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Abstract

We investigate the use of distributed PID actions to achieve consensus and synchronization in

networks of homogeneous and heterogeneous agents. We first analyze the case of distributed

PID control on networks with heterogeneous nodes described by first-order linear systems.

Convergence of the strategy is proved using appropriate state transformations and Lyapunov

functions.

Then, we propose a multiplex proportional-integral approach, for solving consensus prob-

lems in networks of heterogeneous n-dimensional node dynamics affected by constant distur-

bances. The proportional and integral actions are deployed on two different layers across the

network, each with its own topology. Furthermore, the contribution of the network topol-

ogy and node dynamics have been systematically separated giving some sufficient conditions

guaranteeing convergence.

Finally, an extension to networks of identical nonlinear node dynamics is presented. We

provide local and global stability analysis together with a detailed performance assessment

where heterogeneity among nodes and disturbances are considered.

The effectiveness of the theoretical results is illustrated via its application to a representative

power grid model recently presented in the literature and also for synchronization in networks

of chaotic circuits.



CHAPTER 1

Introduction

Some years ago we could even imagine that disparate diseases like diabetes and Parkinson’s

were correlated. Now, this connections are being uncovered using network theory [19, 43].

Networks are inherently part of our universe, and daily life. In simple terms, a network is

a collection of units interacting between them through some interconnection links. We can

find them in our brain where neurons are connected by electro-chemical channels, cellular

and metabolic network, flocks of birds, etc. Moreover man-made networks like world-wide-

web, or power distribution systems where generators and consumers are connected to the

electrical power grid, represents a good example to illustrate that network theory pervades

nature, science and technology.

Networks of dynamical units (or agents) have been used to model everything from earth-

quakes to ecosystems, neurons to neutrinos [72]. Congestion in communication networks,

robot coordination, consensus and synchronization [9], are just some of the problems widely

studied in network theory. Hence, finding ways to predict and tame the collective behaviour

of a network of dynamical agents towards a desired common target state is a fundamental

problem in network control [18, 20, 45]. Centralized or distributed strategies can be used to

solve this problem. Unlike centralized control where a central “station” is required for con-

trolling the whole network, distributed control just requires local interactions among agents.

Therefore, a distributed control strategy is more apt in all those situations where several

constraints are present and cannot be avoided such as limited resources and energy, short

wireless communication ranges, narrow bandwidths, etc [15].

One particular problem in distributed control of complex networks is consensus and syn-

chronization, where the goal is for the states of all agents in the network to asymptotically

converge towards each other [54, 47]. A large number of notable applications have made this
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problem of paramount importance. For instance, distributed formation control in robotics

[32, 55], platooning of vehicles in intelligent transportation systems [25, 52], formation and

attitude alignment in networks of spacecraft units [61], cooperative fire monitoring [63], fre-

quency synchronization in power networks [27, 35, 70], etc. (For a more comprehensive list

of applications see [3, 54] and references therein)

Consensus and synchronization share the same objective; however, in the literature there

is just a conceptual difference between them. In consensus problems, the emphasis is on

the communication constraints rather than the individual system dynamics (Commonly, the

individual systems are modeled as simple integrators and the dynamic evolution of the group

is entirely determined by the exchange of information modeled by some communication

graph.), while in the synchronization literature, the focus is primarily on the individual

dynamics [78].

The existing literature on consensus and synchronization is vast and many extensions and

sophisticated techniques have been proposed, e.g. [63, 60]. Typically, it is assumed that the

agent dynamics is either trivial or identical across the network. Thus, many of the available

strategies only apply to networks of homogeneous systems in the absence of disturbances

and noise.

Moreover, results are often obtained in the case where the nodes are either (simple or higher

order) integrators [62, 65] or possess scalar linear dynamics [12]. Only a handful of results are

available for networks whose nodes are generic n-dimensional LTI systems, see for example

[59, 40, 76, 81, 82].

As research on consensus has matured, more complicated and realistic scenarios must be

considered and analysed to address real-world application. Often, the agents in a network

do not necessarily have the same intrinsic dynamics and also may be affected by noise and

disturbances; besides, they may also communicate with different protocols and strategies.

Take for instance a network of power generators, as those considered in [27, 74]. Different

power sources and transmission lines, multiple load variations, and even communication fail-

ures between generators make the network highly heterogeneous.

Then, a pressing open problem is that of guaranteeing convergence of all agents towards

the same solution in the presence of heterogeneity among their dynamics, disturbances and

noise. In this case, diffusive linear coupling is in general only able to guarantee bounded

steady-state error as the coupling gain is increased. See for example [41] where the consensus
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problem is studied for networks of heterogeneous first order time-varying systems affected

by disturbances.

Some recent work addresses the problem of achieving consensus in networks with some de-

gree of heterogeneity. For instance, in [33], the problem studied is of driving all the linear

nodes in a homogeneous network towards a common reference trajectory (leader-follower

networks) in the presence of time-varying, yet bounded, disturbances. The case of hetero-

geneous networks has been studied in the absence of disturbances or noise both for linear

[78, 40, 59, 76] and nonlinear node dynamics [81, 82].

The aim of this thesis is to study distributed strategies based on PID control strategy,

to solve consensus and synchronization problems as a simple yet effective alternative to

diffusive linear coupling (corresponding to a simpler P protocol). PID controllers are well

known in classical control as able to provide a certain degree of robustness against constant

disturbances and noise together with many other desirable properties [4]. We will show that

most of their beneficial effects are preserved when a PID strategy is deployed in a distributed

manner over a network of interest.

Related independent work on the use of PI coupling for consensus can be found in the

literature. For instance, the use of PI coupling is proposed in [17, 16] to achieve clock syn-

chronization in networks of discrete-time integrators. Also, distributed PI actions are used

in [2] to achieve consensus in networks of simple and double integrators affected by constant

disturbances. The work presented in this thesis extends these approaches by considering a

distributed PID (rather than PI) strategy encompassing the case of networks characterized

by linear heterogeneous and non-linear homogeneous node dynamics.

1.1. Thesis Outline

In Chapter 2 we introduce the concept of complex network together with its mathematical

representation using graph theory. We also briefly explain the consensus problem in networks

of simple integrators, and the master stability function approach is introduced for studying

synchronization in diffusive coupled networks with nonlinear node dynamics.

In Chapter 3, distributed PID actions are studied for networks of heterogeneous first-order

linear dynamics affected by constant disturbances. Then, in Chapter 4, we extend the dis-

tributed PI controller to the case where the nodes have n-dimensional heterogeneous linear

systems and are affected by constant disturbances, and most importantly, the proportional
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and integral actions can be deployed independently from each other. This provides an extra

degree of freedom that can be exploited to enhance the network’s performance. In Chapters

3 and 4, full proofs of convergence are given and examples are included to validate the the-

oretical results.

Then, in Chapter 5 we propose the use of distributed PID controller for synchronizing

networks of non-linear units. Here, the master stability function approach and Lyapunov

theory are used to derive sufficient conditions to guarantee convergence of all nodes in the

closed loop network. We show that the basic properties of the classical PID control are

preserved even if the controller is deployed in a distributed fashion. Finally, some applications

of the techniques developed in the thesis are given in Chapter 6 where synchronization in

networks of power generators and electrical circuits are presented together with numerical

validations. Conclusions are drawn in Chapter 7.

1.2. List of Main Contributions

The main contributions of this thesis are fourfold.

• First, we propose the use of a distributed PID control for reaching consensus in net-

works of heterogeneous first-order linear systems under constant perturbations. Here,

the existence of a unique consensus equilibrium representing the collective dynamics

of the network, is characterized as a function of the node dynamics. A complete proof

of global asymptotic stability, together with numerical validations are presented.

• Secondly, a multilayer approach for reaching consensus in networks of heterogeneous

n-dimensional linear dynamics is proposed. The proportional and integral actions are

deployed on two different layers across the network, each with its own topology. Explicit

expressions for the consensus values are obtained together with sufficient conditions

guaranteeing convergence.

• Third, we extend the PID strategy to the case where the nodes are nonlinear and

identical across the network. We derive local and global synchronization conditions

where extensive simulations routines were performed to validate the theoretical results,

together with a detailed performance assessment analysis.

• Finally, The proposed PID techniques are used in applications specifically to the prob-

lem of achieving synchronization of power generators and chaotic circuits.

The main results were presented in a number of publications [11, 12, 13, 14]



CHAPTER 2

Preliminaries and Background

2.1. Complex networks: generalities

As we point out in the Introduction, network theory is an emerging and prominent scientific

area used to model, describe and analyse ensembles of agents or units interacting with each

other. A network has three principal ingredients Nodes : denote the function of each agent,

Links : describe the interaction between agents, and the Network structure: representing the

architecture of the interconnections among nodes.

In general, networks present some particular properties that make them difficult to predict

and control [72], for example

Figure 2-1.: General diagram of a network
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(a) (b)

(c)

Figure 2-2.: Wiring diagrams of some complex networks. (a) Electrical power grid of north-

ern Italy, each node represents a power generator or consumer while the links

represent buses [51] (b) Brain network, here the nodes ans links represent neu-

rons and the interactions between them respectively [71], (c) a visualization of

the network structure of the Internet at the level of autonomous systems-local

groups of computers each representing hundreds or thousands of machines

[53].
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(i) Structural complexity: the architecture of the network could be an intricate tangle.

For instance in Fig. 2.2(c) is depicted the complex wiring diagram of Internet.

(ii) Evolution of the network topology: The links in the network may be time-varying.

On the World-Wide Web, pages and links are created and lost every minute [53].

(iii) Connection diversity: the links between nodes could have different functions, and

weights. Synapses in the nervous system can be strong or weak, inhibitory or excitatory.

(iv) Dynamical complexity: the nodes could be nonlinear dynamical systems. In a gene

network or a Josephson junction array, the state of each node can vary in time in

complicated ways.

(v) Node diversity: there could be many different kinds of nodes. In an electrical power

grid (see Fig. 2.2(a)) the nodes represent consumers and different types of power

generators; hydroelectric, eolic, solar, etc.

(vi) Meta-complication: the various features listed above can influence each other. For

example, the present layout of a power grid depends on how it has grown over the

years a case where network evolution (ii) affects topology (i). When coupled neurons

fire together repeatedly, the connection between them is strengthened; this is the basis

of memory and learning. Here nodal dynamics (iv) affect connection weights (iii).

Notwithstanding the complexity of networks, there is a significantly large number of prob-

lems studied in natural and man-made networks, for instance, congestion in communication

networks [49], cascading failures and epidemic spreading [36, 50], brain networks [46], robot

coordination and consensus [32, 55], frequency synchronization in power networks [27, 35, 70],

etc (For further details about applications see [72, 9] and references there in). These, complex

systems share the same mathematical formulation for describing their architectures which is

based on graph theory and dynamical systems as we will see below.

2.2. The structure of complex networks: algebraic graph

theory

Generally speaking, a network is a collection of nodes and links, each with an associate

function or dynamics. One of the most important aspects in a network is its architecture

(or structure), which commonly is represented by a graph. For instance in Fig. 2-3 three
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(a) (b)

(c) (d)

Figure 2-3.: Example of: (a) an Internet network, (b) a Hollywood actor network, (c) a

protein-protein interaction network. All of these networks are represented by

the same graph (d). Images taken from [5].

different networks are depicted (a)-(c), sharing the same structure and are represented by

the graph shown in Fig. 2.3(d).

A graph is composed by vertexes and edges, each one of them representing nodes and links

in a network of interest. The links of a network can be directed or undirected. For instance;

phone calls, where one person calls the other represents a directed link, while the transmission

lines on the power grid, on which the electric current can flow in both directions represent

undirected links.

Definition 2.2.1. (undirected graph) An undirected graph G is a pair defined by G = (N , E)

where N = {1, 2, · · · , N} is the finite set of N node indices; E ⊂ N ×N is the set containing

the P edges among nodes. Furthermore, we assume each edge has an associated weight

denoted by wij ∈ R+ for all i, j ∈ N .

In general, the topology of a network can be represented using the adjacency matrix [9].

Definition 2.2.2. The weighed adjacency matrix A(G ) ∈ RN×N with Aij entries, is defined

as Aij(G ) = wij if there is an edge from node i to node j and zero otherwise.

Definition 2.2.3. The degree matrix D(G ) ∈ RN×N with Dij entries, is defined as Dij =∑n
j=1 wij for i=j and Dij = 0 otherwise.
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Definition 2.2.4. The Laplacian matrix L(G ) ∈ RN×N is defined as the matrix whose

elements Lij(G ) =
∑N

j=1,j 6=iwij if i = j and −wij otherwise.

Note that, the Laplacian matrix can be obtained as L(G ) = D(G )−A(G ) [54].

Example 1. Consider the graph depicted in Fig. 2.3(d). Then using definitions 2.2.2, 2.2.3

and 2.2.4 we compute the adjacency, degree and Laplacian matrices which are given by

A =


0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

 , D =


2 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1

 , L =


2 −1 −1 0

−1 3 −1 −1

−1 −1 2 0

0 −1 0 1


Definition 2.2.5. [48] We say that an N ×N matrix S = [Sij],∀i, j ∈ N belongs to the set

Ω if it verifies the following properties:

1. Sij ≤ 0, i 6= j, and Sii = −
N∑

j=1,j 6=i
Sij,

2. its eigenvalues in ascending order are such that λ1(S) = 0 while all the others, λk(S),

k ∈ {2, · · · , N}, are real and positive.

It is important to highlight that the Laplacian matrix L belongs to the set Ω if its associated

graph G is connected [54].

Lemma 2.2.1. [64] Let G be a connected undirected graph. Then, its corresponding Lapla-

cian matrix L ∈ Ω can be eigen-decomposed as L = UΛUT where U ∈ RN×N is an

orthonormal matrix given by U := [u1, · · · ,uN ] where ui ∈ RN×1 are the eigenvectors of L,

and Λ := diag{0, λ2, . . . , λN} with non-negative diagonal entries being the eigenvalues of L,

which can be ordered as 0 = λ1 < λ2 ≤ · · · ≤ λN . Moreover, the smallest nonzero eigenvalue

satisfies

λ2 = min
xT 1N=0,x 6=0

xTLx

xTx
(2-1)

2.3. Multiplex networks

Multiplex (or multilayer) networks are a collection of networks called layers which may

interact with each other, and have been proposed as an effective modelling approach for

representing and investigating several problems in many real and man-made networks [42].

They are characterized by the presence of different types of links and interconnections among

nodes.
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A classical example are transportation networks where two nodes (e.g cities) can be connected

by rail and/or road and/or plane, as can be seen in Fig. 2-4 (see [21, 8] for further examples

and an extensive review of available results to date).

(a) (b)

Figure 2-4.: (a) Network of cities interconnected by rail and plane. (b) Multiplex represen-

tation of the network, with just two independent layers (no interconnections

between layers, i.e., D is an empty set) sharing the same set of vertexes.

To represent multiplex networks we introduce the concept of a multiplex graph which is a

collection of graphs together with links between nodes of different graphs [8].

Definition 2.3.1. A multiplex graph, is a pair M = (G,D) where G is the set of M graphs

G := {G1, · · · ,GM} called layers of M , and D is the set of edges representing interconnections

between nodes of different layers.

Definition 2.3.2. Given two graphs sharing the same set of nodes G1 = (N , E1) and G2 =

(N , E2), we define the projection graph as the graph proj(G1,G2) := (N , Ep) with associated

adjacency matrix Ap := A(G1) + A(G2).

2.4. Mathematical notation and preliminaries

We denote by IN the identity matrix of dimension N × N ; by 0M×N a matrix of zeros

of dimension M × N , and by 1N a N × 1 vector with unitary elements. The Frobenius

norm is denoted by ‖·‖ while the spectral norm by |||·|||. A diagonal matrix, say D, with
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diagonal elements d1, . . . , dN is indicated by D = diag{d1, . . . , dN}. The determinant of a

matrix is denoted by det(.), λk(A) denotes the k-th eigenvalue of a squared matrix A, and

A′ = A + AT denotes the symmetric part of a matrix, while A � 0 indicates that A is a

positive definite matrix.

Proposition 2.4.1. Given two vectors ζ1 ∈ Rn×1, ζ2 ∈ Rm×1 and two matrices Q1 ∈ Rm×n,

Q2 ∈ Rm×m, some algebraic manipulations yield [38]

2ζT1 QT
1 Q2ζ2 ≤ εζT1 QT

1 Q1ζ1 +
1

ε
ζT2 QT

2 Q2ζ2, ∀ε > 0 (2-2)

Proof. Consider the vector aQ1ζ1 ± bQ2ζ2 with a, b ∈ R+. Hence, from its quadratic form

one has

(aQ1ζ1 ± bQ2ζ2)T (aQ1ζ1 ± bQ2ζ2) ≥ 0

then

a2ζT1 QT
1 Q1ζ1 ± 2abζT1 QT

1 Q2ζ2 + b2ζT2 QT
2 Q2ζ2 ≥ 0

and regrouping terms we have

2ζT1 QT
1 Q2ζ2 ≤

a

b
ζT1 QT

1 Q1ζ1 +
a

b
ζT2 QT

2 Q2ζ2

Finally, setting ε = a/b we obtain (2-2).

Lemma 2.4.1. Given a symmetric matrix A ∈ Rn×n, denoting by λmin(A) and λmax(A) the

smallest and largest eigenvalues of A, the following statements are true [67]

λmin(A)ζTζ ≤ ζTAζ ≤ λmax(A)ζTζ, ∀ζ ∈ Rn×1 (2-3)

|||A||| = max
k
{|λk(A)|} ≤ ‖A‖ (2-4)

λmin(A) ≤ λmin(Ao) ≤ λmax(Ao) ≤ λmax(A) (2-5)

where Ao ∈ Rk×k is a principal sub-matrix of A [6].

Example 2. Consider the symmetric matrix

A =

 2 −1 −1

−1 1 0

−1 0 1


with eigenvalues λ1 = 0, λ2 = 1 and λ3 = 3. Then without loss of generality we select as a

principal sub-matrix

Ao =

[
2 −1

−1 1

]
with eigenvalues λo1 = 0.382 and λo2 = 2.618. Note that λmax(A) = 3, while λmax(Ao) =

2.618; therefore, we have that expression (2-5) is satisfied.
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Lemma 2.4.2. [6] Given the matrices A, B, C and D of appropriate dimensions, the

Kronecker product satisfies the following properties

(A⊗B) + (A⊗C) = A⊗ (B + C) (2-6)

(A⊗B)(A⊗D) = AB⊗BD (2-7)

|||(A⊗B)||| = |||A||||||B||| (2-8)

Proposition 2.4.2. (Schur complement [10]) Let Q be a block matrix defined by

Q =

[
Q1 Q2

QT
2 Q3

]
where Q1 = QT

1 and Q3 = QT
3 . Thus Q � 0 if one of the following conditions is fulfilled

i) Q1 � 0, Q3 −QT
2 Q−1

1 Q2 � 0

ii) Q3 � 0, Q1 −QT
2 Q−1

3 Q2 � 0

2.5. Consensus in multi-agent systems

One particular problem in distributed control is consensus, where the goal is for all agent

states in the network to asymptotically converge towards each other [54].

From the early work reported in [68], achieving consensus in multi-agent systems and net-

works has become a fundamental problem in Control.

The classical paradigm involves networks of simple or higher-order integrators communicat-

ing via linear diffusive coupling on an undirected network. Specifically, consider a multi-agent

system of N simple integrators describing the dynamics of each agent

ẋi(t) = ui(t), i ∈ N (2-9)

where xi(t) ∈ R represents the state of the i-th agent and ui(t) ∈ R is the distributed control

input through which agent i communicates with its neighboring agents.

Hence, the problem is to find a communication algorithm or a distributed controller ui(t),

such that all states xi(t) converge asymptotically towards each other, i.e. consensus.

Definition 2.5.1. Let C be the consensus manifold

C :=
{

x ∈ RN
∣∣ |xj(t)− xi(t)| = 0 ,∀i, j ∈ N , i 6= j

}
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then, the group of N agents described by (2-9) is said to reach consensus if, for any set of

initial conditions xi(0) = xi0,

lim
t→∞

x(t) ∈ C, ∀t ≥ 0, i ∈ N

In [68], a distributed algorithm was proposed based on the sum of a proportional error

between the i-th node and its neighbors

ui(t) =
N∑
j=1

wij(xj(t)− xi(t)) (2-10)

where wij denotes the weight of the link between nodes i and j. This controller can be

represented by a graph G = (N , E); therefore, using the Laplacian matrix of G , we can write

ui(t) = −
N∑
j=1

Lijxj(t) (2-11)

In what follows we denote this type of coupling as as distributed proportional control. It

is well know that the distributed controller (2-11), is in fact able to solve the consensus

problem for the group of agents (2-9).

Theorem 2.5.1. Under the distributed proportional control dynamics (2-11), a group of N

agents described by (2-9) achieves consensus if the undirected graph G is connected. Moreover

all the states asymptotically converge to a constant value x∞ given by

x∞ =
1

N

N∑
j=1

x(0) (2-12)

Proof. Let x(t) := [x1(t), · · · , x1(t)] be the stack vector of the states of all agents; then the

overall dynamics of the closed-loop network can be written as

ẋ(t) = −Lx(t) (2-13)

and its general solution is given by x(t) = e−Ltx(0). It follows from Lemma 2.2.1 that

L = UΛUT . Hence, one has that

x(t) = e−UΛUT

x(0)

= Ue−ΛUTx(0)

=
[

u1, · · · ,uN
] [ 1 01×(N−1)

0(N−1)×1 e−Λ̄t

] uT1
...

uTN

x(0)
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where Λ̄ := diag {λ2, · · · , λN} is the matrix containing the nonzero eigenvalues of the lapla-

cian matrix. Therefore, asymptotically we have that

lim
t→∞

x(t) =
[

u1, · · · ,uN
] [ 1 01×(N−1)

0(N−1)×1 0(N−1)×(N−1)

] uT1
...

uTN

x(0)

=
[

u1, · · · ,uN
] [ uT1

0(N−1)×(N−1)

]
x(0)

(2-14)

Note that u1 is the eigenvector associated with the null eigenvalue and it is given by u1 :=

[1/
√
N, · · · , 1/

√
N ]. Therefore, (2-14) can be recast as

lim
t→∞

x(t) =

 1/N · · · 1/N
...

. . .
...

1/N · · · 1/N

x(0)

=
1

N

(
N∑
i=1

xi(0)

)
1N

and the proof is complete.

