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Abstract 
 

Nitric oxide (NO) is a highly reactive, diffusible gas, essential for many 

physiological functions including neurotransmission, learning and memory, 

cardiovascular homeostasis, angiogenesis, host defense through immune 

response, cell migration, and apoptosis. 

In vertebrates, NO is produced by the enzymatic conversion of L-arginine by three 

distinct Nitric Oxide Synthase (NOS) that have been identified as products of 

different genes with distinct expression patterns, cellular localization, regulation, 

catalytic properties and inhibitor sensitivity. 

The pathway of NO formation is one of the oldest bioregulatory systems, highly 

conserved in metazoan. Comparative studies in different model systems using 

non-vertebrate organisms, especially basal chordates, are very useful. Because it is 

likely that the basic primary roles will be evolutionary conserved, the chordate 

amphioxus is the best available stand-in for the ancestor of the vertebrates. 

Importantly, amphioxus has a body plan, central nervous system, circulatory 

system and genome that are vertebrate-like, but simpler. In addition, in comparison 

to vertebrates, amphioxus has the same spectrum of gene families, but has 

markedly fewer genes per family (Holland et al., 2008; Putnam et al., 2008). 

This relative genomic simplicity makes amphioxus an especially favorable 

prospect for functional studies of signaling networks and other physiological 

processes.  

Amphioxus has 3 NOS genes although evolutionary analysis has shown that there 

is no a direct relationship between the 3 amphioxus NOS and vertebrate eNOS, 

nNOS and iNOS genes (Andreakis et al., 2011). This indicates that, despite its high 

conservation, NOS evolution has  also been very dynamic in some respects, with 

recurrent episodes of lineage-specific gene duplications. The study of amphioxus 

NOS will help to understand the acquisition of new functions of NOS enzymes, 

but also might illustrate convergent evolution events during NOS evolution. 

The following thesis project  is designed to accomplish the first complete and 

detailed study of NOS during development. Although much has been published 
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on NOS expression and function in many different organisms, very little is known 

about its role during the first stages of animal development. 
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1.1 NOS/NO evolution: structure, biosynthesis and conservation 

Nitric Oxide (NO) was identified and described for the first time in 1989 and in 

1992 it was entitled as the “Molecule of the year” by the journal Science (Koshland, 

1992). In 1998 three north American scientists, Dr. Robert F. Furchgott, Dr. Louis J. 

Ignarro and Dr. Ferid Murad, received the Nobel Prize for Physiology and 

Medicine for the discovery of nitric oxide‟s role in the cardiovascular and nervous 

systems (SoRelle, 1998). In an unrelated way this researchers discovered how a 

colourless and odourless gas could act as a signaling molecule in crucial biological 

processes, such as regulation of blood pressure and maintenance of vascular tone. 

Twenty years later over 86.000 papers on NO were published with different aims 

and model organisms, from bacteria to mammals (Bryan et al., 2009). The NO is a 

high reactive molecule, although potentially toxic, it is involved in a wide 

spectrum of physiological processes. It has been proposed that NO is involved in 

defence mechanisms of primitive microorganisms at the time of origin of life 

(Feelisch and Martin, 1995) and is very well known that it is necessary in the first 

phases of life, as in male gametes development and for egg activation after the 

fertilization (Kuo et al., 2000), later in development (Gouge et al., 1998) and during 

the metamorphosis (Bishop and Brandhorst, 2003; Comes et al., 2007; Leise et al., 

2001). NO acts as an inter- and intracellular signaling molecule in such diverse 

tissues as the vascular system, the immune system, and neural communication in 

several biological systems.  

Nitric oxide is a free radical, lipophilic, diatomic gas under atmospheric 

conditions. Its small Stokes‟ radius (diffusion index) and neutral charge allows 

rapid membrane diffusion (Goretski and Hollocher, 1988; Stamler et al., 1992). 

These main properties make this molecule an extremely versatile messenger in 

cellular communication. NO is a retrograde neurotransmitter, it is released from 

the postsynaptic neuron and diffuses to the presynaptic area where it activates 

several targets, or it is involved in synaptic transmission (Regehr et al., 2009) 

(Figure 1.1). 
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Figure 1.1 -Representation of retrograde signaling systems. (A) General representation.                                                                   

(B) Retrograde signaling mediated by NO gaseous messenger (Regehr et al., 2009).  

 

Because of its free radical nature, NO is a very unstable molecule and its role as a 

direct signal mediator is limited to a short time window after its production 

(Martínez-Ruiz and Lamas, 2009). This signaling molecule can be involved in two 

different pathway indicated as “classic” or “non-classic”. In the classic signaling the 

NO requires a fundamental effector molecule, which is considered its natural 

ligand: the soluble enzyme Guanylate Cyclase (sGC). NO induces the rupture of 

the His-Fe (II) bond within the heme of sGC that induces a conformational change 

in the His ligand (pentacoordinate NO complex), resulting in the conversion of 

GTP to cGMP plus Phosphate (PP) (Martínez-Ruiz and Lamas, 2009; Snyder and 

Bredt, 1992). This second messenger, cGMP, is involved in the regulation of 

several kinase proteins and in the control of ion-channels and phosphodiesterases 

(Ahern et al., 2002). In the non-classic pathway, also named “cGMP-independent”, 

NO interact with other molecules such as oxygen, oxygen-derived free radicals, 

glutathione, and specific protein residues (mainly cysteine and tyrosine), 

producing several types of post-translational modifications in target proteins, as 

the S-Nitrosylation, S-Thiolation or Tyrosine Nitration (Martínez-Ruiz and Lamas, 

2009) (Figure 1.2). 
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Figure 1.2 -Direct effect of NO and indirect effect mediated by different post-traslational 

modifications (Martínez-Ruiz and Lamas, 2009). 

 

The biosynthesis of Nitric Oxide is catalysed by the Nitric Oxide Synthase (NOS) 

enzymes through oxidation of a guanidino nitrogen of L-Arginine to L-Citrulline. 

The oxidation of L-Arginine, the substrate of the reaction, occurs via two 

successive mono-oxygenation reactions, producing NGhydroxy-L-Arginine as an 

intermediate and NO as a secondary product (Bryan et al., 2009) (Figure 1.3). For 

each reaction, two moles of O2 and 1.5 moles of nicotinamide adenine dinucleotide 

phosphate (NADPH), co-substrate of the reaction, are consumed per mole of NO 

produced (Liu and Gross, 1996).  
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Figure 1.3 -Biosynthesis of NO. 

 

The eukaryotes‟ NOSs are composed by the fusion of two very large monomers 

(133 - 161 kD), exhibiting a homodimeric structure with the C-terminal reductase 

domain linked to the N-terminal oxygenase domain. The reductase domain 

contains binding sites for the flavin adenine dinucleotide (FAD), the flavin 

mononucleotide (FMN) and the reduced NADPH, while the oxygenase domain 

contains binding site for the heme, the cofactor tetrahydrobiopterin (BH4) and L-

Arginine (Alderton et al., 2001; Andrew and Mayer, 1999) (Figure 1.4).  

 

 

Figure 1.4 -Nitric Oxide Synthase structure (Alderton et al., 2001). 

 

A functional NOS transfers electrons from NADPH, via the FAD and FMN flavins 

in the carboxy-terminal reductase domain, to the heme in the amino-terminal 
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oxygenase domain. At the heme site, the electrons are used to reduce and activate 

O2 and to oxidize L-Arginine to L-Citrulline, producing NO. The two dimers are 

connected by a calmodulin (CaM) binding domain that enhances the electron 

transfer within the reductase domain (Förstermann and Sessa, 2012; Piazza et al., 

2012) (Figure 1.5).  

 

 

 

Figure 1.5 -Structure and catalytic mechanisms of functional NOS. (A) Inactive form, (B) 

Functional dimers with binding of heme group (Förstermann and Sessa, 2012). 

 

Nitric Oxide Synthases are ubiquitous in living organisms, including bacteria 

(Crane et al., 2010) and plants (Crawford, 2006; Foresi et al., 2010). It is known that, 

during the evolution an ancestral proto-NOS was recurrently duplicated in 

different animal lineages, acquiring new structural configurations through gains 

and losses of protein motifs (Andreakis et al., 2011). In vertebrates, three distinct 

NOSs have been identified, showing specific expression profiles, cellular and 

subcellular localization, regulation, catalytic property, and inhibitor sensitivity 

(Alderton et al., 2001; Andreakis et al., 2011; Griffith and Stuehr, 1995). The three 

genes were referred to as neuronal, endothelial and macrophage inducible 

following the cell-type from which they were isolated for the first time (i.e. 

neurons, vascular endothelium, and immunoactivated macrophage cell lines). 

However, it is now clear that each of these enzymes is produced in more than a 

single cell type or tissue. Unfortunately, the nomenclature used in literature is 

confusing, in fact these three genes are indicated with different acronyms: nNOS, 
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NOS1, NOSI (for the neuronal gene), eNOS, NOS3, NosIII (forthe endothelial 

gene) and iNOS, NOS2, NOSII (for the inducible gene).  

Neuronal NOS (nNOS) is expressed in specific neurons of the central nervous 

system (CNS) and peripheral nervous system (PNS). In CNS it is implicated in the 

neurogenesis, synaptic plasticity, learning and memory (Zhou and Zhu, 2009). In 

PNS structures as the spinal cord, symphatetic ganglia, peripheral nitrergic nerves, 

epithelial cells of various organs and vascular smooth muscle, the nNOS is 

involved in the control of body pressure, relaxing of the cells involved in gut 

peristalsis and vasodilatation (Fange, 2005; Förstermann et al., 1994; Förstermann 

and Sessa, 2012). The expression of the inducible NOS (iNOS), although primarily 

identified in macrophages, can be virtually stimulated in any cell type or tissue. It 

is essential for the control of intracellular bacteria or parasites, in fact the iNOS is 

involved in various types of inflammatory processes (Förstermann and Sessa, 

2012). The product of this enzyme can directly interfere with the DNA of target 

cells, causing strand breaks and fragmentation (Fehsel et al., 1993; Wink et al., 

1991). Endothelial NOS (eNOS), the best characterized for its actions in the 

vascular system, is mostly expressed in endothelial cells but has also been detected 

in cardiac myocytes, platelets and some neurons of the brain (Förstermann and 

Sessa, 2012). Nitric Oxide, derived from eNOS, is a homeostatic regulator of 

numerous essential cardiovascular functions, in fact it is involved in 

vasodilatation, inhibition of platelet aggregation and adhesion to the vascular wall 

(thus avoiding problems of thrombosis), control of vascular smooth muscle 

proliferation and inhibition of vascular inflammation (Förstermann and Sessa, 

2012).  

For all the three enzymes a conformational change, associated with Calmodulin 

binding (Calcium-modulated protein, CaM), is required for the electron transfer 

(Ghosh and Salerno, 2003). This link, and consequently the enzyme activity, is 

regulated by specific stimuli and conditions. Both neuronal and endothelial 

proteins are constitutively expressed. For the reversible binding of CaM it is 

necessary an increase in the levels of free intracellular calcium, Ca2+, up to specific 

micromolar concentrations. Conversely, the inducible NOS, thanks to a greater 
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affinity, carry a permanently bound molecule of CaM, which does not dissociate 

even at low Ca2+ concentrations (Cho et al., 1992); so the iNOS expression is not 

regulated by intracellular Ca2+and, in basal conditions, its activity is very low. The 

iNOS expression is regulated at the transcriptional level by bacterial products (for 

example lipopolysaccharides) or cytokines, generating high and sustained 

amounts of NO (Förstermann and Sessa, 2012). From a structural point of view the 

NOSs are very big proteins (more than 1000 aminoacids [aa]) and even though the 

three enzymes, show a very high degree of sequence identity among them, specific 

characteristics exist for each of them (Figure 1.6). 

 

 

Figure 1.6 -Human neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and 

inducible NOS (iNOS) domain structure (Alderton et al., 2001). 

 

The constitutive nNOS and eNOS are characterized by the presence of the so 

called „autoinhibitory loop‟, that is responsible of the Ca2+ dependence interfering 

with the binding of CaM. This element inhibits intradomain electron transfer but 

at specific Ca2+ concentrations CaM acts by displacing the autoinhibitory element 

allowing the enzymatic activity (Nishida and Ortiz de Montellano, 1999). The 

autoinhibitory loop is about 52-55 aa long and is situated within the FMN binding 

domain located approximately 80 aa residues at 3‟ of the CaM binding sequence. 

The constitutive NOSs moreover show other specific characteristics. The                          

N-terminal sequence of nNOS is approximately 300 aa longer than other NOS. 
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This region contains the PDZ domain that mediates specific protein-protein 

interactions. It is involved in the recognition and binding to the carboxyl-terminus 

of various proteins, as receptors or ion channels (Lee and Zheng, 2010; Stricker et 

al., 1997; Titheradge et al., 1998). The N-terminal sequence of eNOS, like for nNOS, 

serves to localize the enzyme to membranes, through two post-translational 

modifications: the N-myristoylation and palmitoylation. In N-myristoylation, after 

removal of the N-terminal methionine residue, myristic acid is attached via amide 

formation to the amino group of glycine in positions 2 (Gly-2) of the endothelial 

NOS protein. Whereas in palmitoylation, palmitic acids is added through an N-

amide bond to residues of cysteine in position 15 and 26 (Cys-15 and Cys-26) of 

the endothelial NOS molecule. Amide linkage of N-myristoylation is highly stable 

and generally irreversible under physiological conditions. In contrast, 

palmitoylation is a reversible post-translational modification in which the fatty 

acid is covalently attached to protein cysteine residues by thioester formation. 

Myristoylation allows weak protein-protein and protein-lipid interactions and 

plays an essential role in membrane targeting; palmitoylation, instead, enhances 

the hydrophobicity of proteins, contributing to protein-membrane interactions 

(Robinson and Michel, 1995; Titheradge et al., 1998). As mentioned before, the 

NOS genes have a similar genomic structure, suggesting a common ancestral NOS 

gene and for long time monomeric prokaryotic gene have been considered to be 

the precursors of metazoan NOS, which originated during evolution by the fusion 

of a bacterial oxygenase domain to a reductase domain (Alderton et al., 2001). 

Recently, it has been reported that the NOS isolated from the bacterium Sorangium 

cellulosum contains a covalently attached unique NOS-like reductase domain, but 

the different arrangement of the domains in the bacterial and metazoan enzymes 

suggests independent events in prokaryotic and eukaryotic lineages (Agapie et al., 

2009). All animal NOS genes and their protein products share several features. 

This conservation has been maintained over more than 800 Million of years of 

evolution (Gu, 1998; Wray et al., 1996), and it is currently observable at different 

levels. The aminoacid sequence is highly conserved, except for the N-terminal 

region (i.e., PDZ) and an internal segment in the FMN-binding domain (inhibitory 
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loop). In addition, intron positions and phases are highly preserved in animal 

NOS genes. At least 24 introns, in fact, are in the same position from placozoans to 

mammals, suggesting that these introns were already present in the ancestor NOS 

gene of Metazoa (Andreakis et al., 2011) (Figure 1.7). 

 

 

Figure 1.7 -Schematic representation of 20 animal NOS. Functional domains in the protein are 

shown as colored boxes. The positions of the introns relative to the protein structure are depicted by 

arrowheads. Black arrowheads indicate overall conserved intron positions, numbered 1–24. Gray 

arrowheads denote intron positions conserved in non bilaterian phyla. White arrowheads denote 

lineage-specific introns (Andreakis et al., 2011). 
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Table 1.1 -Structural features of NOS from different species. 
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Most species have a single NOS gene; in some species as Ciona intestinalis it 

appears to encode for a constitutive neuronal NOS for the presence of the PDZ 

(Comes et al., 2007), but other as the cnidarian Discosoma striata lacks the element 

responsible for calcium dependence typical of constitutive NOS (Moroz et al., 

2007). On the other hand in the insect Bombyx mori posses two NOS genes, a 

neuronal-like and an inducible one (Imamura et al., 2002).  

In tetrapods three NOS have been identified, nevertheless many bony fishes 

posses only one neuronal NOS (Andreakis et al., 2011; Gonzalez-Domenech and 

Munoz-Chapuli, 2010; Martínez-Ruiz and Lamas, 2009); it is evident that the 

number of NOS present in different species is not directly linked to the degree of 

animal complexity.  

