
On Games in Formal Verification

Loredana Sorrentino

Università degli studi di Napoli “Federico II”
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”

Dottorato in Scienze Computazionali e Informatiche
Ciclo XXVII

A thesis submitted in fulfillment of the degree of
Doctor in Compute Science

Submission: March 31, 2015
Defense: Napoli, to be added

Revised version: March 31, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Napoli Federico Il Open Archive

https://core.ac.uk/display/42948873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Copyright 2015
by

Loredana Sorrentino

Supervisor: Prof. Dr. Aniello Murano

Acknowledgments

“Tutto scorre... Niente rimane cosı̀ se non per alcuni momenti, per degli istanti. La vita
è mutamento, trasformazione, un continuo divenire, evolvere... Perfino chi sta leggendo
adesso questa tesi, non appena avrà finito di leggerla, non sarà più lo stesso in quanto la
trasformazione è un processo inarrestabile quanto irreversibile”.

Insomma, il tempo passa! Come tutte le cose, anche questo periodo di dottorato volge
al termine, chiudendosi un altro ciclo della mia vita personale ed accademica. Proprio per
questo motivo, cominciare a scrivere questi ringraziamenti è stata la cosa più difficile.

Non è facile citare e ringraziare, in poche righe, tutte le persone che, a vario titolo, mi
hanno affiancata, incoraggiata supportata e “sopportata”. Ad ogni modo, come ho sempre
fatto in qualsiasi altra situazione, ci proverò, sperando di riuscirci nel migliore dei modi.

Innanzitutto voglio ringraziare il Prof. Aniello Murano essendo stato per me grande
esempio di intelligenza, professionalità ed amore per la ricerca, per aver creduto in me,
incoraggiandomi ogni qualvolta ho avuto qualche perplessità. Egli è sempre stato disponibile
a offrirmi il suo valido contributo durante tutte le fasi del mio lavoro di ricerca, preoccupandosi
che io facessi esperienze costruttive e utili alla mia crescita professionale.

Ringrazio, inoltre, il Dott. Fabio Mogavero per avermi seguito in maniera molto profes-
sionale durante questi anni.

Ringrazio di cuore il mio collega ed amico Giuseppe Perelli con il quale ho condiviso
un’infinità di piccoli momenti più o meno positivi, di serenità o di tristezza, di sconforto o di
entusiasmo, non facendomi mai mancare qualche bella parola di incoraggiamento quando mi
sentivo sfiduciata.

Ringrazio il Dott. Sasha Rubin per avermi fornito interessanti ed utili consigli riguardo
la stesura di questo elaborato.

Ringrazio, inoltre, tutti gli amici, le amiche ed i miei co-autori, per aver condiviso con
me grandi e piccoli momenti di vita quotidiana ed accademica.

Infine, ringrazio di cuore mio marito e tutta la mia famiglia per essermi stati sempre vicini,
ognuno a proprio modo, in questi anni e dalle cui sorprendenti manifestazioni di affetto ho
tratto la forza per superare i momenti più difficili, ritrovando ogni volta gli stimoli e la giusta
carica per dedicarmi a questo che io amo definire “Progetto di vita”.

i

Contents

1 On Promptness in Parity Games 1
1.1 Preliminaries . 3

1.1.1 Arenas . 3
1.1.2 Payoff Arenas . 4
1.1.3 Games . 4

1.2 Parity Conditions . 4
1.2.1 Non-Prompt Conditions . 6
1.2.2 Prompt Conditions . 7

1.3 Equivalences and Implications . 9
1.3.1 Positive Relationships . 9
1.3.2 Negative Relationships . 11

1.4 Polynomial Reduction . 13
1.4.1 Transition Tables . 14
1.4.2 From Full Parity to Büchi . 14
1.4.3 From Bounded-Cost Parity to Parity 17
1.4.4 From Prompt Parity to Parity and Büchi 20

1.5 Discussion . 26

2 Solving Parity Games in Scala 28
2.1 Preliminaries . 31

2.1.1 The Zielonka Recursive Algorithm 32
2.2 PGsolver Analisys and Improved Algorithm 33
2.3 Scala Implementations . 36

2.3.1 Improved Algorithm in Scala . 37
2.4 Benchmarks . 39

2.4.1 Trends Analysis for Random Arenas 41
2.4.2 Trends Analysis for Special Games 41

2.5 Discussion . 43

3 Graded Strategy Logic 45
3.1 Graded Strategy Logic . 46

3.1.1 Model . 47
3.1.2 Syntax . 48
3.1.3 Semantics . 49

3.2 Strategy Equivalence . 51

Introduction

3.2.1 Elementary Requirements . 51
3.2.2 Play Requirement . 52
3.2.3 Strategy Requirements . 53

3.3 Main Results . 55
3.3.1 Determinacy . 55
3.3.2 Model Checking . 58

3.4 Discussion . 61

Conclusion 62

iii

Introduction

Game theory [Mye91, DL+08, RB94] is a powerful framework for decision-making where
two or more players (or agents) take some decisions (as an opportune combination of actions)
in order to achieve a certain goal. Agents can be individuals, groups, firms, or any combination
of them. They can play in an adversarial or collaborative manner.

In the last years, game theory has come to the fore as a powerful tool in formal-system
verification [CE81, CGP02, KVW00, QS81]. In particular, it has been usefully applied
in checking the reliability of reactive and embedded systems. In formal verification, to
check whether a system satisfies a desired behavior we check instead, by means of a suitable
algorithm, whether a mathematical model of the system meets a formal specification describing
the systems [CGP02]. As far the system modeling concerns, we mainly distinguish between
closed and open systems [HP85]. The former are characterized from the fact that their behavior
is completely determined in by their internal states. We also say that closed systems admit only
one source of non-determinism, i.e., the internal one. An open system, instead, is characterized
by an ongoing interaction with an external environment on which the whole behavior of the
system model relies. Hence, open systems admit two sources of non-determinism, one from
the environment and one from the system itself. Closed systems are usually modeled via
Kripke structures or labeled-state transition systems. Open systems, instead, require more
involved structures in which one has to explicitly take into consideration the interaction
between the system and the external environment. This reasoning also applies in the more
general setting in which the agents consist of the interaction of several entities. As far as
the specification concerns, we distinguish between the cases in which it is given explicitly,
for example, via a formula of a logic, or implicitly along with a condition over the model.
The classical reachability question over some specific states is an example of the latter. The
algorithm to decide whether the system model “meets” the specification strongly relies on the
specific setting one considers.

