthology across two 

collections (see Orthologs Platform), all including the tomato. The platform is 

also enriched with the protein sequences and their domain information. For 

tomato genes, the platform is also cross linked to the NexGenEx-Tom for gene 

expression visualization and investigation. 

http://cab.unina.it/SPOT-ITN-bioinfo/orthpar/orthpar-search.aspx
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Here we present its query page, some of its features, and the results 

representation of this platform for the current collections. 

3.4.3.1.1 User Interface and Database Access 

The platform provides a simple user interface to conduct the queries.  

 

 

Figure 39: Snapshot of the orthologs platform query page 

 

As presented in Figure 39: Snapshot of the orthologs platform query page, the 

orthologs platform query page is presented. By choosing the genome of interest 

to investigate (29), the genome reference version (2), the type of sequence was 

used for the orthology investigation (protein, transcript or gene) (3), the ortholog 

collection available in the platform yhe user want to investigate (4), the type of 

query (ID, functional keyword, or domain keyword) (5) and the keyword text 

(6); the information regarding the specified ortholog collection will presented 
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next to the query fields. By running the query in the system, the results matching 

the query will be provided in details (figure 30).
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Figure 40: An example output of orthologs platform for A) the orthologs group relationship representation, B) the one-to-one orthologs representation. 
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Figure 40: An example output of orthologs platform for A) the orthologs group 

relationship representation, B) the one-to-one orthologs representation., 

illustrates the two possible ways of ortholog collections representation for a 

specific query. Snapshot A shows the ortholog group including the results 

matching the query keyword. As an example, if a gene was matching the query, 

all the orthologs in the same ortholog group with that id are listed categorized 

by the species name. The detailed information and the number of members in 

each species are also listed in details. Snapshot B presents the pairwise orthologs 

that one of them was matching the query criteria. In this case, the bidirectional 

ortholog pairs showing the relationship of each pair is presented in details. 

Visualization of the ortholog graphs are also provided in the platform. 
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Figure 41: A sample orthologs platform results presentation in orthologs platform.  A) 

orthologs collection, species name, description etc., B) the network visualization of the 

resulted orthologs, C) functional annotation of the selected ortholog pair, D) the expression 

profile of the selected ortholog pair in RPKM normalized value, and E) the sequence, and 

the domain information regarding the ortholog pair sequence.  

 

Figure 41: A sample orthologs platform results presentation in orthologs 

platform.  A) orthologs collection, species name, description etc., B) the 

network visualization of the resulted orthologs, C) functional annotation of the 

selected ortholog pair, D) the expression profile of the selected ortholog pair in 

RPKM normalized value, and E) the sequence, and the domain information 
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regarding the ortholog pair sequence. shows the possible results representation 

for an ortholog group. The collection information (A), the network visualization 

(B), the functional annotation of each element (C), the RPKM expression of the 

element (retrieved from the NexGenEx- Database) (D), and the sequence and 

domain information for that element is also presented in details. 

3.4.4 Enrichment Tool 

To support the functional investigation and GO Enrichment analyses, an online 

tool (implemented in the bioinformatics infrastructure presented) was 

implemented with a query interface. The tool includes a user friendly query 

interface with the implementation of the enrichment analyses on the basis of 

Fisher Exact Test (see 1.2.5.1.7.1) to provide the GO Enrichment of the selected 

set. It also provides the Go to Terms association or each gene with the cross link 

to the AmiGo [160] database as for as the NexGenEx- platform. Here we present 

the user interface and the result view for an example application (40 genes 

highly expressed in Ascorbic Acid pathways). 

User interface and Database Access 

As presented in Figure 42, a graphical user interface to allow the GO functional 

investigation for a selected set of gene is provided. By selecting the genome and 

the genome reference of interest, the available gene annotation and the GO 

dataset associated to that annotation can be selected for the following analyses. 

The Significance threshold (FDR) for the Fisher Exact Test can be also 

specified. 
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Figure 42: Snapshot of GO Enrichment Analyses tool implemented in the Bioinformatics 

infrastructure developed 

 

Querying the set of genes (e.g.: 40 genes highly expressed in Ascorbic Acid 

pathway), the list of GOs enriched in this gene set will be provided (Figure 43). 

the result section also provides the GO ID, adjusted p-value associated to the 

enriched GO, the number of GOs in the set, the total number of GOs in the 

collection excluding this set, and the type of the GO (MF= Molecular function, 

BP= Biological Process, and CC= Chemical Compound). Getting advantage of 

the information available in the data set, it also provides the description and 

annotation of the GO term, if available.
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Figure 43: Snapshot of GOs Enriched in the selected gene set including the 1) Enrichment flag (yes/No), GO Term, adjusted p-value of the enrichment 

test for the corresponding GO, number of GO found in the set (InSet), total number of GOs in the whole set excluding the InSet number, yupe of GO 

(MF= Molecular function, BP= Biological Process, and CC= Chemical Compound), GO description and annotation.
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Each GO is also linked to the AmiGo [160] database for the further investigation 

on the GOs Enriched in the set. The genes to GO association of the selected 

gene set also is provided including the GO description and annotation (Figure 

44). 
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Figure 44: Snapshot of GO to Gene association for the selected gene set.  
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All the result sets (GO enrichment and Go to Gene association) can be 

downloaded independently in the excel format for the further references. 

3.5 Applications 

Setting up integrative resources to allow exploration and exploitation of the 

data, improvement of quality and enhancement of data access, and eventually 

converting the data into meaningful information are the main key aspects that 

made us to pursue these efforts. As presented up to know, various data analysis 

pipelines, databases and web platforms were designed and implemented. Each 

tool or resource, or their combination, support specific objectives in which a 

specific biological question is addressed.  

At the light of the SPOT-ITN objectives, some example applications are here 

presented to highlight results achieved and the relevance of such tools and 

integrated resources. 

We focused on understanding the data we were dealing with.  

Efforts on the mining of the EST and TC collections we included in the tomato 

genome platform, on the quality of the available versions of the tomato genome 

and its annotations were reported. Since we identified several issues in the 

tomato gene annotation, we also present our findings and results for the gene 

annotation improvement and revision. 

These preliminary investigations were also useful for our understanding of data 

from the heat stress response in the tomato pollen developmental stages based 

on transcriptome analyses. Then, an extensive analyses on the role of TE-

derived Small-RNAs interfering RNAs in pollen developmental stages is 

presented.  
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3.5.1 Experimental Transcript Collections 

ESTs vector and repeats cleaning 

As it was discussed in section “ESTs, TCs and TIs data processing”, each EST 

collection was subjected to vector removal and repeat masking process. This 

procedure supports the production of high quality and clean datasets 

representing the transcriptomics data for each species. Table 10 presents the 

proportion of remaining EST sequences after this quality check and filtering in 

our database, which were then used for the further analysis. 

 

Table 10: The number of sequences in the starting datasets. A) the starting number of EST 

sequences in each species collection downloaded from the reference database without any 

processing, B) the starting number of EST sequences for each collection species after vector 
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removal and repeat masking together with the percentage of remaining sequences with 

respect to the initial dataset. 

 

As presented in Table 10, at worst less than 0.2 % of each collection was 

discarded due to the quality check and sequence cleansing process. The 

remaining proportion of each collection as then used for the downstream 

analysis. In addition to highlight the impact and contribution of each collection 

species, we can observe that among all the 20 Solanaceae EST collections 

available in the platform, Nicotiana tabacum, Solanum lycopersicum, Solanum 

tuberosum, Coffea arabica and Capsicum annumm represent a large collection 

of EST sequences (more than 75% of the total ESTs in all the 20 collections) 
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while the other species contribute the other 15% of the EST coverage in our 

datasets. 

EST to TC Assembly 

With respect to the aim of having more reliable transcriptome datasets 

confirmed with multiple sequences for each consensus (section 1.2.5.1.3),  here 

a complete overview of the EST to TC assembly and the remaining singletons, 

with the number of protein matches for each specific set per collection species, 

is provided in details.  
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Table 11: The proportion of EST to TC assembly for each collection species and their 

protein matches 

 

 

As it is presented in Table 11, each EST collection species was resulted into a 

collection of assembled EST and Singleton (those did not assemble) sequences. 

The total number of EST sequences for each dataset contributing in the 
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assembly and the resulted number of TC sequences is also reported in details. 

Obviously, those datasets with higher number of EST sequences (e.g. TOBAC, 

SOLLC and SOLTU) provide higher number of TC assemblies in comparison to 

those with lower coverage (e.g. SOLPE, NICAT and CAPCH). In addition, the 

number of EST and TC sequences from each collection specie having at least 

one match with a protein (blast procedure described in “BLAST” section) is 

presented accordingly. Stats shows that except few data collections, more than 

about 70% of the TC sequences found a protein match while this statement is 

not true for the EST sequences. This shows the reliability of the TC sequences 

in comparison with the ESTs. In addition, the large contribution of the EST 

sequences in the assembly for each TC collection is another indication of the 

reliability for these assembled datasets. 

EST Mapping 

on the bases of the mapping procedure presented in “EST, TC and unignees 

processing” section, here we present the mapping statistics gained form the 

mapping of each EST collection species on the both versions of Tomato 

Genome SL2.40 and SL2.50, and the BAC sequences un-mapped on the 

genome. 