In the basal chordate amphioxus, three different NOS genes have been found, two 

neuronal and one inducible. Evolutionary analysis showed that there is not a 

direct relationship between the three amphioxus NOS and the vertebrate eNOS, 

nNOS and iNOS (Andreakis et al., 2011). Very few is known about the expression 

profile of NOS genes in this key animal and the role of NO during its 

development. 
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1.2 The cephalochordates Amphioxus 

1.2.1 Discovery of Amphioxus 

Amphioxus made its appearance in the scientific world for the first with Peter 

Simon Pallas in 1774 (Pallas, 1774). The young German zoologist in his work 

"Spicilegia Zoologica, quibus novae imprimus et obscurae animalium species iconibus, 

descriptionibu. Tomus I”, described for the first time this animal as a gastropod 

mollusk, that he named “Limax lanceolatus”, having a streamlined body plan with 

both ends spear-shaped, characterized by transparent body and showing internal 

compartmentalized musculature. Few years after the death of Pallas, amphioxus 

specimens have been found in several places. In Cornwall, Dr. Jonathan Couch, 

during one of his walks on the beach after a storm found in a small pool left by the 

tide a small, alive, very active, transparent animal. After a preliminary microscopy 

examination, Dr. Couch sent it to the expert Dr. William Yarrell in London for a 

deeper analysis. 

In Väderöarna, a Western Sweden archipelago, several amphioxus specimens 

were found, by two medical students and by Dr. Sundevall (Fange, 2005). Some 

years later, on the same beaches, Dr. Bengt Fries found a big colony of amphioxus 

during his research on marine animals. Unfortunately none of these animals were 

never further studied (Fange, 2005). 

A very big population of amphioxus was found near capo Posillipo in the north-

west of the gulf of Naples (Bone, 1958; Haberling, 1924). Here amphioxus was “re-

discovered" by the natural history Professor of the University of Naples Federico 

II, Prof. Oronzo Gabriele Costa (Costa, 1834). Prof. Costa observed a sort of 

vertebral column, assuming that amphioxus was not a snail but it resembled a 

very simple fish, belonging probably at same genus of lamprey.  

In his book Prof. Costa described amphioxus as an atypical fish without eyes, 

nasal neither gill openings. He believed, wrongly, that the structures surrounding 

the mouth (oral cirri) were gills, therefore baptizing the animal as Branchiostoma 

lubricum. Two years later, in 1836, Dr. William Yarrell described for the first time 

the defining morphological trait of chordates, the notochord, as a flexible 

cartilaginous column (Yarrell, 1841) naming it Amphioxus lanceolatus (amphioxus 
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from the Greek stay for "both [ends] pointed," in reference to their shape). The 

scientific community, years later, adopted Branchiostoma (Costa) lanceolatum 

(Pallas) as the definitive name of the specie, while amphioxus is still used as a 

common name. In 1866, in Naples (Italy) another distinguished embryologist, 

Professor Alexander Kovalevsky, used amphioxus as model system in his studies 

(Ulett, 2010). Looking at amphioxus and ascidian embryos he identified features 

common to all chordates, as the notochord, dorsal nerve cord, and metameric 

muscle, as well as common developmental mechanisms. In fact, he was able to 

recognize the formation of the archenteron by invagination during amphioxus 

gastrulation and the development of the nerve chord from neural folds. 

Kovalevsky also recognized such anatomical similarities as the possession of gill 

slits in embryonic vertebrates and in adult amphioxus. Therefore, he classified 

amphioxus and ascidians as chordates, and this represent one of his most 

important contributions to the chordate developmental biology. A large part of 

these early conclusions continue to appear to be true today and our understanding 

that chordates develop from a bilayered gastrula can be traced to this fundamental 

work, which revolutionized embryology and zoology (Hecht et al., 1998). For the 

importance of his discoveries in the embryology field, not only in chordates, 

nowadays Kowalevsky is remembered within annual prize, the Alexander 

Kowalevsky Medal, awarded by the 147-year-old Saint Petersburg Society of 

Naturalists (SPSN) in Russia. 
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Figure 1.8 -A page of the “Guide to the aquarium at Zoological Station at Naples” of the 1896 in 

which it  is reported the presences of Amphioxus specimens in the thank number 11  
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Figure 1.9 -Wall chart from a Karl Georg Friedrich Rudolf Leuckart collection, the famous 

German zoologist and parasitologist (1822 - 1898). This Chart shows stages through development 

(1–12) with tissue derived from the ectoderm coloured grey, from the endoderm coloured grey-

green and the mesoderm coloured yellow. Using the longitudinal section of the adult (14) note the 

four typical chordate features the pharyngeal gill slits (SF), dorsal, hollow nerve cord (starting at 

NP), notochord (Ch) and post-anal tail (posterior to A). 
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1.2.2 Amphioxus a link between past and present 

Amphioxus is called “living fossil” due to its resemblance with chordates fossil 

records lived in the Cambrian (Chen et al., 1995). At the same time the amphioxus 

adult‟s anatomy is considered vertebrate-like but simpler, and it occupies a key 

phylogenetic position for comparative and evolutionary studies in vertebrates               

(Yu and Holland, 2009).  

The origin of chordates has long been debated and still not entirely clear. The idea 

that ancestral vertebrates were amphioxus-like was reinforced by the discovery in 

the early XX century of a fossil in the Burgess shale, Yoho national park in Canada, 

from the middle Cambrian, Pikaia gracilens, one of the oldest known chordate 

(Figure 1.10 A). In 2012 Morris and his collaborators on the basis of 114 available 

specimens reviewed the Pikaia anatomy‟s, confirming its place in the chordates 

group. The body of Pikaia is fusiform, laterally compressed and possesses about 

100 myomeres. The head is small, bilobed and bears two narrow tentacles. There is 

no evidence for eyes. Apart from a thin dorsal fin (without fin rays) and a series of 

bilaterally arranged appendages with possible pharyngeal pores at the anterior 

end, there are no other external features. In addition to the musculature the 

internal anatomy includes an alimentary canal, the anterior of which forms a 

prominent lenticular unit that is almost invariably preserved in positive relief. The 

cavity is interpreted as pharyngeal, implying that the mouth itself was almost 

terminal. The posterior extension of the gut is unclear although the anus appears 

to have been terminal. The most prominent internal structure is a reflectively 

preserved structure, possibly hollow, termed here the dorsal organ. Although 

formerly interpreted as a notochord its position and size make this less likely. Its 

original function remains uncertain but it could represent a storage organ. Ventral 

to the dorsal organ is present a narrow layer of tissue that probably represent the 

nerve chord and notochord. In addition to these structures, there is also evidence 

for a vascular system, including a ventral blood vessel (Morris and Caron, 2012).  

Subsequently other fossils, belonging to the Cambrian period, were discovered in 

Chengjiang, Cina; the four main representatives are: Yunnanozoon, Haikouella, 

Haikouichthys and Myllokunmingia (Donoghue and Purnell, 2009; Dzik, 1995; 
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Holland and Chen, 2001; Janvier, 2003; Mallatt and Chen, 2003; Morris and Caron, 

2012). They show a similar body shape, elongate body and laterally compressed, 

but they had other specific characteristics. Yunnanozoon and Haikouella show an 

elongate branchial region with six gill arches and possibly sensory capsules 

(Holland and Chen, 2001), instead Haikouichthys and Myllokunmingia had more 

“vertebrate” characteristics as short branchial region composed of six filamentous 

gills (Holland and Chen, 2001; Janvier, 2003) and the presence of paired eyes, otic 

capsules and possible paired olfactory organs (Shu et al., 2003). The first of them 

Yunnanozoon lividum recorded from the early Cambrian, 525-milion-year-old, was 

a filter feeding animal, 25-40 mm long, with almost all the prototypic 

characteristics of chordates (Chen et al., 1995). Like the “modern” 

cephalochordates, it had an anterior pharyngeal region connected through a wide 

snout, tunnel-shaped, open anteriorly; the notochord runs nearly straight from the 

snout tip through the suprapharyngeal tissues to the posterior body tip. 

Segmentally arranged structures above the notochord are in accordance with 

musculature being divided by myosepta into 22-24 myomeres, this organization 

indicates that Yunnanozoon lividum undulated laterally like amphioxus; below the 

notochord are up to 13 paired of metameric structures, interpreted as gonads, 

located on the left and right sides of the body (Figure 1.10 B). Two parallel lines 

running longitudinally through the hypoparyngeal tissue may represent the 

endostyle and seven evenly spaced biramous structures are identifiable as 

branchial arches. These morphological characteristics suggested that Yunnanozoon 

lividumis is the ancestor of chordate but some authors described it not as a 

chordate but as the earliest known hemichordate (Shu et al., 1996). In spite of this 

wide variety of forms it is not still clear which can be the ancestor of chordate but 

it is quite sure that ancestor of vertebrates was cephalochordate-like, also because 

of wide range of common features that cephalochordates and vertebrates share. 

The adult anatomy of amphioxus is vertebrate-like, but simpler (Figure 1.10 C). 

Amphioxus possess typical chordate characters, such as a dorsal hollow neural 

tube and notochord, a ventral gut and a perforated pharynx with gill slits, 

segmented axial muscles and gonads, a postanal tail, a pronephric kidney, and 
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homologues of the thyroid gland and adenohypophysis (the endostyle and pre-

oral pit, respectively). However, they lack typical vertebrate-specific structures, 

such as paired sensory organs (image-forming eyes or ears), paired appendages, 

neural crest cells and placodes (Bertrand and Escriva, 2011b). 

 

 

Figure 1.10 -Cephalochordates of the past and present. (A) Fossil specimens and schematic 

representation of Pikaia gracilens; (B) Fossil specimens and schematic representation of 

Yunnanozoon lividum; (C) Rostral part of adult Amphioxus specimen; (D) Ammocoetes larva of 

lamprey.  
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1.2.2 Phylogeny 

Cephalochordates together with tunicates (appendicularians, salps and sea 

squirts) and vertebrates (including ciclostomes: lamprey and hagfish) constitute 

the three groups of chordate. Adult cephalochordates resemble a small colourless 

fish, without obvious anterior sense organs and, for this reason, it has been 

considered for long time the closest living relatives of vertebrates. Morphological 

similarities and an apparently increased complexity in cephalochordates and 

vertebrates, relatively to tunicates, improved the theory that tunicates represent 

the earliest chordate lineage (Hecht et al., 1987). Nevertheless, in 2006 a molecular-

based study on large data set established that cephalochordates represent the most 

basally divergent lineage of chordates, being the sister group of tunicates and 

vertebrates, named as olfactores (Delsuc et al., 2006). There are only three genera 

of cephalochordates: Branchiostoma comprising about 28 species, Epigonichthys 1 

species and Asymmetron 2 species (Figure 1.11). Probably additional cryptic species 

exist. All cephalochordates are morphologically very similar and the main 

difference is visible in Asymmetrons and Epigonichthys that have gonads only on 

the right side of the body, whereas Branchiostomas has symmetrical gonads 

(Holland and Onai, 2012; Kon et al., 2007). 

 

 

Figure 1.11 -Phylogenetic relationships within the Chordata (Holland and Onai, 2012). 
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Recently, an increasing number of researchers is studying the evolution, 

development and genome of Asymmetron and Epigonichthys (Holland and Holland, 

2010; Kon et al., 2007; Yue et al., 2014). Nevertheless the majority of the scientific 

studies have focused their attention on Branchiostoma species, and in particular 

three of them have been extensively used until now: Branchiostoma floridae (Florida, 

USA), Branchiostoma belcheri (East Asia, especially China coast at Xiamen and 

Qingdao) and Branchiostoma lanceolatum (Atlantic and Mediterranean coasts of 

Europe) (Holland et al., 2004).  

The anatomy of adult amphioxus is vertebrate-like and this simplicity can also be 

expanded to the amphioxus unduplicated genome structure. Two rounds of 

whole-genome duplication occurred at the stem of the vertebrate lineage, known 

as the 2R hypothesis (Ohno, 1970). Therefore amphioxus in general posses only a 

single paralogue (homologous genes that are derived by gene duplication from an 

ancestral gene) of the two to four paralogues of vertebrate genomes(Brooke et al., 

1998; Canestro et al., 2007; Garcia-Fernàndez et al., 2009; Pascual-Anaya et al., 

2012; Pascual-Anaya et al., 2008; Pascual-Anaya et al., 2013; Wada et al., 1999). 

Moreover, the „pre-duplicative‟ amphioxus genome possesses one representative 

of all the gene families that presumably existed in the ancestor of chordates, in 

contrast to the situation in the two other chordate subphyla, urochordates and 

vertebrates, which have specifically lost different members of several gene families 

(e.g. the homeobox-containing genes, tyrosine kinases or nuclear receptors) 

(Bertrand et al., 2011a; D'Aniello et al., 2008; Takatori et al., 2008). Thus, the 

morphological and genomic simplicity of amphioxus, together with its key 

phylogenetic position, make it an invaluable animal model for understanding the 

invertebrate to vertebrate evolutionary transition.  
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1.2.3 The model system: Amphioxus 

Amphioxus is called “living fossil” due to its resemblance with chordates fossil 

records lived in the Cambrian and shows all the prototypic characteristics of the 

chordate group.  The dorsal cord or notochord, dorsal hollow nerve tube, a ventral 

gut, a perforated pharynx with gill slits, post-anal tail, segmented axial muscle and 

gonads, a pronephric kidney and homologues of the thyroid gland and 

adenohypophysis (the endostyle and pre-oral pit, respectively) (Bertrand and 

Escriva, 2011b) (Figure 1.12). However, they lack typical vertebrate-specific 

structures, such as paired sensory organs, paired appendages, neural crest cells 

and placodes (Schubert et al., 2006). 

 

 

Figure 1.12 -Mature amphioxus anatomy (A) Schematic representation (B) Adult external 

morphology.  

 

The notochord, cylindrical muscularized rod, runs dorsally along the full length of 

the animal, extending anteriorly beyond the end of the nerve cord (Schubert et al., 

2006; Takahashi and Holland, 2004). Immediately above the notochord there is a 

dorsal tubular nervous system, with only a slight enlarged cerebral vesicle at its 

most anterior end (Lacalli, 2006). Beneath the notochord is an endodermal-derived 

digestive tract connected anteriorly to a pharyngeal area with gill slits and ciliated 

gill bars. The pharynx has a ventrally located ciliated groove or endostyle that 
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produces mucous needed for the filter feeding mechanisms. Posteriorly to the 

digestive tract there is the anal opening, beyond which occurs a short post-anal 

tail. The adult amphioxus posses a laterally-flattened cylindrical shape, usually 

not more than 6 cm in length and 0.5-1 cm in diameter. Through the transparent 

skin is possible to see metameric muscle structures along the body length that 

enable them to swim and burrow into the sand. The sexes of amphioxus are 

readily separable as they begin to develop their rows of testes or ovaries. 

Morphologically amphioxus does not show sexual dimorphism, but it is possible 

to distinguish males and females by observing the gonads to the stereomicroscope 

(Figure 1.13 and 1.14). 

 

 

 

Figure 1.13 -Female Mature gonads of B. lanceolatum. (A) Anterior part of animal body, (B) 

Magnification of mature gonads, (C) Higher magnification of gonads where individual eggs are 

recognizable. 

 

 

Figure 1.14  - Adult B. lanceolatum transversal section: (A) Mature female specimen, (B) Mature 

male specimen. (A+B) Mallory staining, (C) Dapi staining of a transversal section of an adult 

specimen. Abbreviations: (n) neural tube; (ch) notochord; (ms) muscle; (g) gut; (o) ovary; (t)testis. 
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All amphioxus species are filter-feeding marine animals that burrow upright in 

sand, gravel or shell deposits. With a protruding rostral region it feeds filtering 

phytoplankton through a complex, ciliated, pharyngeal apparatus. Almost all 

amphioxus species are found in shallow tropical or temperate waters close to the 

seashore from 0.5 to 40 mt deep (Adolf et al., 2006; Bertrand and Escriva, 2011b; 

Desdevises et al., 2011; Gosselck, 1975). Temperature and salinity of the sea water 

have been shown to be very important in the life cycle of some amphioxus species 

(Alderton et al., 2001; Webb, 1956a; Webb, 1956b; Webb and Hill, 1958). For 

example, the migration of amphioxus populations between winter and summer 

seems to be linked to temperature changes (Webb, 1971) and, a negative 

correlation between the presence of amphioxus and organic matter content has 

been noted for some species (da Silva et al., 2008; Webb and Hill, 1958). Several 

studies have estimated the lifespan of different amphioxus species. Studies 

conducted in the second half of the 1900 on B. belcheri and B. lanceolatum 

populations showed that amphioxus has a life span of three to six years (Chin, 

1941; Courtney, 1975). More recent studies, based on different approaches, 

suggested that different species can have different life span but the average is 

between three and five years (Chen et al., 2008a; Chin, 1941; Courtney, 1975; 

Desdevises et al., 2011; Futch and Dwinell, 1977; Gosselck and Spittler, 1979; 

Nelson, 1969; Wells, 1926), and interestingly they suggest that amphioxus appear 

to grow continuously during their entire life span (Stokes, 1996). 