In this thesis, we use games to model and reason about open-system design and verification.
We both consider the case of internal and external specifications. In the first case, we restrict
to the case in which it is defined directly over the game structure. In the second case, we
refer to some specific logics under the strategic reasoning framework. More specifically,
we significantly extend some well-investigated qualitative conditions in order to address
quantitative agent objectives. This kind of conditions turn out to be very useful to additionally
specify how much effort an agent has to use to reach his own target or how many possible
different ways he has to achieve it.

We first consider the case of internal quantitative specifications. To this aim, we start
introducing the basic game model of two-player games. In this setting one of the players,

Introduction

usually called Player 0 is used to represent the system, and the other one, called Player 1, is
used to represent the external environment [PR89, Mar93, Raj97, Orn00, KVW01]. In this
setting, the specification can be simply given as a winning condition over the game structure.
Depending on the interaction between the system and its environment, the resulting game
may be either turn-based (i.e., system and the environment transitions are interleaved) or
concurrent (i.e., player transitions are taken simultaneously). In a turn-based game, the states
of the game are partitioned into ones belonging to Player 0 and those ones belonging to
Player 1. Then, the owner of a state determines the move to take and thus the next state of
the game. In a concurrent game, conversely, the two players choose a move (i.e, actions)
simultaneously and independently, and both choices together determine the next state of the
game. Turn-based games correspond to an interleaving semantics between the system and the
environment. Concurrent games correspond instead to a synchronous interaction [Luc00].

Among two-player turn-based games of infinite-duration, one model framework widely
investigated in open-system verification is Parity Games [EJ88, EJ91, Mos87, Zie98]. In
the last two decades, they have been proved to be one of the most powerful evaluation
machinery for the automatic synthesis and verification of distributed and reactive systems
in several real scenarios [AMM11, AMM13, AKM12, KVW01]. Their importance is also
related to their strict connection with other games of infinite duration, such as, mean payoff,
discounted payoff, energy, and stochastic games [Ber07, CD12, CDHR10, CHJ05, CJH04].
Noteworthy, parity games are polynomially equivalent to the model checking of specification
expressed via formulas of the µ-calculus modal logic [Koz83, EJ91]. In the years, this
dichotomy has been fruitfully used to solve several important theoretical questions in formal
verification. It has been also used in very complicated scenarios such as the case of open-
systems interacting with an external environment having only partial information about the
former [KVW01, KV97]. Parity games have been also the subject of tools usefully applied in
several real formal-verification scenarios [CLM15]. Solving a parity game is one of the rare
problems that belongs to the complexity class UPTIME ∩ COUPTIME and it is a long open
question whether it belongs to PTIME. The variety of algorithms that have been invented for
solving parity games is surely due to the fact that many people believe it is the case.

Parity games, classically, are played on directed graphs whose nodes are labeled with
priorities (namely, colors) and players have perfect information about the adversary moves.
The players move in turn a token along the edges of the graph starting from a designated
initial node. Thus, a play induces an infinite path and Player 0 wins the play if the great-
est priority that is visited infinitely often is even. In the contrary case, it is Player 1 that
wins the play. Parity games can express several important system requirements such as
safety and liveness properties. Along an infinite play, safety requirements are used to en-
sure that nothing “bad” will ever happen, while liveness properties ensure that something
“good” eventually happens [AH98]. Often, safety and liveness properties alone are simple

v

Introduction

to satisfy, while it becomes a very challenging task when properties of this kind need to
be satisfied simultaneously. As an example, assume we want to check the correctness of a
printer scheduler that serves two users in which it is required that, whenever a user sends a
job to the printer, the job is eventually printed out (liveness property) and that two jobs are
never printed simultaneously (safety property). The above liveness property can be written as
the LTL [Pnu77] formula G(req → F grant), where G and F stand for the classic temporal
operators “always” and “eventually”, respectively. This kind of question is also known in
literature as a request-response condition [HTW08]. As explained above, in a parity game,
this requirement is interpreted over an infinite path generated by the interplay of the two
players. From a theoretical viewpoint, on checking whether a request is eventually granted,
there is no bound on the “waiting time”, namely the time elapsed until the job is printed out.
In other words, it is enough to check that the system “can” grant the request, while we do not
care when it happens. In a real industry scenario, instead, the request is more concrete, i.e.,
the job must be printed out in a reasonable time bound.

In the last few years, several works have focused on the above timing aspect in system
specification. In particular, we have a clear fusion between qualitative and quantitative speci-
fication. The qualitative specification concern the ω-regular specification and the quantitative
specification regarding the elapsing time to reach a specific goal. In [KPV09], it has been
addressed by forcing LTL to express “prompt” requirements, by means of a prompt operator
Fp added to the logic. In [AHK10] the automata-theoretic counterpart of the Fp operator
has been studied. Prompt-Büchi automata are introduced and it has been showed that their
intersection with ω-regular languages is equivalent to co-Büchi. Successively, the prompt
semantics has been lifted to ω-regular games, under the parity winning condition [CHH09],
by introducing finitary parity games. There, the concept of “distance” between positions in a
play has been introduced and referred as the number of edges traversed to reach a position
from a given one. Then, winning positions of the game are restricted to those occurring
bounded. To give few more details, first consider that, as in classic parity games, arenas have
vertexes equipped with natural number priorities and in a play every odd number met is seen
as a pending “request” that, to be satisfied, requires to meet a bigger even number afterwards
along the play, which is therefore seen as a “response”. Then, Player 0 wins the game if
almost all requests are responded within a bounded distance. It has been shown in [CHH09]
that the problem of determining the winner in a finitary parity game is in PTIME.