BAC sequences are considered to provide to complement the genome sequences 

to allow more exhaustive investigations. 
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Table 12: Overview of the EST collections mapping on the both Genome sequences of 

Tomato versions ITAG 2.40 and ITAG 2.50, and the unmapped BAC sequences 
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As presented in Table 12, the complete overview of the EST collections 

mapping on the two versions of SL2.40 and SL2.50 tomato genome, and the 

SL2.3 unmapped BACs (see 2.3.1) is presented. As it can be observed, some 

collections such as SOLLC, SOLTU, TOBAC, CAPAN and SOLME have high 

coverage while some such as SOLLP, CAPCH, SOLPE and NICAT have very 

low coverage of ESTs mapping on the reference sequences. Aside from the 

closeness or distance between the two species, this can also be due to the staring 

number of sequences available in each dataset. 

We also intended to report the number of total mapping and the distinct number 

of transcripts mapping on the genome to provide a brief indication of the 

redundancy on the reference sequences with respect to the transcript collections. 

In other words, the ratio between the number of mapping transcripts versus the 

number of distinctly mapped transcripts can be a parameter to detect the 

remapping and redundancy of mapping for the transcripts on the reference 

genome (as much as the ratio higher, the redundancy of mapping higher).   

TC Mapping 

Here we present a general overview of the TC collections mapping on the both 

versions of Tomato Genome SL2.40 and SL2.50, and the BAC sequences un-

mapped on the genome. 
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Table 13: Summary of TC collection species mapping on the both Tomato genome versions 

ITAG 2.40 and ITAG 2.50, and the unmapped BAC sequences 

 

 

The mapping summary of TC collections per each species (Table 13) provides 

the coverage and proportion of each collection for the tomato genome and the 

BAC sequences unmapped on the genome reference. Similar to the ESTs, the 

tomato species of SOLLC, SOLME, SOLHA, and SOLPH have the highest 

relative number of transcripts with respect to the starting collection size 

covering the reference sequences. Moreover, SOLTU also as the closest species 

to SOLLC also shows the relevant high coverage of mapping on the tomato 
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genome and the BAC sequences. Respectively, other Solanaceae species also 

are reported on the sense of mapping with respect to the initial collection size. 

It is also nice to mention that some TCs are also mapped on the unmapped BAC 

sequences not considered in the official genome references. This can be another 

source of information in which the sequence regions not present in the official 

genome reference can be also investigated. 

Unigenes Mapping 

A detailed mapping overview of the three unigene collections of SGN, DFCI 

and PlantGDB are provided here.   

 

Table 14: Overview of Transcript Indices (unigenes) collections from 3 reference websites of 

SGN DFCI and PlantGDB mapped on both tomato genome versions of ITAG 2.40 and 2.50, 

and the unmapped BAC sequences 

 

 

As for the TC collections, the overview of the unigene collections mapped on 

each version of the Tomato Genome and the unmapped BACs are presented in 

the redundant and distinct manner (Table 14). Interestingly, around 4% of each 

collection is also mapped on the unmapped BACs which provides the 

information regarding the transcripts annotated on the regions not anchored in 

the chromosomes. In the following section, the number of transcripts from each 

collection mapped uniquely on these BAC sequences will be discussed in 

details. 
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TCs and unigenes mapping uniquely on the reference sequences 

 

Table 15: Overview of TC collections uniquely Mapped on the both genome sequences and 

UnMapped BACs 

 

 

Having a transcript mapped uniquely on a genomic region can confirm the 
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origin of the transcript. Table 15 provides the number of transcripts in each of 

the TC collections uniquely mapped on a genomic reference. Interestingly, we 

can observe some transcripts mapped on the unmapped BAC sequences (not 

included in the official reference) with no other copy or map on any of the 

Tomato chromosomes.  

The same information also is presented in the sense of unigene collections. 

 

Table 16: Unigenes uniqueness mapping overview on the genomes and BACs 

 

 

Table 16 shows the number of transcript form each unigene collection mapped 

uniquely on the tomato genome and the unmapped BAC sequences. As well as 

the TCs, we can see that some transcripts are uniquely mapped on the BAC 

sequences in which the information is not considered in the official genome 

reference.  

 

Considering the total number of transcripts from all the TC and unigene 

collections (Table 7) and those uniquely mapped on the genome (tables of 

unique Error! Reference source not found.), we can conclude that the 

majority of the transcripts are mapped uniquely on the genome. This is an 

indication of the transcripts quality, reliability and specificity in each dataset. 

 

The processing of the EST collections to produce cleaned datasets, assembly of 
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the TC sequences to have more reliable transcripts confirmed by multiple 

sequences, and having the unigene collections from the major reference 

databases can provide useful transcript resources for the genomic analyses and 

investigations. Moreover, the availability of different species collections, all 

mapped on a unique reference genome (here S. lycopersicum), can allow the 

cross species analyses and functional investigations. These collections are great 

supports to the assessment, assignment and characterization of the genomic 

features (e.g. assessing the miss-annotated genes such as split, very long etc.). 

3.5.2 Genome Reference and Gene annotations 

A reliable genome reference is the basis for genome centered approaches and 

“omics” analyses. Hence, a good understanding of its quality and content tracing 

its improvements is fundamental for appropriate investigations. In the light of 

the SPOT-ITN project we set up the tomato genome platform to support the data 

analyses. 

Moreover, we deeply investigated the two different genome versions of tomato. 

Furthermore we tested the quality of the annotations available ( iTAG and 

RefSeq) to define a reference annotation too. 

ITAG 2.40 vs ITAG 2.50 

For tomato, two different versions of the S. lycopersicum genome sequences 

have been currently released (SL2.40 [137], SL2.50 [143]). The genome version 

SL2.50 was made available on the SGN website on 2014 (announced in [143]). 

It represents the updated version of the first version SL2.40 [137], release in 

2012 by the Consortium. 

An overview reveals that the chromosomal lengths in SL2.50 is increased 

comparing to the SL2.40 (Table 17, column length). In other words, long pieces 

were inserted/added to the new version of the tomato genome (SL2.50). 
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Interestingly, looking at the number of “N” added to each chromosome, which 

is exactly similar to the corresponding added lengths, it is clear that the added 

regions are only filled by “Ns” to improve the genomic distances in the genome.  

 

Table 17: An overview of SL2.50 versus SL2.40 genome version  

 

 

Looking at the exact proportion of the positive and negative values in each A 

and T (i.e.; A= -1885 and T= -1885 in ch01), and G and C bases content (C= -

10148 and G= 10148 for ch01), a total of the inverted regions per each 

chromosome can be observed. 

We also observed that the changes in the GC, CG and CpG was zero comparing 

the two versions of the genome. So we concluded that no new genome sequence 

representing ATGC bases was added in the new version of the tomato genome 

SL2.50 comparing the SL2.40. 
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These analyses raised the question if the reorganization of the genome had 

affected the gene content.  

iTAG 2.3 and iTAG 2.4 

We also check the differences between the iTAG 2.4 and 2.3 gene annotations.   

Comparing the iTAG 2.3 and iTAG 2.4 gene annotations to understand the 

differences and peculiarities of the two annotations, we observed that two genes 

of Solyc03g053140.1.1 and Solyc12g032910.1.1 were discarded from the newer 

version. 

It is important to highlight that due to the addition of “N” insertions to the 

genome, the genes in iTAG 2.4 were shifted in their genomic position. This 

means that the position indicated in the GFF3 annotation file is changed on the 

basis of the insertion lengths occurring before the specific gene on the genome. 

However that the genomic locus is identical in the sense of the genomic 

sequence.  

RefSeq 

The RefSeq GFF3 file was tested for the standard format and compatibility for 

the visualization in the Gbrowser. We also checked the number of the genomic 

features available in the annotation. The stats on the produced file are as follow: 
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Table 18: Stats on the RefSeq2.3 genomic features and their coverage 

 

 

The total coverage of the gene features for the 12 tomato  chromosomes in the 

genome are presented in Table 18. RefSeq Annotation does not include the gene 

prediction for the S. lycopersicum unassigned chromosome (chr00). 

We also aimed to compare the two available gene predictions for the tomato 

genome (iTAG and RefSeq) to understand their similarities, differences and 

whether the two annotations for the same genome confirm each other. The result 

of the analyses are presented below: 

iTAG 2.3 vs RefSeq 2.3 

Table 19: Stats on the iTAG2.3 genomic features and their coverage 
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As presented above the stats on the number of genomic features and their 

coverage on the genome for the iTAG 2.3 is presented in Table 19.  

In Table 19 we report the statistics for iTAG 2.3. iTAG includes 34727 gene loci 

representing 34727 mRNAs while RefSeq 2.3 includes 24528 representing 

26592 mRNA loci. As declared by ITAG, the official gene annotation for the 

tomato genome (iTAG 2.3) does not include the alternative splicing prediction 

whilst RefSeq 2.3 annotation includes the alternative splicing prediction for the 

genes. Due to this fact (the availability of alternative transcript in RefSeq 

annotation), the number of genes are 10119 but for mRNA 8135 less than iTAG 

2.3 official annotation. 

Deeper investigations on both annotations revealed that in total 1062 mRNAs 

confirm locus and structure (start and end of all the features such as locus, exons, 

cds etc.) while only 207 mRNAs confirm only the locus (start and end of the 

transcript) but not the internal structure between the RefSeq and iTAG gene 

annotations. Moreover, overlapping the iTAG 2.3 and RefSeq 2.3 gene 

annotations 1624 mRNAs from RefSeq did not overlapping any iTAG predicted 

loci, and 10931 iTAG 2.3 mRNAs did not overlapping any RefSeq 2.3 predicted 

mRNA. The significant difference between the iTAG and RefSeq can be also 

proportional to the total number of predicted mRNAs in each annotation (see 

Table 18 andTable 19). 

iTAG Annotation Issues 

To understand the quality of the official tomato gene annotation, we also made 

some exhaustive assessment on the iTAG 2.3 in which several issues raised. 