Example 3. In Fig. 2-5 are shown three different networks of simple integrators (2-9)

controlled by the distributed proportional strategy (2-11). Without loss of generality, we

assume that all link weights are unitary. This is wij = 1 if there is an associate edge between

nodes i and j and wij = 0 otherwise.

In the literature, this proportional algorithm is often called average consensus [32, 55] and

only applies for the case where the nodes share trivial dynamics.

As we said in the Introduction, there are several extensions of consensus algorithms, and it

is often assumed that the agent dynamics is either trivial or identical across the network.

Thus, many of the available strategies only apply to networks of homogeneous systems

in the absence of disturbances and noise. Unfortunately, this is not a realistic scenario

since heterogeneity is a principal ingredient in real and man-made networks. In the next

Chapter we will address the problem of achieving consensus in heterogeneous networks under

the presence of constant disturbances acting on each node, by extending the distributed

proportional controller (2-11) to the case where integral and derivative actions are also

present.
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Figure 2-5.: Time response of three different networks of simple integrators (2-9) controlled

by (2-11). All link weights are unitary. The blue dashed-line represents the

average consensus value x∞
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2.6. Synchronization in complex networks

Synchronization can be traced back in the seventeenth century, to the observation on couple

clocks made by the Dutch scientist Christiaan Huygens. He built an experiment consisting of

two pendulum clocks hanging from a common support, realizing that after some time, their

oscillations coincided perfectly, i.e synchronization. This observation, made a great impact

on the scientific community at that time and increased the accuracy of time measurements

enormously [58]. Nowadays, synchronization is an active research field due to its potential

application in biology and technology [29, 75, 26]. In particular, consider a diffusive coupled

network of N nodes given by

ẋi(t) = f(xi)− α
N∑
j=1

LijΓxj(t), ∀i ∈ N (2-15)

where xi ∈ Rn, f(x, t) : Rn × R+ ∪ {0} 7→ Rn is a nonlinear vector field modelling the

dynamics of each agent in the network. Γ ∈ Rn×n is the inner coupling matrix representing

the exchange of information between agents, α is the coupling strength and the architecture

of the network is represented by an undirected graph G where L is its associated Laplacian

matrix. Note that the diffusive term in (2-15) is the generalization for high-order node

dynamics of the distributed proportional control in (2-10).

Definition 2.6.1. Let C be the synchronization manifold

C :=
{

x ∈ RnN
∣∣ ‖xj(t)− xi(t)‖ = 0 ,∀i, j ∈ N , i 6= j

}
then, network (2-15) is said to reach local admissible synchronization if, for any set of initial

conditions xi(0) = xi0,

lim
t→∞

x(t) ∈ C, ∀t ≥ 0, i ∈ N (2-16)

If in addition (2-16) is satisfied for any initial condition, we said that the network reaches

global admissible synchronization.

Synchronization in diffusive coupled networks has been extensively studied in literature,

where different approaches and conditions are presented for its achievement. For instance

in [47, 44] both local and global techniques are proposed for studying synchronization in

networks, while in [22, 23] extensions have been made to the case where the connections

weights evolve according to some adaptive law. Usually, global techniques are based on

Lyapunov stability and passivity theory; however, there is also an interesting and relative

simple strategy to study local synchronization as we shall see below.



2.6 Synchronization in complex networks � 17

2.6.1. Master stability function

The master stability function (MSF) is a local approach for studying synchronization in

networks and was originally proposed in [57]. The main advantage of MSF is that allows to

reduce the computational complexity required to assess if synchronization is possible, since

instead of studying the stability of the whole network, it is just required to study the stability

of one node (master node), which represents all the others in the web. Hence, this technique

represents a powerful tool for investigating synchronization in generic networks of identical

oscillators (some extensions to nearly identical oscillators are available in [73]). Note that

when all nodes are synchronized, i.e., x1 = · · · = xN = s(t), the equation describing the

synchronous motion is given by

ṡ(t) = f(s) (2-17)

Roughly speaking, the master stability function approach, studies the stability of the syn-

chronous solution s(t), in the presence of small perturbations δx(t). For the sake of clarity,

we have split the MSF approach in four steps

1. First, we start by assuming that the network is already in a synchronous state, and also

that this state is a solution of an isolated node (2-17), so that x1 = · · · = xN = s(t),

2. Next, we perturb the synchronous state of each node by considering s(t) = xi(t) −
δxi(t). Hence, the the perturbation dynamics reads

δ̇xi(t) = f (δxi + s)− α
N∑
j=1

LijΓδxi(t)− f (s) , ∀i ∈ N (2-18)

It follows from Taylor series expansion that

f (δxi + s) = f(s) +Df(s)δxi(t),∀i ∈ N

where Df(s) denotes the Jacobian matrix of f(.) evaluated along the synchronous

solution s(t). Therefore, (2-18) can be rewritten as

δ̇xi(t) = Df(s)δxi(t)− α
N∑
j=1

LijΓδxj(t), ∀i ∈ N (2-19)

and therefore, the disagreement dynamics of the whole network are given by

∆̇(t) = ((IN ⊗Df(s))− α(L⊗ Γ)) ∆(t) (2-20)

where ∆(t) :=
[
δxT1 (t), · · · , δxTN(t)

]T
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3. Then, a state transformation is implemented in order to decouple the perturbation

dynamics of any single node from the others. So, from the fact that the Laplacian

matrix L is symmetric positive semi-definite matrix, we have from Lemma 2.2.1 that

L = U−1ΛU. Thus, letting ζ(t) = (U−1 ⊗ In) ∆(t), we can recast (2-20) in the new

coordinates as

ζ̇(t) = ((IN ⊗Df(s))− α(Λ⊗ Γ)) ζ(t) (2-21)

note that (2-21) is in triangular form with blocks ζ̇i(t) = (Df(s)− αλiΓ) ζi(t),∀i ∈ N ,

where λi are the eigenvalues of the Laplacian matrix. Then, letting α̃ = αλi, we have

that all the N blocks can be represented by the generic dynamics (master node) ζs(t)

given by

ζ̇s(t) = (Df(s)− α̃Γ) ζs(t) (2-22)

4. Therefore, the local stability of the synchronous solution s(t) can be addressed comput-

ing the Maximum Lyapunov Exponent (see Appendix B) of the variational equation

(2-22). Note that if the synchronous solution s(t) represent an equilibrium point; then,

the stability problem becomes equivalent to study the dominant eigenvalue of (2-22).

Throughout the thesis we denote the maximum lyapunov exponent of (2-22) as Ψ(α̃),

which is also known as Master Stability Function (MSF) [9].

Figure 2-6.: Three possible cases for the MSF Ψ(α̃): Type Po: Ψ(α̃) is a monotonically

increasing function. Type P1: Ψ(α̃) is a monotonically decreasing function,

Type P2: Ψ(α̃) is a V-shaped function admitting negative values in some

region.

Positive values of Ψ(α̃) represent unstable modes, i.e. the network does not exhibit synchro-

nized motion. Moreover, negative values of Ψ(α̃) indicates that the network exhibits local
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synchronization (the synchronization manifold is locally transversely stable). Note in (2-22),

that for λ1 = 0 we have that α̃ = 0 and the variational equation reads ζ̇s(t) = Df(s)ζs(t)

where its Lyapunov exponents are equal to those of the single uncoupled system ṡ(t) = f(s).

Three possible cases of the MSF are shown in Fig. 2-6. Thus we say that the variational

equation (2-22) possesses a MSF of type

• Po: if there is not any intersection point with the zero axis; therefore, synchronization

cannot be achieved, no matter the coupling strength,

• P1: if there is just one intersection point p1 with the zero axis, so for admitting local

synchronization it suffices α > p1/λ2,

• P2: if there are two intersection points p2 and p3. Hence, synchronization is guaranteed

if p2/λ2 < α < p3/λN .

A more general case where the MSF presents multiple intersections can be found in [47].

Example 4. Consider the closed-loop network (2-15), where the non-linear vector-field mod-

elling the intrinsic dynamics of each node is described by the well know Lorenz equation given

by

f1(x) =

 −10x1 + 10x2

28x1 − x2 − x1x3

−ax3 + x1x3

 , Df1(x) =

 −10 10 0

28− x3 −1 −x1

x2 x1 −a

 (2-23)

This system exhibits chaotic oscillations for a = 2 as can be seen in Fig. 2-7, where the
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Figure 2-7.: (a) Chaotic attractor, (b) Lyapunov exponents µp. k denotes time step of the

algorithm.
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Lyapunov exponents µp for p = {1, 2, 3} have been also computed using a standard numerical

method with a time step T = 0.001 (see Appendix B). For this particular system we have that

µ1 ≈ 0.849, µ2 ≈ 0 and µ3 ≈ −13.82. Next, we compute the MSF for the Lorenz equation.

So we first integrate system (2-17) for 104 steps so that we can reach the chaotic attractor, to

then compute for 20× 104 steps the Lyapunov exponents of the variational equation (2-22).

We then repeat this computation for different values of the parameter α̃. The results are

depicted in Fig. 2-8 where the MSF Ψ(α̃) has been calculated for different Γ matrices. Note

0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

α̃

Ψ
(α̃

)

0.8

(a)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

α̃

Ψ
(α̃

)
7.22

(b)

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0

1

α̃

Ψ
(α̃

)

2.2

(c)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

α̃

Ψ
(α̃

)

1.39

10.11

40.45

(d)

Figure 2-8.: Master Stability Function for chaotic Lorenz system under different output

matrices: (a) Γ = diag{1, 1, 1}, (b) Γ = diag{1, 0, 0}, (c) Γ = diag{0, 1, 0},
and (d) Γ = diag{0, 0, 1}.

that the MSF of Figure 2.8(a), 2.8(b), and 2.8(c) are Type P1; then, local synchronization

is expected if α > 0.8/λ2, α > 7.22/λ2, and α > 2.2/λ2 respectively. Specifically, consider

a network of then nodes as the one depicted in Fig. 2.5(a) with Γ = diag{1, 1, 1}. Thus



2.6 Synchronization in complex networks � 21

following previous derivations we have that the network reaches local synchronization if

α > 0.8/0.233 = 3.4335. The time response of the network is depicted in Fig. 2-9 for two

different values of the coupling parameter α.
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Figure 2-9.: Time response of a network of 10 chaotic Lorenz for (a) α = 3 and (b) α = 4.



CHAPTER 3

PID Consensus in Heterogeneous

Linear Multi-Agent Networks

As we point out in the last Section, the study of consensus in networks has been carried

out mostly for trivial and homogeneous dynamics in the nodes. Nevertheless, heterogeneity

is a principal ingredient in real and man-made networks. Therefore, as a simple scenario

for studying heterogeneous networks, we consider a multi-agent system of N nodes (agents)

governed by heterogeneous first-order linear dynamics of the form

ẋi(t) = ρixi(t) + δi + ui(t), i ∈ N (3-1)

where xi(t) ∈ R represents the state of the i-th agent, ρi ∈ R is the agent pole determining

its uncoupled dynamics, δi ∈ R is some constant disturbance (or constant external input)

acting on each node, and ui(t) ∈ R is the distributed control input through which agent i

communicates with its neighboring agents. Note that without any control input, the node

dynamics can either be stable (ρi < 0) with different equilibria given by x∗i := −δi/ρi, or

unstable (ρi > 0), while the constant term δi can be used to represent different quantities

in applications. For example, it can model constant power injections in power grids [28] or

noise in minimal models of flocks of birds [79].

Definition 3.0.2. (Admissible consensus) A multi-agent network of N heterogeneous agents

described by (3-1) is said to reach admissible consensus if, for any set of initial conditions

xi(0) = xi0,

lim
t→∞
|xj(t)− xi(t)| = 0, |ui(t)| < +∞, ∀t ≥ 0, i ∈ N (3-2)
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If, instead limt→∞ |xj(t)− xi(t)| ≤ ε for ε > 0 and |ui(t)| < +∞, ∀t ≥ 0, ∀i, j ∈ N , the

network is said to achieve ε-admissible consensus.

Here we study the case where, rather than controlling the agents via classical proportional

(diffusive) strategy, agents in the network are controlled by distributed PID control given by

ui(t) = −
N∑
j=1

wij

α (xj(t)− xi(t)) + β

t∫
0

(xj(τ)− xi(τ)) dτ + γ (ẋj(t)− ẋi(t))

 (3-3)

where wij represents the associate weight of a link between node i and j of a graph G :=

(N , E). We do not consider self-loops, that is wii = 0, and the constants α, β, γ ∈ R+ are

additional parameters modulating globally the contribution of the proportional, integral and

derivative actions. Using the Laplacian matrix of the graph G , we can recast (3-3) as

ui(t) = −
N∑
j=1

Lij

αxj(t) + β

t∫
0

xj(τ)dτ + γẋj(t)

 (3-4)

where Lij are the elements of the network Laplacian.

Now we first present the proportional-integral case, to then study the full distributed PID

control.

3.1. Distributed PI control

In this section we neglect the derivative action in (3-4), this is setting γ = 0 so that we obtain

a distributed PI strategy. Hence, defining P := diag {ρ1, · · · , ρN}, ∆ := [δ1, · · · , δN ]T , the

stack vector of node states x(t) = [x1(t), . . . , xN(t)]T and integral states

z(t) = [z1(t), . . . , zN(t)]T := −βL
∫ t

0

x(τ)dτ (3-5)

the overall dynamics of the closed-loop network can be written as[
ẋ(t)

ż(t)

]
=

[
P− αL IN
−βL 0N×N

]
︸ ︷︷ ︸

A

[
x(t)

z(t)

]
+

[
∆

0N×1

]
(3-6)

Then, the problem is finding conditions on the control gains α, β, the network structure L
and node dynamics P, such that the closed-loop network (3-6) achieves admissible consensus.
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3.1.1. Consensus equilibrium

First we prove that the PI strategy is able to guarantee consensus. In particular we prove

that the closed-loop network (3-6) has a unique equilibrium which solves the admissible

consensus problem.

Proposition 3.1.1. The closed-loop network (3-6) has a unique equilibrium given by x∗ :=

x∞1N with x∞ := −
∑N

k=1 δk/
∑N

k=1 ρk, and z∗ := −(Px∗ + ∆).

Proof. The proof follows immediately by setting the left-hand side of (3-6) to zero and

noticing that L ∈ Ω (see Lemma 2.2.1) so that x∗ = a1N , ∀a ∈ R and z∗ = − (aP1N + ∆).

By definition (3-5), and from the fact that L ∈ Ω, we also have 1TNz(t) = 0, then 1TNz∗ = 0

and we obtain

a = −1TN∆/1TNP1N = −
(∑N

k=1
δk

)(∑N

k=1
ρk

)−1

Hence, setting x∞ = a completes the proof.

To prove convergence of the closed-loop network (3-6), we have to prove that equilibrium in

Proposition (3.1.1) is globally asymptotically stable. We start by shifting the origin via the

state transformation y(t) := z(t) + ∆ so that (3-6) becomes[
ẋ(t)

ẏ(t)

]
=

[
P− αL IN
−βL 0N×N

]
︸ ︷︷ ︸

A

[
x(t)

y(t)

]
(3-7)

Therefore, convergence is equivalent to prove that the matrix A is Hurwitz stable. To this

aim we split the proof into two stages. Firstly, the system describing the error dynamics to

the consensus state is derived and some of its generic properties are described. Secondly,

the two cases of homogeneous and heterogeneous nodes are treated separately in order to

complete the proof of convergence.

3.1.2. Block decomposition of L

First, we present a decomposition of the Laplacian matrix that will be crucial for the deriva-

tions reported in the rest of the manuscript. Note that such a decomposition can be avoided

sometimes when proving consensus in homogeneous networks, but it is particularly useful to

prove convergence in the presence of heterogeneous nodes.
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As the Laplacian matrix is symmetric (the graph is undirected), according to Schur’s lemma,

there exists an orthogonal matrix, say V := (1/
√
N)U such that L = VΛV−1 = UΛU−1,

where Λ = diag {0, λ2, · · · , λN}. Note that the eigenvectors of L are column vectors of V

(or equivalently row vectors of V−1). As suggested in [41], without loss of generality, we can

express the orthogonal matrix U and its inverse in the following block form

U =

[
1 Q12

1N−1 Q22

]
, U−1 =

[
r11 R12

R21 R22

]
, (3-8)

where Q12 ∈ R1×(N−1), Q22 ∈ R(N−1)×(N−1), r11 ∈ R, R12 ∈ R1×(N−1), R21 ∈ R(N−1)×1,

R22 ∈ R(N−1)×(N−1) are blocks of appropriate dimensions and

r11 =
1

N
, R12 =

1

N
1TN−1, (3-9)

Moreover, as V−1 = VT , it follows that R21 = (1/N)QT
12 and R22 = (1/N)QT

22. Thus, we

can recast U as

U =

[
1 NRT

21

1N−1 NRT
22

]
, (3-10)

Also, since U−1U = IN , the blocks in the definition of U and U−1 must fulfill the following

conditions:

R21 + R221N−1 = 0(N−1)×1 (3-11)

R21R
T
21 + R22R

T
22 =

1

N
IN−1 (3-12)

r11R
T
21 + R12R

T
22 = 01×(N−1) (3-13)

Note that, solving (3-11) for R21 and (3-13) for RT
21, using (3-9), we can also write

R21R
T
21 = R221N−11

T
N−1R

T
22 (3-14)

Moreover, |||V−1||| =
√
λmax((V−1)TV−1) (see (2-4)). Also, as V−1 = VT and VVT = IN

one has |||U−1||| = 1√
N

and therefore its block R22 is such that

|||R22||| ≤
∣∣∣∣∣∣U−1

∣∣∣∣∣∣ = 1/
√
N (3-15)

Finally, ‖R221N−1‖ ≤
√
N − 1|||R22||| (see Theorem 5.6.2 of [67]), then expressing R21 from

(3-11) and using (3-15), we find that

‖R21‖ ≤
√
N − 1|||R22||| ≤

√
(N − 1)/N (3-16)
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Proposition 3.1.2. The matrix R22 has full rank.

Proof. From the definition, U is full rank and det(U) 6= 0. Then, from (3-10) one has (see

Prop. 2.8.3 in [6])

det(U) = det(NRT
22 −N1N−1R

T
21)

Now, from (3-11), RT
21 = −1TN−1R

T
22. Therefore,

det(U) = N det(IN−1 + 1N−11
T
N−1) det(RT

22) 6= 0

which implies that the rank of R22 is full.

3.1.3. Error dynamics

To study convergence to the consensus equilibrium, we consider the state transformation

e(t) = U−1x(t). Indeed, using the block representation of U−1 in (3-8) and letting ē(t) =

[e2(t), . . . , eN(t)], x̄(t) = [x2(t), . . . , xN(t)] we obtain

e1(t) = r11x1(t) + R12x̄(t) (3-17a)

ē(t) = R21x1(t) + R22x̄(t) (3-17b)

Note that by adding and subtracting the term R22x1(t)1N−1 to (3-17b), and using property

(3-11), one has

ē(t) = R22 (x̄(t)− x1(t)1N−1)

It is important to highlight that ē(t) = 0(N−1)×1 if and only if x̄(t)− x1(t)1N−1 = 0(N−1)×1

since R22 is full rank (Proposition 3.1.2) [This also implies that, when consensus is achieved

all nodes must converge to x1(t)]. Then, admissible consensus is achieved if limt→∞ ‖ē(t)‖ = 0

and ‖z(t)‖ < +∞,∀t > 0.

Now, recasting (3-7), in the new coordinates e(t) and w(t) = U−1y(t), and using Lemma

2.2.1, we get[
ė1(t)
˙̄e(t)

]
=

(
Ψ−

[
0 01×N−1

0N−1×1 αΛ̄

])
e(t) +

[
0

w̄(t)

]
(3-18a)

˙̄w(t) = −βΛ̄ē(t) (3-18b)

where w̄(t) = [w2(t), . . . , wN(t)], and Λ̄ = diag {λ2, · · · , λN}. Note that the equation for

w1(t) can be neglected as it has trivial dynamics with null initial conditions and represents

an uncontrollable and unobservable state. Moreover, Ψ is a block matrix defined as

Ψ =

[
ψ11 Ψ12

Ψ21 Ψ22

]
:= U−1PU = U−1

[
ρ1 01×(N−1)

0(N−1)×1 P̄

]
U (3-19)
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with P̄ := diag {ρ2, · · · , ρN}. Also, using properties (3-11)-(3-14), we can write (see Ap-

pendix A.1 for the derivation, considering L̃−1
= IN since γ = 0)

ψ11 = (1/N)
∑N

k=1
ρk (3-20)

Ψ12 = = ρ̄RT
22 = ΨT

21 (3-21)

Ψ22 = NR22

(
ρ11N−11

T
N−1 + P̄

)
RT

22 (3-22)

where

ρ̄ := [ρ2 − ρ1, · · · , ρN − ρ1] (3-23)

Case 1: Homogeneous node dynamics

We first complete the proof of convergence for the homogeneous case, that is we assume all

nodes share identical uncoupled dynamics (ρi = ρj = −ρ∗ for all i, j ∈ N ), but are affected

by different constant disturbances δi.

Theorem 3.1.1. The closed-loop network (3-6) with homogeneous nodes i.e., ρi = ρj = −ρ∗,
ρ∗ ∈ R+ for i, j ∈ N , achieves admissible consensus for any positive values of α and β.

Moreover, all node states converge asymptotically to x∞ := (1/N)
∑N

k=1 δk/ρ
∗

Proof. Firstly note that when all nodes share the same dynamics we have that ρ̄ = 01×(N−1)

in (3-23); hence, Ψ12 = Ψ21
T = 01×(N−1) in (3-21). Moreover, P̄ = −ρ∗IN−1 and, using

properties (3-12) and (3-14), Ψ22 = −ρ∗IN−1. Then, (3-18a) becomes an uncoupled equation,

this is the dynamics of e1 does not depends from the rest, and under the assumptions e1(t)

exponentially converges to zero. Now, for the dynamics of ē(t) and w̄(t), let’s consider the

transverse candidate Lyapunov function

V (ē, w̄) =
1

2

(
βēT Λ̄ē + w̄T w̄

)
(3-24)

differentiating V along the trajectories of (3-18), one has V̇ = −βēT Λ̄
(
αΛ̄ + ρ∗IN−1

)
ē,

which is clearly negative definite for any positive value of α and β. As the function is

also radially unbounded, we can conclude that the origin is a globally exponentially stable

equilibrium and the closed-loop network converge to the equilibrium shown in Proposition

3.1.1, and the proof is complete.