Recently, the work [CHH09] has been generalized in [FZ12] to deal with more involved
prompt parity conditions. For this reason, arenas are further equipped with two kinds of
edges, i-edges and ε-edges, which indicate whether there is or not a time-unit consumption
while traversing an edge, respectively. Then, the cost of a path is determined by the number
of its i-edges. In some way, the cost of traversing a path can be seen as the consumption
of resources. Therefore, in such a game, Player 0 aims to achieve its goal with a bounded

vi

Introduction

resource, while Player 1 tries to avoid it. In particular, Player 0 wins a play if there is a
bound b such that all requests, except at most a finite number, have a cost bounded by b and
all requests, except at most a finite number, are responded. Since we now have an explicit
cost associated to every path, the corresponding condition has been named cost parity (CP).
Note that in cost parity games a finite number of unanswered requests with unbounded cost
is also allowed. By disallowing this, in [FZ12], a strengthening of the cost parity condition
has been introduced and named bounded-cost parity (BCP) condition. There, it has been
shown that the winner of both cost parity and bounded-cost parity can be decided in NPTIME

∩ CONPTIME.
In Chapter I of this thesis, we introduce a general study of the concept of promptness

in parity games that allows to put under a unique theoretical framework several of the cited
variants along with new ones. Also, we describe simple polynomial reductions from all these
conditions to either Büchi or parity games, which simplify all previous known procedures. In
particular, they allow to lower the complexity class of cost and bounded-cost parity games
recently introduced. Indeed, we provide solution algorithms showing that determining the
winner of these games is in UPTIME ∩ COUPTIME. Our algorithm reduces the original
problem to a unique parity game, which is the key point of how we gain a better result (w.r.t.
the complexity class point of view).

Through the years a variety of algorithms for solving parity games has been presented.
Among the others, we recall the Zielonka[Zie98] algorithm that yields a recursive approach,
the Jurdziński’s small progress measures algorithm[Mar00], the strategy improvement algo-
rithm by Jens Vöge and Marcin Jurdziński[Jen00], and the big-step by Schewe[Sve07]. In
addition, these algorithms have been also implemented and one of the most important platform
containing all of them is PGSolver, written in OCaml [Fri09]. This platform has the merit
of having declared the Zielonka algorithm the best performing in practice. In Chapter II, we
deeply revisit the implementation of the recursive algorithm introducing several improvements
and making use of Scala Programming Language. These choices have been proved to be very
successful, gaining up to two orders of magnitude in running time.

In the second part of this thesis, we concentrate on games with external quantitative
specifications and use them to reason about multi-agent systems. As we did for internal
specifications along with parity games, we start recalling some basic concepts. In (qualitative)
multi-agent systems verification, different approaches have been taken into consideration.
One worth of mention is Alternating-Time Temporal Logic (ATL?, for short) [AHK02]. This
logic allows to reason about strategies of agents having the satisfaction of temporal goals
as a a payoff criterion. Formally, it is obtained as a generalization of CTL?, in which the
existential E and the universal A path quantifiers are replaced with strategic modalities of
the form 〈〈A〉〉 and [[A]], where A is a set of agents. Despite its expressiveness, ATL? suffers
from the strong limitation that strategies are treated only implicitly. This restriction makes the

vii

Introduction

logic less suited to formalize several important solution concepts, such as Nash Equilibrium.
These considerations led to introduce Strategy Logic (SL, for short) [CHP07, MMV10], a
more powerful formalism for strategic reasoning. As a key aspect, this logic treats strategies
as first-order objects that can be determined by means of the existential 〈〈x〉〉 and universal
[[x]] quantifiers, which can be respectively read as “there exists a strategy x” and “for all
strategies x”. Remarkably, a strategy in SL is a generic conditional plan that at each step
prescribes an action on the base of the history of the play. Such a plan is not intrinsically
glued to a specific agent but an explicit binding operator (a, x) allows to link an agent a to
the strategy associated with a variable x. A common aspect about all logics mentioned above
is that quantifications are either existential or universal. Per contra, there are several real
scenarios in which “more precise” quantifications are crucially needed (see [BMM12], for an
argumentation). This has attracted the interest of the formal verification community to graded
modalities. They have been first studied in classic modal logic [Fin72] and then exported to
the field of knowledge representation to allow quantitative bounds on the set of individuals
satisfying a certain property. In particular, they are considered as counting quantifiers in
first-order logics [GOR97] and number restrictions in description logics [HB91]. The first
applications of graded modalities in formal verification concern closed systems. In [KSV02],
graded µCALCULUS has been introduced in order to express statements about a given
number of immediately accessible worlds. Successively in [FNP09b, BMM09, BMM10,
BMM12], the notion of graded modalities have been extended to deal with number of paths.
Among the others graded CTL (GCTL, for short) has been introduced along with a suitable
axiomatization of a counting [BMM12].

In open systems verification, we are aware of just two cases in which graded modalities
have been investigated: module checking for graded µCALCULUS [FMP08] and an extension
of ATL along with graded path modalities (GATL, for short) [FNP09a]. These two orthogonal
approaches have the merit of having introduced a counting over strategies. In particular, while
the former involves a counting on one-step moves among two-agents, the latter allows
for a more sophisticated counting on the histories of the game in a multi-player setting.
Nevertheless, GATL suffers of several limitations. First, not surprisingly, it cannot express
powerful game reasonings due to the limitation of its underlining logic ATL. Second, it is
based on a very rigid counting of existential strategies only.

In Chapter III of this thesis, we introduce and study Graded Strategy Logic (GSL), an
extension of Strategy Logic (SL) along with graded quantifiers. Our aim is introduce a
formalism that is able to count the different strategies that an agent has available to verify
a given formula. In GSL, by means of the existential construct 〈〈x ≥ g〉〉ϕ one can state
that there are at least g strategies x satisfying ϕ. As different strategies may induce the
same outcome, although looking different, they need to be count as one. For this reason, we
introduce a suitable equivalence relation over profiles based on the strategic behavior they

viii

Introduction

induce. We investigate some basic questions over a vanilla fragment of GSL. In particular,
we report on positive results about the determinacy of turn-based games and the related
model-checking problem, which we show to be PTIME-COMPLETE.

For the sake of clarity of exposition, every chapter is a build in a way that is self content.
This means that introduction and preliminary concepts and notation are locally defined.

ix

CHAPTER 1

On Promptness in Parity Games

Contents
1.1 Preliminaries . 3

1.1.1 Arenas . 3

1.1.2 Payoff Arenas . 4

1.1.3 Games . 4

1.2 Parity Conditions . 4

1.2.1 Non-Prompt Conditions . 6

1.2.2 Prompt Conditions . 7

1.3 Equivalences and Implications . 9

1.3.1 Positive Relationships . 9

1.3.2 Negative Relationships . 11

1.4 Polynomial Reduction . 13

1.4.1 Transition Tables . 14

1.4.2 From Full Parity to Büchi . 14

1.4.3 From Bounded-Cost Parity to Parity 17

1.4.4 From Prompt Parity to Parity and Büchi 20

1.5 Discussion . 26

In this chapter, we study several formalization of two-player parity games, under the
prompt semantics, over colored (vertexes) arenas with or without weights over edges. In the
sequel, we refer to the latter as colored arenas and to the former as weighted arenas. Our aim
is twofold. On one side, we give a clear picture of all different extended parity conditions
introduced in the literature working under the prompt assumption. In particular, we analyze
their main intrinsic peculiarities and possibly improve the complexity class results related to
the game solutions. On the other side, we introduce new parity conditions to work on both
colored and weighted arenas and study their relation with the known ones. For a complete list
of all the conditions we address the Table 1.1.