Here we present the ambiguities, miss-annotations and the issues detected in the 

iTAG 2.3 gene annotation for the S. lycopersicum genome. 

 

Very Long Genes 
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Our analyses resulted to the detection of two very long genes in the annotation 

in which, the genes span for more than 200,000 pb on the genome. 

 

 

Figure 45: The exon lengths versus exon counts in iTAG 2.3 predicted genes 

 

As it is shown in Figure 45, the number of exons versus the sum of the exons 

length for each transcript is presented. The plot shows the distribution of the 

iTAG 2.3 predicted genes in the tomato genome where the majority of them are 

less than 25000 bp long. The 2 genes of Solyc01g110700.2 and 

Solyc01g111180.2 possess the length of 244,093 bp and 214,621 bp 

respectively. In addition, the gene Solyc01g111080.2, though much shorter than 

the 2 mentioned before, also has is a long gene spanning 23681 bp on the 

genome. A Gbrowse snapshot of the three very long genes mentioned are 

presented in (Figure 46) 
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Figure 46: A genome browser snapshot of the 3 very long genes and the TC tracks overlapping the locus.  
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Interestingly, all the three genes are overlapping on their genomic locus also 

covering multiple iTAG 3.4 predicted genes. By cross checking these three 

genes with the S. lycopersicum TC collection, the unigene collections form the 

SGN, PlantGDB and DanaFarber, all available in our Tomato Genome 

Platform; we could not confirm any experimental transcript confirming the 

predicted structures.  

 

Table 20: Statistics on the UTR's length and overlapping of the 3 very long genes in iTAG 

predicted genes in S. lycopersicum 

 

 

We also observed that the reason these genes are so long is due to the long UTR 

regions predicted (Figure 47 and Table 20).  

Concerning the overlapping genes, we observed that the gene 

Solyc01g091150.2 (118,735 bp) also overlaps 14 other genes, in its intron 

region, in the annotation (Figure 47).
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Figure 47: A genome browser snapshot of a long gene covering several iTAG 2.3 annotated loci in its intron
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Figure 69 shows the genome browser snapshot for the gene Solyc01g091150.2 

overlapping multiple iTAG 2.3 predicted locus in its intron region. By cross 

comparing this gene with the available TC and unigene transcript collections in 

our platform, we could not find any experimental transcript confirming its 

structure. Hence, probably this gene also is miss-annotated in the iTAG 

annotation.  

Three exact Overlapping Genes with different CDS regions matching the 

same Protein 

The further analyze overlapping genes predicted in the iTAG 2.3 we noticed that 

three genes (Solyc01g088200.2.1, Solyc01g088210.2.1 and 

Solyc01g088230.2.1), exactly overlapping each other in their exons start and 

ends but differ completely in their coding regions. An illustration of these three 

genes overlapping each other on the genome is presented in Figure 48 

 

 

Figure 48: Demonstration of the 3 iTAG 2.3 predicted genes with exact exonic and different 

CDS overlapping matching 1 protein consecutively. 
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Interestingly all the three genes also match the same protein in a consecutive 

manner (Figure 48). This can be also due to the miss-annotation of one single 

gene as three different genes on the genome. 

 

Blast of all the iTAG 2.3 mRNAs versus the proteins databank 

As the result of our blast analyses for the iTAG 2.3 mRNA sequences versus the 

protein databank (downloaded on February 2014), 758 mRNAs with unknown 

function in the annotation found at least one protein match in the database 

(Table 21).  

Table 21: The blast results of iTAG 2.3 mRNA versus the protein databank  

 

 

The proteins with match with these 758 unknown annotated mRNAs can 

provide a putative functional annotation for these transcripts. 

 

Split Genes 

The blast analyses of the iTAG 2.3 mRNA transcripts also revealed split genes 

in the annotation. We identified 1873 genes that match the same protein in 

consecutive portions. An example of the split genes is presented in Figure 49 
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Figure 49: Example of 4 iTAG 2.3 predicted genes matching consecutive regions of a 

protein. 

 

Figure 49 shows the four iTAG 2.3 predicted genes, Solyc11g067110.1.1, 

Solyc11g067120.1.1, Solyc11g067130.1.1, and Solyc11g067140.1.1, matching 

the protein F4HW04 in consecutive regions.  

 

On Repeated Regions (iTAG 2.3 Repeat Aggressive) 

The intersection of the iTAG 2.3 genes and the repeat aggressive annotation 

resulted to the identification of several genes located in overlapping repeated 

regions. In Table 22, the number of genes overlapping a specific repeat 

aggressive class more than 50, 80 and 100% are presented. 
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Table 22: The summary of iTAG 2.3 predicted genes with the iTAG 2.3 repeat aggressive 

classes based on the overlapping thresholds of 50, 80 and 100 %of coverage  

 

 

As presented in Table 22, it is interesting to observe that 303 times a gene falls 

completely inside a repeated region (100% of coverage). 

iTAG Remapping onto the tomato genome 

By mapping the iTAG 2.3 mRNA sequences versus the S. lycopersicum genome 

(2.3), we categorized the transcripts into three major groups (once map, multiple 

map and not mapped on the genome). We also further divided the once and 

multiple mapped transcripts into two classes of “Confirming their iTAG gene 

structure prediction” and “not confirming their iTAG gene structure prediction” 

(Table 23). 
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Table 23: The summary of remapping the 34727 iTAG 2.3 mRNA transcripts versus the 

iTAG 2.40 genome 

 

 

As it can be observed in the Table 23, the majority of iTAG 2.3 predicted genes 

(27968) could map uniquely on the genome confirming their own predicted 

structure. Still 6759 genes either do not confirm their structure or have multiple 

mappings on the reference genome. To further characterize the remapping status 

of the annotated gene on each of the chromosomes, we further summarized the 

results into a bigger table, in which Snapshot from this table is provided in 

Figure 50



148 

 

Figure 50: Snapshot of the 13*13 cross table characterizing the genes remapping from each of the 13 S. lycopersicum chromosomes on oth er 

chromosomes 
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Figure 74 is snapshot of a bigger table which summarizes the behavior of the 

annotated genes if mapped on all the other chromosomes (See ANNEX IV). The 

total number of genes from the starting chromosome, the total, once and 

multiple number of times they remapped on the target chromosome, the detailed 

categorization of the remapping statistics on the bases of their identity and 

coverage when mapping, and whether they overlap an iTAG predicted loci or 

not are listed in a redundant and distinct way (redundant = if the genes mapped 

four times, four is considered; distinct= if the gene is mapped four times, one is 

considered). This 13 * 13 dimensional table, summarizing all the iTAG genes 

predicted on the 13 tomato chromosomes versus each other, provides a 

comprehensive overview of the annotation issues like missing annotation, 

genome duplication by sequencing miss-assembly, similarity of the genomic 

regions, and potential new unpredicted gene loci on each chromosome.  

 

To provide a broader overview of the iTAG 2.3 predicted genes in the sense of 

their remapping status, Figure 51 demonstrates the frequency of the number of 

times each gene matched a chromosomal region of the S. lycopersicum genome. 
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Figure 51: Remapping time distribution of ITAG 2.3 genes divided into two groups of large 

and small scales 

 

As it is shown in (Figure 51 and also Table 23), 30046 genes have one 

positioning when mapped on the genome whereas 2088 and 661 genes have two 

and three times of remapping on the genome, respectively. At the extreme, the 

3 genes of Solyc00g005070.1.1, Solyc12g019160.1.1 and Solyc04g047730.1.1 

locate on 288 regions, 112 and 111 times, respectively. This highlights that 

several iTAG 2.3 genes either have multiple copies or homologous genes not 

predicted on the genome, or several pieces of DNA sequence were repeated. 

In principle, each gene should have only one gene mapped in the locus, 

overlapping to the loci it is associated to. This is a clear indication of some 

repeated or highly similar regions on the genome which share a big similarity 

proportion with several transcript sequences. 

After cross comparing the remapped transcripts on their genomic coordinates 

considering their strands, a list of genes exactly identical in the sense of their 
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genomic structure (with some difference on their strands) were identified (Table 

24). 
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Table 24: List of identical genes. Per each genes is specified: length, exons number, 

identical region 50 nt after and before, strand and alignment coverage (Replace with my 

own data for the overlapping of identical genes considering the strands) 

 

 

Sequence

s length 

(nt)

# exons 

identical (included 

50nt before and after 

the gene area)

strand coverage

Solyc00g011550.1.1\

Solyc03g042510.1.1
694 2 YES plus/plus 100%

Solyc00g047200.1.1\

Solyc11g056490.1.1
234 1 YES plus/plus 100%

Solyc00g058890.1.1\

Solyc12g010550.1.1
411 1 YES plus/plus 100%

Solyc01g007440.1.1\

Solyc09g064400.1.1
495 2 YES (2 mismatches) plus/plus 100%

Solyc01g007450.1.1\

Solyc09g064410.1.1
201 1 YES (1 mismatch) plus/plus 100%

Solyc01g106220.2.1\

Solyc01g106240.2.1
8922\ 8923 8 YES (3 gaps) plus/plus 100%

Solyc03g091030.1.1\

Solyc03g091040.1.1
330 1 YES plus/plus 100%

Solyc03g116300.1.1\

Solyc03g116310.1.1
303 1 YES plus/plus 100%

Solyc03g093100.1.1\

Solyc08g016290.1.1
2491 4 YES (2 mismatches) plus/plus 100%

Solyc03g120400.1.1\

Solyc05g012960.1.1\

Solyc09g014290.1.1

174 1 YES (2 mismatches) plus/plus 100%

Solyc08g079210.1.1\

Solyc08g079220.1.1
360 1 YES plus/plus 100%

Solyc10g008370.2.1\

Solyc10g008380.2.1
722 2 YES plus/plus 100%

Solyc10g012380.1.1\

Solyc10g012390.1.1
450 1 YES plus/plus 94%

Solyc12g009730.1.1\

Solyc12g009750.1.1
2761 2 YES plus/plus 100%

Solyc12g010370.1.1\

Solyc12g010760.1.1
1366 3 YES (1 mismatch) plus/plus 100%

Solyc00g188250.1.1\

Solyc06g053270.1.1
405 1 YES plus/minus 100%

Solyc03g005530.1.1\

Solyc03g005560.1.1
1587 1 YES plus/minus

96% 

(1622/1687)

Solyc07g055360.1.1\

Solyc07g055590.1.1
228 1 YES plus/minus 98% (320/328)
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We identified several independently (differently) predicted genes in iTAG 2.3 

annotation which are identical in the sequence and structure on the genome (also 

in some cases with differences in the strand).  