Concerning the spawning behavior, all known amphioxus species spawn after the 

sunset during the reproductive breeding season, normally in late spring and 

summer. The duration of the spawning season, however, may vary between 

different species, but for all amphioxus it happens only once per year. The 

reproductive season in B. lanceolatum, for example, occurs for 3-4 months in spring 

and summer (Fuentes et al., 2007; Fuentes et al., 2004; Wu et al., 1994). Adult 

animals swim up to the water surface, lay their gametes in the water column and 

then sink gently back to the sand bottom. For all amphioxus species thousands of 

embryos remain planktonic until mouth metamorphosis occurs, maybe 1-3 months 
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after fertilization; subsequently juveniles change their habitat and migrate to the 

sand where they become benthic animals (Figure 1.15).  

 

 

Figure 1.15- Amphioxus life cycle. 
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1.2.4 Development and larval anatomy 

Early development in amphioxus resembles that of echinoderms, while later 

development is close to that of vertebrates (Holland et al., 2004). After Kovalevsky 

(Kovalevsky, 1867) other investigators, particularly Berthold Hatschek (Hatschek, 

1893), William Erskine Kellicott (Kellicott, 1913) and Edwin Grant Conklin 

(Conklin, 1932), examined the embryology of amphioxus with ever more 

precision, focusing their attention on the European species B. lanceolatum.  

Amphioxus unfertilized eggs, roundish  and about 100140 μm in diameter 

(Bertrand and Escriva, 2011b; Conklin, 1932), have a low yolk content 

(oligolecithal) and are arrested at second meiotic metaphase with the first polar 

body closely apposed to the vitelline layer (Holland and Onai, 2012). The eggs 

maturation occurs under the stimuli induced by sperm entry. 

The egg segmentation is holoblastic (whole zygote) and cleavages are roughly 

synchronous in time through seventh cleavage (up to 128-cell stage).  

The resulting hollow spherical blastula is commonly deuterostomic: consisting of a 

single layer of cells, cleavage is arguably radial, and the embryology is at least 

superficially indistinguishable from echinoderm‟s.  

Gastrulation and neurulation first begin to demonstrate their chordate affinities 

(Conklin, 1932; Whittaker, 1997). 

During gastrulation, after flattening of the vegetal zone cells of the blastula, an 

ingression (epiboly) occurs and the blastocoelic space is slowly eliminated. So the 

embryo becomes cap-shaped with formation of double layer of cells, an outer 

ectoderm and inner mesoderm, and deepened archenteron, the primitive gut 

cavity. During this process the embryo becomes bilaterally symmetrical quite 

elongated antero-posteriorly, flattened dorsally and rounded ventrally as well as 

anteriorly; at the postero-dorsal aspect the archenteron opens directly to the 

outside by a narrow blastoporal aperture.  

From a fairly uniform layer of superficial cells, the non-neural ectoderm and 

neuroectoderm will form. Instead a layer of endodermal cells lining the 

archenteron, and a portion of them will give rise to the notochord (Holland and 

Holland, 2007; Holland and Onai, 2012) (Figure 1.16). 
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Figure 1.16 -B. lanceolatum early developmental stages. (A) Fate map of amphioxus embryo, (B) 

Schematic position of tissue in early gastrulation, (C) Schematic representation of late gastrula (D) 

Embryo at late gastrula stage (Conklin, 1932; Holland and Onai, 2012; Kellicott, 1913). 

 

During neurulation the formation of the most important organ-systems takes 

place: the mesoblastic somites, the nervous system and the notochord. 

Amphioxus‟ neurula is ciliated and, when it reaches 8 somites stage, it hatch and 

commences a planktonic existence. The neuroectoderm dissociates from the 

surrounding tissues and sinks to form pronounced V-shape furrow developing 

into postero-antero direction creating a closed neural tube that opens anteriorly at 

the neuropore and posteriorly by the neurenteric canal connecting  (temporarily) 

with the gut cavity. The basal layer of the nervous groove will be the ventral side 

of the nervous tube, like in vertebrates. 

During the time of the neural plate enclosure and neural tube formation, the 

notochord and mesoderm are developing from the adjacent chordamesodermal 

plate that constitute the roof of the archenteron just below.  
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Due to the invagination of midline cells of chordamesodermal plate three 

interdigitations forms: the first one in the middle of the embryo will yield the 

notochord primordial and by the seconds one laterally will yield primordium of 

the first couple of somite. Later the ventral epithelium of the archenteron bends 

round on itself to form the digestive tract, pharynx and other endodermal 

derivates.  

At the end of neurulation and the beginning of larval formation the animals 

become a nearly the perfect representative of the common, generalized, primitive 

embryonic body form of all chordate embryos. It is characterized by an elongated 

structure, cylindrical in shape and somewhat compressed laterally; four basic 

organ-forming epithelial tubes, epidermal, neural, endodermal, and mesodermal, 

orientated around a primitive axis, the notochord; and distinct body regions: head, 

pharyngeal area, trunk and tail (Nelson, 1969) (Figure 1.17). 

 

 

Figure 1.17 -B. lanceolatum neurula stages. (A)Schematic representation and morphology of an 

early neurula. (B) Schematic representation and morphology of a late neurula. Abbreviations: ap, 

anterior process of first somite; c, neurenteric canal; ch, notochord; g, gut cavity; ld, left anterior 

gut diverticulum; mes, unsegmented mesoderm; n, nerve chord (its rudiment in A); nc, neurocoel; 

np, neuropore; s1 and s2, first and second mesodermal somites (Kellicott, 1913). 
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Following the formation of 13-15 pairs of somites (Hirakow and Kajita, 1994; 

Kellicott, 1913; Whittaker, 1997), the embryo continues elongating and in this 

phase is commonly called pre-mouth larvae (Figure 1.18). 

 

 

 

Figure 1.18 -Schematic representation and external morphology of pre-mouth larvae at different 

developmental stages. ba, branchial anlage  c, neurenteric canal; ch, notochord; cv, celebral vesicle 

g, gut cavity; gs, rudiment of first gill slit; i, intestine ld, left anterior gut diverticulum; n, nerve 

chord; nc, neurocoel  np, neuropore; p, pigment spot in nerve cord; rd, right anterior gut 

diverticulum; spc, splanchnocoel (body cavity) (Conklin, 1932; Kellicott, 1913; Whittaker, 1997). 
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Amphioxus‟ larvae undergo morphological changes particularly in the anterior 

region (Garcia-Fernandez and Benito-Gutierrez, 2009). The dorsal organs such as 

the neural tube, the notochord and the muscular lamella do not much change 

morphologically but become structurally more complex (Hirakow and Kajita, 

1994). The embryo has continued to elongate and showing marked asymmetry. 

Along the right anterior side of the body, the first gill slit begins to appear as a 

partial dissociation of cells in the epidermis. On the left-hand side of the embryo a 

similar dissociation of epidermal cell, indicates the future position of the mouth. 

Anterior to the mouth region, the preoral pit has already formed and it is opened 

to exterior portion over there an elongating rostrum is forming. Few hours later 

the initiation of gill slit and mouth formation will be completed (Figure 1.19).  

 

 

 

Figure 1.19 -Schematic representation and morphology of larva with one gill-slit, seen from right 

side and left side. Abbreviations: dkk,intestinal opening of the club-shaped gland; hkk, cutaneous 

opening of the club-shaped gland; kk, the club-shaped gland; ko, first gill pouch; lp, left postoral 

papilla; m, mouth; md, midventral line of intestine; mh, ventral median line of epidermis; op, 

unpaired papilla; po, preoral pit; rp, right papilla; th, endostyle (Barrington, 1965). 

 

The posterior portion of the embryo has begun to flatten and take on the 

appearance of a caudal fin; however, there is not yet an anal opening. At second 

gill slit opening stage, posteriorly to the first on the right-hand side of the embryo, 
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near the posterior end of the embryo, the anus open on the right-hand side of the 

body; after that the animals start the feeding phase (Stokes and Holland, 1995).At 

this developmental stage is possible to recognize two structures that, for a long 

time, has aroused great interest in researchers: the endostyle and the club-shape 

gland (Figure 1.18). 

The endostyle, or hypopharyngeal groove is a flagellate gutter located in the 

ventral midline of the pharynx consisting of a complex mucus-secreting 

epithelium that joins the epithelium on the frontal surface of the gill and 

pharyngeal bars. Initially it was thought involving in mucous production which 

traps food particles in the buccal water which pass the pharynx (Olsson, 1963); 

subsequent studies have also compared this organ to the thyroid of vertebrate for 

its capacity to selectively binds iodine, and synthesize and release thyroid 

hormones (Fredriksson et al., 1984).  

The second organ characteristic of the larval stage is the club-shaped gland (csg). 

In 1892, Hatschek showed that this structure arises as an evagination from the 

pharyngeal endoderm in late embryos and soon develops into a tube connecting 

the pharyngeal lumen with the external environment; the external opening is a 

pore in the epidermis, near the anteroventral edge of the mouth (Hatschek, 1893). 

The functions of the gland and its fate during the larva-to-juvenile metamorphosis 

have long been controversial. Several homologies have been proposed between 

the amphioxus csg and structures in other animals on the basis of morphology, but 

according to the last theories the club-shaped gland of amphioxus is present 

throughout the larval stage and appears to supply a component of the mucus that 

traps food particles in the pharynx. So the endostyle and the club-shaped gland 

cooperate to produce a thin vertical curtain of mucus to capture ingested particles 

and then transport them toward the most posterior gut regions (Holland et al., 

2009). During metamorphosis the club-shaped gland disappear, probably through 

a process of apoptosis, and the endostyle of juvenile and adult amphioxus 

presumably becomes the major (or even exclusive) source of mucus for capturing 

food particles in the pharyngeal lumen. In addition, the post-larval endostyle 

continues to be the major site for iodination (Ericson et al., 1985), possibly because 
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of the continued synthesis of thyroid hormones influencing tissue growth and 

maintenance in the juvenile and adult amphioxus. 

The metamorphosis takes place after pelagic larval life, the duration of which 

depends on the environmental conditions and species, and animals after 

metamorphosis settle into sand substratum. The most remarkable feature of the 

amphioxus metamorphosis is the transformation from a left-right asymmetry to a 

symmetric appearance due to some modifications in pharyngeal region and 

digestive system. During metamorphosis, the larval mouth is shrunken forward 

and moves from its original position on the left body surface ventrally to anterior 

region. Modifications occur in digestive system as well. In larva there is a single 

row of gill pores in the mid-ventral cephalic area that, during metamorphosis, 

expands to the right side getting its counterparts. The two novel series of slits are 

properly adjusted on their respective sides and then the slits on each side 

commence to elongate in a direction at right angles to the long axis of the body. So, 

both rows of gill pores are destined to the left-right pair wise positioning. Also the 

endostyle moves from the right side of the pharynx to the ventral floor and 

expand longitudinally (Kaji et al., 2013; Paris et al., 2008; Paris et al., 2010; Wlllcy, 

1891). 
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1.2.5 Larval nervous system 

The “simple” Amphioxus nervous system basically consists of a dorsal nerve cord 

and a diffuse net of peripheral neurons, which contrasts greatly with the 

complexity of vertebrate nervous system. Nonetheless, increasing data on gene 

expression has faced up this simplicity by revealing a mounting level of cryptic 

complexity, with unexpected levels of neuronal diversity, organization and 

regionalization of the central and peripheral nervous systems (Benito-Gutierrez, 

2006). The neuroanatomical differences in the nervous system between species 

appear minimal, and during the development the nerve cord increase not only in 

size, from 15 to 100 µm at metamorphosis but also in complexity (Wicht and 

Lacalli, 2005). 

The amphioxus nervous system specification begins, as said in the previous 

paragraph, at gastrula stage. The presumptive ectoderm is conditioned in its final 

fate, by contact interaction with cells in the roof of the archenteron. Particularly 

the interaction appears to come only from presumptive notochordal tissue in 

archenteron roof (Whittaker, 1997); experimental data have shown that only the 

notochord, but neither mesodermal nor endodermal cells from an already 

invaginated plate, will induce secondary neural structures when transplanted into 

a young gastrula (Tung et al., 1961).Very soon after hatching the walls of the 

spinal cord thicken constricting the neurocoel, and becoming differentiated into 

three regions: (1) a thin epithelial layer, the ependyma, lining the neurocoel; (2) a 

dorso-lateral and lateral columns of nerve-cell bodies (grey substance) connecting 

respectively with the dorsal and ventral spinal nerves; and (3) ventral columns 

composed of nerve fibers (white substance). In the cephalic region the walls of the 

spinal cord become comparatively thin and the cavity dilates considerably. At first 

the brain vesicle lies beneath the epidermis, and around the neuropore its walls is 

continuous with the superficial ectoderm. When the dorsal fin appears in the mid-

line the neuropore is pushed to one side, usually the left. Gradually the brain sinks 

away from the epidermis, the neuropore become into a tunnel-shaped depression 

and gradually the anatomic larval structure forms (Kellicott, 1913).  
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Amphioxus‟ Central Nervous System (CNS), like in all chordates, consists of a 

hollow nerve cord that enlarges in the antero-dorsal part, undergoes specification  

during development. Is it possible to recognize different regions, that many 

authors often associate with those of vertebrates: a diencephalic forebrain (the 

telencephalon is lacking), a small midbrain, a hindbrain and spinal cord (Candiani 

et al., 2011; Candiani et al., 2012; Lacalli, 1996; Lacalli, 2006; Wicht and Lacalli, 

2005). 

 

 

Figure 1.20 -Schematic representation of the larval nervous system with magnification of central 

nervous system and its structures (Candiani et al., 2011; Feinberg and Mallatt, 2013). 

 

The forebrain and the small midbrain are together termed as Cerebral Vesicle (CV) 

(Candiani et al., 2011; Holland and Holland, 1999), and it is easily distinguishable 

from the rest of the cord. It is placed at level of somite 1 and up to the anterior part 

of somite 2, thanks to slightly bulbous anterior zone. In this area it is possible to 

distinguish different areas, characterized by several landmarks. One of the most 

evident is the frontal eye, located at the anterior tip of the nerve cord. It consists of 

a pigment cup, oriented so it opens dorsally, and four rows of neurons; the first 
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two rows consist of sensory neurons, probably photoreceptor cells, with cilia that 

project out the neuropore and basal axons, and behind the putative photoreceptor 

cells are the other two rows of neurons, that communicate synaptically with the 

dendrites of neurons involved in the locomotory control center (Wicht and Lacalli, 

2005). Another area of the CV notable is the infundibular region. The cells that 

compound this area are secretory, rather than neurons, but they lie within areas 

with a high neuron density; it is thought to represent primary sensory cells. The 

most distinctive is the club-shaped cilia, which suggests they may function to 

detect displacement, i.e., therefore a balance organ (Lacalli and Kelly, 2000).  The 

lamellar body is the second major contributor to the infundibular area. The 

lamellar body is generally accepted as a homolog of the vertebrate pineal organ, 

which suggests that either the cells themselves or their downstream targets in the 

neuropile are responsible of the circadian rhythm. There is no direct experimental 

evidence for such rhythm in either adults or larvae, but the larvae have diurnal 

patterns of vertical migration in the plankton (Wickstead and Bone, 1959), which 

implies the presence of a circadian clock. The third component of the CV is the 

primary motor center (PMC) that contains the anterior most motoneurons in the 

nerve cord and a number of large premotor interneurons. The important cells, 

from an organizational standpoint, are three pairs of large paired neurons (LPNs), 

extensively innervated by sensory inputs. The fundamental component is the third 

pair, the LPN3s, cross-innervated in a bilaterally symmetrical fashion; these 

neurons exerting a direct controlling influence over both fast and slow swimming 

(Bone, 1989). Their fiber output makes synapses with the ventral compartment 

motoneurons (VC, fast) and an unusual intercellular junctions with the dorsal 

compartment motoneurons (DC, slow) (Lacalli, 2002).  