In order to make our reasoning more clear, we first introduce the concept of non-full,
semi-full and full acceptance parity conditions. To understand their meaning, first consider
again the cost parity condition. By definition, it is a conjunction of two properties and in both
of them a finite number of requests (possibly different) can be ignored. For this reason, we
call this condition “non-full”. Consider now the bounded-cost parity condition. By definition,
it is still a conjunction of two properties, but now only in one of them a finite number of
requests can be ignored. For this reason, we call this condition “semi-full”. Finally, a parity
condition is named “full” if none of the requests can be ignored. Note that the full concept has
been already addressed in [CHH09] on classic (colored) arenas. We also refer to [CHH09]
for further motivations and examples.

As a main contribution in this chapter, we introduce and study three new parity condi-
tions named full parity (FP), prompt parity (PP) and full-prompt parity (FPP) condition,
respectively. The full parity condition is defined over colored arenas and, in accordance to
the full semantics, it simply requires that all requests must be responded. Clearly, it has no
meaning to talk about a semi-full parity condition, as there is just one property to satisfy.
Also, the non-full parity condition corresponds to the classic parity one. See Table 1.2 for a
schematic view of this argument. We prove that the problem of checking whether player 0

wins under the full parity condition is in PTIME. This result is obtained by a quadratic
translation to classic Büchi games. The prompt parity condition, which we consider on both
colored and weighted arenas, requires that almost all requests are responded within a bounded
cost, which we name here delay. The full-prompt parity condition is defined accordingly.
Observe that the main difference between the cost parity and the prompt parity conditions is
that the former is a conjunction of two properties, in each of which a possibly different set of
finite requests can be ignored, while in the latter we indicate only one set of finite requests
to be used in two different properties. Nevertheless, since the quantifications of the winning
conditions range on co-finite sets, we are able to prove that prompt and cost parity conditions
are semantically equivalent. We also prove that the complexity of checking whether player ∃
wins the game under the prompt parity condition is UPTIME ∩ COUPTIME, in the case
of weighted arenas. So, the same result holds for cost parity games and this improves the

2

Chapter 1. On Promptness in Parity Games

previously known NPTIME ∩ CONPTIME result [FZ12]. The statement is obtained by a
quartic translation to classic parity games. Our algorithm reduces the original problem to a
unique parity game, which is the key point of how we gain a better result (w.r.t. the complexity
class point of view). Obviously, this is different from what is done in [FZ12], as the algorithm
there performs several calls to a parity game solver and from this approach we are not able to
derive a parsimonious reduction which is necessary for the UPTIME ∩ COUPTIME result.
Observe that, on colored arenas, prompt and full-prompt parity conditions correspond to
the finitary and bounded-finitary parity conditions [CHH09], respectively. Hence, both the
corresponding games can be decided in PTIME. We prove that for full-prompt parity games
the PTIME complexity holds even in the case the arenas are weighted. Finally, by means of a
cubic translation to classic parity games, we prove that bounded-cost parity over weighted
arenas is in UPTIME ∩ COUPTIME, which also improves the previously known NPTIME ∩
CONPTIME result [FZ12] about this condition.

1.1 Preliminaries

In this section, we describe the concepts of two-player turn-based arena, payoff-arena, and
game.

1.1.1 Arenas

An arena is a tupleA ,〈Ps∃,Ps∀,Mv 〉, where Ps∃ and Ps∀ are the disjoint sets of existential
and universal positions and Mv ⊆ Ps×Ps is the left-total move relation on Ps , Ps∃ ∪Ps∀.
The order of A is the number |A| , |Ps| of its positions. An arena is finite iff it has
finite order. A path (resp., history) in A is an infinite (resp., finite non-empty) sequence
of vertexes π ∈ Pth ⊆ Psω (resp., ρ ∈ Hst ⊆ Ps+) compatible with the move relation,
i.e., (πi, πi+1) ∈ Mv (resp., (ρi, ρi+1) ∈ Mv), for all i ∈ N (resp., i ∈ [0, |ρ| − 1[), where
Pth (resp., Hst) denotes the set of all paths (resp., histories). Intuitively, histories and
paths are legal sequences of reachable positions that can be seen, respectively, as partial
and complete descriptions of possible outcomes obtainable by following the rules of the
game modeled by the arena. An existential (resp., universal) history in A is just a history
ρ ∈ Hst∃ ⊆ Hst (resp., ρ ∈ Hst∀ ⊆ Hst) ending in an existential (resp., universal) position,
i.e., lst(ρ) ∈ Ps∃ (resp., lst(ρ) ∈ Ps∀). An existential (resp., universal) strategy on A is
a function σ∃ ∈ Str∃ ⊆ Hst∃ → Ps (resp., σ∀ ∈ Str∀ ⊆ Hst∀ → Ps) mapping each
existential (resp., universal) history ρ ∈ Hst∃ (resp., ρ ∈ Hst∀) to a position compatible with
the move relation, i.e., (lst(ρ), σ∃(ρ)) ∈ Mv (resp., (lst(ρ), σ∀(ρ)) ∈ Mv), where Str∃ (resp.,
Str∀) denotes the set of all existential (resp., universal) strategies. Intuitively, a strategy is a
high-level plan for a player to achieve his own goal, which contains the choice of moves as
a function of the histories of the current outcome. A path π ∈ Pth(v) starting at a position

3

1.2. Parity Conditions

v ∈ Ps is the play inA w.r.t. a pair of strategies (σ∃, σ∀) ∈ Str∃×Str∀ (((σ∃, σ∀), v)-play, for
short) iff, for all i ∈ N, it holds that if πi ∈ Ps∃ then πi+1 = σ∃(π≤i) else πi+1 = σ∀(π≤i).
Intuitively, a play is the unique outcome of the game given by the player strategies. The play
function play : Ps × (Str∃ × Str∀) → Pth returns, for each position v ∈ Ps and pair of
strategies (σ∃, σ∀) ∈ Str∃ × Str∀, the ((σ∃, σ∀), v)-play play(v, (σ∃, σ∀)).