Remark 3.1.1. Note that:

• An alternative proof of Theorem 3.1.1 can be found in [34] and [2] for identical and

nonidentical disturbances, respectively. However, our proof also allows to consider

the more generic case of heterogeneous node dynamics as we will present in the next

section.
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• Network (3-6) still achieves admissible consensus if the nodes are unstable (ρ∗ ∈ R−),

since a suitable α can be chosen such that αΛ̄ + ρ∗IN−1 remains positive; however,

the average trajectory e1(t) will be unstable and the system will exhibit unbounded ad-

missible consensus; that is, limt→∞(xi(t)− xj(t)) = 0 but limt→∞xi(t) → ∞ for all

i, j ∈ N .

• The aim of the distributed PI action is to guarantee that the nodes disagreement tends

to zero at steady-state despite the presence of the disturbances. Therefore it should not

be surprising that when these are present, consensus is indeed achieved but on a value

that is dependent on their magnitude.

• The proof of the theorem does not apply as is if the nodes are simple integrators (ρi =

ρj = 0). In this case, Corollary 3.2.1 must be used instead.

Example 5. Consider the multi-agent system (3-1) with homogeneous node dynamics ρi =

−2 for all i ∈ N and δi = 1 for i being an odd index and δi = 0 otherwise. Therefore, under

distributed PI (3-4) (γ = 0) strategy, and using Theorem (3.1.1) we can conclude that the

homogeneous multi-agent network reaches consensus for any value of α and β.

Without loss of generality we choose α = β = 1 and unitary link-weights. This is wij = 1

if there is an associate edge between nodes i and j and wij = 0 otherwise. Thus, from

Proposition 3.1.1 we have that x∞ := −
∑N

k=1 δk/
∑N

k=1 ρk = 0.25; therefore, x∗ := 0.251N
and

z∗ := −(Px∗ + ∆) = [−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5]T

The time response of the closed-loop heterogeneous network is depicted in Figures 3-1 and

3-2, considering different network topologies. Note that the speed of convergence to the

consensus equilibrium increases when the algebraic connectivity λ2 also increases.

Case 2: Heterogeneous Node Dynamics

Here we consider the case where at least one pole is different from all others, and the

disturbances δi are generically nonidentical.

Theorem 3.1.2. The heterogeneous multi-agent system (3-1) controlled by the distributed

PID strategy (3-4), achieves admissible consensus for any β > 0 and γ ≥ 0 if the following

conditions hold

ψ11 = (1/N)
∑N

k=1
ρk < 0, (3-25a)

αλ2 >
1

N

(
max
i
{|ρi|}+

ρ̄ρ̄T

|ψ11|

)
(3-25b)
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Figure 3-1.: Time response of the PI controlled multi-agent system for: (a),(b) three,

(c),(d) star network topologies. The dashed-lines represent the equilibrium

value.
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Figure 3-2.: Time response of the PI controlled multi-agent system for: (a),(b) star,

(c),(d) all-to-all network topologies. The dashed-lines represent the equilib-

rium value.
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Moreover, all node states converge to x∞ as defined in Prop. 3.1.1.

Proof. Consider the following candidate Lyapunov function:

V =
1

2

(
e2

1 + ēT ē +
1

β
w̄T Λ̄−1w̄

)
(3-26)

where Λ̄ := diag{λ2, · · · , λN}; therefore, V is a positive definite and radially unbounded

function. Differentiating V along the trajectories of (3-18) yields

V̇ = ψ11e
2
1 + ēTΨ22ē− αēT Λ̄ē + e1ē

T
(
ΨT

12 + Ψ21

)
and, using (3-21), we get

V̇ = ψ11e
2
1 + ēTΨ22ē− αēT Λ̄ē + 2e1ē

TR22ρ̄
T︸ ︷︷ ︸

g(e1,ē)
(3-27)

Now, by setting QT = R22, ζT1 = ēT , and ζ2 = ē1ρ̄
T in (2-2), we can upper-bound g(e1, ē)

as follows

g(e1, ē) ≤ εēTQTQē +
ρ̄ρ̄T

ε
e2

1

This yields that from (3-27) we get

V̇ ≤
(
ψ11 + ρ̄ρ̄T

2ε

)
e2

1 + ēTΨ22ē− αēT Λ̄ē + ε
2
ēTQTQē (3-28)

From (3-19), we obtain
∣∣∣∣∣∣Ψ + ΨT

∣∣∣∣∣∣ ≤ 2|||U|||2|||P|||. Moreover, we have |||P||| = maxi{|ρi|}
and, from (3-15), |||U|||2 = (1/N). Then,

∣∣∣∣∣∣Ψ + ΨT
∣∣∣∣∣∣ ≤ (2/N) maxi {|ρi|}.

Using (2-5) we then find that λmax(Ψ22 + ΨT
22) ≤ λmax(Ψ + ΨT ) so that

ēTΨ22ē = (1/2)ēT
(
Ψ22 + ΨT

22

)
ē ≤ (1/N) max

i
{|ρi|}ēT ē

Also, as −ēT Λ̄ē ≤ −λ2ē
T ē, we obtain

V̇ ≤
(
ψ11 + ρ̄ρ̄T

ε

)
e2

1 +
(

1
N

maxi{|ρi|} −αλ2 + ε
N

)
ēT ē (3-29)

Now, V̇ is negative definite if the terms ξ1 := ψ11 + ρ̄ρ̄T/ε and ξ2 := (1/N) maxi{|ρi|} −
αλ2 + (ε/2N) are both negative.

From the assumptions, we have that ψ11 < 0, therefore ξ1 < 0 is ensured if we choose

ε > ρ̄ρ̄T/ |ψ11| [this is always possible as ε is an arbitrary positive constant in (2-2)]. Then

the condition ξ2 < 0 can be fulfilled by selecting the control gains so as to satisfy (3-25b).

Therefore, all agents in (3-1) achieves admissible consensus to x∞ as defined in Prop. 3.1.1

which completes the proof.
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Figure 3-3.: Heterogeneous ring network controlled by distributed PI strategy.

Example 6. Consider the heterogeneous ring network shown in Figure 3-3 where all link

weigths are one

From Theorem 3.1.2 we have that ψ11 = (1/N)
∑N

k=1 ρk = −0.6 < 0; therefore, condition

(3-25a) is fulfilled. Next, from (3-23) we have that ρ̄ := [−1, 1, 2, 0] and maxi {|ρi|} = 2.

Hence αλ2 > 1.066. From Figure 3-3 we have that λ2 = 1.382 and the heterogeneous multi-

agent network reaches admissible consensus if α > 0.7713. The consensus equilibrium can

be computed using Proposition 3.1.1, then

x∞ = −
∑N

k=1 δk∑N
k=1 ρk

= 1

so that x∗ := 1N and

z∗ = −(Px∗ + ∆) = [0, 2,−1,−1, 0]T (3-30)

The evolution of the closed-loop network setting α = β = 1, is shown in Figure 3-4 where

consensus is achieved to the predicted value (x∗,z∗)

3.2. Distributed PID control

In this section we consider the multi-agent system (3-1) controlled by distributed PID (3-4).

Then the overall dynamics of the closed-loop network can be written as (using the notation

introduced in the PI section)[
L̃ẋ(t)

ż(t)

]
=

[
P− αL IN
−βL 0N×N

] [
x(t)

z(t)

]
+

[
∆

0N×1

]
(3-31)

where L̃ := IN + γL is the matrix encoding the derivative gain. Next we derive some prop-

erties of the matrix L̃ that will be useful through the manuscript.
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Figure 3-4.: Time response of the closed-loop heterogeneous network of Fig. 3-3 controlled

by distributed PI strategy with α = β = 1. The dashed-lines represent the

equilibrium value.

3.2.1. Properties of L̃

From the definition and the properties of L, we immediately have that L̃ is invertible and

its eigenvalues are λ̃i = 1 + γλi,∀i ∈ N . We can prove the following Lemma that will be

useful for the convergence analysis

Lemma 3.2.1. If L ∈ Ω, then L̃−1
has positive real eigenvalues that can be given in

descending order as 1 ≥ 1/(γλ2 + 1) ≥ · · · ≥ 1/(γλN + 1). Moreover, the product L̃−1L is

itself in Ω and can be expressed as

L̃−1L = UΓU−1, Γ =

[
0 01×(N−1)

0(N−1)×1 Γ̄

]
(3-32)

with

Γ̄ = diag {λ2/ (γλ2 + 1) , · · · , λN/ (γλN + 1)} (3-33)

Proof. From the definition of L̃ we can write L̃ = UU−1 + γUΛU−1, and letting Σ :=

diag {1, γλ2 + 1, · · · , γλN + 1} yields L̃ = UΣU−1. Note that this is the eigen-decomposition

of a symmetric matrix and L̃−1
= UΣ−1U−1 where

Σ−1 := diag{1, 1/ (γλ2 + 1) , · · · , 1/ (γλN + 1)} (3-34)

Thus, we obtain L̃−1L = UΓU−1 with Γ := Σ−1Λ and the proof is complete.

Also, rewriting L̃−1
in block form, we have

L̃−1
=

[
l̂11 L̂12

L̂21 L̂22

]
(3-35)
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where l̂11 ∈ R, L̂12 ∈ R1×N−1, L̂21 ∈ RN−1×1, and L̂22 ∈ RN−1×N−1 are blocks of appropriate

dimension. Moreover, from Lemma 2.2.1, L1N = 0N×1; therefore, L̃1N = 1N . Hence,

multiplying both sides by L̃−1
we have L̃−1L̃1N = L̃−1

1N so that L̃−1
1N = 1N . Therefore,

the blocks in (3-35) must satisfy the conditions:

L̂121N−1 = L̂
T

211N−1 = 1− l̂11 (3-36)

L̂221N−1 = 1N−1 − L̂21 (3-37)

1N−11
T
N−1L̂22 = 1N−11

T
N−1 − 1N−1L̂12 (3-38)

Ĥ1N−1 = l̂111N−1 − L̂21 (3-39)

where

Ĥ := L̂22 − 1N−1L̂12 (3-40)

Moreover, from Lemma 3.2.1 we have that U−1L̃−1
U = Σ−1. Using the block representation

of U and L−1 we have[
r11 R12

R21 R22

][
l̂11 L̂12

L̂21 L̂22

] [
1 NRT

21

1N−1 NRT
22

]
= Σ−1 (3-41)

Letting M := U−1L̃U, and

Σ̄−1 := diag {1/(γλ2 + 1), · · · , 1/(γλN + 1)} (3-42)

some straightforward algebra yields[
M11 M12

M21 M22

]
=

[
1 01×(N−1)

0(N−1)×1 Σ̄−1

]
where

M11 = r11

(
l̂11 + L̂121N−1

)
+ R12

(
L̂21 + L̂221N−1

)
M12 = Nr11

(
l̂11R

T
21 + L̂12R

T
22

)
+NR12

(
L̂21R

T
21 + L̂22R

T
22

)
M21 = R21

(
l̂11 + L̂121N−1

)
+ R22

(
L̂21 + L̂221N−1

)
M22 = NR21

(
l̂11R

T
21 + L̂12R

T
22

)
+NR22

(
L̂21R

T
21 + L̂22R

T
22

)
Equating the blocks we have that M22 = Σ̄−1, and some algebraic manipulations yield

R21l̂11R
T
21 + R21L̂12R

T
22 + R22L̂21R

T
21 + R22L̂22R

T
22 =

1

N
Σ̄−1
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Now, adding and subtracting l̂11R211TN−1R
T
22 one gets

l̂11R21

(
RT

21 + 1TN−1R
T
22

)
− l̂11R211

T
N−1R

T
22 + R21L̂12R

T
22 + R22L̂21R

T
21 + R22L̂22R

T
22 =

1

N
Σ̄−1

From property (3-13) one has that RT
21 + 1N−1R

T
22 = 0. Also, using (3-11), we have R21 =

−R221N−1 so that the equation above can be recast as

R22L̂22R
T
22 −R221N−1L̂12R

T
22 −R22L̂211

T
N−1R

T
22 + l̂11R221

T
N−11N−1R

T
22 =

1

N
Σ̄−1

Finally regrouping terms we obtain

1
N

Σ̄−1 = R22

(
Ĥ + (l̂111N−1 − L̂21)1TN−1

)
RT

22 (3-43)

3.2.2. Closed-loop network

Defining the stack vector of integral states

s(t) = [s1(t), . . . , sN(t)]T := L̃−1
z(t) (3-44)

the overall dynamics of the closed-loop network can be written as (using the notation intro-

duced previously)[
ẋ(t)

ṡ(t)

]
=

[
L̃−1

(P− αL) IN

−βL̃−1L 0N×N

][
x(t)

s(t)

]
+

[
L̃−1

∆

0N×N

]
(3-45)

Then, the problem is finding conditions on the control gains α, β and γ, the network structure

and node dynamics such that the closed-loop network (3-45) achieves admissible consensus.

Proposition 3.2.1. The closed-loop network (3-45) has a unique equilibrium given by x∗ :=

x∞1N with x∞ := −
∑N

k=1 δk/
∑N

k=1 ρk, and s∗ := −L̃−1
(Px∗ + ∆).

Proof. The proof follows immediately by setting the left-hand side of (3-45) to zero and notic-

ing that L̃−1L ∈ Ω (see Lemma 3.2.1) so that x∗ = a1N , ∀a ∈ R and s∗ = −L̃−1
(aP1N + ∆).

By definition (3-5) and (3-44) one has that s(t) = −βL̃−1L. Hence, from the fact that

L̃−1L ∈ Ω, we also have 1TNs(t) = 0, then 1TNs∗ = 0 and we obtain

a = −1TN∆/1TNP1N = −
(∑N

k=1
δk

)(∑N

k=1
ρk

)−1

Hence, setting x∞ = a completes the proof.
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Remark 3.2.1. Comparing the equilibrium points of the PI and PID shown in Propositions

(3.1.1) and (3.2.1) respectively, we note that the node states converge to the same constant

value. However, the integral action in the PID case depends on L̃. This represents an

important aspect, since the equilibrium point of the integral term will be the amount of en-

ergy (control effort) needed by the controller, to compensate the heterogeneity among nodes.

Therefore, the control effort can be substantially reduced by manipulating γ or the network

structure.

Error dynamics

To study convergence to the consensus equilibrium, we consider the state transformation

e(t) = U−1x(t). Now, recasting (3-45), in the new coordinates e(t) and w(t) = U−1s(t),

and using Lemma 3.2.1, we get[
e1(t)

ē(t)

]
=

(
Ψ−

[
0 01×(N−1)

0(N−1)×1 αΓ̄

])
e(t) + w(t) + ∆̃ (3-46a)

˙̄w(t) = −βΓ̄ē(t) (3-46b)

where w̄(t) = [w2(t), . . . , wN(t)] and Ψ := U−1L̃−1
PU. (Note that the equation for w1(t)

can be neglected as it has trivial dynamics with null initial conditions and represents an

uncontrollable and unobservable state.) Furthermore, ∆̃ := U−1L̃−1
∆ = [qT R̂T ]T∆,

where q ∈ R1×N , R̂ ∈ R(N−1)×N are given by[
q

R̂

]
=

[
r11l̂11 + R12L̂21 r11L̂12 + R12L̂22

R21l̂11 + R22L̂21 R21L̂12 + R22L̂22

]

From the definition of R12 in (3-9) and using (3-36) we obtain

q = [r11 R12] =
1

N
1TN (3-47)

Also, it follows from (3-11) that R21 = −R221N−1 and again using (3-36) one has R̂ =

[R22(L̂21 − l̂111N−1) R22(L̂22 − 1N−1L̂12)]. Thus, using (3-39) we obtain

R̂ = R22Ĥ[−1N−1 IN−1] (3-48)

Moreover, the matrix Ψ is a block matrix that can be expressed as

Ψ = U−1L̃−1
PU =

[
ψ11 Ψ12

Ψ21 Ψ22

]
= U−1

[
l̂11 L̂12

L̂21 L̂22

] [
ρ1 01×(N−1)

0(N−1)×1 P̄

]
U (3-49)

with P̄ := diag {ρ2, · · · , ρN}.
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Using properties (3-11)-(3-14) and (3-36)-(3-38), some algebraic manipulation yields (see

Appendix A.1 for the derivation)

ψ11 := (1/N)
∑N

k=1
ρk (3-50)

Ψ12 := ρ̄RT
22 (3-51)

Ψ21 := R22Ĥρ̄
T (3-52)

Ψ22 := NR22Ĥ
(
P̄ + ρ11N−11

T
N−1

)
RT

22 (3-53)

where

ρ̄ := [ρ2 − ρ1, · · · , ρN − ρ1] (3-54)

Finally, shifting the origin of (3-46) via the further state transformation ê1(t)

ê(t)

ŵ(t)

 =

 e1(t)

ē(t)

w̄(t)

+

 (1/ψ11)qT

0N−1×N

R̂− (1/ψ11)Ψ21q
T

∆ (3-55)

we obtain ˙̂e1(t)
˙̂e(t)
˙̂w(t)

 =

 ψ11 Ψ12 0(N−1)×(N−1)

Ψ21 Ψ22 − αΓ̄ IN−1

0 −βΓ̄ 0(N−1)×(N−1)

 ê1(t)

ê(t)

ŵ(t)

 (3-56)

Now, we can address the admissible consensus problem for (3-45) in terms of finding condi-

tions on α, β and γ that render the origin a stable equilibrium point of (3-56).

Before studying this problem in the two cases of homogeneous or heterogeneous nodes, we

first obtain an upper bound on the integral states that apply for both. By definition we have

that s(t) = Uw, thus

s1(t) = w1(t) +NRT
21w̄(t) (3-57a)

s̄(t) = 1N−1w1(t) +NRT
22w̄(t) (3-57b)

where s̄(t) = [s2(t), . . . , sN(t)]. Neglecting w1 for the same reason given above and using

(3-16), we find from (3-57) that ‖s1(t)‖ ≤
√
N(N − 1) ‖w̄(t)‖ and ‖s̄(t)‖ ≤

√
N ‖w̄(t)‖.

Hence, we can conclude that the integral action remains bounded and

‖s(t)‖ ≤
√
N(N − 1) ‖w̄(t)‖

Therefore, asymptotically, we have

s∞ := lim
t→∞
‖s(t)‖ ≤

√
N(N − 1) lim

t→∞
‖w̄(t)‖ (3-58)
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An upper bound for s∞ can be obtained by noticing that, if the origin of (3-56) is stable,

then

lim
t→∞

s̄(t) = (1/ψ11Ψ21q
T − R̂)∆ (3-59)

so that

lim
t→∞
‖s̄(t)‖ ≤

(
1/|ψ11| ‖Ψ21‖ ‖q‖+

∣∣∣∣∣∣∣∣∣R̂∣∣∣∣∣∣∣∣∣) ‖∆‖ (3-60)

Then, using (3-48) and (3-15) yields∣∣∣∣∣∣∣∣∣R̂∣∣∣∣∣∣∣∣∣ ≤ |||R22|||
∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣|||[−1N−1 IN−1]||| ≤

√
N |||R22|||

∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ (3-61)

Also, from (3-52) we have that ‖Ψ21‖ ≤ |||R22||| ‖ρ̄‖
∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣. Then, using property (3-15)

again, from (3-60), we can write

lim
t→∞
‖s̄(t)‖ ≤

∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ (1 + ‖ρ̄‖
N |ψ11|

)
‖∆‖ (3-62)

Finally, combining (3-62) with (3-58) yields

s∞ ≤
√
N(N − 1)

∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ (1 +
‖ρ̄‖

N |ψ11|

)
‖∆‖ (3-63)

Note that
∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ is a function of γ and therefore varying γ controls the upper bound on s(t)

and consequently can be used to reduce the control effort. Specifically, we can prove the

following result.

Proposition 3.2.2. The spectral norm of Ĥ can be upper bounded as∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ ≤ N

γλ2 + 1
(3-64)

Proof. From Lemma 3.2.1 we have that L̃−1
= UΣ−1U−1. Then, using for each matrix its

block representation as shown in (3-41), we have

l̂11 = r11 +NRT
21Σ̄

−1R21 (3-65)

L̂12 = R12 +NRT
21Σ̄

−1R22 (3-66)

L̂21 = r111N−1 +NRT
22Σ̄

−1R21 (3-67)

L̂22 = 1N−1R12 +NRT
22Σ̄

−1R22 (3-68)
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Replacing (3-66), (3-68) in (3-40) and taking into account that R12 = 1/N1TN−1 and RT
21 =

−1TN−1R
T
22 [from (3-11)], we have

Ĥ = NRT
22Σ̄

−1R22 −N1N−1R
T
21Σ̄

−1R22

= NRT
22Σ̄

−1R22 +N1N−11
T
N−1R

T
22Σ̄

−1R22

= N(IN−1 + 1N−11
T
N−1)RT

22Σ̄
−1R22

(3-69)

From (3-42) we have that
∣∣∣∣∣∣Σ̄−1

∣∣∣∣∣∣ = 1/(γλ2 + 1) and
∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ ≤ N2|||R22|||2(1/(γλ2 + 1)).

Therefore, using (3-15) we obtain (3-64) and the proof is complete.

3.2.3. Homogeneous node dynamics

We first complete the proof of convergence for the homogeneous case, that is we assume all

nodes share identical uncoupled dynamics.

Theorem 3.2.1. The closed-loop network (3-45) with ρi = −ρ∗, ρ∗ ∈ R+ ∀i ∈ N achieves

admissible consensus for any positive value of α, β and γ. Moreover, all node states converge

asymptotically to x∞ = (1/N)
∑N

k=1 δk/ρ
∗ with

s∞ ≤
√
N3(N − 1)

γλ2 + 1
‖∆‖ (3-70)

Proof. Firstly, note that when all nodes share the same dynamics we have ρ̄ = 01×(N−1) in

(3-54). Consequently, Ψ12 and Ψ21 as defined by (3-51) and (3-52) are both null vectors so

that the dynamics of ê1 in (3-56) is independent from all the other variables, and converges

to zero.

We can then study independently, the dynamics of ê(t) and ŵ(t) by considering the trans-

verse candidate Lyapunov function

V (ê, ŵ) = (β/2)êT Γ̄ê + (1/2) ŵT ŵ (3-71)

which is positive definite and radially unbounded for any β, γ > 0. Then differentiating V

along the trajectories of (3-56) one has V̇ = −βêT Γ̄
(
αΓ̄−Ψ22

)
ê. As all poles are identical,

P̄ = −ρ∗IN−1; hence, expression (3-53) can be written as

Ψ22 = −ρ∗N(R22ĤRT
22 + R22Ĥ1N−11TN−1R

T
22) (3-72)

and, using properties (3-39) and (3-43), we obtain Ψ22 = −ρ∗Σ̂−1.