More posteriorly, there are ventrolateral nerve cells of the hindbrain, most of 

which consist of paired neural cells located ventrolaterally in the neural tube and 

may correspond to differentiating DC motoneurons that innervate the dorsal 

compartment of the myomeres. The hindbrain-like region (HB), that starts from 

the posterior part of the PMC and extends caudally over the first pigment spot 

(ps), has an uncertain posterior limit (Candiani et al., 2007). Caudally, the nerve 
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cord reaches to the tip of the caudal fin where, just above the caudal end of the 

notochord, almost complete metamorphosis, it forms a terminal enlargement of 

variable form, the caudal ampulla (Urata et al., 2007; Wicht and Lacalli, 2005). The 

Peripheral Nervous System (PNS) of amphioxus is composed of several types of 

neurons, and at least two types of epidermal sensory cells, widely distributed 

along the epithelium surface. The Type I receptors are primary sensory neurons 

having axons projecting to CNS, whereas the Type II receptors are axonless 

secondary sensory neurons with synaptic terminals arising at short distances from 

the cell body (Candiani et al., 2010). The first evident functional response of the 

larva is to mechanical stimulation, and this correlates with the early appearance of 

primary Type I sensory neurons in the rostrum and tail. Other neuronal cell types 

identified in the epidermal tissues are Type II sensory neurons, putative 

chemioreceptors with a collar of branched microvilli and basal synapses to 

peripheral nerves, which develop as the larva matures (Lacalli and Hou, 1999; 

Stokes, 1996; Wicht and Lacalli, 2005).  

During neurulation, the gene expression patterns are highly dynamic within the 

central nervous system and reveal discrete molecular boundaries, most of them 

hidden at a morphological level. Many scientific studies have shown that gene 

expression is similar in the CNS of both amphioxus and vertebrates. Examples are 

the expression of highly conserved genes involved in rostro-caudal patterning 

such as Otx, Hox and Gbx (Benito-Gutierrez, 2006; Candiani et al., 2011; Castro et 

al., 2006; Holland and Holland, 1996; Williams and Holland, 1996), but also the 

expression of genes involved in the neuronal specification. For example, the ERR, 

islet, Shox, Krox, Mnx genes are expressed in developing motor neurons in both 

amphioxus and vertebrates (Bardet et al., 2005; Benito-Gutierrez, 2006; Candiani et 

al., 2011; Ferrier et al., 2001; Jackman and Kimmel, 2002; Jackman et al., 2000). 
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1.3 NO/NOS Amphioxus 

Nitric Oxide is probably one of the oldest bioregulatory systems controlling 

metazoan physiology (Feelisch and Martin, 1995), nevertheless very few 

information are available in literature on NOS genes in cephalochordates. 

In preliminary studies, published in 2006, Godoy and collaborators investigated 

the putative involvement of the alcohol dehydrogenase class III (ADH3) in NO 

homeostasis. They performed an immunostaining on B. floridae larvae using an 

universal anti-NOS antibody directed against the C-terminal epitope 

(DQKRYHEDIFG) that is highly conserved among the different NOS proteins in 

vertebrates, insects and crustaceans (Pollock et al., 2004). The larvae showed a 

strong signal confined to the midgut and hindgut of the developing intestine and 

the dorsal region of the club-shaped gland (csg), the enigmatic secretory organ 

located on the right side of the larval pharynx between the endostyle and the 

anterior-most pharyngeal gill slit (Godoy et al., 2006) (Figure 1.21). 

 

 

Figure 1.21 -Whole-mount immunostaining of 48hpf B. floridae larvae with an universal anti-

NOS antibody. (A) Right-sided view; (B) Left-sided view; (C-E)Magnified view of the right side, 

right and left side of the gut NOS localization; (F) Detail of the NOS staining in the dorsal region 

of the club-shaped gland (Godoy et al., 2006). 
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In 2008, Chen and collaborators studied the putative role of the dimethylarginine-

dimethylaminohydrolase (DDAH), endogenous NOS inhibitor, that may be 

involved in the regulation of endogenous NO synthesis. They characterized the 

NOS expression pattern in several adult tissues with in situ hybridization 

experiments on Branchiostoma belcheri sections: for example they found NOS 

expression in the central canal of the nerve cord, wheel organ, epithelial cells of 

gut and midgut diverticulum (Figure 1.22 A-D). The NOS was expressed in the 

ciliary epithelial cells on the inner side of branchial lamellas, the wall of gill blood 

vessels, septal coelom, and in endostyle (Figure 1.22 E). Moreover NOS was found 

in ovary, in the cortical region cytoplasm of oocyte and in epidermis cells of 

metapleural fold and the macrophages in the lymphoid cavities of metapleural 

fold (Chen et al., 2008b) (Figure 1.22F-H). 

 

 
 
Figure 1.22 -NOS expression pattern in different tissues of adult amphioxus (Chen et al., 2008b) 

 

In the 2011, Yu Shuang and collaborators investigated the amphioxus immune 

system studying expression patterns of immune defence-related genes in 

epidermis, gill epithelium, intestinal epithelium, and macrophages in adult                     

B. belcheri, and they suggested that in the alimentary canal the NOS play an 

important role in immune defence (Lin et al., 2011) (Figure 1.23). 
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Figure 1.23 -Amphioxus NOS expression pattern by in situ hybridization. (E) gill epithelium and 

branchial coelom macrophages, (K) intestinal epithelium and perienteric coelom macrophages, (Q) 

metapleural fold epidermis and metapleure coelom macrophages  (Lin et al., 2011). 
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In the same years Andreakis and collaborators analyzed the genome of B. floridae 

(Putnam et al., 2008) and discovered the existence of three district NOS genes, two 

constitutive (NOS-A and NOS-C) and one inducible NOS (NOS-B) (Figure1.7). The 

authors concluded that recurrent lineage-specific duplications of an ancestral 

metazoan NOS (indicated as D in Figure 1.7) led to multiple NOS genes in 

different animal species, as it is the case of amphioxus genes resulted to be the 

product of a lineage-specific duplication event (Figure1.24) (Andreakis et al., 

2011). 

 

Figure 1.24 -Evolutionary events regarding NOS genes in chordates are whole-genome 

duplications (R) and lineage-specific duplications (D). Inferred gene losses during vertebrate 

evolution are depicted in gray (Andreakis et al., 2011). 
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2.1 Animal’s culture and embryos collection 

The amphioxus used in the present work belong to the Mediterranean species 

Branchiostoma lanceolatum, an endemic species of the Gulf of Napoli with a broad 

distribution along the Italian and Mediterranean coasts, with populations 

becoming  increasingly rare probably due to the increment of pollution substances 

due to human activity. 

2.1.1 Adult B. lanceolatum sampling 

The adult amphioxus has been sampled in the Golf of Naples from 2011 to 2015 at 

Capo Posillipo (Table 2.1), an historical site rediscovered thanks to an old 

manuscript describing the precise coordinates of the most numerous colony (Bone, 

1958). The animals were caught using a drudge, with the support of the SZN 

vessel "Vettoria", dragged on the soft bottom and collecting 5-10 cm of sand. After 

the sand collection between 5 and 12 meters deep, it was sifted directly on boat 

using a net with a 1.25mm mesh (Figure 2.1). 

 

 

Figure 2.1 - Adult B. lanceolatum sampling. (A) Drudge; (B) Sorting of the sand; (C) Adult 

amphioxus samples. 
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Since the number of animals was never high, due to the sharp decline that the 

amphioxus population has suffered in the Gulf of Napoli, we imported animals 

from the same species also from Banyuls-sur-Mer (France), where there is the most 

abundant amphioxus population of the Mediterranean sea. Thanks to the support 

of a grant from the Association of European Marine Biological Laboratories 

(ASSEMBLE http://www.assemblemarine.org/) I was hosted in Dr. Hector 

Escriva laboratory at the Observatoire Océanologique de Banyuls-sur-Mer, where 

a remarkable quantity of fixed embryo and adult animals was obtained.   

  

http://www.assemblemarine.org/
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Table 2.1-  Branchiostoma lanceolatum sampling in the Gulf of Napoli (Italy) 

Data Place Depth number Average size Gonads T (°C) 

19/01/2011 CO  3 AD 2,7 cm 1 (-), 2 (+)  

09/11/2011 COPO 
9 mt 
8 mt 

1                 
14 

JUV 1 cm 
AD 3-4 cm 

4 (+)  

30/11/2011 PO 7mt 5 AD 3-4 cm 1 (+)  

18/01/2012 PO 8 mt 1 JUV 1 (-)  

15/02/2012 PO 7 mt 10 
JUV 2 cm 
AD 4 cm 

4 (++)  

27/03/2012 PO 6 - 7 mt 9 
JUV 2,5 cm 
AD 3,5 cm 

5 (+), 2 (++) 16 

02/05/2012 PO 7 - 10 mt 8 
JUV 2,2 cm 

AD 3 cm 
2 (+++) 
1 (++) 

17 

14/05/2012 NS  0   20 

15/07/2012 PO  0   25 

12/09/2012 PO  0   27 

19/10/2012 PO 7 - 11 mt 3 
JUV 1,2 cm 
AD 4,5 cm 

(-) 25 

15/11/2012 PO 6 - 10 mt 4 
JUV 1,8 cm 
AD 3,2 cm 

(+) 20 

13/12/2012 PO 6 - 7 mt 4 JUV 1,8 cm (-) 17 

31/01/2013 
PO 6 - 9 mt 22 

JUV 2 cm 
AD 3,2 cm 

21 (-), 1 (+) 
14,5 

CO 5 - 6 mt 0   

14/02/2013 PO 7 - 10 mt 22 
JUV 1,8 cm 
AD 3,3 cm 

(-) 14 

05/04/2013 PO 8 - 10 mt 12 
JUV 2 cm 
AD 2,9 cm 

(++) 15 

03/05/2013 FV 
7 - 8 mt 

14 - 15 mt 
0   19 

10/05/2013 ISP 7 - 9 mt 5 JUV 2,3 cm (+) 20 

13/05/2013 IS 5 - 7 mt 4 
JUV 1 
AD3 

(-) 23 

11/06/2013 IS 6 - 9 mt 13 
JUV 9 
AD 4 

(-) 23 

01/07/2013 IS  0    

08/01/2014 PO 9 - 11 mt 18 JUV 1,7 cm (-) 16 

23/10/2014 PO 10 - 15 mt 25 JUV 1,7 cm (-) 22 

18/03/2015 PO 6 - 10 mt 45 AD 2 cm 
14 (-) 30 (+) 

1 (++) 
14 

Symbols reported in the table 

CO Castel dell'Ovo (NA) - 40°44'17'' N - 14°14'17'' E 

PO Capo Posillipo - Villa Gallotti (NA) - 40°48'33'' N - 14°12'55'' E 

FV Foce Fiume Volturno River   (CE) - 1°00'92" N - 13°55'367" E 

ISP Ischia Porto (NA) - 40°45'025'' N - 13°55'940'' E 

(-) no gonads 

(+) Begin of  gametogenesis 

(++) midgametogenesis 

(+++) complete gametogenesis  
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2.1.2 B. lanceolatum facility 

From 2011 collected amphioxus where brought to the “Aquaculture of Marine 

Organisms” facility at Zoological Station Anthon Dohrn of Naples (Figure 2.2). 

The “Neapolitan” and “French" animals were kept in different breading tanks, 

about 50–100 animals for 20 litres of sea water. The sand came from the original 

capture sites and the animals were kept in open circulating system with 

continuous aeration and filtrated sea water. The temperature of the sea water in 

the tank was the same that in the Gulf of Napoli during the autumn and winter 

seasons, while in spring and summer, the period of gonadic maturation for these 

animals, it was kept in controlled temperature condition (17°C), lower than the 

natural one, to avoid the natural emission of sperm and eggs in the tank. The light 

cycle of 12 hours of light and 12 hours of dark was provided. Animals were fed 

daily with a 1:1 mix of microalgae of Isochrysis galbana and Tetraselmis sp. strains 

(Fuentes et al., 2007). 

 

 

Figure 2.2 -Amphioxus facility. 
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2.1.3 B. lanceolatum spawning 

Between end of spring and beginning of the summer the B. lanceolatum gonads 

development, started in winter, arrive to maturation. As mentioned above, to 

avoid the natural emission of sperm and eggs, the animals were kept at low 

temperature (17°C). The induction of artificial spawning was performed applying 

an heat shock to ripe animals. Selected animals, with visible mature gonads, were 

placed in a water bath settled at 5-6 degree of temperature higher than 

temperature of the culturing system; the day after the animals were separated 

singularly in glass beakers containing 100 ml filtered sea water to avoid the 

uncontrolled fertilization. After 36 hours of exposure to the temperature stress, at 

the sunset the animals start to spontaneously release the gonads (resembling the 

natural spawning). The experiment is resumed in Figure 2.3. 

 

 

Figure 2.3 - Schematic timing representation of induced spawning in B. lanceolatum. 

 

In the afternoon of the spawning days, the oocytes undergo the first meiotic 

division with formation of the first polar body and then arrest at second meiotic 

metaphase (Holland and Onai, 2012). The mature gonads, at this point, are 

released through the atriopore, in the number of several thousand (Figure 2.4 A). 

Upon release of the gametes, adult animals are removed from beakers, the sperm 

forms several males is mixed to increase the fecundation percentage and kept on 
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ice. 200-300 eggs were distributed into petri dishes with scratched bottom to avoid 

that they attach to it, then they were fertilized with some drops of sperm mix. 

After approximately 10 minutes the percentage of fertilized eggs was checked by 

the elevation of the fertilization membrane (Figure 2.4 B). In case that less than 

65% of eggs were fertilized, another drop of sperm was added. Subsequently, 

embryos were washed twice with fresh sea water FSW and left to grow up to 

desired developmental stage in petri dishes at 18°C (Figure 2.4C and Figure 2.5). 

 

 

Figure 2.4 - B. lanceolatum fecundation and first cleavages.  (A) Unfertilized eggs; (B) fertilized 

egg with elevation of the fertilization membrane; (C) Zygotes at early second cleavage stages. 
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Figure 2.5 -The most representative embryonic and larval stages of the B. lanceolatum life cycle 

are presented; the developmental timing for each stage at 18°C is also indicated. (A-C)The early 

stages of development, before neurulation, are similar to those observed in other invertebrate 

deuterostomes such as the sea urchin. (D-G)By contrast, the later stages of development, after 

neurulation, are similar to those of vertebrates (Bertrand and Escriva, 2011b). 

  



Chapter 2 - Material and Methods 

48 
 

2.1.4 Embryo collection 

Amphioxus embryos were kept into the petri dishes with scratched bottom in 

fresh sea water (FSW) at 18°C. 

2.1.4.1 Collecting embryos  for quantitative PCR (qPCR)  

Embryos for total RNA extraction were collected and fixedin Eurozol (EuroClone,  

UK), with a proportion of about 500 embryos/larvae per ml, and stored at -80ºC 

until use.  

2.1.4.2 Fixation for in situ hybridization experiment 

When reached the desired stage of development, embryos were concentrated in 

the middle of the plate with circular movements, collected in the minimum 

volume of sea water, about 75-100 µl, and transferred into 1 ml of fresh prepared 

and filtered (0.22 µm) 4% PFAin MOPS/EGTA solution (0.1M MOPS pH 7,5;                       

2 mM MgSO4, 1 mM EGTA; 0.5 M NaCl in DEPC H2O). 

After the embryos were fully deposited on the bottom of the eppendorf tube, the 

50% of fixative solution was renewed and then the embryos were incubated ON at 

4°C. The next day, embryos were washed at least three times in ice-cold 70% EtOH 

(dilute in DEPC water) and kept at -20°C until use. 

2.1.4.3 Collecting for NO quantization assay  

Embryos, at the desirable developmental stage, were concentrates using a mesh 

and subsequently were pelleted with a light centrifugation (1500-3000 rpm for 2-4 

minutes) to remove as much as possible the water and frozen at -80°C in 

eppendorf tubes.      