1.1.2 Payoff Arenas

A payoff arena is a tuple Â , 〈A,Pf , pf〉, where A is the underlying arena, Pf is the
non-empty set of payoff values, and pf : Pth → Pf is the payoff function mapping each
path to a value. The order of Â is the order of its underlying arena A. A payoff arena
is finite iff it has finite order. The overloading of the payoff function pf from the set of
paths to the sets of positions and pairs of existential and universal strategies induces the
function pf : Ps× (Str∃ × Str∀)→ Pf mapping each position v ∈ Ps and pair of strategies
(σ∃, σ∀) ∈ Str∃ × Str∀ to the payoff value pf(v, (σ∃, σ∀)) , pf(play(v, (σ∃, σ∀))) of the
corresponding ((σ∃, σ∀), v)-play.

1.1.3 Games

A (extensive-form) game is a tuple a ,〈Â,Wn, v〉, where Â =〈A,Pf , pf〉 is the underlying
payoff arena, Wn ⊆ Pf is the winning payoff set, and v ∈ Ps is the designated initial position.
The order of G is the order of its underlying payoff arena Â. A game is finite iff it has finite
order. The existential (resp., universal) player ∃ (resp., ∀) wins the game a iff there exists an
existential (resp., universal) strategy σ∃ ∈ Str∃ (resp., σ∀ ∈ Str∀) such that, for all universal
(resp., existential) strategies σ∀ ∈ Str∀ (resp., σ∃ ∈ Str∀), it holds that pf(σ∃, σ∀) ∈ Wn

(resp., pf(σ∃, σ∀) 6∈Wn). For sake of clarity, given a game a we denote with Pth(a) the set
of all paths in a and with Str∃(a) and Str∀(a) the sets of strategies over a for the player ∃
and ∀ , respectively. Also, we indicate by Hst(a) the set of the histories over a.

1.2 Parity Conditions

In this section, we give an overview about all different parity conditions we consider
in this article, which are variants of classical parity games that will be investigated
over both classic colored arenas (i.e., with unweighted edges) and weighted arenas.
Specifically, along with the known Parity (P), Cost Parity (CP), and Bounded-Cost Par-
ity (BCP) conditions, we introduce three new winning conditions, namely Full Parity
(FP), Prompt Parity (PP), and Full-Prompt Parity (FPP).

Before continuing, we introduce some notation to formally define all addressed winning
conditions. A colored arena is a tuple Ã , 〈A,Cl, cl〉, where A is the underlying arena,

4

Chapter 1. On Promptness in Parity Games

Non-Prompt Prompt

Non-Full Parity (P) Prompt Parity (PP) ≡ Cost Parity (CP)

Semi-Full − Bounded Cost Parity (BCP)

Full Full Parity (FP) Full Prompt Parity (FPP)

Table 1.1: Prompt/non-prompt conditions under the full/semi-full/non-full constraints.

Cl ⊆ N is the non-empty sets of colors, and cl : Ps→ Cl is the coloring function mapping
each position to a color. Similarly, a (colored) weighted arena is a tuple A ,〈A,Cl, cl,Wg,

wg〉, where 〈A,Cl, cl〉 is the underlying colored arena, Wg ⊆ N is the non-empty sets of
weights, and wg : Mv → Wg is the weighting functions mapping each move to a weight.
The overloading of the coloring (resp., weighting) function from the set of positions (resp.,
moves) to the set of paths induces the function cl : Pth → Clω (resp., wg : Pth → Wgω)
mapping each path π ∈ Pth to the infinite sequence of colors cl(π) ∈ Clω (resp. weights
wg(π) ∈Wgω) such that (cl(π))i = cl(πi) (resp., (wg(π))i = wg((πi, πi+1))), for all i ∈ N.
Every colored (resp., weighted) arena Ã , 〈A,Cl, cl〉 (resp., A , 〈A,Cl, cl,Wg,wg〉)
induces a canonical payoff arena Â ,〈A,Pf , pf〉, where Pf , Clω (resp., Pf , Clω×Wgω)
and pf(π) , cl(π) (resp., pf(π) , (cl(π),wg(π))).

In the following, along a play, we interpret the occurrence of an odd priority as a “request”
and the occurrence of the first bigger even priority at a later position as a “response”. Then,
we distinguish between prompt and not-prompt requests. In the not-prompt case, a request
is responded independently from the elapsed time between its occurrence and response.
Conversely, in the prompt case, the time within a request is responded has an important role.
It is for this reason that we consider weighted arenas. So, a delay over a play is the sum of
the weights over of all the edges crossed from a request to its response. We now formalize
these concepts. Let c ∈ Clω be an infinite sequence of colors. Then, Rq(c) , {i ∈ N :

ci ≡ 1 (mod 2)} denotes the set of all requests in c and rs(c, i) , min{j ∈ N : i ≤ j ∧ ci ≤
cj ∧ cj ≡ 0 (mod 2)} represents the response to the requests i ∈ Rs, where by convention
we set min∅ , ω. Moreover, Rs(c) , {i ∈ Rq(c) : rs(c, i) < ω} denotes the subset of
all requests for which a response is provided. Now, let w ∈ Wgω be an infinite sequence
of weights. Then, dl((c, w), i) ,

∑rs(c,i)−1
k=i wk denotes the delay w.r.t. w within which a

request i ∈ Rq(c) is responded. Also, dl((c, w),R) , supi∈Rdl((c, w), i) is the supremum
of all delays of the requests contained in R ⊆ Rq(c).

As usual, all conditions we consider are given on infinite plays. Then, the winning of the
game can be defined w.r.t. how often the characterizing properties of the winning condition are
satisfied along each play. For example, we may require that all requests have to be responded
along a play, which we denote as a full behavior of the acceptance condition. Also, we may
require that the condition (given as a unique or a conjunction of properties) holds almost

5

1.2. Parity Conditions

everywhere along the play (i.e., a finite number of places along the play can be ignored), which
we denote as a not-full behavior of the acceptance condition. More in general, we may have
conditions, given as a conjunction of several properties, to be satisfied in a mixed way, i.e.,
some of them have to be satisfied almost everywhere and the remaining ones, over all the play.
We denote the latter as a semi-full behavior of the acceptance condition. Table 1.1 reports the
combination of the full, not-full, and semi-full behaviors with the known conditions of parity,
cost-parity and bounded cost-parity and the new condition of prompt-parity we introduce. As
it will be clear in the following, bounded cost-parity has intrinsically a semi-full behavior on
weighted arenas, but it has no meaning on (unweighted) colored arenas. Also, over colored
arenas, the parity condition has an intrinsic not-full behavior. As far as we known, some of
these combinations have never been studied previously on colored arenas (full parity) and
weighted arenas (prompt parity and full-prompt parity).