Unassigned chromosome (Chromosome Zero) 

The chromosome zero and its gene content are the unassigned chromosomes 

and genes in the tomato genome. Figure 52 illustrates the behavior of the 

transcripts of the genes predicted on the unassigned chromosome of the tomato 

which were mapped on the other chromosomes with different identities and 

coverages, categorized into the overlapping and not overlapping with respect to 

other iTAG predicted loci. 

 

 

Figure 52: Representation of the remapped genes with different thresholds of identity and 

coverage remapped on the other chromosomes, categorized into the overlapping and not 

overlapping with respect to the other iTAG predicted loci  
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The distribution of the iTAG 2.3 predicted genes from chromosome zero 

mapped in the void (un-annotated) regions of the other chromosomes with high 

level of identity and coverage suggests the possibility of putatively not predicted 

genes on those regions which were, in contrast, annotated on the unassigned 

chromosome. In other words, there are in total 79 genes of chromosome zero 

remapped on the void regions of other chromosomes with the identity and 

coverage >= 95 that can be putatively predicted on the genome. 

Our analyses revealed a comprehensive overview of the iTAG 2.3 genes in 

which, several miss-annotated genes (very long, overlapping with multiple 

genes, split genes, putative new genes, those predicted on the repeat region, and 

identical genes and genomic regions) were identified. These information are 

fundamental since they can introduce several biases and miss-leading issues 

when exploiting the genome information. As an example in the NGS data 

analyses, the genes overlapping multiple other genes can lead to the ambiguity 

in the gene expression quantification. In most methods such as HTSeq-count 

(see Quantification), the count for all these gens will be considered as zero. This 

is also valid for those genes with multiple mapping on the genome since the 

reads matching multiple locations on the genome, in most cases, will be 

automatically discarded from analysis. In terms of the split genes, the expression 

quantification will be highly affected since the complete transcript is not 

considered. Obviously the quantification of expression for the genes not 

predicted on the genome (the putative new genes we found) is not also possible 

unless they are put into consideration. However, in this specific case they would 

result to be repeated. 

3.5.2.1.1 Revised annotations 

Therefore we go to the conclusion that the three genes are probably miss-

annotated in the annotation. 
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3.5.2.1.2 ITAG 2.3 Revised annotation 

These version of the annotation is on the basis of the official iTAG 2.3 

annotation 2.3 in which. 

The added information provided in the revised annotation is in Table 25. 
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Table 25: Major information segments available in the revised annotation  

Label Description e.g. 

Type of 

overlapping 

It presents the type of overlapping 

from one predicted transcript versus 

the other one. 

No overlap, partical 

overlap, inside, 

over, locus match, 

locus and structure 

match. 

iTAG 2.3 

overlapping loci 

In case this transcript is overlapping 

another iTAG loci, the iTAG ID of the 

overlapping loci is listed. 

 

Code Regarding the iTAG 2.3 overlapping 

Flag, the query length, subject length 

and the percentage of ovrerlaping is 

listed. 

 

RefSeq 

overlapping loci 

Incase this loci is overlapping a 

RefSeq 2.3 loci, the RefSeq ID of the 

overlapping loci is listed  

 

Remapped 

Time/code in the 

id 

Number of times transcript maps on 

the S. lycopersicum genome with 

identity coverage higher than 90 and 

80 respectively 

 

Repeats Overlap Represents the percentage of overlap 

for this transcript with each of the 

iTAG 2.3 repeats aggressive classes in 

details. 

69% LTR-RE,12% 

rRNA 
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Confirmed by 

EST/TC/Unigene

s 

Represents the transcript 

confirmation by any of the 20 

Solanaceae EST, TC collections 

together with the three universal 

unigenes collections for the tomato. 

The number of overlap for each 

collection and species, the percentage 

of overlap are listed in details. 

 

Locus Expression The maximum level of RNAseq  

expression from the Heinz Atlas 

collection for this trascrip calculated 

on the basis of its gene locus is 

presented. 

 

Exon Expression The maximum level of RNAseq  

expression from the Heinz Atlas 

collection for each gene locus is 

presented. 

 

Exons GenBank 

format 

The GenBank format of all the exons 

for the transcript are listed. 

(start1,end1,start2,e

nd2,....,startn,end) 

 

The information together with the genomic information available in the original 

annotation file have been made available both in the Excel and GFF3 file 

formats  

3.5.2.1.3 ITAG 2.3 Preferred Annotation 

Considering the iTAG 2.3 gene annotation as the reference annotation for the S. 

lycopersicum genome, a GFF3 file including the iTAG 2.3 predicted genes 

together with those of RefSeq2.3 genes not overlapping any iTAG 2.3 predicted 
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loci (1624 mRNAs) are presented to provide a more comprehensive and 

exhaustive gene annotation for this species. The annotation file is in the standard 

GFF3 format including all the functional and genomic details provided in the 

original files. 

3.5.2.1.4 RefSeq Preferred Annotations 

In contrast with the iTAG 2.3 preferred annotation, a GFF3 file representing the 

RefSeq 2.3 predicted genes including those of iTAG 2.3 not overlapping any 

RefSeq 2.3 gene (10931 mRNAs) is provided including all the functional and 

genomic information available in the source files. 

3.5.2.1.5 Impact of different annotations in the NGS data analyses 

Here, the expression quantification for each gene from all the 10 tissue/stages 

of Heinz atlas collection for the 4 annotations iTAG 2.3, RefSeq 2.3, iTAG 2.3 

Preferred and RefSeq 2.3 Preferred annotations separating once- and all-mapped 

reads on the genome are presented in details.
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Figure 53: Representation of different read countings (A= once map and B= unique+multiple map) using iTAG 2.3, iTAG 2.3 Preferred, Ref Seq 2.3, 

and RefSeq 2.3 preferred annotations 
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In Figure 53.A, the reads that uniquely mapped on the genome (once-) are 

checked using the four annotations of iTAG, RefSeq, iTAG Preferred and 

RefSeq preferred. Indeed we report the number of reads mapped in the gene 

loci. In Figure 53.B, multiple read mapped on the genome and once mapped 

were considered for the quantification.  

3.5.3 NGS Data Analyses 

During my PhD, several NGS data analyses were conducted, in collaboration 

with other research groups or independently for some of my target based 

analyses, on various collections. Here, some example of findings on major 

collections useful to highlight features of the iTAG 2.3 annotations are reported.  

The Heinz collection, as a representative collection of RNAseq from several 

tomato tissues from the sequenced genome, was used for several investigations 

and analyses to expand our knowledge on the reference genome defined for this 

crop species. Here we present some of the results and findings acquired.  

 

Zero level Genes 

The data analysis highlighted that among all 34727 iTAG annotated genes, 6412 

genes showed zero read mapped on the gene loci when considering any of the 

libraries from each of the replicates from the Heinz collection. Interesting to 

observe that the number of genes that are zero are also 5700 in the paper of 

tomato genome release [137]. This is probably due to analytical approaches and 

highlights the importance of clear description of the methods used to reproduce 

the data. Indeed, overlapping genes are counted as zero from many of the 

methodologies [68, 69]. Moreover, besides the 0 counting genes, 10025 genes 

showed expression levels lower than 1 RPKM in all the tissues/stages, falling 

in the criteria to be defined as not expressed genes. Hence, in total, 24702 genes 

show expression level higher than 1 RPKM in at least one of the investigated 

physiological conditions. 
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Genes specifically expressed in a tissue 

We also analyzed the number of genes that showed the expression level higher 

than specified thresholds (0.3 and 1 RPKM, respectively) only in one condition 

(defined as specifically expressed). On the other hand, we also reported the list 

of genes with expression level lower than the given thresholds only in a specific 

condition (defined as specifically not expressed). In Figure 54, we report the 

number of specifically expressed and specifically not expressed genes per 

conditions according to the different thresholds. The statistics shows that 

comparatively a large number of genes (1106) are specifically expressed in root 

while a significant number of genes (695) are tissue specifically not expressed 

in “fruit after 10 days”. 

 

 

Figure 54: Tissue specifically expressed and not expressed status for the Heinz NGS 

collection 

 

We also observed that 21 genes are specifically expressed in the fruit stages 

while 235 genes are specifically not expressed in the same conditions. The 

results suggest that probably these genes, not expressed in other tissues but only 
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fruit) are the fruit specific expressed genes, which can have important roles in 

the fruit maturation and the processes involved.  

3.5.4 Transcriptome analyses for the Heat Stress Response in Tomato Pollen  

Gene based MACE data analysis  

MACE NGS data provided by GeneXpro were analyzed by a classical gene 

reference based approach.  