2.1.4.4 Embryos collection for in vivo experiments 

For in vivo experiments such as NO localization or drug treatments, the embryos 

were  kept into the petri dishes in FSW at 18°C until they reached the desired stage 

of development. 
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2.2 Biomolecular techniques 

2.2.1 RNA Extraction and purification 

To eliminate RNAase contaminations all the procedures were carried out in sterile 

condition, using gloves and RNAase free plastic disposable. Total RNA was 

extracted from embryos and larvae at several developmental stages: gastrula, 

neurula, pre-mouth larvae, larvae 3dpf, larvae 5dpf (in proportion of about 500 

embryos or larvae), and small adult (about 1.2 cm) in 1 ml Eurozole solution (Euro 

Clone, UK). The reagents contain phenol and lysis buffer. According to the 

protocol, Eurozole was added to the sample in a proportion of 9:1. Samples were 

homogenized using a pestle. Then 0.1 volume of chloroform was added, mixed 

gently and centrifuged at 14.000 rpm at 4°C. The aqueous phase was collected and 

mixed with equal amount of pure chloroform. After the centrifugation, the 

aqueous phase was precipitated with two volumes of 100% Et-OH, ON at -20°C. 

Then the sample was centrifuged for 30 minutes at 14.000 rpm at 4°C. The 

obtained pellet was washed with 70% Et-OH, centrifuged as before, air-dried and 

resuspended in DEPC H2O. The sample‟s concentration was measured with a 

“NanoDrop 1000” spectrophotometer (Thermo, USA) and RNA integrity was 

checked on a 1% agarose gel. The total RNA was kept at -80°C until use. 

 

2.2.2 Reverse transcription 

The first strand of cDNA was obtained by in vitro reverse transcription using                         

0.5-1 µg of total RNA. This  enzymatic reaction drive the synthesis  of DNA strand 

complementary to the RNA template using an RNA polymerase. The reaction was 

carried out with the SuperScript VILO cDNA Synthesis kit (Invitrogen, India). 20 

µl of reaction was performed in the PCR machine according to the following 

setting program: 25°C for 10 minutes, 42°C for 60 minutes, 85°C for 5 minutes. 

Then the cDNA obtained was kept at -20°C until use. 
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2.2.3 Polymerase Chain Reaction(PCR) 

Polymerase chain reaction (PCR) is a method that allows exponential amplification 

of short DNA sequences within a longer double stranded DNA molecule. Each 

amplification reaction was conducted in a volume of 12,5 to 100 μl of reaction mix 

depending for the purpose of the experiment and it was composed by sterile H2O, 

1X reaction buffer, 1.75 mM MgCl2, 0.2 mM dNTP, 50 pM of each primer, 1 U/µl 

of GoTaq DNA polymerase and 1 ng of DNA template for each µl of final reaction. 

The amplification cycles were conducted by means of Thermal Cycler Perkin-

Elmer-Cetus. After denaturation at 95 ºC for five minutes, 30 amplification cycles 

were performed as follows: denaturation at 94 ºC for 30 seconds, annealing at 55-

65 °C for 30 seconds (depending on the primers), extension at 72 °C for 0.5-1.5 

minutes (considered 1 minute to synthesize 1 kb). An extra extension cycle was 

carried out at 72 ºC of 10 minutes to complete all DNA strands. 

To purify the amplified DNA from the excess of buffer and dNTPs, the Invitrogen 

PCR Purification kit was used according to the protocol‟s instructions. The 

concentration of the obtained DNA was measured using the “NanoDrop 1000” 

spectrophotometer (Thermo, USA) and checked on a 1-1.5% agarose gel with the 

appropriate molecular marker. 

 

2.2.4 DNA/RNA gel electrophoresis 

The DNA concentration or the length of a linearized plasmid was evaluated with a 

DNA gel electrophoresis. The concentration of the agarose was chosen according 

to the length of the expected fragment. For short fragments 1.5% agarose gel is 

more suitable and for fragments longer than 250 bp is better to use a 1% agarose 

gel. The gel were prepared with 1XTBE buffer (1.1 M Tris; 900 mM Borate; 25 mM 

EDTA; pH 8.3) and Ethidium Bromide 0.5 µg/ml. DNA samples were mixed with 

Loading Buffer (Gel Loading Buffer (6X); 0.25% Bromphenol Blue; 15% Ficoll 400, 

120 mM EDTA, 0.25% Xylene Cyanol) and the appropriate molecular marker. 

Electrophoresis was normally settled at the voltage of 90-100 V.  
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In order to evaluate the quality and relative quantity of RNA the procedure was 

similar to the DNA electrophoresis with slight modifications to avoid RNA 

degradation (not in denaturation conditions): the electrophoresis camera was 

RNAse-free, the running buffer was fresh prepared.  

 

2.2.5 Molecular Cloning 

This techniques allow to obtaining multiple copies of a given nucleotide sequence 

of interest. It consists of three phases: ligase, transformation and hosting bacterial 

growth. 

2.2.5.1 DNA ligation 

T4 DNA Ligase catalyzes the formation of a phosphodiester bond between 

juxtaposed 5'-phosphoryl and 3'-hydroxyl termini in duplex DNA. The PCR 

fragments were ligated with the commercial plasmids p-GEM-T Easy vector 

(Promega, USA). Each ligation reaction was carried out in a final volume of 20μl in 

distilled H2O and containing 50-100 ng of vector DNA linearized. The moles of 

insert DNA were added in 3-5 fold vector moles and 2 μl of ligation buffer (10X T4 

DNA Ligase Buffer: 500 mM Tris-HCl pH 7.5, 100 mM MgCl2, 100 mM 

dithiothreitol, 10 mM ATP, 250 μg/ml bovine serum albumin) and 1 μl of T4 DNA 

Ligase (1 unit/μl) (Promega). The reaction mix was incubated at 4°C overnight or 

two hours at room temperature, and used to transform competent bacteria. 

2.2.5.2 Bacterial transformation  

The transformation of vectors containing DNA of interest was performed by 

electroporation in bacterial cells Escherichia coli provided by the Molecular Biology 

Service of SZN and stored at -80°C. When needed the cells were gently defrosted 

on ice for 10 minutes, and 40 µl were mixed with 4 µl of dialyzed vector, then the 

mix was transferred quickly into electro-cuvette. The electric shock was performed 

in a “Bio-Rad Gene Pulser” applying a constant voltage of 1.7 V. 
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2.2.5.3 Bacterial growth in liquid and solid culture medium  

The cells transformed were placed in 800 ml of Luria Bertani (LB) medium shaking 

at 270 rpm at 37 °C for 1 hour, after that the cells were plated on LB solid medium 

(NaCl 10g/l, tryptone 10 g/l, yeast extract 5 g/l, agar 15 g/l) (in volume of 200 

and 600µl) in the presence of ampicillin (50 μg/ml) to which the plasmids were 

resistant. IPTG and X-gal (40 µl + 40µl respectively) were added for the blue-white 

screening technique and grown overnight at 37°C. 

 

2.2.6 PCR colony screening 

To detect positive colonies after the cloning experiments, white colonies were 

individually picked using a sterile plastic tip and sink it into 12.5 µl of PCR 

reaction mix in PCR tube for 5 minutes and mixed well. After PCR amplification 

using forward and reverse primers corresponding to the specific plasmid 

sequence, by electrophoresis analysis the samples presenting a band of the 

expected size were identified and the plasmidic DNA was purified from the 

corresponding bacterial colonies.  

E. coli colonies were grown ON in 3 ml of LB and 0.1 mg/ml of antibiotic, at 37°C, 

shaking at 270 rpm. After 16 hours, the colony in LB was separated on two parts: 

500 µl aliquot was mixed with 500 µl of 100% Glycerol and freeze at -80°C as stock, 

all the rest (2.5 ml) was used to purify plasmidic DNA, according to the protocol 

supplied of GenElute™ Plasmid Miniprep Kit (Sigma, USA). The obtained DNA 

was measured with a NanoDrop1000 spectrophotometer (Thermo, USA). 

 

2.2.7 DNA sequencing 

The DNA sequencing was carried out at the Molecular Biology Service of SZN 

using Automated Capillary Electrophoresis Sequencer 3730 DNA Analyzer 

(Applied Biosystems, USA)  using a BigDye® Terminator v3.1 Cycle Sequencing 

Kit (Life Technologies). 
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2.2.8 Riboprobe synthesis 

Particular attention was paid to design primers to amplify the three NOS genes 

(Table 2.2) and avoid overlapping DNA regions since these genes are very similar 

between them, and so to avoid false positive results. Gene amplification was 

carried out using cDNA of mix larval stages for NOS-B and NOS-C, while for 

NOS-A was amplified from adult animal cDNA.  

The RNA polimerization reactions were done using a PCR template using the 

M13F and M13R primer. The PCR product was purified using “MinElute PCR 

Purification Kit” (Qiagene) and then used for the synthesis of the riboprobe. If the 

PCR band was not unique, the DNA band of interest was cutted from the gel and 

purified by using “GenElute Gel Extraction Kit” (Sigma). The RNA transcription 

reaction was carried out using RNA-polymerase Sp6, T7 or T3. Two riboprobes for 

each gene were synthesized. The “sense-riboprobe” served as a negative control, 

while the “antisense-riboprobe”revealed the gene expression pattern due to its 

sequence complementary features with the endogenous mRNA. Riboprobes were 

labelled by Digoxigenin (DIG, Roche). Labelling and RNA transcription were 

performed in one step according to Roche standard protocol with 1µg of PCR 

template for a final volume of the reaction of 20 µl at the temperature of 37°C. 

Then, 1 U/µl of DNaseI-RNAse free (Roche) was added to the reaction, mixed and 

incubated for 20 minutes (to remove the DNA template). Then, the mix was placed 

on ice for 5 minutes and the riboprobe was precipitated adding 80 µl of TE buffer 

(Tris-Cl, EDTA), 300 µl of 100% Et-OH and 10 µl of 4M LiCl. The solutions were 

mixed gently and left ON at -20°C. The next day, the tubes were centrifuged for 30 

minutes at 4°C at the maximum speed (14.000 rpm). The supernatant was 

discarded and the RNA pellet on the bottom of the tube was washed with 1 ml of 

the ice cold 100% Et-OH, then, centrifuged at 4°C at the maximum speed for 15 

minutes. All traces of the Et-OH were discarded, the RNA pellet was air-dried and 

then eluted in 50 µl of DEPC H2O. 

The riboprobe concentration was measured with a “NanoDrop 1000” 

spectrophotometer (Thermo, USA) and with a “dot-blot” immunostaining (section 
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2.15). Usually the riboprobes synthesized in vitro have concentration of about 100 

ng/µl. The riboprobes were kept at -80°C until use. 

 

2.2.9 Riboprobe quantification 

Riboprobes concentrations were evaluated by “dot-blot” immunostaining, using 

anti-DIG Alkaline Phosphatase (AP) conjugated antibodies against the RNA 

control (Roche). RNA sample at standard dilutions were prepared with dilution 

buffer according to these proportions: DEPC H2O: 20X SSC: formaldehyde (5:3:2).  

1µl of each RNA sample dilution were spotted on a Hybond N membrane 

(Amersham) in parallel to the DIG-labelled RNA standard dilutions (Roche). 

Samples were UV-cross-linked to the membrane by Stratalinker for 30 seconds. 

The membrane was incubated in the blocking solution (BS) containing 5% BSA in 

0.1M maleic acid pH 7.5, at RT for 30 minutes and then in BS with anti-DIG AP 

antibody, at a final concentration 0.15 U/ml at RT for 1 hour. Then, the membrane 

was washed from not conjugated antibodies by three washed in 0.1M maleic acid 

pH 7.5 and 0.15 M NaCl, in detection solution (100 mM Tris-HCl pH 9.5; 100 mM 

NaCl; 50 mM MgCl2) and then incubated in the dark in detection solution 

containing 50 mg/ml of 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) and 50 

mg/ml nitroblue tetrazolium (NBT). Due to the AP enzymatic reaction in presence 

of NBT and BCIP substrates, the insoluble blue-purple precipitate appears. After 

10 minutes the reaction was stopped by tab H2O washing. The intensity of the 

coloration of the samples spot was compared with reference one of known 

concentration. Thus, the approximate concentrations of riboprobes for the in situ 

hybridization experiments was established. 
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2.3 Primers for WISH and qPCR design 

Because of the high similarity between the three NOS genes a deep analyses was 

performed to find specific sequences in order to design specific riboprobes 

synthesis and qPCR (Table 2.2) for each gene. Each primer was design manually 

identifying specific sequences for each gene. The primers melting temperature 

(Tm) were checked using Sigma-Aldrich software “OligoEvaluator” 

(http://www.sigmaaldrich.com/).  

 

Table 2.2 -Table of primers for WISH and qPCR 

Primer name Sequence (5’→3’) PCR product  

Cloning/WISH primers 

Bl NOS-A 
FORWARD GCCCCGTGAGTTTCCAACTG 

1076 bp 
REVERSE GGAGCTGGTTTGGTCAAATC 

Bl NOS-B 
FORWARD CGGTACAATCCAGAGAAACG 

830 bp 
REVERSE CGTACCCCTGGAACTGGAAC 

Bl NOS-C 
FORWARD TCGGCCGAACGTAATTGCCG 

787 bp 
REVERSE GCCCGCATGAAGAACTGGCTG 

Bl SoxB1c 
FORWARD GTCTGCCAGGTGGTCTGATC 

578 bp 
REVERSE GACTGAGGGGAACTGTACCG 

qPCR primers 

Bl NOS-A 

FORWARD AGTACAGTCATCTCCAGAAC 
F-R1 = 221 bp 
F-R2 =258 bp 

REVERSE-1 CAGATAGAAGCGCTGCAAGA 

REVERSE-2 GTTTGGTCAAATCATGGACG 

Bl NOS-B 
REVERSE AGTTTACTCCCGGCGATCA 

191 bp 
FORWARD GCGTTTGCCGCCATGTTCT 

Bl NOS-C 
REVERSE CAGGATTCTGCGCGTTTGC 

197 bp 
FORWARD CATGAGCGAGGCTAGCTCC 

Bl L-32 
REVERSE GGCTTCAAGAAATTCCTCGTC 

117 bp 
FORWARD TCACGCAAGAGGAAACTCATT 

cDNA sequencing primers 

T3 ATTAACCCTCACTAAAGGG 
T7 AATACGACTCACTATAGGG 

SP6 GATTTAGGTGACACTATAG 
M13F CGTTGTAAAACGACGGCCAGT 

M13R TTTCACACAGGAAACAGCTATGAC 
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2.4 Whole mount in situ hybridization (WISH) 

Embryos and larvae at the desired developmental stage were rehydrated with 

three 1X PBT (1XPBS; 0.1% Tween20) washes at RT. To facilitate the riboprobe 

penetration into the tissues at late developmental stages the embryos were 

incubated for 5 minutes in PBT 1X with Proteinase K (5µg/ml) that digests 

membrane proteins. The reaction was stopped by adding 4 µl of 10% glycine and 

then changing the solution for 2 mg/ml glycine in 1XPBT. The embryos were fixed 

again in 4%PFA in PBT for 1 hour at RT and then washed in                                                 

0.1 M tri-ethanol-amine with acetic anhydride at two different concentrations, 

1:400 and 1:200. This treatment is important for decreasing the background but it 

also appears to inactivate RNases and may help in producing a strong signal. 

Embryos were washed in PBT and pre-hybridized in hybridization buffer HB (50% 

deionized Formamide; 100 µg/ml Heparin; 5X SSC; 0.1% Tween20; 5 mM EDTA; 

1X Denhardt‟s; 1mg/ml; total Yeast RNA; DEPC H2O). Then embryos were 

hybridized ON at 65°C in HB with 0.1 ng/µl of riboprobe. 