Observe that, in the following, in each graphic representation of a game, the circular
nodes belong to player ∃ while the square nodes to player ∀.

1.2.1 Non-Prompt Conditions

The non-prompt conditions relate only to the satisfaction of a request (i.e., its response),
without taking into account the elapsing of time before the response is provided (i.e., its
delay). As reported in Table 1.1, here we consider as non-prompt conditions, those ones of
parity and full parity. To do this, let a ,〈Â,Wn, v〉 be a game, where the payoff arena Â is
induced by a colored arena Ã =〈A,Cl, cl〉.

v
1

v
0

v
2

Figure 1.1: Colored Arena Ã.

Parity condition (P) a is a parity game iff it is played
under a parity condition, which requires that all requests,
except at most a finite number, are responded. Formally,
for all c = Clω, we have that c ∈ Wn iff there exists
a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c),
i.e., c is a winning payoff iff almost all requests in Rq(c)

are responded. Consider for example the colored arena
Ã depicted in Figure 1.1, where all positions are universal, and let α + β be the regular
expression describing all possible plays starting at v, where α = (v · v∗ · v) · v · vω and
β = (v · v∗ · v)ω. Now, keep a path π ∈ α and let cα , pf(π) ∈ (1 · 0∗ · 2) · 1 · 0ω be its
payoff. Then, cπ ∈Wn, since the parity condition is satisfied by putting in R the last index in
which the color 1 occurs in cπ. Again, keep a path π ∈ β and let cπ , pf(π) ∈ (1 · 0∗ · 2)ω be
its payoff. Then, cπ ∈Wn, since the parity condition is satisfied by simply choosing R , ∅.
In the following, as a special case, we also consider parity games played over arenas colored
only with the two priorities 1 and 2, to which we refer as Büchi games (B).

6

Chapter 1. On Promptness in Parity Games

v
1

v
2

Figure 1.2: Colored Arena Ã.

Full Parity condition (FP) a is a full parity game iff it
is played under a full parity condition, which requires that
all requests are responded. Formally, for all c ∈ Clω, we
have that c ∈Wn iff Rq(c) ⊆ Rs(c) i.e., c is a winning
payoff iff all requests in Rq(c) are responded. Consider
for example the colored arena Ã in Figure 1.2, where all positions are existential. There is
a unique path π = (v · v)ω starting at v having payoff cπ , pf(π) = (1 · 2)ω and set of
requests Rq(cπ) = {2n : n ∈ N}. Then, cπ ∈Wn, since the full parity condition is satisfied
as all requests are responded by the color 2 at the odd indexes. Observe that the arena of
the game Ã depicted in Figure 1.1 is not won under the full parity condition. Indeed, if we
consider the path π with payoff pf(π) ∈ (1 · 0ω), it holds that not all requests are responded.

1.2.2 Prompt Conditions

The prompt conditions take into account, in addition to the satisfaction of a request, also the
delay before it occurs. As reported in Table 1.1, here we consider as prompt conditions, those
ones of prompt parity, full-prompt parity, cost parity, and bounded-cost parity. To do this, let
a , 〈Â,Wn, v〉 be a game, where the payoff arena Â is induced by a (colored) weighted
arena A =〈A,Cl, cl,Wg,wg〉.

v
3

v
1

v
22

1

0

Figure 1.3: Weighted Arena A.

Prompt Parity condition (PP) a is a prompt parity
game iff it is played under a prompt parity condition,
which requires that all requests, except at most a finite
number of them, are responded with a bounded delay.
Formally, for all (c, w) ∈ Clω × Wgω, we have that
(c, w) ∈Wn iff there exists a finite set R ⊆ Rq(c) such
that Rq(c) \ R ⊆ Rs(c) and there exists a bound b ∈ N for which dl((c, w),Rq(c) \ R) ≤ b
holds, i.e., (c, w) is a winning payoff iff almost all requests in Rq(c) are responded with
a delay bounded by an a priori number b. Consider for example the weighted arena A
depicted in Figure 1.3. There is a unique path π = v · (v · v)ω starting at v having payoff
pπ , pf(π) = (cπ, wπ), where cπ = 3 · (1 · 2)ω and wπ = 2 · (1 · 0)ω, and set of requests
Rq(cπ) = {0} ∪ {2n + 1 : n ∈ N}. Then, pπ ∈ Wn, since the prompt parity condition is
satisfied by choosing R = {0} and b = 1.

v
3

v
4

v
1

2 0

0 1

Figure 1.4: Weighted Arena A.

Full-Prompt Parity condition (FPP) a is a full-
prompt parity game iff it is played under a full-prompt
parity condition, which requires that all requests are re-
sponded with a bounded delay. Formally, for all (c, w) ∈
Clω×Wgω, we have that (c, w) ∈Wn iff Rq(c) = Rs(c)

7

1.2. Parity Conditions

and there exists a bound b ∈ N for which dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a winning
payoff iff all requests in Rq(c) are responded with a delay bounded by an a priori number
b. Consider for example the weighted arena A depicted in Figure 1.4. Now, take a path
π ∈ v ·v · ((v ·v)∗ · (v ·v)∗)ω starting at v and let pπ , pf(π) = (cπ, wπ) be its payoff,
with cπ ∈ 3 · 4 · ((3 · 4)∗ · (1 · 4)∗)ω and wπ ∈ 2 · ((0 · 2)∗ · (0 · 1)∗)ω. Then, pπ ∈ Wn,
since the full-prompt parity condition is satisfied as all requests are responded by color 4

with a delay bound b = 2. Observe that, the arena of the game Ã depicted in Figure 1.3
is not won under the full prompt parity condition. Indeed, if we consider the unique path
π = v · (v ·v)ω starting at v having payoff pπ , pf(π) = (cπ, wπ), where cπ = 3 · (1 ·2)ω

and wπ = 2 · (1 · 0)ω, it holds that there exists an unanswered request at the vertex v.