The collection was also a precious resource that was made available in the 

SPOT-ITN project since RNAseq from the developmental stages of pollen were 

not available for tomato in the SRA archive (ref). As an example, the Heinz 

collection does not include stages from pollen. To this end, we tried the exploit 

the data to better understand the peculiarities of this collection in terms of 

expression profiling. 

3.5.4.1.1 Putative pollen specific genes detection in tomato 

We crosschecked the information from Heinz tissue specific genes with those 

from MACE data analyses.   

Table 26: Representation of expression signaling between the Heinz and MACE NGS 

collections 
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The analyses revealed that among the 6412 genes not expressed in any of the 

Heinz tissues/ stages, 5361 genes showed expression signaling at least in one of 

the tissues of pollen from our MACE collection (control and heat stress 

conditions). The results suggest the putative pollen specific genes in S. 

lycopersicum which are expressed in pollen stages only and not in any other 

tissue. 

  

Table 27: Representation of specifically expression of MACE NGS collection between 

Control and Heat Shock Stress stages 

 

 

Comparison of the expressed and not expressed genes between the putative 

pollen specific genes detected at the previous step also revealed that, 292 of 

these putative pollen specific genes are specific in the physiological condition 

while 550 of these putative pollen specific genes are expressed only when the 

pollen undergo the heat shock.  

Due to these evidence, an integrative approach was undertaken to decipher the 

transcriptome changes during tomato pollen developmental stages and under 

stress response. As described in the materials and method (see 2.4) and due to 

the issues observed in the tomato gene annotation, we exploited an “annotation 

free” approach using Tracker to investigate the transcription changes 
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DEG Analyses 

We localized Hot Regions as those identified by the software Tracker and 

resulting as differentially expressed regions when comparing the heat shocked 

and the physiological conditions of each pollen developmental stage in the 

MACE collection in terms of number of regions showing up- or down-regulation 

signals. These data were also intersected with the iTAG 2.3 annotated loci. 

Table 28: MACE Annotation free analyses DEG loci detected with their overlapping status 

with the iTAG annotated loci 

 

Characterize be … change into Associated to gene loci … 

 

As presented (Table 28), 15 (10 up and 5 down), 71 (57 up and 14 down) and 

159 (112 up and 47 down) Hot Regions were detected in the pairwise 

comparison of Tetrad, Post-meiotic and Mature stages in the tomato pollen, 

comparing the heat shock versus physiological condition. Among all only 126 

(6+32+88) regions were overlapping an annotated locus in which 13 (2+4+7) of 

them are heat shock related genes.  

Interestingly, 119 regions (genes or isoforms, see MACE Data) were fallen out 

of the gene regions in which no functional assignment could be assigned to them 

from the iTAG 2.3 official annotation. 

We also categorized the differentially expressed/suppressed regions into 4 

major trends of (up-up, down-down, up-down, and down up) across the 

developmental stages (Figure 55). 
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Figure 55: Statistics regarding the MACE detected DEGs with respect to their up- or down-

regulation trend 

 

Figure 55 lists the differentially expressed/suppressed regions annotated with 

the iTAG 2.3 revised annotation (see 2.4.1) in which, different number of genes 

showing common and different trends in the sense of expression across the 

physiological and heat shock conditions are demonstrated. 

We also considered the same approach to detect hot methylated or under 

methylated regions from MethSeq data provided by GenGPro Company 

(Frankfurt, Germany). 

The analysis resulted in a strong de-methylated regions when comparing heat 

stages versus physiological ones. Interestingly, the largest number of regions 

affected by the phenomena are at the first stage of pollen development indicating 

that the stress caused a drastic change of methylation status (usually repressing 

expression) to de-methylated ones (Figure 56.B). 

Comparing the expressed regions with those de-methylated (Figure 56.A and 

B) 

 



166 

 

Figure 56: A) Genes differentially expressed and suppressed, and B) Methylated and de-

methylated CCGG sites (Opening of chromatin) in response to heat shock during the 

developmental stages of Tetrad, Post-Meiotic and Mature Pollen. 

 

The general trend of expression and methylation, comparing the heat shock and 

physiological conditions for each pollen stage, across the developmental 

processes can be overviewed. In terms of the expression (Figure 56.A), an 

increase of down-regulation and up-regulation of the genes across the 

developmental stages is observed. However, except the tetrad stage, a higher 

down-regulation comparing to the up-regulation of the genes in the same stage 

for the other two stages is presented.  Interestingly, the de-methylation event 
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preceded and accompanied the expression in the corresponding stages with a 

significant difference comparing to the methylation process (619 vs 145 in 

Tetrad, 543 vs 87 in Post-meiotic, and 209 vs 150 in Mature). Although the de-

methylation is decreasing in the pair wise comparison of each developmental 

stage, the de-methylated regions comparing to the methylated regions along the 

pollen development under heat shock is increasing significantly. This can be the 

result of tomato plant response to the stress during the development. A 

chromosomal distribution of this process for each step during the pollen 

development is presented in figure below
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Figure 57: A) Changes of Methylation and expression in tomato genome and genes during the post-meiotic pollen developmental stages in response to 

the heat shock stress
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B



170 

 

C.
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Figure 57.A shows the differentially expressed/suppressed and methylated/de -

methylated sites in the Tetrad stage comparing the heat shock versus the control. 

A large number of de-methylation together with some genes up-regulation are 

observed. Figure 57.B is the demonstration of methylation and expression status 

of the genome and genes when comparing the heat shock versus physiological 

condition in the Post-meiotic stage. It is shown that the de-methylation of the 

genome is evident. Also the up- and down regulation of the genes are increasing 

comparing the previous stage (Tetrad). Looking at the mature stage of pollen 

comparing the heat shock versus the physiological condition (Figure 57.C), it is 

observed that the de-methylation of the genome is still ongoing but to a less 

extent comparing to the previous stages of the pollen (Tetrad and Post-meiotic). 

The GO Enrichment analyses for the up- and down-regulated genes detected in 

our approach considering all the developmental stages also suggests biological 

processes such as response to the endoplasmic reticulum stress , regulation of 

pH, methylation, cell wall modification and mitochondrial organization, and 

developmental vegetative growth are enriched during the pollen developmental 

under heat shock. 
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Figure 58: Representation of Gene Set Enrichment Analyses for the genes Differentially 

Expressed or Suppressed in HSR during the developmental stages of Tetrad, Post-Meiotic 

and Mature Pollen. 

 

These results can provide a comprehensive overview of the phenomena implied 

in tomato pollen development under heat stress, helpful to underlie the 

mechanism involved and the general biological process. On the other hand, due 

to the lack of a complete annotation for tomato, a large number of Hot Regions 

are not functionally identified. This requires further experimental and 

bioinformatics minings to characterize the differentially expressed/suppressed 

sites (hot regions) where they are not fallen in a predicted gene locus.  
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3.5.5 The Role of TE-Derived Small Interfering RNAs in Tomato Pollen 

Development 

A genome wide analyses on the small-RNA collection (see 2.2.1) provided by 

GenXPro (Frankfurt, Germany) with respect to their interaction with the TE 

elements was conducted. Specifically, since novelties from miRNAs were 

already provided by GenXPro (Frankfurt, germany), we focused on a different 

aspect. 

Out of 74,469,092 sequencing reads generated after removing low quality reads, 

we mapped 94.3% of the reads (which were ranging from 11-38nt. We obtained 

the percentage of reads mapped per each size class over the total mapped reads 

for the respected condition. We calculated the fraction of reads per each library 

for each size class (Figure 59).  

 

 

 

Figure 59: Fraction of reads in library for each of size class per each tissue/stage in pollen 

developmental stages 
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As it is demonstrated in the Figure 59, no significant changes are observed 

between the similar stages under control and heat stress. In contrast, a 

significant change is observed in the 21.22 and 24 nt classes between the 

developmental stages.  

 

Notably, we found that the abundance of 21-22nt class and 24nt classes were 

significantly switched during pollen development (Figure 60). 

Basing our analyses on the 2 classes of 21, 22 and 24 nt RNA fragments, we 

considered the type of mapping into unique and multiple mapped on the 

genome. 

 

In the tetrads and post-meiotic stages, the 24nt Small-RNA predominated the 

Small-RNA reads (52% and 46%); however, at mature stage (binucleate pollen), 

the 21-22nt Small-RNAs became dominant (38%), while the abundance of 24nt 

Small-RNAs was drastically reduced (to 27%). Within the 21-22nt class, the 

relative abundance of 22nt Small-RNAs over 21nt Small-RNAs was significantly 

increased from PM stage (63% +2.5%) to M stage (75%+1.2%) (P=0.010). 
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Figure 60: Fraction of reads for each 21, 22 and 24 nt size class of Small-RNA normalized 

by reads per million (RPM) normalized for each of the stages in Pollen.  

 

Among Small-RNA reads that mapped to repeat region of tomato genome, both 

uniquely mapped and multiple mapped reads were significantly altered from 

PM to M stages (P<0.05) (Figure 60). 

 

Table 29: Number of Small-RNA clusters generated for the 21, 22 and 24 nt classes and their 

repeats overlapping status 
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As presented in Table 29, a total cluster of 29638 and 85755 Small-RNAs for 

the 21, 22 and 24 nt classes were generated respectively (see 2.6.3). Over all the 

clusters, 83.9% for the 21, 22 nt and 83.5% for the 24 nt classes were located 

on the repeated regions. The clusters generated for the 21-22nt were ranging in 

the length from 25bp to 9063bp (Median: 971bp) while for the 24 nt were 

ranging from 100bp to 31259bp (Median: 2658bp).  