Then V̇ = −βêT Γ̄
{
αΓ̄ + ρ∗Σ̂−1

}
ê, which is negative definite for any positive value of α, β

and γ. Therefore, (3-45) achieves admissible consensus. Moreover, all nodes will converge
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to x∞ as defined in Prop. 3.2.1 with
∑N

k=1 ρk = −Nρ∗. To estimate the upper bound on the

integral states, we consider (3-63) with ρ̄ = 01×(N−1) and using Proposition 3.2.2 we obtain

expression (3-70).

Note that network (3-45) still achieves admissible consensus if the nodes are unstable (ρ∗ ∈
R−), since a suitable α can be chosen such that αΓ̄ + ρ∗Σ̄−1 remains positive definite; how-

ever, the average trajectory ê1(t) will be unstable and the system will exhibit unbounded ad-

missible consensus; that is, limt→∞(xi(t)− xj(t)) = 0 but limt→∞xi(t)→∞ for all i, j ∈ N .

By comparing the PID and PI (γ = 0) strategies discussed above, we observe that the most

notable difference is the presence of the factor N/(γλ2 + 1) in the expression of the upper

bound of the integral term when PID is used instead of PI. Such a factor can be varied by

selecting the gain of the derivative action. This can be done by taking into account the size

(N) and structure of the network encoded by λ2, in order to avoid possible saturation of

those integral terms and avoid the need for anti-windup strategies that can be difficult to

implement across the network.

Theorem 3.2.2. (Convergence Rate) The closed-loop network (3-45) with homogeneous node

dynamics (ρi = −ρ∗), reaches admissible consensus with a convergence rate, say µ, that can

be estimated as

µ =

∣∣∣∣∣∣ max
2≤k≤N

Re

− b
2

+

√
b2 − 4βλk

γλk+1

2

∣∣∣∣∣∣ (3-73)

where b = (αλk + ρ∗)/(γλk + 1)

Proof. The proof is based on straightforward linear algebra [63]. Indeed, as all poles are

identical, we have from (3-72) that Ψ22 = −ρ∗Σ̂−1. Thus, one has from (3-56) that[
˙̂e(t)
˙̂w(t)

]
=

[
−
(
ρ∗Σ̄−1 + αΓ̄

)
IN−1

−βΓ̄ 0

]
︸ ︷︷ ︸

Ã

[
ê(t)

ŵ(t)

]

The rate of convergence can be estimated by computing the dominant eigenvalue(s) of the

dynamic matrix Ã defined above. Specifically, say η a generic eigenvalue of Ã and v =

[vx vz]
T its corresponding eigenvector such that Ãv = ηv. Then, using the definition of Ã

we obtain

−(ρ∗Σ̄−1 + αΓ̄)vx + vz =ηvx (3-74a)

−βΓ̄vx =ηvz (3-74b)
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Thus combining (3-74b) and (3-74a), we get

−
(
αη + β

η

)
Γ̄vx =

(
ηIN−1 + ρ∗Σ̄−1

)
vx

From their definitions, it is easy to see that all matrices on both sides are diagonal; hence,

component-wise we obtain

− (αη + β)
λk

γλk + 1
= η

(
η +

ρ∗

γλk + 1

)
, k ∈ {2, · · · , N}

Therefore, the eigenvalues of matrix Ã are the 2(N − 1) solutions of the equations

η2
k + ηk

(αλk + ρ∗)

γλk + 1
+

βλk
γλk + 1

= 0, k ∈ {2, · · · , N}

Finally, letting µ := |ηmax| =
∣∣∣max

k

{
Re
(
η±k
)}∣∣∣ we obtain (3-73).

Remark 3.2.2. Note that

• The convergence rate depends on the network structure (via λ2) as in the case of classi-

cal consensus problems, e.g. [56], but also on the node dynamics (ρ∗), and the controller

gains (α, β and γ).

• In general, increasing the value of γ yields lower values of b in (3-73) and therefore

the convergence rate may become slower. This indicates the presence of a trade-off

between speed of convergence and bounds on the integral action that needs to be taken

into account during the design stage.

Now, we consider distributed proportional-derivative (PD) strategy obtained by setting β = 0

in (3-4).

Theorem 3.2.3. Network (3-45) with homogeneous node dynamics, controlled by the dis-

tributed PD protocol obtained by selecting α > 0, β = 0 and γ > 0 in (3-4) achieves

ε-admissible consensus with

ε =
γλN + 1

γλ2 + 1

N

αλN + ρ∗
‖∆‖ (3-75)

Proof. Equation (3-46a) without the integral action (β = 0) and homogeneous nodes can be

written as the two uncoupled equations

ė1(t) = ψ11e1(t) + q∆ (3-76)

˙̄e(t) = Dē + R̂∆ (3-77)
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where D =
(
Ψ22 − αΓ̂

)
. Note that, ψ11 = −ρ∗ and, using property (3-43) as done in the

proof of Theorem 3.2.1, we have Ψ22 = −ρ∗Σ̂−1 and D = −(αΓ̄+ρ∗Σ̂−1) which is a negative

definite, invertible matrix. Thus, limt→∞x̄⊥(t) = −D−1R̂∆. To get an expression for the

upper bound, we notice that, using (3-61), we can write∣∣∣∣∣∣∣∣∣−D−1R̂∆
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(αΓ̄ + ρ∗Σ̂−1)−1

∣∣∣∣∣∣∣∣∣ ‖∆‖
From (3-33) and (3-42), we know that Γ̄ and Σ̄−1 are diagonal matrices and so is the matrix

αΓ̄ + ρ∗Σ̂−1 with entries (αλk + ρ∗)/(γλk + 1),∀k ∈ {2, · · · , N}. Therefore, the diagonal

elements of
(
αΓ̄ + ρ∗Σ̂−1

)−1

are given by (γλk+1)/(αλk+ρ∗). From Lemma 2.4.1, we then

have that

∣∣∣∣∣∣∣∣∣∣∣∣(αΓ̄ + ρ∗Σ̂−1
)−1
∣∣∣∣∣∣∣∣∣∣∣∣ = (γλN +1)/(αλN +ρ∗) since λN is the maximum eigenvalue

of L. Finally, using Prop. 3.2.2, we obtain (3-75).

As expected, the bound ε on the consensus error can be considerably reduced by increasing

the gain of the proportional action (α) while it might be adversely affected by the gain of the

derivative action. Indeed as for classical PID control, the presence of a distributed derivative

action has little or no beneficial effect on the magnitude of the steady-state error. Also, it

is clear that the network structure encoded by λ2 and λN has an effect on the overall error

bound.

Example 7. We consider the multi-agent system of Example 5 controlled by distributed PD

instead of PI. The evolution of the node dynamics can be seen in Fig. 3-5 where ε-admissible

consensus is achieved. Note that as predicted theoretically the bound ε can be adjusted by

varying the network topology.

We conclude our investigation of the homogeneous case by studying distributed PID control

for simple integrators, this is ρi = 0.∀i ∈ N

Corollary 3.2.1. (Network of simple integrators) Under controller dynamics (3-4), a multi-

agent system of N agents (3-1) in the absence of disturbances with nodes characterized by

infinite time constants i.e. ρi = 0, achieves admissible consensus for any positive value of

α, β and γ. Moreover, if s(0) = 0 all node states converge to the average consensus value

x∞(t) = (1/N)
∑N

k=1 xk(0) as t approaches infinity.

Proof. The closed-loop network can be written as[
ẋ(t)

ṡ(t)

]
= Ã

[
x(t)

s(t)

]
, Ã =

[
−αL̃−1L IN

−βL̃−1L 0N×N

]
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Figure 3-5.: Time response of the PD controlled multi-agent system for different network

topologies with α = 4 and γ = 1
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Then, using the properties of the determinant of a block matrix as done in [66, 2], the

characteristic equation of Ã can be written as det
((
αλ̃+ β

)
L̃−1L + λ̃2IN

)
= 0. Also,

from Lemma 3.2.1 the characteristic equation of L̃−1L is det
(
L̃−1L− λ̄IN

)
= 0 with

solutions λ̄ = Γii ≥ 0, i = {1, · · ·N}.
Then, following a similar derivation as in [2] (proof of Theorem 1, p. 2078), one has λ̃2 +

Γiiαλ̃+ Γiiβ = 0 with solutions λ̃1 = λ̃2 = 0 for Γ11 = 0 and λ̃ ∈ C otherwise.

Note that the algebraic multiplicity of the zero eigenvalue is equal to 2 and all other eigen-

values are positive. Consequently, we can rewrite Ã into Jordan canonical form as

Ã = WJW−1 = W

 0 1 01×2N−2

0 0 01×2N−2

02N−2×1 02N−2×1 J̄

W−1

where W = [w1
T , · · · ,w2N

T ]T and W−1 = [vT1 , · · · ,vT2N ]T are matrices composed by the

right and left eigenvectors of Ã and J̄ is the Jordan upper diagonal block matrix corre-

sponding to the 2(N − 1) nonzero eigenvalues of Ã. Without loss of generality we choose

w1 = [1TN 01×N ]T , w2 = [01×N 1TN ]T , v1 = (1/N)[1TN 01×N ]T and v2 = (1/N)[01×N 1TN ]T

as generalized right and left eigenvectors. Therefore, the system solution can be written as[
x(t)

s(t)

]
= eÃt

[
x(0)

s(0)

]
where

eÃt = weJtw−1 = w

 1 t 01×(2N−2)

0 1 01×(2N−2)

0(2N−2)×1 0(2N−2)×1 eJ̄t

w−1

Noticing that for a large t

lim
t→∞

[
x(t)

s(t)

]
= (1/N)

[
1N1TN t · 1N1TN
0N×N 1N1TN

] [
x(0)

s(0)

]
thus we have that for any initial condition x(0) and s(0) = 0, the

lim
t→∞

x(t) = (1/N)
∑N

k=1
xk(0)

and limt→∞s(t) = 0 and the proof is complete.

3.2.4. Heterogeneous node dynamics

Next we consider the case where at least one pole ρi in (3-45) is different from the others,

and the disturbances δi are generically nonidentical.
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Theorem 3.2.4. The heterogeneous group of agents (3-1) controlled by the distributed PID

strategy (3-4), achieves admissible consensus for any β > 0 and γ ≥ 0 if the following

conditions hold

ψ11 = (1/N)
∑N

k=1
ρk < 0, (3-78a)

α
λ2

γλ2 + 1
>

1

N

(
max
i
{|ρi|}+

ρ̄ρ̄T

4 |ψ11|
|||H1|||2

)
(3-78b)

where H1 := IN−1 + Ĥ. Moreover, all node states converge to x∞ as defined in Prop. 3.2.1,

and the integral actions remain bounded by s∞ given in (3-63).

Proof. Consider the following candidate Lyapunov function:

V =
1

2

(
ê2

1 + êT ê +
1

β
ŵT Γ̄−1ŵ

)
(3-79)

where Γ̄−1 := diag{(γλ2+1)/λ2, · · · , (γλN +1)/λN}. Differentiating V along the trajectories

of (3-56) yields

V̇ = ψ11ê
2
1 + êTΨ22ê− αêT Γ̄ê + ê1ê

T
(
ΨT

12 + Ψ21

)
and, using (3-51) and (3-52), we get

V̇ = ψ11ê
2
1 + êTΨ22ê− αêT Γ̄ê + ê1ê

TR22H1ρ̄
T︸ ︷︷ ︸

g(ê1,ê)
(3-80)

Now, by setting QT = R22H1, ζT1 = êT , and ζ2 = ê1ρ̄
T in (2-2), we can upper-bound g(ê1, ê)

as follows

g(ê1, ê) ≤ ε

2
êTQTQê +

ρ̄ρ̄T

2ε
ê2

1

This yields that from (3-80) we get

V̇ ≤
(
ψ11 + ρ̄ρ̄T

2ε

)
ê2

1 + êTΨ22ê− αêT Γ̄ê + ε
2
êTQTQê (3-81)

From (3-19), we obtain
∣∣∣∣∣∣Ψ + ΨT

∣∣∣∣∣∣ ≤ 2|||U|||2|||P|||
∣∣∣∣∣∣∣∣∣L̃−1

∣∣∣∣∣∣∣∣∣. Moreover, we have
∣∣∣∣∣∣∣∣∣L̃−1

∣∣∣∣∣∣∣∣∣ =∣∣∣λmax (L̃−1
)∣∣∣ = 1, |||P||| = maxi{|ρi|} and, from (3-15), |||U|||2 = (1/N). Then,

∣∣∣∣∣∣Ψ + ΨT
∣∣∣∣∣∣ ≤

(2/N) maxi {|ρi|}.
Using property (2-5) we then find that λmax(Ψ22 + ΨT

22) ≤ λmax(Ψ + ΨT ) so that

êTΨ22ê = (1/2)êT
(
Ψ22 + ΨT

22

)
ê ≤ (1/N) max

i
{|ρi|}êT ê
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Also, as −êT Γ̄ê ≤ −λ2/(γλ2 + 1)êT ê, we obtain

V̇ ≤
(
ψ11 + ρ̄ρ̄T

2ε

)
x̂2

1 +
(

1
N

maxi{|ρi|} −α λ2
γλ2+1

+ ε
2N
|||H1|||2

)
x̂T x̂ (3-82)

Now, V̇ is negative definite if the terms ξ1 := ψ11 + ρ̄ρ̄T/(2ε) and ξ2 := (1/N) maxi{|ρi|} −
αλ2/(γλ2 + 1) + (ε/2N)|||H1|||2 are both negative.

From the assumptions, we have that ψ11 < 0, therefore ξ1 < 0 is ensured if we choose

ε > ρ̄ρ̄T/(2 |ψ11|) [this is always possible as ε is an arbitrary positive constant in (2-2)].

Then the condition ξ2 < 0 can be fulfilled by selecting the control gains so as to satisfy

(3-78b). Therefore, all agents in (3-1) achieves admissible consensus to x∞ as defined in

Prop. 3.2.1, and the integral actions remain bounded by (3-63) with
∣∣∣∣∣∣∣∣∣Ĥ∣∣∣∣∣∣∣∣∣ being bounded

by (3-64) which completes the proof.

By comparing the PI and PID strategies we note that the convergence conditions (3-3) and

(3-78b) differ by the term |||H1|||2/4, which includes the derivative gain γ.

Example 8. For the sake of comparison we continue with the Example 6 where just PI

actions were deployed in the heterogeneous multi-agent system. Here we include also the

derivative action. Therefore, setting γ = 1 we have that

L̃ =


3 −1 0 0 −1

−1 3 −1 0 0

0 −1 3 −1 0

0 0 −1 3 −1

−1 0 0 −1 3

 , L̃
−1

=


0.4545 0.1818 0.0909 0.0909 0.1818

0.1818 0.4545 0.1818 0.0909 0.0909

0.0909 0.1818 0.4545 0.1818 0.0909

0.0909 0.0909 0.1818 0.4545 0.1818

0.1818 0.0909 0.0909 0.1818 0.4545


from (3-40) we find that

Ĥ =


0.2727 0.0909 0 −0.0909

0 0.3636 0.0909 −0.0909

−0.0909 0.0909 0.3636 0

−0.0909 0 0.0909 0.2727


hence, |||H1||| = 2.6504 and the heterogeneous multi-agent system under distributed PID,

reaches admissible consensus if αλ2/(λ2 + 1) > 1.5708. For the network structure considered

in Example 6, we have that λ2 = 1.382 so that α > 3.844. The consensus equilibrium can

be computed using Proposition 3.2.1, yielding x∗ = 1N and

s∗ = −L̃−1
(Px∗ + ∆) = [0.1818, 0.6364,−0.2727,−0.4545,−0.0909]T (3-83)

Computing the norm of (3-30) and (3-83) we find that ‖z∗‖ = 2.4495 and ‖s∗‖ = 0.8528

respectively. Therefore a substantial reduction in the integral term has been obtained by
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Figure 3-6.: Time response of the closed-loop heterogeneous network of Fig. 3-3 controlled

by distributed PID strategy with α = 4, and γ = β = 1. The dashed-lines

represent the equilibrium constant value

considering a derivative action. In fact as shown in the upper-bound (3-63), the integral

action at steady state can be reduced by increasing the value of γ. This confirms the fact

that the derivative action can be used to decrease the amount of energy needed by the

integral action to compensate heterogeneity among the nodes.

The evolution of the closed-loop network setting α = 4 and β = 1, is shown in Figure 3-6

where consensus is achieved to the predicted value (x∗,s∗).



CHAPTER 4

Multiplex PI Control for Networks of

Heterogeneous Agents

In this chapter we extend the idea presented in Section 3.1, to the case where general linear

dynamics are considered in each node and also proportional and integral actions can be

independently deployed on different links. Specifically, we consider the problem of achieving

consensus in a network of N agents governed by open-loop heterogeneous dynamics of the

form

ẋi(t) = Aixi(t) + δi − σ
N∑
j=1

Cijxj(t) + ui(t), i ∈ N (4-1)

where xi(t) ∈ Rn×1 represents the state of the i-th agent, Ai ∈ Rn×n is the intrinsic node

dynamic matrix, δi ∈ Rn×1 is some constant disturbance (or constant external input) acting

on each node, σ is a non-negative constant modelling the global coupling strength among

any pair of nodes, C is the (possibly disconnected) Laplacian matrix of the weighted graph

GC := (N , EC) representing the open-loop network to be controlled, and ui(t) ∈ Rn×1 is the

control input.

Definition 4.0.1. Network (4-1) is said to achieve admissible consensus if for any set of

initial conditions xi(0) = xi0, and ∀t ≥ 0

lim
t→∞
‖xj(t)− xi(t)‖ = 0, ‖ui(t)‖ < +∞, i, j ∈ N

The problem we shall solve is to find bounded and distributed control inputs ui(t), such that

all states xi(t) converge asymptotically towards each other, i.e. admissible consensus.
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(a) (b)

Figure 4-1.: (a): The network to be controlled is represented by black links and the blue

and yellow connections represent the additional proportional and integral links

that are used for control. (b) Multiplex representation of a network controlled

by proportional and integral distributed controllers.

To solve this problem, we propose the use of a distributed multiplex PI control strategy,

obtained by setting:

ui(t) = −α
N∑
j=1

wij(xj(t)− xi(t))− β
N∑
j=1

gij

t∫
0

(xj(τ)− xi(τ))dτ (4-2)

where the non-negative constants wij ≥ 0 and gij ≥ 0 represent the control strengths of the

proportional and integral control actions respectively (we do not consider self-loops, that is

wii = gii = 0). It is important to highlight that this controller allows the deployment of

proportional and integral actions independently from each other (wij = 0 or gij = 0 for some

i,j ∈ N , i 6= j). The constants α, β ∈ R+ are additional parameters modulating globally

the contribution of each control layer with respect to each other.

Equation (4-2) effectively defines two control layers each represented by a different weighted

graph GP := (N , EP ) for the proportional layer and GI := (N , EI) for the integral layer,

where EP and EI are the set of edges with associated weights wij and gij respectively.

As depicted in Fig. 4-1 the resulting control strategy is therefore a multiplex distributed

control strategy, with a multiplex graph M = (G,D) where G := {GC ,GP ,GI}. Moreover,

in (4-2) the layers do not interact between them so that D is an empty set. Next, we define
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Ĉ := (C ⊗ In), P̂ := (P ⊗ In), Î := (I ⊗ In), x(t) = [xT1 (t), · · · ,xTN(t)]T ,

z(t) =
[
zT1 (t), . . . , zTN(t)

]T
:= −βÎ

∫ t

0

x(τ)dτ (4-3)

Then, the overall dynamics of the closed-loop network can be written as[
ẋ(t)

ż(t)

]
=

[
Â−H InN
−βÎ 0(nN×nN)

][
x(t)

z(t)

]
+

[
∆

0(nN×1)

]
(4-4)

where Â ∈ RnN×nN is a block diagonal matrix given by Â := diag {A1, · · · ,AN}, H :=

σĈ + αP̂ , and ∆ ∈ RnN×1 is the vector of constant disturbances, ∆ := [δT1 , · · · , δTN ]T .

Thus, the problem becomes that of finding conditions on the node dynamics, the gains σ,

α, and β, and most importantly the structural properties of the open-loop network layer GC

and control layers GP and GI , so as to guarantee emergence of admissible consensus in the

closed-loop network (4-4).

4.1. Consensus equilibrium

In this section we first show that the collective dynamics of the multiplex closed-loop network

(4-4) has a unique equilibrium which is the solution of the admissible consensus problem.

Then we derive some sufficient conditions guaranteeing asymptotic stability of such equilib-

rium.

Proposition 4.1.1. If the matrix Ψ11 := (1/N)
∑N

k=1 Ak is non-singular, then the closed-

loop network (4-4) has a unique equilibrium x∗ := (1N ⊗ x∞) and z∗ := −(Âx∗ + ∆) where

x∞ := −(1/N)Ψ−1
11

∑N
k=1 δk (4-5)

Proof. Setting the left-hand side of (4-4) to zero one has that x∗ = (1N ⊗ v), ∀v ∈ Rn×1

and z∗ = −
(
Â(1N ⊗ v) + ∆

)
. From (4-3), we also have that (1TN ⊗ In)z(t) = 0nN×1, then

(1TN ⊗ In)z∗ = 0nN×1 and we obtain

(1TN ⊗ In)Â(1N ⊗ v) = −(1TN ⊗ In)∆

(1/N)
∑N

k=1
Akv = −(1/N)

∑N

k=1
δk

then v = −(1/N)Ψ−1
11

∑N
k=1 δk = x∞ completes the proof.
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Remark 4.1.1. Note indeed that if controller (4-2) is able to render this equilibrium stable,

it is also able to guarantee consensus of all node states x(t) to a constant vector x∞ using

bounded control energy. Also, the emergent behaviour from the collective dynamics of the

network, follows an “exo-system” given by ṡ(t) = Ψ11s(t) + (1/N)
∑N

k=1 δk. This result for

perturbed heterogeneous agents establishes a connection with [78] where internal models in

networks are studied.

Now, to prove convergence, it suffices to guarantee that (x∗, z∗) is globally asymptotically

stable. We start by shifting the origin via the state transformation y(t) := z(t) + ∆ so that

(4-4) becomes[
ẋ(t)

ẏ(t)

]
=

[
Â−H InN
−βÎ 0(nN×nN)

][
x(t)

y(t)

]
(4-6)

Next, we present a decomposition of the Laplacian matrix that will be crucial for the deriva-

tions reported in the rest of the paper. As presented in the las Section such a decomposition

is particularly useful to prove convergence in the presence of heterogeneous nodes.