Remark 1.2.1 As a special case, the prompt and the full-prompt parity conditions can be
analyzed on simply colored arenas, by considering each edge as having weight 1. Then,
the two cases just analyzed correspond to the finitary parity and bounded parity conditions
studied in [CHH09].

v
1

v
01

1

Figure 1.5: Weighted Arena A.

Cost Parity condition (CP) [FZ12] a is a cost parity
game iff it is played under a cost parity condition, which
requires that all requests, except at most a finite number of
them, are responded and all requests, except at most a fi-
nite number of them (possibly different from the previous
ones) have a bounded delay. Formally, for all (c, w) ∈ Clω×Wgω, we have that (c, w) ∈Wn

iff there is a finite set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there exist a finite set
R′ ⊆ Rq(c) and a bound b ∈ N for which dl((c, w),Rq(c) \ R′) ≤ b holds, i.e., (c, w) is a
winning payoff iff almost all requests in Rq(c) are responded and almost all have a delay
bounded by an a priori number b. Consider for example the weighted arena A in Figure 1.5.
There is a unique path π = v · vω starting at v having payoff pπ , pf(π) = (cπ, wπ),
where cπ = 1 · 0ω and wπ = 1ω, and set of requests Rq(cπ) = {0}. Then, pπ ∈Wn, since
the prompt parity condition is satisfied with R = R′ = {0} and b = 0.

v
1

v
01

0

Figure 1.6: Weighted Arena A.

Bounded-Cost Parity condition (BCP) [FZ12] a is a
bounded-cost parity game iff it is played under a bounded-
cost parity condition, which requires that all requests,
except at most a finite number, are responded and all have
a bounded delay. Formally, for all (c, w) ∈ Clω ×Wgω,
we have that (c, w) ∈ Wn iff there exists a finite set
R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and there exists a bound b ∈ N for which
dl((c, w),Rq(c)) ≤ b holds, i.e., (c, w) is a winning payoff iff almost all requests in Rq(c)

are responded and all have a delay bounded by an a priori number b. Consider for example the

8

Chapter 1. On Promptness in Parity Games

weighted arena A depicted in Figure 1.6. There is a unique path π = v · vω starting at v
having payoff pπ , pf(π) = (cπ, wπ), where cπ = 1 · 0ω, and set of requests Rq(cπ) = {0}.
Then, pπ ∈Wn, since the prompt parity condition is satisfied with R = {0} and b = 1.

Wn Formal definitions

P
∀c∈Clω. c∈Wn iff

∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c)

FP Rq(c) = Rs(c)

PP

∀(c, w)∈Clω ×Wgω.

(c, w)∈Wn iff

∃R ⊆ Rq(c), |R| < ω.
Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R) ≤ b

FPP
Rq(c) = Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c)) ≤ b

CP
∃R ⊆ Rq(c), |R| < ω.

∃R′ ⊆ Rq(c), |R′| < ω.

Rq(c) \ R ⊆ Rs(c) ∧
∃b ∈ N . dl((c, w),Rq(c) \ R′) ≤ b

BCP
∃R ⊆ Rq(c), |R| < ω. Rq(c) \ R ⊆ Rs(c) ∧

∃b ∈ N . dl((c, w),Rq(c)) ≤ b

Table 1.2: Summary of all winning condition (Wn) definitions.

In Table 1.2, we list all winning conditions (Wn) introduced above, along with their
respective formal definitions. For the sake of readability, given a game a =〈Â,Wn, v〉, we
sometimes use the winning condition acronym name in place of Wn, as well as we refer to a
as a Wn game. For example, if a is a parity game, we also say that it is a P game, as well as,
write a =〈Â, P, v〉.

1.3 Equivalences and Implications

In this section, we investigate the relationships among all parity conditions discussed above.
For the sake of coherence, we use the names A, Â, Ã and A to refer to arenas, payoff arenas,
colored arenas and weighted arenas, respectively.

1.3.1 Positive Relationships

P

FP

PP

FPP

CP

BCP

[1]

[3]

[2a]
[4a]

[2b]
[4b]

[4c]

[4d]

[5]

[4e]

Figure 1.7: Implication Schema.

In this subsection, we prove all positive existing
relationships among the studied conditions and
report them in Figure 1.7, where an arrow from a
condition Wn to another condition Wn means
that the former implies the latter. In other words,
if player ∃ wins a game under the condition Wn,
then it also wins the game under the condition

9

1.3. Equivalences and Implications

Wn, over the same arena. The label on the edges indicates the item of the next theorem
in which the result is proved. In particular, we show that prompt parity and cost parity are
semantically equivalent. The same holds for full parity and full prompt parity over finite
arenas and for full prompt parity and bounded cost parity on positive weighted arenas. Also,
as one may expect, fullness implies not-fullness under every condition and all conditions
imply the parity one.

Theorem 1.3.1 Let a = 〈Â,Wn, v〉 and a = 〈Â,Wn, v〉 be two games defined on
the payoff arenas Â and Â having the same underlying arena A. Then, player ∃ wins a if
it wins a under the following constraints:

1. Â = Â are induced by a colored arena Ã =〈A,Cl, cl〉 and (Wn,Wn) = (FP, P);

2. Â and Â are induced, respectively, by a weighted arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying colored arena Ã =〈A,Cl, cl〉 and

(a) (Wn,Wn) = (PP, P), or

(b) (Wn,Wn) = (FPP, FP);

3. Â and Â are finite and induced, respectively, by a weighted arena A = 〈A,Cl,

cl,Wg,wg〉 and its underlying colored arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) =

(FP, FPP);

4. Â = Â are induced by a weighted arena A =〈A,Cl, cl,Wg,wg〉 and

(a) (Wn,Wn) = (PP,CP), or

(b) (Wn,Wn) = (FPP, PP), or

(c) (Wn,Wn) = (FPP,BCP), or

(d) (Wn,Wn) = (CP, PP), or

(e) (Wn,Wn) = (BCP,CP);

5. Â = Â are induced by a weighted arena A =〈A,Cl, cl,Wg,wg〉, with wg(v) > 0

for all v ∈ Ps, and (Wn,Wn) = (BCP, FPP).

Proof. All items, but 3, 4d, and 5, are immediate by definition. So, we only focus on the
remaining ones.