The day after, the excess of riboprobe was washed out by wash solution I (WS-I) 

(50% dionized Formamide; 5X SSC; 1% SDS in DEPC H2O) and WS-II (50% 

deionized Formamide; 2X SSC; 1% SDS in DEPC H2O) at 60°C, then by WS-II, WS-

III (2X SSC in DEPC H2O). After this last step it is possible to treat embryo with 

RNAse A (2 μl of 10mg/ml) and RNAse T1 (1 μl of 10000 U/ml to add to 1 ml of 

WS-III) to remove RNA single strand and remove the background. Subsequently 

the very last washes were done in WS-IV (0.2X SSC) at RT. Then the blocking step 

was performed by washing embryos in WS IV with 100 µl of sheep serum in 1 ml 

(final volume) and changing this solution for Blocking Reagent (BR) (PerkinElmer) 

for one hour and replaced BR with the AB mix ON at 4°C. To prepare 6 ml of 

antibodies solution 6 mg of BR in 800 µl of PBS with 0.1% Triton X-100 were 

preheated 30 minutes at 70°C, then was added 200 µl of 20 mg/ml BSA, 200 µl of 

sheep serum and 1:2.000 anti-DIG AP antibody. The mix was incubated one hour 

on a rotator at 4°C, and then the total volume of the mixture was filled up to 6 ml 

with 400 µl of 2 mg/ml BSA and 200 µl of sheep serum in PBT. 
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Then, the AB was recovered and the embryos were washed 4-5 times in PBT for 20 

minutes on a rotator. To detect the signal the AP reaction was performed: the 

embryos were incubated in 0.22 µm filtered AP buffer in the dark (0.1 M Tris pH 

9.6; 0.05 M MgCl2; 0.25 M NaCl; 0.1% Tween 20; 0.5 µg/µl of Levamisole) and after 

the AP buffer was substituted to BM-purple AP substrate (Roche), until the colour 

appeared. Then, the reaction was stopped by PBS washing. Embryos were fixed in 

4% PFA in PBS for one hour, washed in PBS and kept for imaging in 80% glycerol 

in PBS with 0.1% NaN3 to prevent the bacterial contamination. 

 

2.5 Quantitative PCR(qPCR) 

Temporal accumulation of RNA messages for developmental stages gastrula, 

middle neurula, pre-mouth larvae, larvae 3dpf, larvae 5 dpf and small adult (1,2 

cm) was monitored using real-time quantitative polymerase chain reaction 

(qPCR). Specific primer sets (Table 2.2) for each gene were manually designed. 

Primer pairs were chosen to amplify products of 100–300 bp in length. Blast 

searches were used to ensure that primers were specific for each individual gene. 

The qPCR was carried out in a ViiATM 7 Real- Time PCR System (Applied 

Biosystems) using the SYBRTM Green reagent (Life technologies). Empirically, the 

optimal work concentration of cDNA have been found, through serial dilutions. 

Then, the reaction carried out in multi well plate. 10 µl of reaction contained 1 

pM/µl of each primer, 5 µl of SYBR Green reagent and 1 µl of diluted 1:20 cDNA. 

The reaction was performed in tree steps: i) hold stage was performed by 

incubation at 95°C for 20 seconds; then ii) PCR amplification  was carried out by 

40 cycles of repeating conditions: 95°C for 1 seconds and 60°C for 20 seconds; iii) 

melting curve stage: 95°C for 15 seconds, 60°C for one minute and 95°C for 15 

seconds. The data were handled by software supported with PCR equipment (look 

the section 2.21 Software). The relative ratio was controlled by manual 

calculations, using “Users bulletin”, ABI PRISM 7700 Sequence Detection System 

1997 and the theory of data normalization by Rebrikov and Trofimov (Rebrikov 

and Trofimov, 2006). For the expression level in the developmental stages, data for 
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each gene were normalized against ribosomal protein L32 mRNA, which is known 

to be expressed at constant levels during develompent (Kozmikova et al., 2013). 

 

2.6 NO quantization: Griess assay and DAN assay 

2.6.1 Bradford protein assay 

Bradford protein assay is a simple and accurate method to determinate the 

concentration of solubilised proteins. This assay is based on the binding of 

coomassie brilliant blue with proteins. This dye binds protein give rise to a colored 

product with an absorption peak at 595 nm. The measurement is made by 

spectrometer and the color intensity is related with the protein amount using a 

calibration curve. In order to obtain a calibration curve, three known quantity of 

bovine serum albumin (BSA) were used:  3µg, 6µg and 9µg. For each samples 

200µl of Biorad reagent solution was added and up to 1 ml with PBS 1X.  

The several samples for each developmental stage were concentrated (such 

explained in the section 2.1.4.3) and homogenized in 500µl of 1X PBS using a 

plastic sterile pestel, subsequently several cycle of sonication was performed  to 

obtain the membranes  fractionation. The sonication was performed on ice with 3 

cycles of 1 minute, with amplitude of 30%. After the homogenization, a 

centrifugation of 10 minutes at 13.000 rpm allowed to obtain a supernatant which 

contains the proteins. The protein extract concentration was determined by 

Bradford assay. The samples for the assay contain 5µl and 10µl of protein extract, 

200µl of Bradford reagent and PBT1X up to 1 ml. The final protein concentration is 

given by the average of the value obtained from the two dilutions. 

 

 

2.6.3  DAN assay 

Studies of NO quantification were hampered by the physiological short half-life of 

this gaseous free radical, so alternatively, integrated nitric oxide production can be 

estimated from determining the concentrations of nitrite and nitrate final 
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products. The measurement of nitrate/nitrite concentration is routinely used as an 

index of NO production (Moshage et al., 1995).  

Before to measure the concentration of nitrites all the nitrates were converted to 

nitrites using the nitrate reductase (NaR).  

In the attempt to measure NO-derived NO2 generated under physiological 

conditions, different fluorometric methods have been developed. One method has 

employed the use of the aromatic diamino compound 2,3-diaminonaphthalene 

(DAN) as an indicator of NO formation (Miles et al., 1996). The relatively non 

fluorescent DAN reacts rapidly with N2O3 generated from acidified nitrite (nitrous 

acid) or from the interaction of NO with oxygen to yield the highly fluorescent 

product 2,3-naphthotriazole. This assay offer additional advantages of specificity, 

sensitivity, and versatility (Bryan and Grisham, 2007) but because of the fast decay 

of fluorescence this assay has a restricted time limit (Hu et al., 2014).  

To obtain a standard curve useful to quantify nitrite concentration in our samples, 

was measured the absorbance of sodium nitrite solution at different molarity: 0µM 

(blank); 2,5 µM; 5 µM; and 10 µM in 1XPBS , adding NaR and its cofactors. 

We used 50µg of total protein in a final volume of 80µl in each samples in order to 

normalize the values. For the conversion of nitrates in nitrites we added a mix of 

20µl of NaR (final concentration 0.8 U/ml) and its cofactors FAD and NADPH 

(final concentration 15µMand 0.06 mM, respectively) both in the samples used for 

analyses and calibration curve. After two hours of reaction, needed for nitrates 

conversion, 10µl of reactive DAN (0,05 mg/ml dissolved in HCl 0.62 M) were 

added to the samples, then after ten minutes of incubation in the dark 15 µl of 

NaOH 2.8M were added to stop the reaction. Then the samples were quickly 

measured using the  spectrofluorometer. The concentration of NO was reported as 

nmol of NO per mg of protein. 

 

 

2.6.4  Griess assay 

The Griess reaction first reported by Johann Peter Griess in 1879 as a method of 

analysis to quantify nitrite, index of NO concentration. Nitrite is first treated with 
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a diazotizing reagent, e.g., sulfanilamide (SA), in acidic media to form a transient 

diazonium salt. This intermediate is then allowed to react with a coupling reagent, 

N-naphthyl-ethylenediamine (NED), to form a stable azo-compound. The intense 

purple color of the product allows nitrite assay with high sensitivity. The 

absorbance of this adduct at 540 nm is linearly proportional to the nitrite 

concentration accordingly NO concentration in the sample (Sun et al., 2003). 

The calibration curve used to quantify nitrite concentration in our samples, was 

obtained using sodium nitrite solutions at several Molarity as reported in the in 

the previous paragraph. 

We used 50µg of total protein in a final volume of 150µl in each samples in order 

to normalized the assay. For the conversion of nitrates in nitrites we added 150µl 

of a mix contain NaR, in final concentration 0.24 U/ml, and its cofactors FAD and 

NADPH (final concentration 5µM and 0.2 mM, respectively) both in the samples 

used for analyses and calibration curve. After 2 hours of reaction, needed for 

nitrates conversion, samples and standard curve solution were incubated for ten 

minutes in the dark with equal volume of 1% (wt/v) sulphanilamide in 5% H3PO4 

and then for ten minutes with equal volume of 0,1% (wt/v) N-(1-naphthy)-

ethylenediaminedihydrochloride. The samples were measured at the 

spectrophotometer and the result were expressed as nmol of NO per mg of 

protein.   

 

2.7 NO detection: DAF-FA DA assay  

The cell-permeant diaminofluorophore 4-amino-5-methylamino-2′-7′-

difluorofluorescein diacetate (DAF-FM-DA, Molecular Probes) was used to detect 

NO production sites in living amphioxus (Bryan and Grisham, 2007; Kojima et al., 

1999). This reagent, not fluorescent, is permeable and passively diffuses through 

biological membranes. Inside the cell the compound is rapidly de-esterified by 

intracellular esterase and quickly reacts with NO to form a fluorescent compound: 

benzotriazole (λex=495nm, λem= 515nm).  

3dpf larvae were incubated in presence of a concentration of 5μM                        

DAF-FM-DA in the dark, at room temperature, for 20 minutes in filtered sea 
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water; after the reaction time, 6 washes of 5 minutes each has been done (Comes et 

al., 2007).  

In order to slow down larval movement during the treatment the anesthetic 

MS222 (Sigma) were applied.  The treated larvae were analyzed using a Zeiss 

confocal laser scanning microscope LSM 510 with fluorescent filter (λex= 470±40 

nm, λem= 525±50 nm). 

 

 

2.8  Variation of NO endogenous levels during development 

To investigate the role of NO in larval development of B. lanceolatum an inhibitor 

of NO production was used. The L-Nω-Nitroarginine (L-NA or L-NNA), a 

competitor of L-Arginine is one of the first synthetic NOS inhibitors studied 

(Vìtecek et al., 2012), in fact its capability to block NO synthesis was recognized in 

the early nineties (Moore et al., 1990; Rees et al., 1990a). In the NO formation 

reaction, it substitutes L-Arginine leading to a decrease of endogenous NO levels. 

Due to a poor solubility at neutral pH, L-NA is often substitute from its analogue 

L-Nω-Nitroarginine Methyl Ester (L-NAME) that is preferred for the better 

lipophilicity characteristics and therefore useful for in vivo experiments (Rees et al., 

1990b). L-NAME may act as a weak NOS inhibitor, but it is readily hydrolyzed by 

ubiquitously present esterases to L-NA in biological systems (Griffith and 

Kilbourn, 1996). Embryo at gastrula, neurula, and larvae at pre-mouth and 3dpf 

stages were treated with three L-NAME concentrations: 100µM, 500µM, 1mM - 

dissolved in FSW. The samples were left to develop in petri dishes at 18°C and 

were fixed in PFA 4% in MOPS/EGTA when they reached the required stage 

embryo. Samples developed in FSW and in the same developmental conditions in 

absence of the drugs were used as control. The larvae morphology was analyzed 

using a microscope Zeiss Axio Imager M1, equipped with an Axiocam digital 

camera.  
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2.9 NOS phylogenetic analysis 

2.9.1 Cephalochordate evolutionary study 

To better understand the evolutionary relationships among NOS genes in 

cephalochordates a phylogenetic study was performed. 

NOS sequences cloned from Branchiostoma lanceolatum and all NOS genes gathered 

from published genomes and transcriptomes and genomic databases for other 

basal animals are listed in Table 2.3. 

 

2.9.2 Bony fishes and chondrichthyes evolutionary study 

In order to study in deep the scenario of fish NOS evolution, teleosts fishes, 

chondrichthyes fishes and cyclostomes sequences were analyzed. Sequences of 

man, frog, lizard and tunicate were used as outgroups (Table 2.2). The protein 

sequences were obtained by blast analysis of NOS sequences in principal 

genome/transcriptome browser:  

 

NCBI     www.blast.ncbi.nlm.nih.gov/Blast.cgi 

Ensemble    www.ensembl.org/index.html 

UCSC     www.genome-euro.ucsc.edu 

Elephant shark genome  www.esharkgenome.imcb.a-star.edu.sg 

SkateBase    www.skatebase.org 

SalmonDB    www.salmondb.cmm.uchile.cl 

NFIN     www.nothobranchius.info 

Japanese Lamprey Genome www.jlampreygenome.imcb.a-star.edu.sg 
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Table2.3 -NOSs gene sequences accession number used in the phylogenetic study. The symbol ( -) 
indicates that the gene is not present in the organism or that it is not found in 
genome/transcriptome..  

Species 
nNOS 

Acc. Numb. 
eNOS 

Acc. Numb. 
iNOS 

Acc. Numb. 

Homo sapiens AAB49040 AAA36365 AAB60366 

Anolis carolinensis ACAT00000016633 ACAT00000008211 ACAT00000015866 

Xenopus tropicalis XETT00000048371 XETT00000025059 XETT00000027328 

Branchiostoma 
lanceolatum 

Data not published  Data not published 

Branchiostoma  floridae 
A - XM_002260801 
C - XM_002605780 

 XM_002608682 

Branchiostoma belcheri 
A - 081950_PFF0 
C - 226820_PRF0 

 117620_PFF0 

Ciona intestinalis XP002120267   

Ciona Savinyi CSAVG00000009725   

Strongylocentrotus 
purpuratus 

NW_001469593   

Petromyzon marinus Data not published   

Eptatretus burgeri Data not published   

Lethenteron japonicum 
A- JL5361                                   
B- JL15861 

  

Scyliorhinus canicula ctg17724  AAX85385 

Squalus acanthias Q9I9M2_2   

Leucoraja  erinacea  ctg94789 ctg31742 

Callorhinchus milii XP007900533  XP007898890 

Poecilia reticolata XP008416108   

Maylandia zebra XP004566752   

Stegastes partitus XP008290591   

Cynoglossus semilaevis XP008334475   

Pundamilianyererei XP005743120   

Neolamprologus 
brichardi 

XP006803925   

Oreochromis niloticus XP003454198_2   

Xiphophorus  
maculatus 

XP005803890   

Astyanax mexicanus AMXP00000001199  
(a) XP_00000010494 
(b) X_P00000012193 

http://mosas.sysu.edu.cn/genome/gbrowse.php?name=081950
http://mosas.sysu.edu.cn/genome/gbrowse.php?name=226820
http://mosas.sysu.edu.cn/genome/gbrowse.php?name=117620
http://it.wikipedia.org/wiki/Scyliorhinus_canicula
http://www.iucnredlist.org/details/41743/0
http://it.wikipedia.org/wiki/Poecilia_reticulata
http://it.wikipedia.org/wiki/Maylandia_zebra
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStegastes_partitus&ei=cCcUVa6fFMPiU-rLgvAI&usg=AFQjCNFVhi9BJvoc4vESoGNI6yMFWFw9WQ&bvm=bv.89217033,d.d24
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Gadus morua GMOP00000016303   

Takifugu  rubripes TRUP00000041970   

Oryzias latipes ORLP00000001296   

Lepisosteus oculatus LOCP00000004106 LOCP00000005356 LOCP00000006811 

Gasterosteus aculeatus GACP00000018746   

Tetraodon  nigroviridis TNIP00000003370   

Danio rerio DARP00000099822  
2a_DARP00000019431 
2b_DARP00000048847 

Latimeria chalumnae LACP00000008032  LACP00000020283 

Ictalurus punctatus AHA57575   

Nothobranchius  furzeri 0000737   

Funduls heteroclitus AAS21300.2   

Sciaenops ocellatus ACU98970   

Anguilla anguilla g15096_t1   

Carassius auratus   
(a) AAX85387 
(b) AAX85386 

Ctenopharyngodon 
idella 

  ADT78701 

Megalobrama 
amblycephala 

  AIE77026 

Cyprinus carpio   CAB60197 

Carassius carassius AEV43393  
(a) AEV43390 
(b) AEV43391 

Hippocampus kuda ACL35630   

Claris batrachus BAO79759   

Platichthys flesus CAJ29300   

Oncorhynchus mykiss CDQ73326  NP001117831 

Salmo salar SS2U026776   

 

Note  - The sequence for Anguilla anguilla (in red) was obtained from transcriptome analyses    
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2.9.3 Sequences analysis 

Each protein was classified studying its functional domains characteristic of each 

NOS class gene. The sequences, for both phylogenetic studies, were aligned using 

the ClustalW algorithm (Thompson et al., 1994) and MEGA5 (Tamura et al., 2011) 

with default parameters. Then, the human nNOS sequence was taken as a reference 

to take the length of the data sets. When the extremities of the proteins were not 

comparable they were trimmed to avoid regions of unreliable alignment. 