4.2. Error dynamics

First we provide two important lemmas that will be used for determining the error dynamics

of the consensus solution. The first one is the generalization of the block decomposition of

L presented in Section 3.1.2.

Lemma 4.2.1. Let L ∈ Ω be the Laplacian matrix of a generic undirected and connected

graph G , then L can be written in block form as L = RΛR−1, where R is an orthonormal

matrix defined with its inverse as

R =

[
1 NRT

21

1N−1 NRT
22

]
, R−1 =

[
r11 R12

R21 R22

]
(4-7)

with

r11 =
1

N
, R12 =

1

N
1TN−1, (4-8)

R21 ∈ R(N−1)×1, R22 ∈ R(N−1)×(N−1) being blocks of appropriate dimensions,

Λ = diag {0, λ2(L), · · · , λN(L)}
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with 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN(L) being the eigenvalues of L in ascending order. Also,

the blocks in R and R−1 must fulfill the following conditions

r11In + (R121N−1 ⊗ In) = In (4-9)

(R21 ⊗ In) + (R221N−1 ⊗ In) = 0(n(N−1)×1) (4-10)

(R21R
T
21 ⊗ In) + (R22R

T
22 ⊗ In) =

1

N
(IN−1 ⊗ In) (4-11)

r11(RT
21 ⊗ In) + (R12R

T
22 ⊗ In) = 0(1×n(N−1)) (4-12)

(R21R
T
21 ⊗ In) = (R221N−11

T
N−1R

T
22 ⊗ In) (4-13)

|||(R22 ⊗ In)||| ≤ 1√
N

(4-14)

‖R21‖ ≤
√
N − 1|||R22||| ≤

√
(N − 1)/N (4-15)

NRT
22 = (IN−1 + 1N−11

T
N−1)−1R−1

22 (4-16)

Lemma 4.2.2. Let Q = RΛ1R
−1 and S = TΛ2T

−1 be two generic Laplacian matrices

belonging to the set Ω, where R and T are block matrices with the same structure as in (4-7)

and Λk, k ∈ {1, 2} are diagonal matrices containing the eigenvalues of Q and S respectively.

Then,

(R−1SR⊗ In) =

[
0(n×n) 0(n×(nN−1))

0((nN−1)×n)

(
ΞΛ̄2Ξ

T ⊗ In
) ] (4-17)

where Ξ = NR22(1N−11TN−1 + IN−1)TT
22 and Λ̄2 = diag {λ2(S), · · · , λN(S)}. Moreover,

ΞΛ̄2Ξ
T is a symmetric matrix.

Proof. Multiplying both sides of S = TΛ2T−1 by R−1 and R, yields R−1SR = R−1TΛ2T−1R.

Now using the block form of R and T as shown in Lemma 4.2.1 one gets

R−1SR =

[
r11 R12

R21 R22

] [
1 NTT

21

1N−1 NTT
22

] [
0 01×(N−1)

0(N−1)×1 Λ̄2

]
·
[
t11 T12

T21 T22

] [
1 NRT

21

1N−1 NRT
22

]
where Λ̄2 = diag {λ2(S), · · · , λN(S)}. By definition t11 = r11 and T12 = R12 (see (3-9)),

and by some matrix manipulation we obtain

R−1SR =

[
r11 + R121N−1 N(t11T

T
21 + T12T

T
22)

R21 + R221N−1 N(R21T
T
21 + R22T

T
22)

]
·[

0 01×(N−1)

0(N−1)×1 Λ̄2

]
·[

t11 + T121N−1 N(r11R
T
21 + R12R

T
22)

T21 + T221N−1 N(T21R
T
21 + T22R

T
22)

] (4-18)
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We next simplify each block of all matrices. Then, from (3-11) we have that r11 + R121N−1 =

t11 + T121N−1 = 1. While, from (3-12)

R21 + R221N−1 = T21 + T221N−1 = 0(N−1×1)

and using (3-14)

N(t11T
T
21 + T12T

T
22) = N(r11R

T
21 + R12R

T
22) = 0(1×N−1)

Note also that R21 = −R221N−1 and T21 = −T221N−1. Thus, the blocks

Ξ1 := N(R21T
T
21 + R22T

T
22) = NR22(1N−11

T
N−1 + IN−1)TT

22 (4-19)

and,

Ξ2 := N(T21R
T
21 + T22R

T
22) = NT22(1N−11

T
N−1 + IN−1)RT

22 (4-20)

Consequently, we have Ξ1 = ΞT
2 and letting Ξ = Ξ1, the Kronecker product (R−1SR⊗ In)

yields (4-17). Finally, to prove that ΞΛ̄2Ξ
T is a symmetric matrix we have to show that

ΞT is an orthonormal matrix. Then, from (4-19) and from the fact that R22 is an invertible

(full rank) matrix [12] one has

Ξ−1 =
1

N
(TT

22)−1(1N−11
T
N−1 + IN−1)−1R−1

22

and using property (4-16) we obtain

Ξ−1 = NT22(1N−11
T
N−1 + IN−1)RT

22 = ΞT

which completes the proof.

Assuming that the graphs in all layers of M are connected, using Lemma 4.2.1 we can write

C = RΛCR−1, P = UΛPU−1 and I = QΛIQ
−1. Next we define the error dynamics given

by the state transformation e(t) = (R−1 ⊗ In)x(t); therefore, using the block representation

of R−1 and letting ē(t) := [eT2 (t), · · · , eTN(t)]T and x̄(t) := [xT2 (t), · · · ,xTN(t)]T , we obtain

e1(t) = r11x1(t) + (R12 ⊗ In)x̄(t) (4-21)

ē(t) = (R21 ⊗ In)x1(t) + (R22 ⊗ In)x̄(t) (4-22)

Thus expressing (R21 ⊗ In) from (4-10) and substituting in (3-17b) yields

ē(t) = (R22 ⊗ In) (x̄(t)− (1N−1 ⊗ In)x1(t))
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note that ē(t) = 0 if and only if x̄(t)− (1N−1 ⊗ In)x1(t) = 0 since R22 is a full rank matrix

[12]. Then, admissible consensus is achieved if limt→∞ ē(t) = 0 and ‖y(t)‖ < +∞, ∀t > 0.

Now, recasting (4-6) in the new coordinates e(t) and w(t) := R−1y(t), and letting

Λ̄C := diag{λ2(C), · · · , λN(C)}

Λ̄P := diag{λ2(P), · · · , λN(P)}

Λ̄I := diag{λ2(I), · · · , λN(I)}

we get

ė(t) =
(
Ψ− Ĥ

)
e(t) +

[
0n×1

w̄(t)

]
˙̄w(t) = −β(ΞIΛ̄2Ξ

T
I ⊗ In)ē(t)

(4-23)

where w̄(t) :=
[
wT

2 (t), . . . ,wT
N(t)

]T
. Note that the dynamics of w1(t) can be neglected as

it is trivial with null initial conditions and represents an uncontrollable and unobservable

state. The quantities in (4-23) are defined as follows

• Ψ is a block matrix defined as

Ψ :=

[
Ψ11 Ψ12

Ψ21 Ψ22

]
= (R−1 ⊗ In)Â(R⊗ In) =

(R−1 ⊗ In)

[
A1 0(n×n(N−1))

0(n(N−1)×n) Ā

]
(R⊗ In)

where Ā := diag {A2, · · · ,AN} is a block diagonal matrix. Using properties (4-9)-(4-

12), we can write (see Appendix A.2 for the derivation)

Ψ11 = (1/N)
∑N

k=1
Ak (4-24)

Ψ12 = P1(RT
22 ⊗ In) (4-25)

Ψ21 = (R22 ⊗ In)P2 (4-26)

Ψ22 = N(R22 ⊗ In)H(RT
22 ⊗ In) (4-27)

with

H := (1N−11
T
N−1 ⊗A1) + Ā (4-28)

P1 := [A2 −A1, · · · ,AN −A1] (4-29)

P2 := [AT
2 −AT

1 , · · · ,AT
N −AT

1 ]T (4-30)
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• the matrix ΞI = NR22(1N−11TN−1 + IN−1)QT
22 was obtained using Lemma 4.2.2 for

(R−1 ⊗ In)Î(R⊗ In).

• Ĥ := (R−1 ⊗ In)H(R⊗ In) and using again Lemma 4.2.2 yields

Ĥ =

[
0 01×(N−1)

0(N−1)×1 σΛ̄C + αΞP Λ̄PΞT
P

]
⊗ In

with ΞP = NR22(1N−11TN−1 + IN−1)UT
22.

4.3. Convergence theorem

Theorem 4.3.1. Consider the multiplex network (4-4) and assume that the graphs in each

layer of M are connected; then, admissible consensus is achieved for any integral graph

topology GI with β > 0, if the following conditions hold

i) The matrix Ψ11 = (1/N)
∑N

k=1 Ak together with its symmetric part Ψ′11 are Hurwitz,

ii) αλ2(P) > 1
2

(
µ

N |η| + ρ
)
− σλ2(C)

where

µ := λmax

(∑N

k=2
(A′k −A′1)

2
)

(4-31a)

η := λmax (Ψ′11) (4-31b)

ρ := max
k∈N
{λmax (A′k)} (4-31c)

Moreover, all nodes asymptotically converge to x∞ = −(1/N)Ψ−1
11

∑N
k=1 δk.

Proof. Consider the candidate Lyapunov function (in what follows we remove the time de-

pendence of the state variables to simplify the notation)

V =
1

2
(eT1 e1 + ēT ē) +

1

2β
w̄T (ΞIΛ̄IΞ

T
I ⊗ In)

−1
w̄ (4-32)

From Lemma 4.2.2 we know that ΞIΛ̄IΞ
T
I is an eigendecomposition of a symmetric matrix

with positive eigenvalues, which are the diagonal entries of Λ̄I ; therefore, its inverse exist

and it is also a positive definite matrix. Consequently, (4-32) is a positive definite and

radially unbounded function. Then, differentiating V along the trajectories of (4-23) and

using expressions (4-25) and (4-26), one has

V̇ = V1(e1) + V2(ē) + V3(ē) + V4(e1, ē) (4-33)
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where,

V1(e1) = eT1 Ψ11e1 (4-34)

V2(ē) = ēTΨ22ē (4-35)

V3(ē) = −ēT (σ(Λ̄C ⊗ In) + α(ΞP Λ̄PΞT
P ⊗ In))ē (4-36)

V4(e1, ē) = eT1 (P1 + PT
2 )(RT

22 ⊗ In)ē (4-37)

Now, we proceed to find an upper-bound for each of the terms in (4-33). From the assump-

tions we know that Ψ11 + ΨT
11 is Hurwitz; therefore, using (4-31b) and property (2-3), one

has that V1(e1) ≤ −(1/2) |η| eT1 e1

Next, consider the symmetric matrix Ψ + ΨT = (R−1 ⊗ In)(Â + ÂT )(R ⊗ In). Then, it

immediately follows that λmax

(
Ψ + ΨT

)
= ρ, where ρ is given in (4-31c). Now, we can write

V2(ē) = (1/2)ēTΨ′22ē, and from the fact that Ψ22 is a principal sub-matrix of Ψ, by using

property (2-5) one has V2(ē) ≤ ρēT ē.

From Lemma 4.2.2 we know that ΞP Λ̄PΞT
P is a symmetric positive definite matrix. Hence,

using (2-3) we have that V3(ē) ≤ −(σλ2(C) + αλ2(P))ēT ē.

Finally, setting ζ1 = e1, ζ2 = ē, QT
1 := P1 + PT

2 and Q2 := RT
22 ⊗ In and using (2-2) yields

V4(e1, ē) <
ε

2
eT1 QT

1 Q1e1 +
1

2ε
ēTQT

2 Q2ē

<
ε

2
eT1
∑N

k=2
(A′k −A′1)

2

e1 +
1

2ε
ēTQT

2 Q2ē

We can further simplify this expression by noticing that QT
2 Q2 is a symmetric matrix and

using (2-3), (2-4), and (4-14), we can write ēTQT
2 Q2ē ≤ |||Q2|||2ēT ē ≤ (1/N)ēT ē. Then,

using (4-31a) yields V4(e1, ē) ≤ (εµ)/2eT1 e1 + 1/(2Nε)ēT ē. Exploiting all the bounds we

found for each term in (4-33) yields

V̇ ≤ (1/2) (εµ− |η|) eT1 e1 − (σλ2(C) + αλ2(P))ēT ē +

(
1

2Nε
+
ρ

2

)
ēT ē

≤ ξ1e
T
1 e1 + ξ2ē

T ē

(4-38)

where ξ1 := εµ − |η| < 0 and ξ2 := 1/(2Nε) + ρ/2 − σλ2(C) − αλ2(P) < 0. Now, ξ1 < 0

is ensured if ε < |η| /µ. Also, ξ2 < 0 if condition ii) is fulfilled. Therefore, under the

hypotheses, all agents in (4-1) achieve admissible consensus to x∞ as defined in (4-5).

Remark 4.3.1.

• Note that for this type of heterogeneous networks, two ingredients node dynamics and

network topology are crucial for determining the stability of the consensus equilibrium.

Therefore, our results confirm that consensus in heterogeneous networks is a trade-off
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between network structure (open loop network and proportional layers) and intrinsic

node dynamics as shown in [30].

• The stability problem of the whole network has been simplified. In particular, rather

than studying the stability of the 2nN × 2nN matrix in (4-4), only conditions i) and

ii) need to be verified which only depend upon n× n matrices.

• It is important to highlight that optimal values for the proportional layer (α, λ2(P))

can be obtained by properly labeling node 1 so that µ is such that the quantity µ/(N |η|)
in condition ii) is the smallest.

• The integral network together with β may be used to control heuristically the rate of

convergence to the consensus equilibrium. Obtaining an analytical estimate of such a

rate is a highly non-trivial problem [39], [83] but some estimations can be found in the

case where the agents are one-dimensional and homogeneous [12].

Corollary 4.3.1. Let Gcp = proj(GC ,GP ) denote the projection graph of GC and GP with

Lcp as its associated Laplacian matrix; then, assuming Gcp connected, the multilayer network

(4-4) reaches admissible consensus if condition i) of Theorem 4.3.1 is fulfilled and λ2(Lcp) >

(1/2) (µ/(N |η|) + ρ)

Proof. Since the graph Gcp = proj(GC ,GP ) is connected then we have that Lcp = UΛcpU
T

where U is the matrix composed by the eigenvectors of Lcp and

Λcp = diag{0, λ2(Lcp), · · · , λN(Lcp)}

Hence, we have that H = (Lcp ⊗ In) in (4-4) and following a similar arguments to those

presented in Section 4.1 completes the proof.

Corollary 4.3.2. Considering homogeneous node dynamics, i.e Ai = A, i ∈ N where A

and A′ are Hurwitz stable, then the closed-loop network (4-4), reaches admissible consensus

for any connected proportional and integral graph topologies with α, β > 0.

Proof. Firstly, note that when all nodes share the same intrinsic dynamics we have that

µ = 0 in (4-31a), and Ψ11 = A. Hence, from the assumption, condition i) of Theorem 4.3.1

is automatically satisfied and from the fact that matrix A + AT is Hurwitz, one has that

ρ < 0 in (4-31c); therefore, condition ii) of Theorem 4.3.1 is also automatically fulfilled.
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Now consider the case where Ψ11 is not Hurwitz stable; then, it is possible to apply a local

feedback control action to a subset of the nodes so as to render Ψ11 Hurwitz stable and

guarantee the existence of the consensus equilibrium (x∗, z∗) in the closed-loop network.

Or, equivalently, make the network consensuable according to the definition given in [77].

Specifically, consensusability can be achieved by adding an extra control input, say vi, onto

a fraction K < N nodes so that Ψ11 is stable. For example, one can choose the controller

vi(t) = Hixi(t) (4-39)

where Hi ∈ Rn×n is a gain matrix to be designed appropriately. Note that typically one could

simply choose K = 1 so that the dynamics of just one node is altered by this self-feedback

loop.

Corollary 4.3.3. The heterogeneous network (4-1) is said to be consensuable under the

distributed control action (4-39), if there exist matrices Hi such that conditions i) and ii) in

Theorem 4.3.1 are fulfilled.

Remark 4.3.2. Note that the presence of local controllers acting on some nodes can be used

not only for improving the closed-loop network stability, but also to change the value of the

consensus vector x∞.

4.4. Control algorithm

The results presented so far can be distilled into the following algorithmic steps to design

the multilayer PI network control strategy proposed in this paper. Specifically,

S1 Compute matrix Ψ11 = (1/N)
∑N

k=1 Ai from the open-loop network (4-1).

S2 If matrix Ψ11 and Ψ′11 are Hurwitz stable then go to step S4, otherwise go to S3.

S3 Design local controllers (4-39) such that Ψ11 together with its symmetric part Ψ′11 are

Hurwitz. Note that matrices Hi can also be properly chosen for selecting different

values of the consensus vector x∞ in (4-5)

S4 Select any connected and weighed graph GI for the integral layer e.g. a minimal

spanning tree. Then compute the quantities µ, η, and ρ defined in (4-31)

S5 Find a connected and weighed graph GP for the proportional layer and a value of the

global coupling gain α such that αλ2(P) > (1/2) (µ/(N |η|) + ρ)− cλ2(C)
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Figure 4-2.: Time response of the closed-loop multiplex network for α = 13.5 and β = 7

where the proportional and integral networks have both ring topologies with

all its weights equal to 3 and 1 respectively.

Example 9. For the sake of simplicity and without loss of generality we consider three types

of node dynamics; stable (E1), oscillatory (E2) and unstable (E3)

E1 :=

[
−3 0

1 −7

]
,E2 :=

[
0 1

−1 0

]
,E3 :=

[
1 1

0 0.5

]
Then, we consider eight decoupled agents governed by (4-1), with σ = 0, Ak = E1, k ∈
{1, 2, 5, 6}, Ak = E2, k ∈ {3, 7}, and Ak = E3, k ∈ {4, 8} and disturbances δi ∈ R2×1 given

by

∆ =
[
δT1 , · · · , δT8

]T
= [0, 50, 0, 150, 0, 5, 100, 0, 150, 150, 300, 50,−50, 200, 0, 0]

Note that the 8-th node does not have any perturbation. Thus, the aim is to design the

multiplex PI-Controller such that all the 8 nodes achieve admissible consensus. Following

the control design steps in Section 4.4, we have from S1 that matrices

Ψ11 =

[
−1.25 0.5

0.25 −3.375

]
,Ψ′11 =

[
−2.5 0.75

0.75 −6.75

]
are both Hurwitz stable. Then following S4 we select a ring network of 8 nodes with unitary

weights (gij = 1 ∀i, j ∈ N ) as the connected integral network, and from (4-31) one has that

µ = 846.4826, η = 2.3715, and ρ = 2.618. From S5 we have that αλ2(P) > 23.6175. Then,

choosing, w.l.o.g again a ring network with wij = 3 ∀i, j ∈ N so that λ2(P) = 1.3244. One

has that the closed-loop network of 8 agents, achieves admissible consensus for α > 13.4392.

We choose α = 13.5, and β = 7. The resulting evolution of the node states and integral

actions is shown in Fig. 4-2, where admissible consensus is reached as expected to the pre-

dicted value x∞ := −(1/N)Ψ−1
11

∑N
k=1 δk = [60.7634, 26.9084]T .
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Figure 4-3.: Networks with unitary weights representing different architectures for the

graph in the integral control layer: (a) all-to-all, (b) star, (c) ring, and (d)

Tree. (e) time response of the consensus index dx when the topology of the

integral network is varied

The admissible consensus conditions presented in Theorem 4.3.1 are independent from the

graph structure of the integral layer GI that only needs to be connected. However, in gen-

eral, we found that the rate of convergence to the consensus equilibrium can be affected

by the specific choice of GI . To illustrate this point, we consider different structures for

the graph GI as shown in Fig.4-3. We then plot the evolution of the consensus index

dx :=
∥∥x(t)− (1/N)

(
1N1TN ⊗ In

)
x(t)

∥∥, where dx = 0 indicates that the closed-loop net-

work has reached admissible consensus. We observe that the structure of GI changes the

speed of convergence.

Surprisingly, when the integral layer has a ring topology which has lower λ2 than the star

topology convergence is faster. Therefore, the presence of an integral layer with an inde-

pendent structure from the diffusive proportional layer can be used as an extra degree of

freedom to optimize performance.



CHAPTER 5

Distributed PID Control for

Synchronization in Networks of

Nonlinear Units

In this Chapter we address the problem of synchronizing nonlinear units by considering

distributed proportional, integral and derivative actions acting among nodes. In particular

we extend the previous result on linear consensus to the case of nonlinear yet identical

dynamics. Specificaly, consider a set of N units (agents) described by

ẋi(t) = f (xi(t)) + ui(t) (5-1a)

yi(t) = Γxi(t), i ∈ N (5-1b)

where xi ∈ Rn, f(x, t) : Rn×R+∪{0} 7→ Rn is a nonlinear function, yi ∈ Rn is the output of

each node with Γ ∈ Rn×n, and ui(t) representing a distributed controller (or interconnection

term of the i-th node with its neighbour nodes). Generally, Γ is assumed to be a diagonal

positive semi-definite matrix, representing the information that all units share with each

other.

The problem is to find bounded and distributed control inputs ui(t), such that all states

xi(t) converge asymptotically towards each other.

Definition 5.0.1. (Admissible Synchronization): A group of N nonlinear units (5-1), is said

to reach local admissible synchronization if there exist a set of initial conditions xi(0) = xi0

such that

lim
t→∞
‖xj(t)− xi(t)‖ = 0, ‖ui(t)‖ < +∞,∀t ≥ 0, i ∈ N (5-2)
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Moreover, if (5-2) holds for any set of initial conditions; then, we said that the network

reaches global admissible synchronization.

As suggested in previous Chapters, to solve this problem we make use of distributed propor-

tional, integral and derivative actions, by setting

ui(t) = −
N∑
j=1

Lij

αyj(t) + β

t∫
0

yj(τ)dτ + γẏj(t)

 (5-3)

where α, β and γ are positive constants representing the global strength of the proportional,

integral and derivative contributions. Thus, the problem becomes that of finding conditions

on the control gains α, β, γ, the network structure L and the node dynamics f (.) so as to

guarantee convergence of all nodes towards each other, i.e, admissible synchronization.

5.1. Local stability analysis

In this section we study the stability of the synchronous network solution in presence of small

perturbations. To further characterize the influence of the derivative and integral terms, we

decide to analyse the PD and PI cases in a separated way. Here, the well known Master

Stability Function approach (MSF) is extended for finding local synchronization conditions.