 

 

Figure 61: The intersection of the 21, 22nt and 24 nt Small-RNA classes with the iTAG 2.3 

repeats aggressive. 

 

As presented in Figure 61, the majority of the Small-RNAs are located in the 

LTR repeated regions (over 75%) while the other repeat classes such as low and 

simple overlap over 12 and 6 percent of the clusters respectively. During pollen 

development, we identified 4,488 and 55,458 of 21-22nt and 24nt differential 

expressed Small-RNA clusters (DEC= Differentially Expressed Clusters) on 

repeat region respectively. Specifically, 596 (13.3%) of 21-22nt clusters and 

284 (0.5%) of 24nt clusters were significantly altered from tetrad to post-

meiotic stage; 3,892 (86.7%) of 21-22nt and 55,174 (99.5%) of 24nt Small-RNA 

clusters were significantly altered from post-meiotic to mature stages. We 

further annotated the DECs to repeat regions on the tomato genome, including 

both class I retrotransposons (LTR, LINE, and SINE) and class II DNA 
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transposons (Figure 61). The majority of DECs (80-85%) are located at the 

Long-terminal-repeat (LTR) retrotransposons. 

 

Unlike miRNAs, which function mainly in post transcriptional gene silencing 

(PTGS) mechanism, there is a class of Small-RNAs (siRNAs) that can function 

in both PTGS and transcriptional gene silencing (TGS). In PTGS, siRNAs target 

transcripts specifically by sequence complementary, similar to the action of 

miRNAs; while in TGS, siRNAs rather mediate DNA and histone modification 

events to surrounding genome regions, thereby influencing transcription ability 

[161]. To determine whether the 21-22nt and 24nt Small-RNAs could be 

involved in the same mechanism during tomato pollen development, we 

associated the 21-22nt and 24nt differential expressed clusters (DECs) to their 

mapping patterns on the genome respectively. 
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Figure 62: a) and b) are schematic representation of two types of mapping patterns in Small-RNA libraries.  c) Dot plot showing the differential 

mapping patterns of 21-22nt and 24nt siRNAs at DECs.  X-axis: siRNA expression changes, represented as log2 fold change between development 

stages. Y-axis: Density of according DECs, where density=Number of mapped reads / length of clusters.  
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We were able to identify differential mapping patterns for 21-22nt DECs and 

24nt DECs at both developmental stage transitions: from tetrads to post-meiotic 

and from post-meiotic to mature. The 21-22nt Small-RNAs were mostly densely 

mapped to specific loci with high abundance, likely involved in PTGS; while 

24nt Small-RNAs mapped with low density, but covering broader genome 

regions, are likely involved in the TGS mechanism.   

CpG methylation was not affected by siRNA alterations in repeats 

We next investigated if the differential expression of siRNAs altered the DNA 

methylation status at surrounding loci. It has been reported that during plant 

gametogenesis both asymmetric CHH methylation and symmetric CG 

methylation went through reprogramming, preferentially in sperm nucleus and 

vegetative nucleus respectively [67, 162, 163]. Using methylation-sensitive 

restriction enzyme-assisted DNA methylation deep sequencing (Meth-Seq), we 

were able to detect genome-wide CG methylation during pollen development. 

We found that in tomato pollen, even though TE-derived siRNAs (both 21-22nt 

and 24nt) were differentially expressed at both stage transitions (from T to PM, 

and from PM to M), the CG methylation level was not affected (Figure 63).  
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Figure 63: Methylation changes in the developmental stages of pollen in transition from 

Tetrad to post-meiotic and Post-meiotic to Mature stages. 

 

TE-derived siRNA affected the expression of adjacent genes 

The siRNAs have been shown to affect TE activity, which can further influence 

transcription ability of neighboring genes [164]. Therefore, we further 

investigated if alteration in siRNAs expression (or targeting) affected nearby 
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gene expression in tomato pollen development. To assess the relationship 

between siRNA abundance and nearby gene expression, we measured the 

distance from any TE-mapped, differential expressed siRNA clusters (DECs) 

(either 21-22nt or 24nt) to its nearest neighboring gene, including 5kb upstream 

of TSS (Transcription Start Site) and 5kb downstream of TTS (Transcriptional 

Termination Site). The effect of siRNA alteration on gene expression was 

further separated as to whether the siRNA clusters were up-regulated or down-

regulated during development (from T to PM, and from PM to M). The genome-

wide gene expression data were generated from Massive Analysis of cDNA 

Ends (MACE). 

Overall, we identified 310 and 1,005 genes potentially affected by 21-22nt 

siRNA targeting or 24nt siRNA targeting respectively. We found that, for the 

21-22nt class, gene expression level was most strongly influenced by DECs 

located close to the TSS (Figure 64.a). The most proximally located genes (to 

the up-regulated DECs) showed an average 4 fold up-regulation in gene 

expression (log2 fold change of 2); as the distance increased to 2kb from DECs, 

the influence on gene expression became trivial (log2 fold change of 0); when 

the distance was about 5kb apart, gene expression become negatively correlated 

to the siRNA changes. Similarly, genes proximal to the down-regulated DECs 

were averagely down-regulated (log2 fold change of -2 to 0). However, for the 

24nt class siRNAs, the effect of DEC proximity on gene expression is not 

detectable (Figure 64.b). These results showed a differential influence of 21-

22nt or 24nt siRNAs (targeting to TEs) on their nearby gene expression, 

possibly indicating their differential involvements in cellular mechanisms and 

functions. 
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Figure 64: DEC and neighboring gene expression during pollen development. Linear regression models showing the relationship between the distance 

(kilobase) of DEC to TSS and the change of the corresponding gene expression (log2 fold change) for 21-22nt siRNAs (a and b), and 24nt siRNAs (c 

and d). Grey area: 95% confidence interval (CI) for the linear fit.  Red dotted line: log2 fold change=0. 
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We further annotated those genes that are differentially expressed by siRNA 

targeting. GO enrichment analyses revealed that genes involved in metabolic 

and biosynthetic processes, actin filament bundle and nucleosome assembly, 

cell cycle and embryonic development, as well as cellular defense functions 

were significantly enriched (Figure 65).  

 

 

Figure 65: The GO Enrichment analyses for the genes adjacent to the SiRNA targeting on 

the genome affected in the expression level. 

 

The spatial distance between the Go terms indicates the similarity and 

dissimilarity of the GO terms, while the ratio of the size for each circle is related 
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to the GO frequency in the subset. The color indicates the enrichment adjusted 

p-value for the fisher exact test.  

siRNAs Pathways were developmentally regulated 

Cascades of genes are involved in both the production and the targeting of 21-

22nt and 24nt siRNAs specifically in plants [165]. To determine how these 

genes are regulated during tomato pollen development, we performed pathway 

analyses using gene expression data generated from MACE. In the 24nt siRNA 

pathway, genes involved in siRNA processing and targeting (e.g. HEN1, 

AGO4/6/9), as well as RdDM (e.g. SUVH2/9, DMS3) were significantly up-

regulated at the post-meiotic and mature stages; genes involved in chromatin 

modification (e.g. MET1, DDM1, LDL1/2) were highly expression throughout 

development stages (Figure 66).  
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Figure 66: The expression heatmap and clustering of the genes involved in the 24 nt siRNA 

pathway. 

 

In the 21-22nt siRNA pathway, there was a prominent elevation in the siRNA 

production genes (e.g. DCL2/4) at the PM and M stages, correlating with the 

significant up-regulation of 21-22nt siRNA abundance (Figure 67).  

Interestingly, an important gene NERD involved in non-canonical RdDM was 

also up-regulated in the mature pollen (Figure 67). 
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Figure 67: The expression heatmap and clustering of the genes involved in the 21 -22 nt 

siRNA pathway 

3.6 Summary 

As presented in this chapter, the materials used, and the methods to collect, 

process, reconcile and analyze them was presented in details. In terms of the 

bioinformatics platforms developed, the architecture used and the data sources 

included in each partition was also presented.
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4 Conclusions 

In the light of the SPOT-ITN project objectives, and to provide a comprehensive 

bioinformatics infrastructure to support extensive genomics analyses in tomato, 

we collected, processed and integrated different resources; and organized them 

into dedicated databases with appropriate query user interfaces. In this thesis, 

the main efforts undertaken and the analyses conducted on the basis of such 

resources with the strategies and approaches developed are reported in details. 

 

Deeper investigation on the two available reference genome sequences of the 

tomato revealed that the newly released genome (SL2.50) is the reorganization 

of the previous version (SL2.40) based exclusively on added gaps (in the form 

of “N” insertion) and some genomic sequence’s inversions. In other words, both 

of the genome sequences are the same in the sense of their genomic content 

which was not immediately derived from the presented paper associated to the 

second release ref. 

 

Comparing the two available iTAG gene annotations for tomato we also 

revealed that except two genes that were removed in the newest version 

(iTAG2.4) , all the other genes were transferred to the new annotation 

considering the genomic location shifts caused by the gap insertions in the new 

genome release (see 2.4).  

 

Deeper investigation on the tomato iTAG gene prediction also highlighted 

several issues in the annotation regarding the miss-annotated and ambiguous 

genes. We found that many genes from iTAG have multiple copies on the 

genome overlapping other predicted loci. In many cases the genes are also 
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mapped on regions where no gene were predicted by the consortium. Moreover, 

303 genes were predicted completely inside the repeated regions.  

 

We also detected several genes that are predicted as split genes with respect to 

the possible correct loci (putative split genes). These issues can highly 

compromise genomic analyses such as gene expression quantification and 

functional investigations. To give support to this end we contributed a revised 

version of the iTAG gene annotation to highlight, and in some cases correct, 

these issues. 