Sequences that spanned less than 50% of the human NOSI and had more than 10% 

of missing characters over the total number of aa per sequence were excluded 

from the final calculation to avoid erroneous arrangements and increase the power 

of the nodal support. 

Phylogenetic tree has been computed using the Maximum likelihood (ML) and the 

Bayesian (MrBayes 3.1.2) methods(Huelsenbeck and Ronquist, 2001; Ronquist and 

Huelsenbeck, 2003). The conventional convergence has been reached when 

standard deviation value of split frequencies stayed <0.01, while the robustness of 

the obtained trees has been analysed with 2.000.000 bootstrap replicates. 
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3.1 NOS phylogeny 

To gain insights in the evolutionary history of NOS genes in amphioxus was 

decided to perform a phylogenetic study adding new NOS sequences from key 

chordate species to the set of sequences used from Andreakis and collaborators 

(Andreakis et al., 2011). Was included NOSs sequences from three Branchiostoma 

species and from the recently available transcriptome of a basal cephalochordate: 

Asymmetron lucayanum (Yue et al., 2014). Moreover, with a second phylogenetic 

analyses we explored the issue of the presence of canonical NOS genes in 

chondrichthyes and in the lineage of the bony fishes, since it was missing in the 

current literature.    

 

3.1.1 Cephalochordates NOS phylogeny 

Branchiostoma sp, as described before, have three different NOS genes resulted 

from lineage-specific duplications. In order to establish a possible evolutive 

scenario we performed an evolutionary study considering the NOS proteins from 

three amphioxus species, the basal cephalochordate Asymmetron lucayanum, 

tunicates such as Ciona intestinalis and Ciona savinyi, and basal vertebrates as 

lampreys Lethenteron japonicum and Petromizon marinus, and hagfish Eptatretus 

burgeri. The sea urchin Strongylocentrotus purpuratus NOS was chose as outgroup. 

The phylogenetic tree highlighted that in Asymmetron two NOS genes are 

presents, orthologs of the amphioxus NOS-A and NOS-B. A duplication event was 

found in the two lamprey as well, even if these sequences, at the moment, are 

partial and therefore the orthology inside the group is still not really clear. 

Interestingly the unique sequence isolated from the hagfish E.burgeri branched at 

the base of cyclostome group. 
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Figure 3.1 -Cephalochordates NOS phylogenetic tree. 
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3.1.2 Bony fishes and chondrichthyes NOS phylogeny  

For the study of NOS phylogeny in fishes was analyzed all available NOS protein 

sequences of 29 teleost fishes, 4 chondrichthyes fishes, 3 cyclostoms and sequences 

of human, frog and lizard. The unique Ciona NOS protein was used as outgroup. 

The analysis of the sequences indicates that all the fishes, both bony fishes and 

chondrichthyes, have a neuronal NOS containing the typical PDZ domain (Figure 

3.2). Regarding the inducible NOS, the phylogenetic tree indicated that all sharks 

have one copy of this gene, while in teleost lineageseveral different scenarios can 

be observed. The iNOS is lost in some species, i.e. Nothobranchius furzeri and 

Oryzias latipes, while it is present in one copy in other species, i.e. Oncorhynchus 

mykiss orthe basal fish Latimeria chalumnae, or it was found duplicated in some 

other fish species, as for example in Danio rerio or Astyanax mexicanus.  

The endothelial NOS seems to have a completely different evolutionary history, 

infact it was absent in all the available fishes genomes except in the spotted gar, 

Lepisosteus oculatus, opening to new interpretations about the NOS evolution (see 

Discussion).   
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Figure 3. 2 - Bony fishes and chondrichthyes NOS phylogenetic tree. 
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3.2 Characterization of the expression levels of NOS genes in development 

In order to characterize the expression levels of the three NOS genes during                       

B. lanceolatum development, a quantitative PCR (qPCR) was carried out using total 

RNA extracted from embryos and larvae at different developmental stages: 

gastrula (10 hpf), middle neurula (24 hpf),pre-mouth larvae (48 hpf), 3 dpf larvae 

(72 hpf), 5 dpf larvae (96 hpf), and small adult (1.2cm long). The data obtained 

from the qPCR were normalized using the housekeeping gene encoding the 

ribosomal protein L32, AmphiRPL32, which expression is constant during 

embryogenesis (Kozmikova et al., 2013). To quantify and to represent the NOS 

expression levels in a graph all the data were reported in function of the 

developmental stage in which the expression level was the lowest. 

 

 

 

3.2.1 B. lanceolatum NOS-A gene expression levels 

The q-PCR experiments for the NOS-A gene in B. lanceolatum did not showed 

significant results (data not shown).  In particular during the developmental the 

expression level was very low and a moderate increase was found in adult. 

Nevertheless the results were significantly relevant  because the values were 

under the minimum threshold value of the technique.  
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3.2.2 B. lanceolatum NOS-B gene expression level 

The q-PCR experiments for NOS-B showed high expression levels in early 

embryonic stages. In particular at gastrula the highest level of expression for this 

gene was detected, followed by a slight decrease at neurula. Later in development 

the gene seems to completely turn off, as well as in adult (Figure 3.3).   

 

 

 

Figure 3.3 - B. lanceolatum NOS-B expression profile during development. 
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3.2.3 B. lanceolatum NOS-C gene expression levels 

The activation of the NOS-C gene in B. lanceolatum seems to be subsequent that of 

the NOS-B. This gene begins to be express at pre-mouth larvae stage, but only at 3 

dpf larvae is possible to observe a peak of its expression, the higher level of the 

several developmental phases. After a decrease at five days of development was 

observed, becoming very low in small adult amphioxus (Figure 3.4).  

 

 

 

Figure 3. 4 -B. lanceolatum NOS-C expression profile during development. 
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3.3 Characterization of the expression profile of NOS genes in development 

In order to reveal the expression pattern of the three paralogs NOS-A, NOS-B and 

NOS-C, whole mount in situ hybridization experiments (WISH) were performed. 

NOS-B and NOS-C were amplified by a mix of developmental stages cDNA and 

NOS-A were amplified by cDNA from adult animals. The three genes were cloned 

and sequenced. The probes, indicated in Table 2.2 were designed in order to avoid 

cross-hybridization. Antisense riboprobes has been used to detect the three NOS 

transcripts localization in several developmental stages of amphioxus. 

 

 

3.3.1 B. lanceolatum NOS-A gene expression 

As highlighted in the quantitative PCR experiments the NOS-A expression is too 

low to be detected by in situ hybridization experiment in any developmental stage. 

Several attempts were performed and no specific signal was detected for this gene 

(data not shown).   

 

3.3.2 B. lanceolatum NOS-B gene expression 

The NOS-B gene expression in Branchiostoma lanceolatum is limited to few 

developmental stages. The expression starts at early gastrula on the lateral portion 

of the roof of the invaginated endoderm, in the contact side between endoderm 

and ectoderm (Figure 3.5 A). Afterwards the signal increase in the middle gastrula 

stages, along the contact point between the two embryonic layer but not uniformly 

(Figure 3.5 B); in the diblastic embryo, in one portion of the area surrounding the 

blastopore the gene NOS-B is not expressed (Figure 3.5 C). The results of q-PCR 

experiment show a pick of expression also at gastrula stages but the in situ 

hybridization experiments did not show any specific pattern of expression at this 

developmental stage.  
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Figure 3.5 -NOS-B gene expression at gastrula stage. (A) early gastrula stage; (B) middle gastrula 

stages, lateral view; (C) middle gastrula stages, blastopore view. 

 

3.3.3 B. lanceolatum NOS-C gene expression 

 

 

Figure 3.6 -NOS-C gene expression during the embryonic development. (A) middle neurula stage; 

(B) late neurula/early pre-mouth larvae; (C) pre-mouth larvae; (D) larvae 3 dpf. 
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The gene start to be expressed at middle neurula stage of development (Figure 3.6 

A), later than the NOS-B. The expression is localized at few cells in the anterior 

part of the rudiment of the nerve chord, near the neural pore, stage (middle 

neurula) in which not yet had the fusion between the two edges of the dorsal 

portion of the future nervous tube. After few hours of development, there is a light 

increase of the number of positive cells in the same area (Figure 3.6 B), where at 

this stage begin to form the cerebral vesicle. At pre-mouth larvae stage (Figure 3.6 

C), when the neural tube is completely formed, there is the highest embryonic 

gene expression level for NOS-C. Moreover at this stage the expression start to be 

evident in the rostral part of the neural tube until the pigment spot. At 3 days post 

fertilization (3 dpf) the expression in the neural tube disappear quite completely, 

but another organ appear to be positive at this stage: the club-shaped gland 

(Figure 3.6 D), that is closely connected with the endostyle (Holland et al., 2009). 

 

 

3.3.4 B. lanceolatum SoxB1 gene expression 

In the in situ hybridization experiments were used the SoxB1 gene as control for 

the experimental procedures. This gene is expressed in the central nervous system 

(CNS) contributing to neural induction and differentiation (Kan et al., 2004; Kishi et 

al., 2000). In amphioxus three SoxB genes are present (SoxB a, b and c), and for my 

experiments we used the paralogue SoxB1c that at middle neurula is expressed in 

the entire neural tube and marks the foregut; at late neurula stage the expression 

in the neural tube and foregut persists, SoxB1c positive cells  also appear  in the 

hindgut (Meulemans and Bronner-Fraser, 2007)(Figure 3.7). 
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Figure 3.7-B. lanceolatum SoxB1c expression profile. (A) in situ hybridization used as control for 

our experiments, (B) in situ hybridization published (Meulemans and Bronner-Fraser, 2007). 
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3.4 Endogenous NO level duringdevelopment 

3.4.1 Griess assay 

The endogenous levels of Nitric Oxide (NO), were measured by monitoring nitrite 

formation by the Griess reaction (Green et al., 1982). For these series of 

experiments was used a pellet of embryo consisting of about 1.000 embryo or 

larvae and one small adult animal of 1.2 cm long. The Griess assay showed a 

variable amount of NO in the different developmental stages (Figure 3.1). The NO 

levels, of the same order of magnitude, indicated a average gas production at 

gastrula stages with a gradual decline until the pre-mouth larvae stage where was 

detected the lowest level of gas, 4 nmol nitrite/mg protein, and later an higher 

peak of NO level at 3 dpf larvae, 29.2nmol nitrite/mg protein. In later embryonic 

stages was found, again, a gradual decrease of NO level 

.    

 

 

Graph 3.1 -NO level during the development of Branchiostoma lanceolatum measured by 

monitoring the nitrite formation by the Griess reaction. 
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3.4.2 DAN assay 

To confirm the endogenous levels of NO, obtained with Griess assay, we 

performed a second NO detection analysis using the 2,3-diaminonaphthalene 

(DAN) that react with nitrite form the fluorescent product 1-(H)-naphthotriazole. 

The detection of the fluorescence produced was measured using a   

spectrofluorometer.  

As in the previous experiment the NO levels show the same order of magnitude. 

Contrarily to the previous experiment, the NO value at gastrula is lower than 

other developmental stages, 3.54 nmol of nitrite per mg of protein, and increase 

lightly until reaching the pre-mouth larvae, where the NO value is of 11.06 nmol 

nitrite/mg protein. As in the Griess assay I found that the highest level of 

endogenous NO is present at 3 dpf larvae, with 64.20 nmol of nitrite per mg of 

protein, followed by a decrease of NO concentration at the following embryonic 

stages.  

 

 

 

Graph 3.2 -NO level during Branchiostoma lanceolatum development measured by monitoring 

nitrite formation. 

  

0,00

20,00

40,00

60,00

80,00

Gastrula Middle Neurula Pre-Mouth Larve 3 days Larve 5 days Small Adult 
(1,2cm)

nmol nitrite/mg protein



Chapter 3 - Results 

80 
 

3.5 NO localization  

To analyze the embryonic territories in which the gaseous NO is involved was 

used the cell-permeant diaminofluorophore 4-amino-5-methylamino-2′-7′-

difluorofluorescein diacetate (DAF-FM DA). Treatments with this drug were 

performed at the neurula stage with the aim to interfere with the highest 

endogenous level NO at the 3 dpf larvae. Our results showed that at larval stage 

NO is mainly present the central portion of the body, particularly in the lateral 

and ventral area; probably the cells in which NO is detected  are two class of 

neurons: epidermal neurons (red arrows) and ventral epidermis neurons (blue 

arrows).  

 

 

Figure 3.8 -DAF-FA DA experimental assay in 3dpf larvae: (A) control; (B) 3dpf larvae after 

treatment; (C) magnification of central part of the body of a treated animal. Red arrows indicate 

putative epidermal neurons and blue arrows ventral epidermis neurons. 
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3.6 Role of NO during the development 

In order to understand the involvement of NO during amphioxus development a 

pharmacological treatments was performed on order to decrease the endogenous 

level of NO. For this purpose live embryos was treated at several developmental 

stages with several concentrations of L-NAME (Nω-Nitro-L-arginine methyl ester 

hydrochloride) that is a competitor of the substrate of the NOS enzyme, the L-

Arginine: gastrula, neurula and pre-mouth larvae. The treatment starting from 

gastrula and pre-mouth stage with different drug concentration did not give any 

phenotype (green symbols, data not show). Conversely, treatments done starting 

at neurula stage showed alterated phenotypes in a concentration dependent 

manner (Figure 3.3, yellow and red symbols). 

The colorful symbols in the graph indicate the drug concentration at which the 

treatment was performed. Green symbols indicate that no one abnormal 

phenotype was found, while yellow and red symbols indicate the severity of 

phenotype obtained after treatment, showed in the Figure 3.9.  

 

 

Figure 3.3 -Schematic representation of L-NAME pharmacological treatment in different 

developmental stages. Colorful symbols indicate the severity of the phenotype.   
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At low L-NAME concentration (0.1 mM, yellow symbols) larvae have abnormal 

development of mouth and gills area. Nevertheless, increasing the drug 

concentration to 1 mM it was observed that the mouth region was severely 

compromised. While the general morphology remained quite normal, in fact, the 

mouth and gill slits were impaired within 60% of the larvae showing the 

completely absence of the mouth opening (Figure 3.9 D, red symbols).  

 

 

Figure 3.9 -Scheme of wild type and treated larvae. (A) schematic representation of a normal larva; 

(B) wild type phenotype; (C) larvae whit abnormal development of mouth and gills area; (D) more 

severe phenotype with absences of the mouth opening.
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The Nitric Oxide (NO) pathway is one of the oldest bioregulatory systems 

controlling human and animal physiology. NO have probably played a crucial 

role in the early stages of the evolution of life providing protection to primitive 

microorganisms, neutralizing the aggressive oxidative effect of ozone levels (O3) 

rising in the earth atmosphere. NO does not require the help of carrier molecules 

in order to cross cell membranes and can easily reach intracellular target 

molecules by free diffusion. Therefore it is quite obvious that NO acquired novel 

functions beyond the mere enhancement of survival (Feelisch and Martin, 1995). 

To gain insights in the evolutionary history of NOS genes in cephalochordate and 

in the group of the fish a phylogenetic study was performed. Andreakis and 

collaborators already clarify the number, classification and homology of the 

amphioxus NOSs (Andreakis et al., 2011) but the evolution of these gene in the 

cephalochordate group was still an open question. Our analyses show that in the 

basal Aymmetron leucanum only two paralogues are present,  the NOS-A and  

NOS-B, while three NOS genes are present in the branchiostoma‟s group. We 

propose different hypothesis to try to explain the possible evolutionary scenario. 

A possible explanation could be the loss of NOS-C gene in Asymmetron or that a 

possible gene duplication of the neuronal NOS occurred specifically in the 

branchiostoma‟s group leading to the current situation of a duplicate neuronal 

NOS gene and an unique inducible NOS-B. The Asymmetron sequences were 

obtained by an embryonic transcriptome data collection, therefore another 

possibility is that the neuronal gene NOS-C is present in the genome but it is never 

expressed during embryogenesis, like occurs for the NOS-A in B. lanceolatum. 

Deeper studies will give us the answer, probably when the genome of Aymmetron 

leucanum will be available.  

Moreover data analysis, collected sequences and the evolutionary tree give us the 

possibility to study the NOS evolutionary history of other basal animals. During 

our study we found that in cyclostomes, the most basal group of vertebrates, show 

a different NOS content. Lampreys, Petromyzon marinus and  Lethenteron japonicum, 

possess two NOS genes, while in hagfish Eptatretus burger, only one NOS gene is 

present. Like in the case of asymmetron the data obtained for hagfish belong to a 
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transcriptome, so we cannot assert with certainty that in the Eptatretus burger is not 

present another NOS gene.  