5.1.1. MSF for distributed PD

Consider the group of nonlinear units (5-1) controlled by distributed proportional and deriva-

tive actions (this is, setting β = 0 in (5-3)). Then, letting L̃ := InN+γ(L⊗Γ), the closed-loop

network can be written as

L̃ẋ(t) = F(x)− α(L⊗ Γ)x(t) (5-4)

where F(x) :=
[
f(x1)T , · · · , f(xN)T

]T
and x(t) :=

[
xT1 (t), · · · ,xTN(t)

]T
are the stack vectors

of the nonlinear functions and node states respectively. Note that for γ = 0 (just proportional

control) one has ẋ(t) = F(x)−α(L⊗Γ)x(t) which is the classical diffusive coupled network

(2-15). As done in Section 3.2.1, we first derive some properties of the matrix L̃ that will

be useful to prove admissible synchronization

Proposition 5.1.1. Let L̃ := InN +γ(L⊗Γ) where γ is an arbitrary non-negative constant,

L ∈ Ω and Γ is a positive semi-definite diagonal matrix. Then, the following equalities hold

L̃(1N ⊗ 1n) = L̃−1
(1N ⊗ 1n) = (1N ⊗ 1n) (5-5)

L̃ (1N ⊗ ζ) = L̃−1
(1N ⊗ ζ) = (1N ⊗ ζ) ,∀ζ ∈ Rn×1 (5-6)

L̃ = (U⊗ In)Σ(UT ⊗ In) (5-7)
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where Σ is a diagonal matrix given by Σ = InN + γ(Λ⊗ Γ)

Proof. From Lemma 2.2.1, L1N = 0N×1; therefore, we immediately have L̃1nN = (InN +

γ(L⊗Γ))(1N⊗1n) = 1nN . Hence, multiplying both sides by L̃−1
yields L̃−1L̃1nN = L̃−1

1nN
so that L̃−1

1nN = 1nN and (5-5) is obtained. Similarly, using straightforward calculations

we can obtain (5-6). Moreover, we have that L = UΛUT where UUT = IN . Hence, we can

write L̃ = (UUT ⊗ In) + γ(UΛUT ⊗ Γ), then regrouping terms yields (5-7).

Now, letting P := L̃−1
(L ⊗ Γ), and denoting by L̂ij and P ij the n × n blocks of matrices

L̃−1
and P respectively, yields that the equation of the i-th node of the closed-loop network

(5-4) can be written as

ẋi(t) =
N∑
j=1

L̂ijf(xj)− α
N∑
j=1

P ijxj(t),∀i ∈ N (5-8)

Note that when all nodes are synchronized, i.e., x1(t) = · · · = xN(t) = s(t), (5-8) becomes

ṡ(t) = f(s)
∑N

j=1 L̂ij−αs(t)
∑N

j=1 P ij. It follows from property (5-5) that
∑N

j=1 L̂ij = 1 and

from the definition we have that P is row-sum zero. This can be easily seen by considering

L̃−1
(L⊗ Γ) (1N ⊗ 1n) = L̃−1

(L1N ⊗ Γ)

and from the fact that L ∈ Ω we have that L1N = 0N×1. Therefore, the equation governing

the synchronous motion is given by ṡ(t) = f(s).

Following the master stability function approach, we study the stability of the synchronous

solution of the closed-loop network (5-8), in presence of small perturbations δx(t). Thus,

we set s(t) = xi(t) − δxi(t). It follows from Taylor series expansion that f (δxi + s) =

f(s) + Df(s)δxi(t),∀i ∈ N , where Df(s) represents the time-varying Jacobi matrix of f(.).

Therefore, using the properties of L̃ the perturbation dynamics can be expressed as

δ̇xi(t) =
N∑
j=1

L̂ijDf(s)δxj(t)− α
N∑
j=1

P ijδxj(t) (5-9)

which in compact form reads

∆̇(t) = L̃−1
(IN ⊗Df(s)) ∆(t)− αP∆(t) (5-10)

where ∆(t) :=
[
δxT1 (t), · · · , δxTN(t)

]T
. Moreover, from (5-7) one has that L̃−1

= (U ⊗
In)Σ−1(UT ⊗ In); therefore, P = L̃−1

(L⊗ Γ) = (U⊗ In)Σ−1(Λ⊗ Γ)(UT ⊗ In). Hence, by

applying the state transformation ζ(t) =
(
UT ⊗ In

)
∆(t) to (5-10) and using properties 2-6

one has

ζ̇(t) = Σ−1 ((IN ⊗Df(s))− α(Λ⊗ Γ)) ζ(t) (5-11)
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note that (5-11) is in triangular form with N decoupled blocks

ζ̇i(t) = (In + γλiΓ)−1 (Df(s)− αλiΓ) ζi(t) (5-12)

Then, letting γ̃ = γλi, and α̃ = αλi we have that the general equation describing the

perturbed dynamics of the synchronous state for any node in the network is given by

ζ̇s(t) = (In + γ̃Γ)−1 (Df(s)− α̃Γ) ζs(t) (5-13)

Therefore, the local stability of the synchronous solution s(t) can be addressed computing

the Maximum Lyapunov Exponent (MLE) of the variational equation (5-13) as a function

of the parameters α̃ and γ̃. We denote this MLE value as Ψ(α̃, γ̃), which is also known as

Master Stability Function (MSF) [9]. Positive values of Ψ(α̃, γ̃) represent unstable modes,

i.e. the networks does not exhibit synchronized motion. Moreover, negative values of Ψ(α̃, γ̃)

indicates that the networks exhibit local admissible synchronization.

Note from (5-13), that for λ1 = 0 one has that α̃ = 0 and γ̃ = 0. Thus, the variational

equation reads ζ̇s(t) = Df(s)ζs(t), and its Lyapunov exponents are equal to those of the

single uncoupled system. Hence for the next N − 1 nonzero eigenvalues, multiple scenarios

where Ψ(α̃, γ̃) intersects the zero plane can be obtained, as the ones presented in Section

2.6.1.

5.1.2. MSF for distributed PI

Here we are interested in networks under distributed PI control. This is, setting γ = 0 in

(5-3). Thus, letting zi(t) =
∫ t

0
xj(τ)dτ and wi := [xTi (t), zTi (t)]T , the closed-loop network

dynamics reads

ẇi(t) = g(wi)−
N∑
j=1

LijHwj(t),∀i ∈ N (5-14)

where g(wi) := [f(xi)
T ,xi

T ]T and

H :=

[
αΓ βΓ

0n×n 0n×n

]
(5-15)

When the network reaches synchronization; this is, x1(t) = · · · = xN(t) = s(t), we have that

ṡ(t) = g(s), which in vector form can be written as[
ṡx(t)

ṡz(t)

]
=

[
f(sx)

sx

]
(5-16)
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Then, following the MSF approach by studying the perturbed state s(t) = wi(t) − δwi(t),

and using the notation introduced in Section 5.1.1 one has

∆̇(t) = ((IN ⊗Dg(s))− (L⊗H)) ∆(t) (5-17)

Then, using again the state transformation ζ(t) = (U−1 ⊗ In) ∆(t) one has

ζ̇(t) = ((IN ⊗Dg(s))− (Λ⊗H)) ζ(t) (5-18)

note that (5-18) has triangular form with blocks

ζ̇i(t) = (Dg(s)− λiH) ζi(t),∀i ∈ N (5-19)

where λi are the eigenvalues of the Laplacian matrix. Then, letting α̃ = λiα and β̃ = λiβ we

have that the blocks of (5-19) can be represented by the generic dynamics ζs(t) given by

ζ̇s(t) =

(
Dg(s)−

[
α̃Γ β̃Γ

0n×n 0n×n

])
ζs(t) (5-20)

Similarly to the PD case, the local stability of the synchronous solution s(t) can be addressed

computing the MLE of the variational equation (5-20). Hence, synchronization is guaranteed

for the set of values α̃ and β̃ such that Ψ(α̃, γ̃) remains negative.

Example 10. To illustrate the use of the MSF for PD and PI case, we consider the chaotic

Lorenz system introduced in Example 4. Then we compute the MSF for PD and PI control

by solving the variational equations (5-13) and (5-20) respectively. The two dimensional rep-

resentation of the MSF for both cases is depicted in Fig.5-1 for two different configurations

of the output matrix Γ.

Setting γ̃ = 0 we just have distributed proportional control acting among nodes. Then, the

MSF coincides with the one depicted in Fig. 2-8. In both cases Fig. 5.1(a) and Fig. 5.1(b),

the proportional gain can be considerably reduced by increasing the derivative one, and even

can be neglected in the second case where Γ = diag{1, 0, 0}. Moreover, when the distributed

integral control is deployed together with the proportional one, we have different results (see

Fig, 5.1(c) and Fig. 5.1(d)).

This extra degree of freedom provided by the derivative or integral gain can be properly used

to optimize the network performance, since low values of the control gains may decrease the

control effort required to achieve synchronization. Next, we consider a network of ten Chaotic

Lorenz with Γ = diag{1, 0, 0}, where its structure is described by the graph depicted in Fig.
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Figure 5-1.: Two dimensional representation of the master stability function for Chaotic

Lorenz. For each point in the plane corresponds the value of the MSF eval-

uated at that point, which is represented with different colors. The red-scale

colors denote positive values of the MSF, while negative values are repre-

sented by the blue-scale. (a)-(b) Ψ(α̃, γ̃) function computed for distributed

PD control, (c)-(d) Ψ(α̃, β̃) function computed for PI control.
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2.5(a) where λ2 = 0.233. Hence, accordingly to the diagram on Fig. 5.1(b), if we choose

the point α̃ = γ̃ = 2 where the MSF is positive (No synchronization), we thus have that

α = α̃/λ2 = 8.5837 and γ = γ̃/λ2 = 8.5837. The time response of the network is shown in

Fig. 5.2(a). If instead we set α̃ = 2 and γ̃ = 8 we have that γ = 34.3348 and the network

achieves synchronization as expected (Fig. 5.2(b)). Finally, we change the network structure
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Figure 5-2.: Time response of a network of ten chaotic Lorenz. (a) α = β = 8.58 (b)

α = 8.58 and γ = 34.3348

by the one depicted in Fig. 2.5(c) where λ2 = 1. Also, we assume Γ = diag{1, 1, 1} and we

consider proportional-integral control. Hence, accordingly to diagram Fig. 5.1(c) we have
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that setting α = 1.5 and β = 8 the network does not exhibit local admissible synchronization

as shown in Fig. 5.3(a). While selecting α = 1.5 and β = 0.5 the network synchronizes (see

Fig. 5.3(b)). Note that, varying the network structure via λ2 affects the value of the control

gains, and it suggest that there may exist an optimal network structure and values of the

control gains, such that the network synchronize using minimum control energy.
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Figure 5-3.: Time response of a network of ten chaotic Lorenz. (a) α = 1.5 and β = 8 (b)

α = 1.5 and β = 0.5
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5.2. Global stability analysis

In the last section we have shown that the distributed derivative and integral action, affects

the synchronization region of the network in the parameter space. Those results were ob-

tained using the MSF; however, they are valid for a sufficiently small neighborhood of the

synchronous state. In this section we are interested in providing conditions to guarantee

global synchronization for PD and PI controlled networks. The conditions of global syn-

chronization are derived under some assumptions in the nonlinear vector-fields and output

matrix Γ of each unit.

5.2.1. Distributed PD control

Consider the closed-loop network (5-8). Define the disagreement dynamics as

δxi(t) = xi(t)− x̂(t), x̂(t) =
1

N

N∑
k=1

xk(t),∀i ∈ N (5-21)

then, one has that

˙δxi(t) = −α
N∑
j=1

P ijδxj(t) +
N∑
j=1

L̂ijf(xj)−
1

N

N∑
j=1

f(xj),∀i ∈ N (5-22)

and letting ∆x(t) :=
[
δxT1 (t), · · · , δxTN(t)

]T
, we have that the disagreement dynamics of the

whole network is

∆̇x(t) = −αP∆x(t) + L̃−1
F(x)− 1

N

(
1N1TN ⊗ In

)
F(x) (5-23)

Therefore, the problem becomes that of finding conditions on f(.), Γ and the control param-

eters, α, γ and L such that the zero equilibrium of (5-23) remains globally asymptotically

stable. Then, we require some assumptions in the vector-fields as well as derive some prop-

erties for the disagreement dynamics, that will be particularly useful for both PD and PI

cases.

Definition 5.2.1. (Lipchitz and QUAD conditions) A function f(x, t) : Rn×R+∪{0} 7→ Rn

is called Lipchitz if there exist a positive constant µ such that

‖f(x, t)− f(y, t)‖ ≤ µ ‖x− y‖ ,∀x,y ∈ Rn;∀t ≥ 0 (5-24)

if instead there exist a diagonal matrix D = diag {d1, · · · , dn}, and a positive constant ε such

that

(x− y)T (f(x, t)− f(y, t)−D(x− y)) ≤ −ε(x− y)T (x− y),∀x,y ∈ Rn; ∀t ≥ 0 (5-25)

we say that the function f(.) is QUAD(ε,D).
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Proposition 5.2.1. Consider the quantity x := (Π ⊗ In)y where, the matrix Π ∈ Ω

is defined as Π := IN − (1/N) 1N1TN and the vectors x,y ∈ RnN×1 are given by x :=[
xT1 , · · · ,xTN

]T
, and y :=

[
yT1 , · · · ,yTN

]T
with xi,yi ∈ Rn×1,∀i ∈ N . The following expres-

sions holds:

xT1nN =
N∑
i=1

N∑
j=1

Πijyj = 0 (5-26)

xT (1N ⊗ ζ) =
N∑
i=1

yTi

N∑
j=1

Πijζ = 0,∀ζ ∈ Rn (5-27)

xT
(
1N1TN ⊗ In

)
= 01×nN (5-28)

Proof. Since Π ∈ Ω one has that Π1N = 0(1×N); therefore, relations (5-26) and (5-27) are

easily verifiable. Besides, from the definition we have that x = (Π ⊗ In)y and substituting

in (5-28) yields
(
1N1TNΠ⊗ In

)
y = 01×nN .

Theorem 5.2.1. A network of identical nonlinear units (5-1) satisfying the QUAD(ε,D)

assumption and controlled by a distributed PD strategy with γ > 0, reaches global admissible

synchronization if the diagonal matrix D− αλ2Γ is negative definite.

Proof. Let’s consider the candidate Lyapunov function

V =
1

2
∆T

x (t)L̃∆x(t)

where L̃ is a symmetric positive-definite matrix. This can be easily seen from (5-7) where

all the eigenvalues of L̃ are positive. Hence, V is a positive definite and radially unbounded

function. Then, deriving V along the trajectories of (5-23) one has

V̇ = ∆T
x (t) (−α (L⊗ Γ) ∆x(t) + F(x) −(1/N)

(
1TN1N ⊗ In

)
F(x)

)
(5-29)

Moreover, from (5-21) we can write ∆x(t) := (Π⊗ In)x(t); hence, using property (5-28), we

have that ∆T
x (t)

(
1N1TN ⊗ In

)
F(x) = 01×nN . Furthermore, setting ζ = f(x̂) in (5-27) one

has ∆T
x (t)(1N ⊗ f(x̂)) = 0. Therefore, (5-29) can be recast as

V̇ = −α∆T
x (t) (L⊗ Γ) ∆x(t) + ∆T

x (t) (F(x)− (1N ⊗ f(x̂))) (5-30)

Letting D := diag {d1, · · · , dn}, and adding and subtracting the term ∆T
x (t)(IN ⊗D)∆(t)

in (5-30) yields V̇ = V1 + V2, where

V1 = ∆T
x (t) (F(x)− (1N ⊗ f(x̂))− (IN ⊗D)∆x(t)) (5-31)

V2 = −α∆T
x (t) (L⊗ Γ) ∆x(t) + ∆T

x (t)(IN ⊗D)∆x(t) (5-32)
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It follows that V1 can be written as

V1 =
N∑
i=1

(xi(t)− x̂(t))T (f(xi)− f(x̂)−D (xi(t)− x̂(t))) (5-33)

from the assumption we know that f(xi) is QUAD(ε,D); therefore,

V1 ≤ −ε
N∑
i=1

(xi(t)− x̂(t))T (xi(t)− x̂(t))

≤ −ε∆T
x (t)∆x(t) < 0

(5-34)

Now, for the linear term V2, we define a new state ∆̃(t) := (UT ⊗ In)∆x(t) where

∆̃(t) :=
[
δ̃x

T

1 (t), · · · , δ̃xTN(t)
]T

Remember that U is an orthonormal matrix which is composed by the eigenvectors of L
(see Lemma 2.2.1). Note that the eigenvector corresponding to the null eigenvalue of the

Laplacian matrix is u1 = (1/
√
N)1TN ; consequently

δ̃x1(t) = (1/N)(1TN ⊗ In)∆x(t) = (1/N)(1TN ⊗ In)(Π⊗ In)x(t) = 0n×1

Then, neglecting this trivial state and letting ∆̄(t) :=
[
δ̃x

T

2 (t), · · · , δ̃xTN(t)
]T

and Λ̄ :=

diag{λ2, . . . , λN} yields

V2 = ∆̄T (t)
(
(IN ⊗D)− α

(
Λ̄⊗ Γ

))
∆̄(t) (5-35)

note that (5-35) is a block-diagonal matrix, with blocks D−αλkΓ for k ∈ {2, · · · , N}. Since

−λ2 is the largest eigenvalue of −Λ̄; then, for V̇ to be negative definite it suffices that the

diagonal matrix D− αλ2Γ ≺ 0, which concludes the proof.

Remark 5.2.1. Note that the condition for Global Admissible Synchronization in Theorem

5.2.1 is independent of the derivative gain γ. The condition is in fact the same obtained

for the proportional case [47, 44]. This suggests that the underlying distributed proportional

control, provides an conservative estimation for the PD one.

To find synchronization conditions explicitly depending on the derivative gain γ, we have to

assume stronger conditions on the vector field f(·) and the output matrix Γ

Theorem 5.2.2. Under distributed PD control, a network of nonlinear units (5-1) with

Lipschitz vector fields and with Γ = In, reaches global admissible synchronization if

α >
µ(γλ2 + 1)

λ2

(5-36)
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Proof. Let’s consider the Lyapunov function candidate

V =
1

2
∆T

x (t)∆x(t)

which is positive definite and radially unbounded. Then, by differentiating V along the

trajectories of (5-23) one has

V̇ = ∆T
x (t)(−αP∆x(t) + L̃−1

F(x)− (1/N)
(
1TN1N ⊗ In

)
F(x)) (5-37)

Moreover, from (5-5) we have that L̃−1
1nN = 1nN , and using property (5-27) we can write

∆T
x (t)L̃−1

(1N ⊗ f(x̂)) = 0 It follows also from property (5-27) and (5-28) that the quantity

∆T
x (t)(1N ⊗ f(x̂)) = 0, and ∆T

x (t)
(
1TN1N ⊗ In

)
F(x) = 01×nN (see the proof of Theorem

5.2.1). Therefore, we can recast (5-37) as V̇ = V1 + V2, where

V1 = ∆T
x (t)L̃−1

(F(x)− (1N ⊗ f(x̂))) (5-38)

V2 = −α∆T
x (t)P∆x(t) (5-39)

Now, we proceed to find linear upper-bounds for each one of the terms on (5-38) and (5-39).

Hence, first we have that V1 ≤ ‖∆x(t)‖
∣∣∣∣∣∣∣∣∣L̃−1

∣∣∣∣∣∣∣∣∣ ‖(F(x)− (1N ⊗ f(x̂)))‖. Thus, using Lemma

2.4.1 and (5-7), we have that
∣∣∣∣∣∣∣∣∣L̃−1

∣∣∣∣∣∣∣∣∣ = max
i

{∣∣∣λi (L̃−1
)∣∣∣} = max

i
{|λi (Σ−1)|} = 1. Next,

from triangular inequality we have ‖∆x(t)‖ ≤ ζ, where ζ :=
∑N

k=1 ‖δxk‖; hence, (5-38) can

be recast as

V1 ≤ ζ ‖(F(x)− (1N ⊗ f(x̂)))‖

≤ ζ
N∑
i=1

‖f(xi)− f(x̂)‖

from the assumption we know that f(xi) is Lipchitz; therefore, ‖f(xi)− f(x̂)‖ ≤ µ ‖(xi(t)− x̂(t))‖
and one gets V1 ≤ µζ2.

Moreover, for V2, we have that

P = L̃−1
(L⊗ Γ) = (U⊗ In)Σ−1(Λ⊗ In)(UT ⊗ In)

Note that the matrix Σ−1(Λ⊗ In) is a block diagonal matrix with diagonal blocks given by

Σ−1(Λ⊗ In) = diag

{
0n×n,

λ2

1 + λ2γ
In, · · · ,

λN
1 + λNγ

In

}
therefore, V2 can be upper-bounded by

V2 ≤ −α
(

min
∆T

x 1nN=0,∆x 6=0
P
)

∆T
x (t)∆x(t)

≤ − αλ2

γλ2 + 1
‖∆x(t)‖2

≤ − αλ2

γλ2 + 1
ζ2
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Thus, we can recast (5-37) as

V̇ ≤
(
µ− αλ2

γλ2 + 1

)
ζ2

and V̇ < 0 if condition (5-36) is fulfilled.

From condition (5-36) we have that the proportional gain α, is directly proportional to the

derivative gain γ. This can be seen in Fig. 5-4, where the slope of the line dividing the blue

(synchronization) and red (No synchronization) regions depends on the Lipschitz constant µ

and the network structure via λ2. Note that, the proportional gain cannot be decreased by
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Figure 5-4.: Estimated regions of global synchronization of networks controlled by dis-

tributed PD, using (5-36) with λ2 = 1 and (a) µ = 4, (b) µ = 8. The blue

color, denotes the region where (5-36) is satisfied and red color otherwise.

increasing the derivative one as shown in the local stability analysis early in this Chapter. For

example in Fig. 5.1(d) the synchronization regions for the PD case present complex shapes.