 

Due to the availability of the two different annotation pipeline for tomato ( iTAG 

and RefSeq), we processed them into different alternative annotations described 

to meet the need of the interested scientific community. We also further 

analyzed the Heinz RNAseq collection on the basis of these annotations, and the 

results revealed a better coverage for the uniquely mapped reads on the genome 

for the iTAG annotation complemented with RefSeq (iTAG preferred, see 2.4.2). 

Deeper analyses are however required to define an updated annotation for 

tomato. 

 

The effort to organize resources for tomato resulted in the several dedicated 

platforms. The aim was to allow the exploration and exploitation of the tomato 

genome space in an integrative way. The platforms are enriched with user 

friendly interfaces allowing ease of access to the processed collections using 

query dialog boxes. We setup a unique genome platform including both tomato 

genome sequences and the unmapped BACs. The availability of querying all 

the EST, TC and unigene collections mapped on both genomes together with 

the availability of different annotations are some of the peculiarities of our 

infrastructure. Indeed, though several reference sites are available for tomato 

[55, 135, 136], no platform provide access to the whole Solanaceae EST, TC 
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and universal unigene collections together in as tarcks mapped on a common 

genome reference.  

 

We also designed and setup an expression platform in which, at the current 

setting for tomato (NexGenEx-Tom), access to different processed NGS atlas 

collections (S. lycopersicum cv. Heinz, S. pimpinellifolium and Ailsa Craig) was 

made available. The possibility of gene expression profiling and differentially 

expression analyses in one single click, and the availability of different online 

toolboxes for the cluster analyses and GO Enrichment are the main peculiarities 

of this platform. NexGenEx-Tom is also enriched with a cross link to the tomato 

genome platform.  

 

We also implemented an otholog database and the dedicated interfaces enriched 

with different ortholog collections (see two ortholog collections sections 2.8.3) 

allowing the extensive comparative genomics between different species.  

 

The different transcriptome collections from ESTs, TCs, and unigenes were 

processed when necessary (raw ESTs) and integrated in the infrastructure. 

Thanks to the availability of such transcriptome data, besides of being useful 

for the comparative genomic and exhaustive genomics analyses, they supported 

us to better exploit the tomato genome reference and its genomic content. Using 

these collections, we also investigated the content of the 112 unmapped BAC 

sequences (those that were not anchored to the tomato pseudomolecules), 

providing information not considered in the reference tomato genome 

sequences.  

 

The availability of some public and private NGS data collections allowed us to 

further investigate the tomato genome space in terms of its expression content. 

As an example, the availability of the Heinz expression data from 11 tissue 
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stages supported general overviews on gene expression in the different 

tissues/stages.  

 

We also presented that to properly process, integrate and investigate such data 

collections, various tools analytical approaches were necessary, with some of 

them implemented during the thesis work. Examples come from Tracker, a tool 

to conduct annotation free analyses due to the limits in the gene annotation, and 

Overlapper, a tool to intersect different genomic features; and NGS data 

analyses pipelines that analyze NGS data collections in parallel; etc. (see 3.2) 

that were implemented to allow genome wide investigations when a preliminary 

gene annotation is available. 

 

Getting advantage of the developed tools, approaches and the bioinformatics 

platform we setup, we were able to carry out the integrative analyses on the 

tomato pollen developmental stages deciphering the role of heat shock on the 

gene expression and on genome reorganization in terms of methylation of CpGs 

changes. Our finding suggested that the genome methylation is affecting the 

gene expression during the developmental stages as the plant response to the 

stress (see 3.5.4). 

We also applied our methodologies and tools for the identification of the TE-

derived small-RNAs characterizing the role of the 21-22 and 24 nt Small-RNA 

fragments on the silencing of the Transposon Elements during the 

developmental stages of tomato pollen in physiological stages and also in 

comparison with the heat shock conditions. Based on our analyses, no 

significant change was observed between the similar stages under control and 

heat stress. On the contrary, a significant change is observed in the 21.22 and 

24 nt Small-RNA classes between the developmental stages. Notably, we also 

found that the abundance of 21-22nt class and 24nt class Small-RNAs were 

significantly switched during pollen development. We also intersected these 

changes with the expression and methylation for the pollen developmental 
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stages in the physiological condition. Our findings suggests that the 

differentially regulation of the small-RNAs might have some effects on the 

adjacent genes expression level while no significant methylation changes in the 

developmental stages of pollen in the physiological condition were observed 

(see 3.5.5). 
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5 ANNEX I: Bioinformatics Tools 

5.1.1 Bulk-Sorter 

Motivation 

Sorting is one of the routine parsing events which may be required very often 

when working with the text files. With the advent of high-throughput 

technologies and the amount of data they offer, management of these data files 

is a big challenge to overcome. Searching for a feature or record, intersecting 2 

files to find the overlaps and indexing of the records in a flat file for easier and 

faster random access are of those processes that can be done easier and more 

efficiently on a sorted file. However, the memory resources on the computing 

machines are limited, and management of bulky files in memory can be 

impossible in most cases. Hence, the availability of such a tools to easily sort 

large files in short with low memory consumption is essential.   

Description 

Getting advantage of the Merge Sort approach [164], we developed a simple 

merge sorter (so called Bulk-Sorter) that can manage to sort text files with any 

size on any memory resource. Depending on the memory size the user specifies 

for the software, the tool splits the file into sub fragments in which each file is 

sorted independently. The merging process will then be done on the fragmented 

file parts considering the sorting of the incoming records from each fragmented 

part. Eventually the whole files is sorted into one merged file and the sub 

fragments are removed (refer to the Merge Sort Method Description). The tools 

is also implemented as an external module in the sorting section of the Tracker 

pipeline. The tool can be run under both Windows and UNIX environments.  
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5.1.2 Small-RNA Analyses Pipeline 

Motivation 

Several tools and pipelines exists for the Small-RNA target analyses [67, 96, 

165]. The need for a Differentially Sites detection of Small-RNAs with the 

possibility of customizing its steps due to the needs and requirements of our 

analyses resulted to the development of a Small-RNA pipeline in which, 

different tuning of settings and thresholds can be orchestrated.   

Description 

The Small-RNA pipeline designed is a general Differentially Sites of Small-

RNAs detection in which, 1) detection of Small-RNA classes with significant 

changes (e.g. 21+22 nt or 24 nt sequences), 2) categorization and classification 

of different Small-RNA classes to be subjected to the downstream analyses 

(keeping only the 24 nt sequences and discarding all the others), 3) selection of 

Small-RNAs on specific genomic regions with to address some dedicated 

biological questions (e.g. those only overlapping the repeated regions on the 

genome), and 4) clustering of adjacent Small-RNA sequences to create 

customized or universal reference genomic features for the counting is made 

possible in a convenient and efficient way. The sequence size selection can be 

conducted before or after the mapping process.  
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Figure 68: A general Small-RNA analyses workflow and pipeline schema 

 

The detected Changing Clusters or Sites can be then intersected (using 

Overlapper software) with other genomic regions (coding or non-coding 

features) for the downstream analyses. The tool can be run under both Windows 

and UNIX environments. 



213 

5.1.3 Correlationer (maybe remove) 

Motivation 

Correlation analyses is the basis of many approaches in the field of 

bioinformatics. Generation of gene networks and reasoning on the relation of 

molecular components are often made by considering the level of correlation 

the 2 objects (genes or compounds) possess across different conditions. 

However the concept is quite simple and several packages implement the 

correlation coefficient calculation with a simple function (R environment, 

Matlab etc.), calculation of the correlation level among a list with thousands or 

millions of records is a challenge is not simply possible. In most cases such as 

or Matlab, an error indicating lack of memory is produced, or the result will be 

very hard to manage. 

Description 

With regards to the importance of correlation coefficient calculation as the basis 

of many approaches used, and due to the challenges and limits the correlation 

coefficient calculation of thousands of genes, all versus all, may introduce, we 

developed the tool “Correlationer” to memory efficiently calculate this value 

for all the components. The Correlationer calculates the Pearson and Spearman 

correlation coefficient of all the elements versus all the others (with any 

dimension) allowing to specify a threshold of correlation to discard those not 

passing that value. Hence, only the genes with a specific threshold specified as 

the accepted level of correlation (positive, negative or both) will appear in the 

output. Since the correlation coefficients are being calculated once at the time, 

the memory consumption is very low, but it also increase the time of processing. 

The tool can be run under both Windows and UNIX environments. 
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5.1.4 K-means calculator and Analyzer 

Motivation 

K-means clustering is one of the most common and popular clustering 

algorithms used for the omics data. It has been implemented in several packages 

(R environment and Matlab) which allows the users to cluster the list of 

elements specifying a cluster number (k). The possibility of rescaling or 

normalizing input data is also possible with some scripting in the respective 

environments. However, such tools exist, having a simple interactive tool 

efficiently working on bulk datasets, and producing final outputs with some 

stats (frequency of clusters and their distribution) is an advantage to obtain. 

Moreover, running the clustering with multiple number of clusters (different K 

values) is a good way to obtain the best cluster number disjointing the dataset 

groups.  