To go deeper in the evolution study of NOS gene we looked for the NOS 

sequences fish available in online databases. All the fishes, either bony and 

cartilaginous ones, has a neuronal form, while none of them has an endothelial 

NOS gene, except the spotted gar Lepisosteus oculatus (Donald et al., 2015). This is 

interesting from an evolutionary and physiological point of view because it is still 

a mystery how the majority of fishes substituted the endothelial NOS activity in 

heart and vessels. 

Major differences was been found in the fast evolving inducible NOS for which is 

always present in one copy in chondrichthyes while in teleosts a  different scenario 

is present. The iNOS is lost in some species, i.e. Nothobranchius furzeri and Oryzias 

latipes, while it is present in one copy in other species, i.e. Oncorhynchus mykiss or 

the basal fish Latimeria chalumnae, or it was found duplicated in some other fish 

species, as for example in Danio rerio or Astyanax mexicanus. This result confirm 

that the neuronal gene, involved in the neurotransmission, is always present and 

in some species, where the inducible NOS in absent, the neuronal gene could 

compensate the activity in the immune defense system (Jiang et al., 2013). During 

amphioxus development, the NOS-C starts to be expressed at neurula stage, when 

the neural tube is forming. A signal is present in few cells in the most anterior part 

of the neural tube, like for other genes involved in neurotransmission pathway. 

Interestingly, in 2012 Candiani and collaborators studied genes encoding 

biosynthetic enzymes as glutamic acid decarboxylase (GAD) and transporters as 

Vesicular Glutamate Transporter (VGLUT) and vesicular GABA/Glycine 

transporter (VGAT) of the most common animal neurotransmitters and assayed 

their expression pattern during embryo and early larvae developmental (Candiani 

et al., 2012). The expression territories of VGLUT, GAD and VGAT were very 

similar to that of NOS-C gene, and they start to be expressed at the same 

developmental stages at 14-16 hpf, neurula. Moreover later in development, at 

pre-mouth larvae stage the genes involved in neurotransmission are present 

mainly in the anterior half of the larvae body, from the rostral sensory vesicle to 
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the mid-caudal pigmented spot. Apparently this is exactly the same for NOS-C 

expression at same developmental stages. During the development, the number of 

NOS-C positive cells increases until the pre-mouth larvae stages, when the neural 

tube is forming. Taking all this into consideration, double in situ hybridization 

experiments, with some of these neurotransmitter markers, should be performed 

in future to test this hypothesis. In the teleost fish Danio rerio the nNOS expression 

in the brain initially is restricted to the ventrorostral cell cluster (vrc), subsequently 

the expression occurs in ventrocaudal cell cluster (vcc), dorsorostral cell cluster 

(drc) and hindbrain cell clusters (hc), followed by an increase in expression from 

40·hpf and the presence of different nNOS mRNA-expressing cell populations in 

all many regions ofthe brain at 55·hpf (hatching larvae) (Holmqvist et al., 2004). 

Probably a comparison between vertebrates and cephalocordates neuronal NOS 

gene expression pattern seems to be too risky, however considering recent studies 

(Wicht and Lacalli, 2005) which compared different areas of nervous system 

between amphioxus and vertebrate, is possible to compare gradual increasing of 

NOS-C expression from the cerebral vesicle to the half neural tube with the spatial 

and temporal distribution of nNOS mRNA-expressing cell populations in 

embryonic zebrafish development.  

In conclusion, it seems that the NOS-C is the only NOS gene involved in 

neurotransmission and it is somehow involved in developing CNS in amphioxus.   

My experiments showed an high NOS-C enzymatic activity and an increase of 

Nitric Oxide concentration mainly in the larvae of 3 days post fertilization (3dpf). 

This larvae stage is considered pre-metamorphic with a peculiar morphology with 

a formed neural tube and the mouth opening on the left of the body, and the 

presence of transitory larval organs: the endostyle, pre-oral pit and the club-shape 

gland. The function of these organs has long been debated and still the question is 

not completely resolved. Recent studies seem to agree that the club-shaped gland, 

the tube connecting the pharyngeal lumen with the external environment, 

cooperates with the endostyle to produce mucopolysaccharides in the capture of 

ingested particles and then to transport them to caudal gut regions (Holland et al., 

2009). Interestingly, Kaji and collaborators characterized the oral innervations in 
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pre- and post- metamorphic larvae demonstrating a highly innervation of the 

pharynx area (Figure 4.1), indicating that the club-shaped gland, the pre-oral pit 

and the endostyleare probably are promoters of important processes as mouth 

opening, metamorphosis and immunity (Kaji et al., 2009) 

 

 

Figure 4.1 -Neuron organization in the mouth and pharynx area. (A) Mouth neural innervation 

visualized by  anti-acetylated alpha tubulin monoclonal antibody. (B)Schematic representation of 

neuron organization in 36 hpf and 48 hpflarvae. Arabic numerals and Roman numerals in B 

denote centrally derived left nerves. Abbreviation: exn, extrinsic neuron; mo, mouth; inn, intrinsic 

neuron; ONR, oral nerve ring; op, oral papilla; pp, preoral pit  (Kaji et al., 2013) 

 

Between the many regulatory roles of NO it is known that it is able to regulate the 

apoptosis process (Kim et al., 2001). Comes and collaborators have proven that NO 

is a critical endogenous regulator of metamorphosis in C. intestinalis, controlling 

the initiation of the caudal regression through repression of the caspase-3 

activation (Comes et al., 2007). In amphioxus several caspase are present that play 

important roles in adult amphioxus immunity (Xu et al., 2011). In an attempt to 

understand the caspase functions during amphioxus development, Xu and 

collaborators treated embryos soon after fertilization with four specific caspase 

inhibitors. Anti-caspase2 treated embryos at 30 hpf were shorter compared to 

controls, and interestingly showed the delayed opening of mouth (Xu et al., 2011). 
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Analyzing our results, we hypothesized that the high level of expression of NOS-C 

gene and of NO concentration at larvae stages can be linked with the 

reorganization processes that occur in this developmental phase. In particular the 

NOS-C positive cells found in the club-shape gland could be responsible of the 

high NO production, which in turn is involved in the morphogenic process and 

possibly in the induction by apoptosis needed for the mouth opening.  

To confirm this hypothesis, an NOS inhibitor was used during amphioxus 

development. The L-NA/L-NAME treatment is commonly used to decrease the 

endogenous level of NO. Ciona intestinalis treated larvae, for example, show that 

NOS inhibition accelerates metamorphosis but does not affect the subsequent 

juvenile development (Comes et al., 2007). Interestingly, our experiments showed 

that treatments with medium concentration of NOS inhibitors interfered with the 

normal development of the mouth, while high concentrations produced a 

phenotype in which the mouth appear to be completely absent. These functional 

experiments seem to confirm, therefore, the involvement of the gaseous 

neurotransmitter NO in the mouth specification and in particular that the NOS-C 

gene is the major contributor of NO synthesis. To better understand the role of NO 

in mouth formation we used the Scanning Electron Microscopy (SEM) technique to 

visualize morphologically the absence of mouth opening (Figure 4.2). 

 

 

Figure 4.2 -Amphioxus pre-mouth larvae at Scanning Electron Microscopy (SEM). (A)Rostral 

portion of Amphioxus larvae.(B) Magnification of the invagination spot where the future opening 

of the mouth. 
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On the other hand, as reported by Andreakis and collaborators, the NOS-A derive 

from a specific gene duplication event but no implication in embryo development 

was found neither by gene expression analyses and by q-PCR nor by several in situ 

hybridization experiments. One possibility is that the NOS-A enzyme is involved 

in adult animal physiology, like it occurs in other model systems, as rat (Rodrigo 

et al., 1994) and fish (Holmqvist et al., 2000) for example. Another possible 

explanation is that the NOS_A gene could be a pseudogene with no apparent 

functions (Gerstein and Zheng, 2006) To confirm these theories further studies are 

needed. 

During the early steps of development, two main morphogenetic processes, cell 

proliferation and morphogenetic cell movements, are tightly integrated. Active 

cell duplication is required to generate a sufficient number of cells and specific 

coordination is necessary during morphogenetic cell movements in gastrulation to 

organize the body plan during embryogenesis. It has been discovered that NO is 

involved in cell division and cell motility at gastrulation (Kuzin et al., 1996; 

Peunova et al., 2007). Kuzin and collaboratores discovered that in the fly 

Drosophila melanogaster (protostome) NO can play a broader role as a general 

regulator of cell proliferation and differentiation during organism development 

and morphogenesis (Kuzin et al., 1996). Peunova and collaborators established,  

studying Xenopus leavis ,that also in this animal model system (deuterostome) 

NOS regulates both the cell division and cell motility machineries during  

development (Peunova et al., 2007). Changes in NO availability affect these two 

processes in a reciprocal manner: NO suppresses cell division and facilitates cell 

movement, whereas a deficit of NO increases cell proliferation and hinders cell 

movement. Our quantitative-PCR experiments showed high NOS-B expression 

level in the first developmental phases, in particular at gastrula stages, then 

confirmed also by in situ hybridization experiments. These results and the 

similarity with Drosophila and Xenopus studies, lead us to hypothesize that also 

in amphioxius the NOS-B gene may provide the input to stop the cell proliferation 

at gastrula and on the other hand to start all the process involved in tissue 

reorganization, typical of the neurula stages. Our experiments indicated that an 
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expression level start at gastula stage but further studies needed to understand if 

this gene is expressed also in earlier stages and even if it is of maternal origin.    

The amphioxus nervous system is composed of about 20.000 neurons. In addition 

to the dorsal central nervous system (CNS), amphioxus also have a peripheral 

nervous system (PNS) comprising several types of sensory neurons (Wicht and 

Lacalli, 2005) Among these amphioxus sensory neurons, the solitary type I 

receptor cells are the most abundant population of the epidermal sensory neurons 

(ESNs) and are scattered along the body of developing amphioxus larvae and 

adults. The cell body of the receptor is located within the epidermis, and a long 

axon from the base of the cell body extends into the CNS.  

In order to detect endogenous NO by the sensitive and NO specific DAF-FM-DA 

fluorescence assay was performed. In Ciona intestinalis revealed that NO at late 

larva stage, present as a diffuse signal mainly localized in the posterior part of the 

sensory vesicle and in the tail (Comes et al., 2007)  where is present an high 

concentration of neurons, of several types (Imai and Meinertzhagen, 2007a; Imai 

and Meinertzhagen, 2007b). In the same way NO detection assay was used by 

Lepiller and collaborators to study the endogenous level of NO in 5-day-old 

zebrafish larvae (Lepiller et al., 2007) The staining pattern obtained mainly 

consisted in theheart region, forming bones with pharyngeal jaw bones, the 

notochord and the caudal fin. 

Our NO localization experiments showed that NO-positive cells were present 

along epidermis and in the ventral part of the body. This can indicate that NO can 

be synthesized in the CNS and it migrate along the axon versus the peripheral 

neurons where it can act in the several pathway in which it is involved.
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Conclusion 

The use of model organisms to study structures, organs and complex biological 

processes, has enabled countless scientific discoveries and still occupy an 

important role in biological fields.  

To better understand the evolution and function of the NOS genes in chordates, 

we choose a “living fossil” model organism as the cephalochordate Amphioxus 

considered as vertebrate-like animal but simpler from a genetic and morphological 

point of view. 

The amphioxus is the best available stand-in for the ancestor of the vertebrates. 

Amphioxus has a body plan, central nervous system, circulatory system and that 

are, but simpler, and this “simplicity” is also reflected at the genomic level.  

Our experiment showed that two of three NOS genes are expressed during 

amphioxus embryological development. The two genes was consequential, one 

expressed in the early developmental stages during morphogenic processes that 

drives the body formation and the second one expressed later during the neural 

tube specification. it has been hypothesized that the NOS-B, with earlier 

expression was involved in the block of cell proliferation and tissue reorganization 

and that NOS-C was the gene involved in the neurotransmission pathway.  

Quantitative experiments indicated that the gaseous neurotransmitter NO was 

present, in higher concentration at 3 days post fertilization stage when the m-RNA 

NOS-C positive cells was present in the clup-shape gland (csg). It is known that 

NO is involved in apoptotic process as regulator of caspase action and analyzing 

our results we hypothesized that the NO produced in the csg area was involved in 

the apoptotic process inducing the mouth opening. To confirm these theories a 

treatment with a NOS inhibitor, L-NAME was performed. The treatment on NOS 

inhibition seems to confirm our theories, in fact the treated larvae showed an 

interesting phenotype, with the complete absences of the mouth opening.  

To gain insights in the evolutionary history of NOS genes in cephalochordates a 

phylogenetic analyses was performed between basal members of the chordate 

phylum. With the available data we cannot state the exact evolutionary scenario of 
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the NOSs in cephalochordates, but we could only hypothesizethat the third NOS 

is not present in the basal cephalochordate Asymmetron, therefore an invention of 

Branchiostomidae, or that it has been lost in Asymmetron.  

Thanks to this research we discovered that also in amphioxus NO is involved in 

tissue specification at early stages of development and moreover a new processes 

in which NO is involved in the control of the apoptosis that is invoved in mouth 

specification, the but still many questions remain open regarding the roles of this 

molecule in amphioxus.
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Collaborative project 

In the framework of my PhD project I had the possibility to collaborate with 

Filomena Ristoratore research group at the Stazione Zoologica Dohrn. They were 

interested in clarifying the orthology, chromosomal synteny organization and 

developmental expression pattern of Rab32/38 subfamily genes within chordates. 

In the next page I report the synthesis of background, results and conclusions of 

the manuscript that at the moment of my thesis submission was under revision in 

BMC Evolutionary Biology.  

My contribution to this collaborative project was to perform whole-mount in situ 

hybridization experiments for the amphioxus Rab32 expression during 

development, as shown in the Figure used embryos of the local amphioxus 

species, Branchiostoma lanceolatum, from the Gulf of Napoli. Moreover, I 

participated in the figure preparation, critical discussion of the results and finally 

in the manuscript writing. 

 

Figure 1 -Amphioxus Rab32 expression pattern  during development. (A) Gastrula, (B) Middle 
Neurula dorsal view, (C) Middle neurula Dorsal view, (D) Middle neurula section , (E) Pre-mouth 
larva. 
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Manuscript under revision in BMC Evolutionary Biology. 
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Background: 

The regulation of cellular membrane trafficking in all eukaryotes is a very complex 

mechanism, mostly regulated by Rab family proteins. Among all membrane-

enclosed organelles, melanosomes are the cellular site of synthesis, storage and 

transport of melanin granules, therefore they represent an excellent model for 

studies on organelle biogenesis and motility. Specific Rab proteins, Rab32 and 

Rab38, have been shown to play a key role in melanosome biogenesis. We 

analysed all the genes belonging to Rab32 and Rab38 subfamily in a teleost fish 

model (zebrafish) and in the basal chordate (amphioxus) in order to gain insight 

on the evolutionary history of these genes following gene and whole genome 

duplications. 
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Results: 

Sequence-based phylogeny evidenced that the Rab32/38 subfamily is divided in 

three distinct branches: Rab32, Rab38 and Rab32LO. The Rab32 and Rab32LO 

proteins are present in all the animals from sponges to human, therefore 

highlighted as LECA; the latter was lost in olfactores. On the other hand, Rab38 is 

an evolutionary novelty of vertebrates, arisen from the en bloc genome duplication. 

Comparative expression pattern of Rab32/38 genes in zebrafish and amphioxus 

evidenced functional compartmentalization of all paralogues and a possible 

ancient function in notochord development, a function that has been lost in 

tetrapods. Synteny analysis showed that only one zebrafish Rab38 gene, the one 

expressed in pigmented cells, retained the linkage with tyrosinase while all other 

paralogues, not involved in pigmentation processes, lost it. Finally a genetic 

linkage of Rab32 or Rab38 and a GRM family gene has been conserved in all 

deuterostomes analysed, despite lack of conservation of any other surrounding 

gene. 

 

Conclusions: 

Phylogenetic analysis, synteny and expression pattern of Rab32/38 genes in 

representative chordate species allowed us to give insight on the evolutionary 

history of this gene family. The finding of chromosomal linkage among a 

Rab32/38 representative and a GRM gene open new perspectives on possible 

bystander gene regulation conserved across evolution.
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