The estimation obtained using Lyapunov theory is conservative and it provides a linear

upper-bound of the synchronization region. We will discus this fact more in detail in the

next Section using Chua’s circuits. Moreover, a better approximation of the synchronization

region could be obtained by considering different Lyapunov functions to prove that the zero

equilibrium of the disagreement dynamics (5-23) is globally asymptotically stable.
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5.2.2. Distributed PI control

Here we consider the closed-loop network given in (5-14), then we can write

[
ẋi(t)

żi(t)

]
=

[
f(xi)

xi

]
+

 −α N∑
j=1

LijΓ −β
N∑
j=1

LijΓ

0n×n 0n×n

[ xj(t)

zj(t)

]
(5-40)

now, using the disagreement dynamics defined in (5-21) together with

δzi(t) = zi(t)− ẑ(t), ẑ(t) =
1

N

N∑
k=1

zk(t),∀i ∈ N (5-41)

one has

[
δ̇xi(t)

δ̇zi(t)

]
=

[
f(xi)− (1/N)

∑N
k=1 f (xk) (t)

δxi

]
+

 −α N∑
j=1

LijΓ −β
N∑
j=1

LijΓ

0n×n 0n×n

[ δxj(t)
δzj(t)

]
(5-42)

thus, considering Γ = In and defining the block matrix

Q :=

[
−αL −βL
IN 0N×N

]
the network disagreement dynamics can be recast as[

∆̇x(t)

∆̇z(t)

]
=

[
F(x)− (1/N)(1N1TN ⊗ In)F(X)

0(nN×1)

]
+ (Q⊗ In)

[
∆x(t)

∆z(t)

]
(5-43)

where ∆z(t) :=
[
δzT1 (t), · · · , δzTN(t)

]T
.

Theorem 5.2.3. Under distributed PI control, a network of nonlinear units (5-1) satisfy-

ing Lipschitz condition with Γ = In, achieves admissible synchronization if the following

condition holds

α > 1 + µ
1

λ2

+
µ2

4β

λ2
N

λ3
2

(5-44)

Proof. Following [80], we consider the candidate Lyapunov function

V (∆x,∆z) =
1

2

[
∆T

x ∆T
z

]
(R⊗ In)

[
∆x

∆z

]
(5-45)

where,

R =

[
IN L
L βL + αL2

]
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We split the proof into two stages. Firstly, we will show that the candidate Lyapunov

function V (∆x,∆z) is indeed a positive definite radially unbounded function. Secondly, we

provide conditions under whitch the function V̇ is negative definite.

Step 1: To show that V > 0, we consider two new states given by ∆̃T
x := (UT ⊗ In)∆T

x

and ∆̃T
z := (UT ⊗ In)∆T

x . For the eigenvector u1 = (1/
√
N)1TN corresponding to the

null eigenvalue of L we have that δ̃x1(t) := ((1/N)1TN ⊗ In)∆x(t) = 0n×1 and δ̃z1(t) :=

((1/N)1TN ⊗ In)∆x(t) = 0n×1. Hence, neglecting those trivial states we can recast the

candidate Lyapunov function as

V =
1

2

[
∆̄T

x ∆̄T
z

] [ IN−1 Λ̄

Λ̄ βΛ̄ + αΛ̄2

]
︸ ︷︷ ︸

A

[
∆̄T

x

∆̄T
z

]

where ∆̄T
x :=

[
δ̃x

T

2 (t), · · · , δ̃xTN(t)
]T

, ∆̄T
z :=

[
δ̃z

T

2 (t), · · · , δ̃zTN(t)
]T

, and Λ̄ := diag{λ2, . . . , λN}.
Hence, from Proposition 2.4.2 we have that A � 0 if

((α− 1)λk + βλk)λ
2
k > 0, k = {2, · · · , N}

From the assumption, we have that the graph is connected so that the eigenvalues λk of L
are non-negative quantities; therefore, choosing α > 1 one has that V (∆x,∆z) is always a

positive definite function.

Step 2: Next, differentiating (5-45) along the trajectories of (5-43) we obtain

V̇ (∆x,∆z) = V1(∆x,∆z) + V2(∆x,∆z)

where

V1(∆x,∆z) =
[

∆T
x ∆T

z

]
(RQ⊗ In)

[
∆x(t)

∆z(t)

]
(5-46)

V2(∆x,∆z) =
[

∆T
x ∆T

z

]
(R⊗ In)

[
F(x)− (1/N)(1N1TN ⊗ In)F(x)

0(nN×1)

]
(5-47)

Next, we rewrite V1 as

V1 =
1

2

[
∆T

x ∆T
z

]
(RQ + QTR⊗ In)

[
∆x(t)

∆z(t)

]
Then, it follows that

RQ + QTR =

[
IN L
L βL + αL2

] [
−αL −βL
IN 0

]
+

[
−αL IN
−βL 0

] [
IN L
L βL + αL2

]
= −2

[
(α− 1)L 0N×N

0N×N βL2

]
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Hence, letting ζ :=
∑N

k=1 ‖δxk‖, and ξ :=
∑N

k=1 ‖δzk‖, we can rewrite V1 as

V1 = −
[

∆T
x ∆T

z

] [ (α− 1)L 0
0 βL2

]
⊗ In

[
∆x(t)

∆z(t)

]
= −(α− 1)∆T

x (L⊗ In)∆x − β∆T
z (L2 ⊗ In)∆z

≤ −(α− 1)λ2∆
T
x∆x − βλ2

2∆
T
z ∆z

≤ −(α− 1)λ2 ‖∆x‖2 − βλ2
2 ‖∆z‖2

≤ −(α− 1)λ2ζ
2 − βλ2

2ξ
2

(5-48)

Moreover, from (5-47) we have that

V2 = ∆T
xF(x)− 1

N
∆T

x

(
1N1TN ⊗ In

)
F(x) + ∆T

z (L⊗ In) F(x)

− 1

N
∆T

z (L⊗ In)
(
1N1TN ⊗ In

)
F(x)

It follows from (5-28) that

∆T
x

(
1N1TN ⊗ In

)
= ∆T

z

(
1N1TN ⊗ In

)
= 01×nN

and from the fact that L ∈ Ω one has

(L⊗ In)
(
1N1TN ⊗ In

)
= 0nN×nN

hence, V2 = ∆T
xF(x) + ∆T

z (L⊗ In) F(x). From property (5-27) we know that ∆T
x (1N ⊗

f(x̂)) = 01×nN and (L⊗ In) (1N ⊗ f(x̂)) = 0nN×nN ; therefore, V2 can be recast as

V2 = ∆T
x (F(x)− (1N ⊗ f(x̂))) + ∆T

z (L⊗ In) (F(x)− (1N ⊗ f(x̂)))

≤
∥∥∆T

x

∥∥ ‖F(x)− (1N ⊗ f(x̂))‖+
∥∥∆T

z

∥∥ |||L||| ‖F(x)− (1N ⊗ f(x̂))‖
(5-49)

Then, using the triangular inequality and the fact that the vector field is assumed to satisfy

the Lipschitz condition ‖f(xi)− f(x̂)‖ ≤ µ ‖xi − x̂‖, yields

‖F(x)− (1N ⊗ f(x̂))‖ ≤
∑N

i=1
‖f(xi)− f(x̂)‖

≤ µ
∑N

i=1
‖xi − x̂‖

≤ µζ

(5-50)

From Lemma 2.4.1 we have that |||L||| = max
k
{|λk(L)|} = λN ; hence, V2 ≤ µ (ζ2 + λNζξ)

Finally, exploiting the bounds for V1 and V2 we have that

V̇ = −
[
ζ ξ

]T [ λ2(α− 1)− µ −µλN/2
−µλN/2 βλ2

2

]
︸ ︷︷ ︸

S

[
ζ

ξ

]
(5-51)

hence, V̇ is negative definite if S � 0, and using Proposition 2.4.2 we obtain (5-44) and the

proof is complete.
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Unlike the PD case where the synchronization condition depends linearly of the networks

structure, for the PI case the synchronization condition (5-44) (Theorem 5.2.3) is a nonlinear

function of the parameters β and the networks structure via λ2 and λN . This can be seen in

Fig. 5-5, where the line dividing the blue (synchronization) and red (No synchronization)

regions was computed for two different network structures Ring and Star as those depicted in

Fig. 3.1(c) and Fig. 5.10(a). The estimation obtained using Lyapunov theory is conservative
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Figure 5-5.: Estimated regions of global synchronization of networks controlled by dis-

tributed PI, using (5-44) with µ = 4, for two different network structures and

(a) λ2 = 0.5188 and λN = 5.7105, (b) λ2 = 0.382 and λN = 4. The blue color,

denotes the region where (5-44) is satisfied and red color otherwise.

and it provides an upper-bound of the synchronization region obtained in the local stability

analysis.

5.3. Performance assessment

In this section we study in detailed the influence of the use of distributed derivative and

integral controllers in the overall performance of the network under different scenarios of

heterogeneity and disturbances.

5.3.1. Heterogeneity between nodes

Here we investigate the performance of the PD controller when a mismatch in the parameters

of each agent is present. To this aim we consider 6 Lorenz chaotic oscillators (2-23) controlled

by distributed proportional control. For the sake of simplicity and without loss of generality,
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we choose the network topology as a ring graph with unitary link weights as the one depicted

in Fig. 5-6. Also we set the parameter a = 2 for nodes 1, 4 and 5, and a = 3 for all

Figure 5-6.: Heterogeneous network of Lorenz systems.

the others. The time response of the disagreement dynamics of the network controlled

by distributed proportional control is shown in Fig. 5-7. In fact for heterogeneous node
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Figure 5-7.: Time response of the closed-loop heterogeneous network of heterogeneous

Chaotic Lorenz systems with Γ = In, controlled by distributed P control

with α = 2.

dynamics, the proportional controller is not able to provide admissible synchronization, yet

bounded synchronization is reached instead. Moreover, comparing the error bounds ‖∆x(t)‖
on Figs. 5-7, 5-8 we can see that the error bound has been substantially reduced by

including a derivative gain as well as the chaotic behaviour is preserved. Therefore, the
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derivative action represents an extra degree of freedom for improving the synchronization

performance in heterogeneous networks.
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Figure 5-8.: Time response of the closed-loop heterogeneous network of heterogeneous

Chaotic Lorenz systems with Γ = In, controlled by distributed P control

with α = γ = 2.

5.3.2. Constant disturbances

As discussed in Chapters 3 and 4, a distributed integral action is able to reject constant

disturbances for networks of linear and heterogeneous node dynamics. Hence, the PI control

strategy may be also useful for networks of homogeneous nonlinear systems affected by

constant disturbances, possibly nonidentical, acting on each node.

ẋi(t) = f (xi(t)) + di + ui(t) (5-52a)

yi(t) = Γxi(t), i ∈ N (5-52b)

where di ∈ Rn×1 represents the constant disturbance. We consider the example introduced

in Section 5.3, but for six homogeneous Lorenz chaotic oscillators, with a = 2 and connected

in a ring configuration. We apply some perturbations to nodes 1, 3 and 4, that is we set

d1 = [4, 0, 0]T , d3 = [6, 0, 0]T and d4 = [7, 0, 0]T . For the sake of comparison, we first deploy

just proportional control, by setting α = 3, β = γ = 0 in (5-3). The time response of

this perturbed network can be seen in Fig. 5-9. The constant disturbances in the nodes

render them heterogeneous; hence, just bounded synchronization is attained. To reject those
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Figure 5-9.: Time response of a ring network of six homogeneous Lorenz oscillators with

a = 2 under constant perturbations acting on nodes 1, 3 and 4. The network

is controlled by just distributed proportional control with α = 3.
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Figure 5-10.: (a) Time response of a ring network of six Lorenz oscillators with a = 2 and

affected by constant perturbations acting in nodes 1, 3 and 4 controlled by

distributed proportional and integral actions with α = 3 and β = 1. (b)

Evolution of the disagreement dynamics.
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heterogeneous constant disturbances, we deploy the integral action by setting β = 1. The

results are shown in Fig. 5-10 where admissible synchronization is achieved.

Note that, despite the presence of constant disturbances affecting some nodes in the network,

the controller is able to guarantee perfect agreement among all states of the units. Here,

the integral action grows until the heterogeneities of the nodes are compensated, so that all

nodes share the same perturbed nonlinear dynamics. This can be seen as a sort of homoge-

nization of the nodes, since the integral action adapts its value such that all perturbed nodes

become equal; so then, the proportional action acts and guarantee synchronization.

This, can be compared with the property of the classical PI control, where the proportional

action stabilize the system and the integral action eliminates the residual error. We can then

conclude that the beneficial properties of the classical PID control are preserved even when

the controller is deployed in a distributed fashion.

Moreover, the controllers provide an extra degree of freedom for controlling heterogeneity,

disturbances and most importantly, for modifying the synchronization region in the param-

eter space.



CHAPTER 6

Applications

6.1. Synchronization of power generators

In this section, an application of the multiplex PI-Control strategy introduced in Chapter 3 is

presented for synchronizing power generators. In particular we consider N power generators

governed by the swing equation [51]

2Hi

ωR
δ̈i = Pm

i (t)− P net
i (t), i ∈ N (6-1)

where Hi and ωR are constants representing the inertia and reference frequency for the i-th

generator. The quantity Pm
i (t) := P ∗i − diδ̇i(t) is the mechanical power provided by the

i-th generator and it is composed by a constant power injection P ∗i and a damping term

diδ̇i(t), di > 0 which models power losses. Moreover, P net
i (t) is the power demanded by the

network. Note that when (6-1) is at equilibrium state, Pm
i = P net

i the frequency of each

generator ωi(t) := δ̇i(t) remains equal to a common constant for all generators in the grid.

For the sake of simplicity, we linearize the swing equation (6-1) around the synchronous state

ω1(t) = · · · = ωN(t), and letting mi = 2Hi/ωR, we obtain [1, 51]

miω̇i(t) = −diωi(t) + P ∗i − P net
i (t) + vi(t) (6-2a)

Ṗ net
i (t) =

N∑
j=1,j 6=i

EiEj |Yij| (ωi − ωj), i ∈ N (6-2b)

where Ei > 0 is the nodal voltage, and Yij is the admittance among buses i and j.

6.1.1. Distributed controller

To achieve synchronization, we propose to use a combination of local and distributed control

actions as also done in [2, 34] with the notable difference that we now consider the case of
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heterogeneous local state-feedback actions characterized by different gains which are deployed

together with the distributed PI strategy proposed in Chapter 3. In particular, we set

vi(t) =
1

mi

(
kiωi(t) + α

∑N

k=1
Pijωi(t)

)
(6-3)

with ki being a constant representing a local feedback gain for the i-node, α > 0 and P ∈ Ω

represents the Laplacian matrix of the proportional layer GP with link weights wij.

From a practical viewpoint, the control strategy corresponds to enhance the coupling be-

tween the agents in the open-loop network via additional proportional and integral control

interconnections. This could be implemented via appropriate digital devices or by a TCP/IP

communication protocol with optical fiber links, feeding the control action to the nodes rather

than physically establishing a connection [7].

Now, let gij := EiEj |Yij| be the weights on each edge of the power network in (6-2b) and

I ∈ Ω the associated Laplacian matrix describing the equivalent distributed integral action

(6-2b). Setting z(t) = −(1/mi)P
net
i (t), the problem becomes that of proving convergence in

the heterogeneous network given by

ω̇(t) = (H− αP)ω(t) + z(t) + ∆ (6-4a)

ż(t) = −MIω(t) (6-4b)

where ω(t) := [ω1(t), · · · , ωN(t)], z(t) := [z1(t), · · · , zN(t)] are the stack vectors of frequency

and rescaled electrical power respectively, H := diag{k1 − d1/m1, · · · , kN − dN/mN}, M :=

diag{1/m1, · · · , 1/mN} and the vector ∆ := diag{P ∗1 /m1, · · · , P ∗N/mN}.

Proposition 6.1.1. The closed-loop power network (6-4) has a unique equilibrium given by

ω∗ := ω∞1N , with ω∞ := −
∑N

i=1 P
∗
i /
∑N

i=1 (miki − di) and z∗ := −(ω∞H1N + ∆)

Proof. As done in the proof of Proposition 3.1.1 by setting the left-hand side of (6-4) to zero

one has that x∗ = a1N , ∀a ∈ R and z∗ = − (aP1 + ∆). Now letting v := [m1, · · · ,mN ]T ,

by the definition of z(t) one has that vTz(t) = 0. Therefore vTz∗ = 0 and we obtain

a = − vT∆

vTH1N
= −

∑N
i=1 P

∗
i∑N

i=1 (miki − di)
=: ω∞ (6-5)

which completes the proof.
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Remark 6.1.1. Note that the equilibrium point ω∞ depends on the average of all generator

parameters, as well as on the control gains ki. Therefore, the values of the control gains,

can be exploited for changing the consensus frequency value, despite heterogeneity among

generator dynamics.

Corollary 6.1.1. Under the control dynamics (6-3), the power network (6-2) with mi =

m,m > 0 ∀i ∈ N asymptotically converges to (6-5) if the following conditions are satisfied

ψ11 =
N∑
i=1

(
ki −

di
m

)
< 0 (6-6a)

αλ2 (P ) >

∑N
i=1

(
ki − di

m

)2

N |ψ11|
+ max

i

{
ki −

di
m

}
(6-6b)

Proof. Note that (6-4) can be seen as a group of N first order heterogeneous agents controlled

by a multiplex PI strategy. Specifically, letting Ai = ki − di/m, the dynamics of each node

can be written as

ω̇i(t) = Aiωi(t) + δi − α
∑N

j=1Pijωj(t) + zi(t)

żi(t) = −(1/m)
∑N

j=1 Iijωj(t)

Therefore, using Theorem (4.3.1) with σ = 0, and β = (1/m) completes the proof.

6.1.2. Simulation

As an illustration, consider the power network shown in Fig. 6.1(a). For the sake of simplicity

and without loss of generality we assume that all weights in the power network model (6-4)

are unitary, that is gij = 1 ∀i, j ∈ N .

Moreover we assume m = 0.1382, and four different values of damping, that is di = 0.005,

for i ∈ {1, 4, 7, 8, 11, 14}, di = 0.0045, i ∈ {2, 6, 9, 13, 15}, di = 0.0040, i ∈ {3, 10, 12}, while

di = 0.006, i ∈ {5, 16}. Furthermore the vector containing the nominal power injections for

each node is given by

∆ = (1/m)[100, 200,−300, 100, 90, 80, 50,−100, 200,−100,−155, 100,−500, 200, 125, 10]

The aim is to synchronize all generators to a common frequency value, say 60, despite the

fact that the network is heterogeneous. We then introduce feedback controllers with appro-

priate gains at nodes 1, 5, and 10 (self feedback loops indicated in black in Fig. 6.1(a)) in
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(a) (b)

Figure 6-1.: (a) Power network represented by the integral layer, (b) Architecture of the

network in the proportional layer.
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Figure 6-2.: Time response of the controlled power network. The blue dash-dot line rep-

resent the convergence value ω∞.
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order to shift ω∞ as given by (6-5) to the desired value ω∞ = 60. To address the stability

of such consensus equilibrium, we use Corollary (6.1.1).

Firstly we find that ψ11 := −0.7533 and condition (6-6a) is fulfilled. Secondly, we have

that max
i

{
ki − di

m

}
= 0.4638 and therefore the power network reaches admissible consensus

if αλ2 (P) > 9.1738. Hence, choosing the proportional network as in Fig. 6.1(b) where

all weights among links are set to wij = 5 yields α > 6.77. Setting α = 7 we obtain the

behaviour depicted in Fig. 6-2 where admissible consensus is obtained to the expected value

ω∞.

6.2. Electrical Circuits

Consider the case where the agents or units are described by a non-linear circuit as shown in

Fig. 6-3. Each circuit is composed of a linear subsystem modeled by a passive impedance,

zosc, and a nonlinear voltage-dependent current source, g(.).

(a)

(b)

Figure 6-3.: (a) Schematic of the nonlinear circuit [24], (b) Different examples of nonlinear

circuits.

Suppose the problem is to design an electrical network interconnecting N non-linear cir-

cuits for synchronizing all their states. Synchronization in electrical circuits is a problem
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Figure 6-4.: Distributed PID (RLC) network for synchronization in networks of nonlinear

circuits.

of notable importance for applications such as AC electrical grid, solid-state circuit oscil-

lators, semiconductor laser arrays, secure communications, and microwave oscillator arrays

[24, 31]. We propose the use of distributed PID actions which are equivalent to parallel

RLC interconnections (as can be seen in Fig.6-4) for synchronizing nonlinear circuits. Note

that the current Ii for all i = {1, · · · , N} can be calculated using Kirchoff’s laws in each

link interconnecting two circuits. Letting Rij, Lij and Cij as the resistance, inductance, and

capacitance between circuits i and j then, the current Ii can be recast as

Ii(t) =
N∑
j=1

1

Rij

(vj(t)− vi(t))+
N∑
j=1

Cij (v̇j(t)− v̇i(t))+
N∑
j=1

1

Lij

t∫
0

(vj(τ)− vi(τ)) dτ (6-7)

Next, assuming αwij = 1/Rij, γwij = Cij, and βwij = 1/Lij where α, β, γ, wij are positive

constants. Therefore, the electrical network can be represented by a graph G = (N , E) where

wij denotes the strength of the a link between nodes i and j. We can rewrite (6-7) as

Ii(t) = −
N∑
j=1

Lij

αvj(t) + β

t∫
0

vj(τ)dτ + γv̇j(t)

 (6-8)

where L is the Laplacian Matrix associated to the graph G . Note that equation (6-8) is the

same as the PID strategy introduced in (5-3). Therefore, the synchronization analysis derived

in Chapter 5 can be used for analyzing this networks of electrical circuits. As a representative

example we consider the problem of synchronizingN Chua’s circuits controlled by distributed

PID
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6.2.1. Chua’s Circuit

Figure 6-5.: Schematic diagram of Chua’s circuit.

The adimensional equation of Chua’s circuit of Fig. 6-5 is given by [80] ẋ1(t)

ẋ2(t)

ẋ3(t)

 =

 −a a 0

1 −1 1

0 −b 0

 x1(t)

x2(t)

x3(t)

+

 −ah(x1)

0

0


︸ ︷︷ ︸

f(x1,x2,x3)

(6-9)

where

h(x1) = cx1 +
d1 − d2

2
(|x1(t) + 1| − |x1(t)− 1|)

with x1(t), x2(t) and x3(t) being the rescaled states of v1, v2 and i3 and a, b, c, d1, d2 being

the rescaled circuit parameters in Fig. 6-5. Then, without loss of generality, setting a = 10,

b = 18, c = −3/4, d1 = −4/3 and d2 = −3/4, the electrical circuit exhibit chaotic behaviour

as can be seen in Fig. 6-6 Then, letting v = x1 in (6-8) and x = [x1, x2, x3], we have that

the closed-loop network reads

ẋi(t) = f (xi(t))−
N∑
j=1

LijΓ

αxj(t) + β

t∫
0

xj(τ)dτ + γẋj(t)

 (6-10)

with Γ = diag{1, 0, 0}. Nevertheless, different types of couplings can also be considered

varying the structure of matrix Γ as we shall discuss later. Next, we present local and global

synchronization analysis of the closed-loop network (6-10).