 

Description 

Here we developed a console application for the k-means cluster analyses and a 

supplementary package to test different K values to obtain the best cluster 

number for the analyses. The number of iterations, scaling by min-max scaling 

on rows or all the set can be easily specified as the input parameters. K-means 

calculator a fast and efficient package in which the outliers for each cluster and 

the frequency and distribution of the clusters are reported in separate output 

files. The tool can be run under both Windows and UNIX environments. 
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5.1.5 FastaToBatchMapper 

Motivation 

Bioinfromaticians are routinely facing the sequence mapping on the reference 

sequences. Often happens that thousands or millions of transcripts or protein 

sequences in the form of multi-fatsa files are supposed to be mapped versus a 

genome or reference sequence to identify its genomic origin or mapping 

location. Due to the advancement of computational technologies and the 

availability of parallel processing approaches, splitting of big jobs into smaller 

jobs and distributing them on different nodes/processors or even threads (if 

multi-threading available) are a common and useful methodology to be 

considered. The job management software applications simply manage your 

jobs and eventually the output files are produced. Normally the time consumed 

are divided by the number of sub-jobs you have ran in parallel.   

Description 

Here we present the FastaToBatchMapper as a simple tool in which the fasta 

sequences inside the multi-fasta file(s) are split into cluster of fasta sequences 

(the number of sequences in each file is specified by user), and the mapping of 

these sequences, specifying the mapping parameters depending on the mapping 

software, is parallelized on the available nodes and cores of the high-level 

computing machine. The software at the moment is designed to work with the 

GenomeThreader [49] mapping tool and TORQUE job management system 

(http://www.adaptivecomputing.com/products/open-source/torque/). The tool 

organizes the analyses of each fastaf ile in a separate folder collecting the 

mapping outputs in the result directory. The distributed mapping outputs are 

then combined, indexed, and parsed into a valid GFF3 file format.

http://www.adaptivecomputing.com/products/open-source/torque/
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Figure 69: the schema of the distributed and parallelized sequence mapping pipeline  
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The tool can be run under both Windows and UNIX environments. 

5.1.6 Genome Scanner 

Motivation 

In the genomics area, it may happen that the general knowledge concerning the 

dense, overlapping and noncoding regions of the reference genome is required. 

Several visualization tools such as IGV [], GenomeBrowser [] and JBrowse [] 

provide the possibility of browsing the genome reference (limited to a specific 

view) for this observation. Nonetheless, scanning of the whole genome to gain 

the detailed knowledge of each genomic region with customized annotation files 

is not easily possible.  

Description 

We developed a genome scanner tool in which the coverage of each base 

regarding its overlapping with any genomic region (specified as one of the 

inputs) is reported in details. Possibility of reporting the bases with specific 

coverage is also possible in the genome scanner. Genome Scanner is not very 

memory efficient but provides in-depth and detailed information regarding each 

base. The tool can be run under both Windows and UNIX environments. 

5.1.7 Sequence Length Classifier 

Motivation 

In many genomic analyses (e.g. small-RNA or micro-RNA analyses), 

classification of sequences into respective length classes, before or after the 

mapping, is an important issue to be addressed. As an example, for the micro-

RNA analyses targeting the coding sequences, filtering out all the sequences 
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longer or shorter than the accepted micro-RNA sequence length is essential. 

Besides of being able to have a robust idea on the mapped or not mapped 

sequences, the time for the mapping or analyzing of the non-relevance 

sequences are also reduced.   

Description 

Here we present a tool for size classification of sequences before (fastq file 

format) or after mapping (sam file format), in which a specific or multiple 

relevant size classes can be combined together. The output file format is 

identical with the input file introduced to the software, excluded from the non-

relevant sequences. The tool can be run under both Windows and UNIX 

environments. 

 

5.1.8 Sequence Length Distributioner 

Motivation 

Understanding of the length distribution of the available sequences in a sample 

can be important for several reasoning purposes. As an example, in a Small-

RNA fastq file, understanding of the frequency of sequences with specific 

lengths can result to better evaluation of samples and more proper sequences 

size class extraction. Development of a tool parsing and calculating the fastq 

file in a distribution table is a handy tool to be available.   

Description 

Sequence Length Distributioner is a simple parser summarizing all the available 

lengths distribution in a/multiple fastq sequence files. The tool produces a tab 
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delimited distribution table for each sequence size. The tool can be run under 

both Windows and UNIX environments. 

5.1.9 SequencePatternDetector 

Motivation 

Detection of all the specific sequence patterns on the reference sequence (e.g. 

Heat Shock Element binding sequences [163] detection or CpG sites for 

methylation analyses [7] etc.) can be often faced in the reference based data 

analyses. To the best of our knowledge, IGV provides rapid investigation of a 

sequence on the genome which allows the browsing of its genomic region on 

the genome reference. But still a tool to list all the existing patterns with their 

genomic locations can be very useful for the reference annotation production 

and changing sites detection.    

Description 

SequencePatternDetector is a tool to detect all the genomic or reference 

sequence locations matching a specific sequence pattern. For instance by 

providing the CCGG as the matching pattern sequence, all the possible sited that 

can be cut by HpaII will be extracted and their chromosomal locations will be 

listed in the output file.  By checking the cut and not cut sites by the restriction 

enzyme for all the detected regions, the sites differentially methylated can be 

detected easily. The tool can be run under both Windows and UNIX 

environments.  
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6 ANNEX II: Bioinformatics Platforms and Databases 

6.1 Tomato Pollen miRNAome  

I contribute the organization of a dedicate website organizing the collection of 

novel miRNAs independently detected from the partner GenXPro, Germany in 

the framework of the SPOT-ITN project (http://cab.unina.it/mirna-pollen/) 

[166].  

 

6.1.1 User Interface and database access 

As the default page (Figure 70), the website provides the navigation pane 

allowing to move to different result views and query pages implemented in the 

Tomato Pollen miRNAome database. The website is enriched with a cross-

navigation to the genome browser implemented in the Tomato Genome 

Platform presented before (see 2.8.1). 

http://cab.unina.it/mirna-pollen/
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Figure 70: snapshot of the miRNA-Pollen webpage available at http://cab.unina.it/mirna-pollen/

http://cab.unina.it/mirna-pollen/
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Based on the procedure described in [166], the already known identified 

miRNAs listing their abundant changes between the three stages of pollen 

development (Tetrad, post-meiotic, and Mature) are presented in the “Known 

miRNA” section of the database. The adjusted p-value for the pairwise 

comparison of the miRNA abundance is also presented in the FDR column. 

Each of the columns can also be sorted by clicking on its header title (Figure 

71). 
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Figure 71: snapshot of known miRNAs from the platform
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Based on the methodology and procedure described for the novel miRNAs 

detection in [150], the list of novel miRNAs identified in the collection 

including several accessory information such as genomic region (chromosome, 

start, end, and strand), the energy and sequences are provided for each of the 

stages (see 2.2) (Figure 72).
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Figure 72: snapshot of Novel miRNA page from the platform 
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As for the known miRNAs, this result section can be also sorted by each column 

allowing to search for similar sequences or the miRNAs in the neighboring 

genomic regions.
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Figure 73: snapshot of the GO Enrichment view of the genes associated or the miRNAs with the possibility of querying by gene ID, GO ke yword or 

functional keyword. 
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To better understand the role and functionality of the detected miRNAs, the 

target genes (genes overlapping with the miRNA mapping on the genomic 

locus), their functional annotation and GO description, and the normalized value 

of their abundance in each of the stages (see 2.2) are presented in the ”GO 

Annotation” section of the database (Figure 73).  
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7 ANNEX III 

RNA Isolation 

RNA was isolated from pollen in two fractions (Small-RNA < 200 nt and large 

RNA > 200 nt) according to manufacturer’s protocol. 

MACE Library Preparation 

MACE libraries were prepared as previous established protocol established by 

GenXPro GmbH (Frankfurt, Germany). Briefly, the large RNA fractions 

(>200nt) were reverse transcribed with SuperScript Double-Stranded cDNA 

Synthesis Kit (Life Technologies) using biotinylated poly (dT) primers. cDNA 

was fragmented with Bioruptor (Diagenode) to an average size of 250 bp. 

Biotinylated cDNA ends were captured by Dynabeads M-270 Streptavidin 

Beads (Life Technologies) and ligated with T4 DNA Ligase 1 (NEB) to modified 

adapters (TrueQuant, GenXPro). The libraries were amplified by PCR with 

KAPA HiFi Hot-Start Polymerase (KAPA Biosystems), purified by Agencourt 

AMPure XP beads (Beckman Coulter) and sequenced with HiSeq2000 

(Illumina). 

DNA Isolation and Meth-Seq Library Preparation  

DNA was isolated from pollen using the DNeasy Blood & Tissue Kit (Qiagen, 

Hilden, Germany). Genome-wide analysis of DNA methylation was performed 

by MethSeq at GenXPro GmbH (Frankfurt, Germany). HpaII was used as the 

methylation-sensitive enzyme, recognizing non-CpG-methylated CCGG sites. 

After digestion by HpaII, the DNA fragments were ligated to Illumina’s p5 

primer for sequencing (Illumina). 
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sncRNA Sequencing Library Preparation 

For preparation of Small-RNA libraries, 5 μg RNA (Small-RNA fraction) was 

size-selected (<40 nt) by polyacrylamide gel electrophoresis (FlashPAGE, Life 

Technologies) and precipitated. About 30 ng Small-RNA (<40 nt) was 

successive ligated (T4 RNA Ligase 1 and T4 RNA Ligase 2, NEB) to modified 

3′ and 5′ adapters (TrueQuant RNA adapters, GenXPro). Adapter-ligated RNA 

was reverse transcribed (SuperScript III, Life Technologies) and amplified by 

PCR (KAPA HiFi Hot-Start Polymerase, KAPA Biosystems). Amplified 

libraries were size-selected by polyacrylamide gel electrophoresis (PAGE) and 

sequenced (HiSeq2000, Illumina). 
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