6.2.2. Synchronization in networks of Chua’s Circuit

Here, we exploit the local synchronization analysis of Section 5.1, as well as the global

Theorems for PD and PI founded in Section 5.2.
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Figure 6-6.: Chaotic Lorenz attractors with their respective Lyapunov exponents µp. k

represents the step-number of the L.E. algorithm

6.2.2.1. Local admissible synchronization of Chua’s Circuit

Using the analysis developed in Chapter 5, we then make use of the MSF approach for PD

and PI. Hence, we solve the variational equations (5-13) and (5-20) and following a similar

derivation as in example 10, we obtain the diagrams depicted in Fig. 6-7.

Next, we consider an electrical network of ten Chaotic Chua’s Circuits with Γ = diag{1, 0, 0},
where its structure is described by the graphs depicted in Fig. 2.5(a). Accordingly to

the diagram on Fig. 6.7(b), if we choose the point α̃ = 3 and γ̃ = 0.15 we have that

the MSF function is positive and no synchronization is expected. Therefore, we have that

α = α̃/λ2 = 12.8755 and γ = γ̃/λ2 = 0.6438. The time response of the network is shown in

Fig. 6.8(a). Moreover, increasing the value of the derivative gain to γ̃ = 0.45 we have that

γ = 1.9313 and the network achieves synchronization as expected (Fig. 6.8(b)).

6.2.2.2. Global admissible synchronization of Chua’s Circuit

First, we prove that the vector-field f(.) of the Chua’s circuit is Lipschitz. Hence, substituting

the parameter values in the circuit model we have that the vector-field of (6-9) can be recast

as

f(x) =

 −7
4
x1 + x2 + g(x1)

x1 − x2 + x3

−18x2

 , g(x1) = − 7

24
(|(x1 + 1)| − |x1 − 1|) (6-11)

Then let x, and y be two generic vectors in R3 one has

f(x)− f(y) = A(x− y) + v(x)− v(y)
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Figure 6-7.: Two dimensional representation of the master stability function for Chaotic

Chua. For each point in the plane corresponds the value of the MSF evaluated

at that point, which is represented with different colors. The red-scale colors

denote positive values of the MSF, while negative values are represented by

the blue-scale. (a)-(b) Ψ(α̃, γ̃) function computed for distributed PD control,

(c)-(d) Ψ(α̃, β̃) function computed for PI control.
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Figure 6-8.: Time response of a network of ten chaotic Chua’s circuit controlled by dis-

tributed PD control with α = 12.8755 and (a) γ = 0.6438 (b) γ = 1.9313
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where

A :=

 −7/4 1 0

1 −1 1

0 −18 0


It follows from Lemma 1 in [37] that ‖g(x)− g(y)‖ ≤ (7/12) ‖x− y‖; therefore

‖f(x)− f(y)‖ ≤ (‖A‖+ (7/12)) ‖x− y‖

and by Definition 5.2.1 we have that the Lipschitz constant of (6-11) is µ = 18.7784. Next,

we assume that the coupling matrix Γ = I3, which means that the circuits are coupled by

the three states variables. This can be implemented by adding an extra RL or RC link

between the v2 terminal of each circuit and also including a current source to the inductor of

each Chua’s circuit, which also depend on PI or PD type coupling; nevertheless, the circuit

implementation of this coupling goes beyond the scope of this work, and this is a simple

idea of how it could be designed. Next, consider a group of 10 Chua’s circuits coupled in a

star topology (See Fig. 5.10(a)) where λ2 = 1 and λN = 10. The using Theorem 5.2.2 for

the PD case and Theorem 5.2.3 for the PI we can plot the global synchronization regions

as depicted in Fig. 6-9. The estimation of the synchronization region using the results for
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Figure 6-9.: Estimated regions of global synchronization of a network of Chua’s circuits

controlled by distributed (a) PD and (PI). The blue color, denotes the region

where (5-36) is satisfied and red color otherwise.

the global approach are conservative and can be improved by considering different Lyapunov

functions. By comparing global and local synchronization results (see Fig. 6-7) we note a

large difference between them. However, the global results obtained from Theorems 5.2.2

and 5.2.3 are more general, since the network will synchronize no matter the initial condition.
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6.2.2.3. Heterogeneity between nodes

Here we investigate the performance of the PD controller when a mismatch in the parameters

of the Chua’s circuit is present. Thus, consider a 6 nodes ring network with unitary link

weights, and let the parameter b = 18 for nodes 2, 3 and 5, and b = 15 otherwise. The time
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Figure 6-10.: Time response of the closed-loop heterogeneous network of Chua’s circuits

controlled by distributed P with Γ = In.
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Figure 6-11.: Time response of the closed-loop heterogeneous network of Chua’s circuits

controlled by distributed PD with Γ = In.

response of the network controlled by just distributed proportional control with α = 1 is

shown in Fig. 6-10. In fact for heterogeneous node dynamics, this controller is not able to
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provide admissible synchronization, but bounded synchronization instead. The error bound

can be substantially decreased by increasing the proportional gain; nevertheless, the control

effort will also increase and this represent an strong limitation from a practical point of view.

Moreover, considering proportional and derivative actions by setting α = γ = 1 we obtain

the time response of Fig. 6-11 where the error bound has been significantly decreased.

Therefore, the derivative action represents an extra degree of freedom for improving the

performance of synchronization in heterogeneous networks.



CHAPTER 7

Conclusions

We discussed several distribute PID strategies to control networks of linear or nonlinear

agents so as to achieve consensus or synchronization.

In Chapter 3, we have investigated the use of a distributed PID protocol to achieve consensus

in homogeneous and heterogeneous multi-agent networks. Convergence of the strategy in

both cases was obtained by using appropriate state transformations, linear algebra and

Lyapunov functions. Explicit expressions for the consensus values were obtained together

with analytical estimates of the upper bound for all integral actions. Also, where possible,

estimates of the rate of convergence where obtained as functions of the gains of the distributed

control actions and the network structure. It was found that the network architecture,

the nodal dynamics and the control gains all contribute to determine the stability and

performance of the closed-loop network.

In Chapter 4 a novel approach for controlling networks of heterogeneous nodes with generic

n-dimensional linear dynamics in the presence of constant disturbances was proposed. In

particular, we discussed the use of different control layers deploying proportional and integral

actions across the network. Each layer has its own structure which allows to deploy a com-

bination of P, I and PI couplings among nodes to achieve consensus. We proved convergence

of the strategy and derived conditions to select the control gains as a function of the open

loop and control network structures and the node dynamics. We illustrated the effectiveness

of the proposed strategy via numerical simulations on a set of representative examples.

Also, an extension of the distribute PID controller to the case of networks of homogeneous

nonlinear units was presented in Chapter 5. Both local and global stability analysis were

developed using the MSF approach and Lyapunov theory. It was revealed that the derivative

and integral actions both contribute to enhance the synchronization region; as well as, they
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can be properly used for decreasing the residual error when the nodes are heterogeneous and

also the integral action rejects constant disturbances.

In both cases of linear and nonlinear node dynamics, we observe that the most important

properties the classical PID are preserved even if the controller is deployed in a distributed

fashion.

7.1. Future Work

Several open problems are left for further study.

• First and foremost the effect of varying the structure of the network control layers on

the multiplex strategy should be studied in more detail as preliminary results show

the performance of the network evolution towards consensus can be affected by such

variations.

• Also, it remains to be investigated if the additional degrees of freedom represented by

the gains of the distributed P and I actions can be exploited to improve the performance

of the closed-loop network, possibly in an optimal manner.

• We wish to emphasize that more sophisticated approaches can be developed by con-

sidering other linear or nonlinear control actions rather than the simpler proportional

and integral actions considered in this work. For example, robustifying the distributed

action could be designed by considering an extra network control layer of variable

structure controllers. Also, designing adaptive strategies where the gains α, β and γ

are time-varying functions.

• An interesting extension of the distributed PID control may be consider the strategy

for undirected networks and possible time-varying structures.



APPENDIX A

Matrix Calculations

A.1. Computation of Ψ matrix

We know that Ψ = U−1L̃−1
PU, and[

ψ11 Ψ12

Ψ12 Ψ22

]
= U−1L̃−1

[
1 01×(N−1)

0(N−1)×1 P̂

]
U

Next, we simplify the expression of each block in the matrix. Specifically, from (3-9) we have

that R12 = r111TN−1 and the first block can be expressed as

ψ11 = r11

(
l̂11ρ1 + L̂12P̄1N−1

)
+ R12

(
L̂21ρ1 + L̂22P̂1N−1

)
= r11l̂11ρ1 + r111

T
N−1L̂21ρ1 + r11L̂12P̂1N−1 + R12L̂22P̂1N−1

From (3-36) one has 1TN−1L̂21 = 1− l̂11, where L̂12 = L̂
T

21. Thus, using (3-37) yields

ψ11 = r11ρ1 + r11L̂12P̂1N−1 + r111
T
N−1L̂22P̂1N−1

= r11ρ1 + r11L̂12P̄1N−1 + r11(1TN−1 − L̂12)P̂1N−1

= r11ρ1 + r111
T
N−1P̂1N−1

= (1/N)
∑N

k=1
ρk

We move next to the second block given by

Ψ12 = Nr11(l̂11ρ1R
T
21 + L̂12P̂RT

22) +NR12(ρ1L̂21R
T
21 + L̂22P̂RT

22)

from (3-9) we have that R12 = r111TN−1. Some algebraic manipulation yields

(1/N)Ψ12 = r11ρ1l̂11R
T
21 + ρ1r111

T
N−1L̂21R

T
21 + r11L̂12P̂RT

22 + R12L̂22P̂RT
22
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Using (3-36) the right-hand side of this expression can be rewritten so as to get

1

N
Ψ12 = r11ρ1l̂11R

T
21 + ρ1r11(1− l̂11)RT

21 + r11L̂12P̂RT
22 + R12L̂22P̂RT

22

1

N
Ψ12 = r11ρ1R

T
21 + r11L̂12P̂RT

22 + r111
T
N−1L̂22P̂RT

22

1

N
Ψ12 = r11ρ1R

T
21 + r11L̂12P̂RT

22 + r11(1TN−1 − L̂12)P̂RT
22

1

N
Ψ12 = r11ρ1R

T
21 + R12P̂RT

22

Finally, adding and subtracting ρ1R12R
T
22 and applying property (3-13) yields

(1/N)Ψ12 = −ρ1R12R
T
22 + R12P̂RT

22

(1/N)Ψ12 = R12

(
P̂− ρ1IN−1

)
RT

22

(1/N)Ψ12 = r111
T
N−1

(
P̂− ρ1IN−1

)
RT

22

Ψ12 = [ρ2 − ρ1, · · · , ρN − ρ1]RT
22 = ρ̄RT

22

The third block of the matrix has an expression given by

Ψ21 = R21l̂11ρ1 + R22L̂21ρ1 + R21L̂12P̂1N−1 + R22L̂22P̂1N−1

Using (3-11) we get

Ψ21 = −R221N−1l̂11ρ1 + R22L̂21ρ1 + R22L̂22P̄1N−1 −R221N−1L̂12P̂1N−1

Ψ21 = R22((L̂22 − 1N−1L̂12)P̄1N−1 + ρ1(L̂21 − 1N−1l̂11))

Then, using (3-39), one finally has Ψ21 = R22(L̂22 − 1N−1L̂12)(P̄− ρ1IN−1)1N−1 and (3-52)

is then obtained. Finally, the last block of Ψ matrix is expressed as

(1/N)Ψ22 = R21l̂11ρ1R
T
21 + R22ρ1L̂21R

T
21 + R22L̂22P̄RT

22 + R21L̂12P̂RT
22

Using (3-11) and (3-36) one gets

(1/N)Ψ22 = ρ1R22(L̂21 − l̂111N−1)RT
21 + R22(L̂22 − 1N−1L̂21)P̄RT

22

= R22(L̂22 − 1N−1L̂12)P̂RT
22 − ρ1R22(L̂21 − l̂111N−1)1TN−1R

T
22

then, applying (3-39) one has

(1/N)Ψ22 = R22(L̂22 − 1N−1L̂12)P̂RT
22 + ρ1R22(L̂22 − 1N−1L̂12)1N−11

T
N−1R

T
22

and we obtain (3-22)
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A.2. Derivation of Ψ for generic node dynamics

Using the block decomposition of R as done in the proof of 4-17, we have

Ψ =

[
r11In (R12 ⊗ In)

(R21 ⊗ In) (R22 ⊗ In)

] [
A1 0(n×n(N−1))

0(n(N−1)×n) Ā

]
·
[

In N(RT
21 ⊗ In)

(1N−1 ⊗ In) N(RT
22 ⊗ In)

]
Then, by matrix multiplication one gets

Ψ =

[
Ψ11 Ψ12

Ψ21 Ψ22

]
where

Ψ11 := r11A1 + (R12 ⊗ In)Ā(1N−1 ⊗ In)

Ψ12 := N
(
r11A1(RT

21 ⊗ In) + (RT
12 ⊗ In)Ā(RT

22 ⊗ In)
)

Ψ21 := (R21 ⊗ In)A1 + (R22 ⊗ In)Ā(1N−1 ⊗ In)

Ψ22 := N(R21 ⊗ In)A1(RT
21 ⊗ In) +N(R22 ⊗ In)Ā(RT

22 ⊗ In)

Now, by some algebraic manipulations we can simplify each block of Ψ. Then, by definition

r11 = 1/N and R12 = (1/N)1TN−1 and

Ψ11 = (1/N)
(
A1 + (1TN−1 ⊗ In)Ā(1N−1 ⊗ In)

)
which is clearly (4-24). For the second block we can add and subtract NA(R12R

T
22 ⊗ In)

where R12 = (1/N)1TN−1. Hence, using (3-14) one has

Ψ12 =
(
(1TN−1 ⊗ In)Ā−A(1TN−1 ⊗ In)

)︸ ︷︷ ︸
P1

(RT
22 ⊗ In)

note that the matrix P1 can be recast as P1 = [A2 A3 · · ·AN−1]− [A1 A1 · · ·A1] = [A2 −
A1 · · ·AN −A1] and then (4-25) is obtained. Then, following a similar procedure as done

before but for Ψ21 adding and subtracting (R221TN−1⊗ In)A1, and using property (3-12) we

obtain

Ψ21 = (R22 ⊗ In)
(
Ā(1N−1 ⊗ In)− (1N−1 ⊗ In)A1

)︸ ︷︷ ︸
P2

in this case P2 can be rewritten as

P2 = [A2 −A1
T , · · · ,AN −A1

T ]T
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Finally, from properties (3-12) and (3-14) we can express (RT
21⊗In) = −(1/r11)(R12R

T
22⊗In)

and (R21 ⊗ In) = −(R221N−1 ⊗ In) and the last block reads

Ψ22 := (R22 ⊗ In)Ã1(R22
T ⊗ In) +N(R22 ⊗ In)Ā(R22

T ⊗ In)

where Ã1 := (1N−1 ⊗ In)A1(1TN−1 ⊗ In). Note that Ã1 can be also written as Ã1 =

(1N−11TN−1 ⊗A1) and by grouping common terms we obtain (3-22).
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Lyapunov Exponents

Lyapunov exponents provide a quantitative measure of the divergence or convergence of

nearby trajectories for a dynamical system. Consider the system

ẋ = f (x(t)) (B-1)

Given some initial condition xo, consider a nearby point xo+δo, where the initial separation

or perturbation δo is arbitrary small as shown in Figure.B-1. Then, after a time T their im-

ages under the flow are given by fT (xo) and fT (xo+δo) respectively. Hence, the perturbation

Figure B-1.: Divergence of two solutions for nearby initial conditions

at time T is given by

δT = fT (xo + δo)− fT (xo)
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If ‖δT‖ ≈ eµT ‖δo‖, then µ is the exponential rate of divergence or convergence of two

trajectories and more formally can be defined by

µ = lim
T→∞

1

T
ln
‖δT‖
‖δ0‖

(B-2)

where ‖δT‖ denotes the length of the vector δT . Note that for µ > 0 we have exponential

divergence of nearby trajectories. Then under some assumptions on the vector-field, µ rep-

resents the largest Lyapunov exponent if the limit (B-2) exist. Then, several generalizations

to compute the complete spectrum are available in literature; however, we introduce just

one based on Gram-Schmidt orthonormalization, which provides a good approximation of

the Lyapunov exponents and it is easy to implement.

B.1. Estimating the Lyapunov exponents

A simple estimation of the Lyapunov exponents for a continues time dynamical system is

introduced in [69]. Specifically, we have to integrate the system

ẋ(t) = f(x(t)), x(0) = xo (B-3a)

Ṁ(t) = Df(x)M(t), M(0) = In (B-3b)

where M(t) = [u1(t), · · · ,un(t)] with up(t) ∈ Rn for p = {1, · · · , n} then,

µp = lim
k→∞

1

kT

k∑
j=1

ln
∥∥wj

i

∥∥ (B-4)

where T is the step size of the integration method, k is the number of iterations, and the

superscript j denotes the j-th sample of the vector wi. Furthermore, the vectors wi are

computed using the Gram-Schmidt orthonormalization of the set up as

w1 = u1, v1 =
w1

‖w1‖
(B-5a)

w2 = u2 −
(
uT2 v1

)
v1, v2 =

w2

‖w2‖
, · · · (B-5b)

wp = up −
p−1∑
i=1

(
uTp vi

)
vi, vp =

wp

‖wp‖
(B-5c)
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I. Sendi na Nadal, Z. Wang, and M. Zanin. The structure and dynamics of multilayer

networks. Physics Reports, 544:1 – 122, 2014.



� 104 Bibliography

[9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks:

Structure and dynamics. Physics Reports, 424(4-5):175 – 308, 2006.

[10] Stephen Boyd, Laurent El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In-

equalities in System and Control Theory, volume 15. Society for Industrial and Applied

Mathematics (SIAM), 1994.

[11] D. Burbano and M. di Bernardo. Consensus and synchronization of complex networks

via proportional-integral coupling. IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1796–1799, June 2014.

[12] D. Burbano and M. di Bernardo. Distributed PID control for consensus of homogeneous

and heterogeneous networks. IEEE Transactions on Control of Network Systems, 2014.

[13] D. Burbano and M. di Bernardo. Multilayer pi control for consensus in heterogeneous

multi-agent networks. Submitted to Conference on Decision and Control, 2015.

[14] D. Burbano and M. di Bernardo. Multiplex pi-control for consensus in networks of

heterogeneous linear agents. Submitted to Automatica, 2015.

[15] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress

in the study of distributed multi-agent coordination. IEEE Transactions on Industrial

Informatics, 9(1):427–438, 2013.

[16] R. Carli, E. D’Elia, and S. Zampieri. A PI controller based on asymmetric gossip

communications for clocks synchronization in wireless sensors networks. In Proceedings

of 50th IEEE Conference on Decision and Control and European Control Conference

(CDC-ECC), pages 7512–7517, 2011.

[17] Ruggero. Carli, Alessandro. Chiuso, Luca. Schenato, and Sandro. Zampieri. A PI con-

sensus controller for networked clocks synchronization. In 17th IFAC World Congress,

volume 17, pages 10289–10294, 2008.

[18] Guanrong Chen. Problems and challenges in control theory under complex dynamical

network environments. Acta Automatica Sinica, 39(4):312 – 321, 2013.

[19] Anna Chmiel, Peter Klimek, and Stefan Thurner. Spreading of diseases through comor-

bidity networks across life and gender. New Journal of Physics, 16:1–14, 2014.

[20] Sean P. Cornelius, William L. Kath, and Adilson E. Motter. Realistic control of network

dynamics. Nature Communications, 4(1942), 2013.



Bibliography � 105
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is necessary and sufficient for linear output synchronization. Automatica, 47(5):1068 –

1074, 2011.



� 110 Bibliography

[79] George F. Young, Luca Scardovi, Andrea Cavagna, Irene Giardina, and Naomi E.

Leonard. Starling flock networks manage uncertainty in consensus at low cost. PLoS

Comput Biol, 9(1):e1002894, 2013.

[80] Wenwu Yu, Guanrong Chen, Ming Cao, and J. Kurths. Second-order consensus for mul-

tiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions

on Man, and Cybernetics, Part B: Cybernetics, 40(3):881–891, June 2010.

[81] Jun Zhao, D.J. Hill, and Tao Liu. Synchronization of dynamical networks with non-

identical nodes: Criteria and control. IEEE Transactions on Circuits and Systems I:

Regular Papers,, 58(3):584–594, 2011.

[82] Wei-Song Zhong, Guo-Ping Liu, and C. Thomas. Global bounded consensus of multia-

gent systems with nonidentical nodes and time delays. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics,, 42(5):1480–1488, 2012.

[83] Jiandong Zhu. On consensus speed of multi-agent systems with double-integrator dy-

namics. Linear Algebra and its Applications, 434(1):294 – 306, 2011.


	Introduction
	Thesis Outline
	List of Main Contributions

	Preliminaries and Background
	Complex networks: generalities
	The structure of complex networks: algebraic graph theory
	Multiplex networks
	Mathematical notation and preliminaries
	Consensus in multi-agent systems
	Synchronization in complex networks
	Master stability function


	PID Consensus in Heterogeneous Linear Multi-Agent Networks
	Distributed PI control
	Consensus equilibrium
	Block decomposition of bold0mu mumu LLheadLLLL
	Error dynamics

	Distributed PID control
	Properties of 
	Closed-loop network
	Homogeneous node dynamics
	Heterogeneous node dynamics


	Multiplex PI Control for Networks of Heterogeneous Agents
	Consensus equilibrium
	Error dynamics
	Convergence theorem
	Control algorithm

	Distributed PID Control for Synchronization in Networks of Nonlinear Units
	Local stability analysis
	MSF for distributed PD
	MSF for distributed PI

	Global stability analysis
	Distributed PD control
	Distributed PI control

	Performance assessment
	Heterogeneity between nodes
	Constant disturbances


	Applications
	Synchronization of power generators
	Distributed controller
	Simulation

	Electrical Circuits
	Chua's Circuit
	Synchronization in networks of Chua's Circuit
	Local admissible synchronization of Chua's Circuit
	Global admissible synchronization of Chua's Circuit
	Heterogeneity between nodes



	Conclusions
	Future Work

	Matrix Calculations
	Computation of   matrix
	Derivation of  for generic node dynamics

	Lyapunov Exponents
	Estimating the Lyapunov exponents

	Bibliography