[Item 3] Suppose by contradiction that player ∃ wins the FP a game but it does not win
the FPP game a. Then, there is a play π in a having payoff (c, w) = pf(π) ∈ Clω ×Wgω

for which dl((c, w),Rq(c)) = ω. So, there exists at least a request r ∈ Rq(c) with a delay
greater than s =

∑
e∈Mv wg(e). Since the arena is finite, this implies that, on the infix of π

that goes from the request r to its response, there is a move that occurs twice. So, player ∀

10

Chapter 1. On Promptness in Parity Games

has the possibility to force another play π′ having r as request and passing infinitely often
through this move without reaching the response. But this is impossible, since player ∃ wins
the FP game a.

[Item 4d] To prove this item, we show that if a payoff (c, w) ∈ Clω ×Wgω satisfies
the CP condition then it also satisfies the PP one. Indeed, by definition, there are a finite
set R ⊆ Rq(c) such that Rq(c) \ R ⊆ Rs(c) and a possibly different finite set R

′ ⊆ Rq(c)

for which there is a bound b ∈ N such that dl((c, w),Rq(c) \ R
′
) ≤ b. Now, consider the

union R
′′
, R ∪ R

′
. Obviously, this is a finite set. Moreover, it is immediate to see that

Rq(c) \ R′′ ⊆ Rs(c) and dl((c, w),Rq(c) \ R
′′
) ≤ b, for the same bound b. So, the payoff

(c, w) satisfies the PP condition, by using R
′′

in place of R in the definition.
[Item 5] Suppose by contradiction that player ∃ wins the BCP game a but it does not win

the FPP game a. Then, there is a play π in a having payoff (c, w) = pf(π) ∈ Clω ×Wgω

for which Rq(c) 6= Rs(c). So, since all weights are positive, there exists at least a request
r ∈ Rq(c) \ Rs(c) 6= ∅ with dl((c, w), r) = ω. But this is impossible. �

The following three corollaries follow as immediate consequences of, respectively,
Items 2b and 3, 4a and 4d, and 4c and 5 of the previous theorem.

Corollary 1.3.1 Let aFPP =〈ÂFPP, FPP, v〉 be an FPP game and aFP =〈ÂFP, FP, v〉 an
FP one defined on the two finite payoff arenas ÂFPP and ÂFP induced, respectively, by a
weighted arena A = 〈A,Cl, cl,Wg,wg〉 and its underlying colored arena Ã = 〈A,Cl, cl〉.
Then, player ∃ wins aFPP if it wins aFP.

Corollary 1.3.2 Let aCP=〈Â,CP, v〉 be a CP game and aPP=〈Â, PP, v〉 a PP one defined
on the payoff arena Â induced by a weighted arena A=〈A,Cl, cl,Wg,wg〉. Then, player ∃
wins aCP if it wins aPP.

Corollary 1.3.3 Let aBCP = 〈Â,BCP, v〉 be a BCP game and aFPP = 〈Â, FPP, v〉 an
FPP one defined on the payoff arena Â induced by a weighted arena A = 〈A,Cl, cl,Wg,

wg〉, where wg(v) > 0, for all v ∈ Ps. Then, player ∃ wins aBCP if it wins aFPP.

1.3.2 Negative Relationships

P

FP

PP

BCP

[1]

[2]

[3]

[4]
[5]

[6]

Figure 1.8: Counterexample Schema.

In this subsection, we show a list of counterex-
amples to point out that some winning conditions
are not equivalent to other ones. We report the
corresponding result in Figure 1.8, where an ar-
row from a condition Wn to another condition
Wn means that there exists an arena on which
player ∃ wins a Wn game while it loses a Wn

one. The label on the edges indicates the item of the next theorem in which the result is

11

1.3. Equivalences and Implications

proved. Moreover, the following list of counter-implications, non reported in the figure, can be
simply obtained by the reported ones together with the implication results of Theorem 1.3.1:
(P, FPP), (P, CP), (P, BCP), (FP, FPP), (FP, CP), (FP, BCP), (PP, FPP), (CP, FP), (CP,
FPP), (CP, BCP), and (BCP, FPP).

Theorem 1.3.2 There exist two games a =〈Â,Wn, v〉 and a =〈Â,Wn, v〉, defined
on the two payoff arenas Â and Â having the same underlying arena A, such that player ∃
wins a while it loses a under the following constraints:

1. Â = Â are induced by a colored arena Ã =〈A,Cl, cl〉 and (Wn,Wn) = (P, FP);

2. Â and Â are induced, respectively, by a weighted arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying colored arena Ã =〈A,Cl, cl〉 and (Wn,Wn) = (P, PP);

3. Â and Â are infinite and induced, respectively, by a weighted arena A = 〈A,Cl,

cl,Wg,wg〉 and its underlying colored arena Ã = 〈A,Cl, cl〉 and (Wn,Wn) =

(FP, PP);

4. Â and Â are induced, respectively, by a weighted arena A = 〈A,Cl, cl,Wg,wg〉
and its underlying colored arena Ã =〈A,Cl, cl〉 and (Wn,Wn) = (PP, FP);

5. Â = Â are induced by a weighted arena A = 〈A,Cl, cl,Wg,wg〉 and
(Wn,Wn) = (PP,BCP);

6. Â and Â are induced, respectively, by a weighted arena A = 〈A,Cl, cl,Wg,wg〉,
with wg(v) = 0 for some v ∈ Ps, and its underlying colored arena Ã = 〈A,Cl, cl〉
and (Wn,Wn) = (BCP, FP).

0

2
(1,0)

1
1

2

(2,0)

1
(2,1)

1
2

2
...

1 1

1

1 1 1

Figure 1.9: Infinite Weighted Arena A.

Proof. [Item 1] Consider as colored arena Ã
the one underlying the weighted arena depicted in
Figure 1.5, which has just the path π = v · vω

with payoff c = pf(π) = 1 · 0ω. Then, it is
immediate to see that player ∃ wins the P game
but not the FP game, since Rq(c) \ Rs(c) = {0}.

[Item 2] Consider as colored arena Ã the one
depicted in Figure 1.1 and as weighted arena A the one having a weight 1 on the self loop on
v and 0 on the remaining moves. It is immediate to see that player ∃ wins the P game a.
However, player ∀ has a strategy that forces in the PP game a the play π =

∏ω
i=1 v · vi · v

having payoff (c, w) = pf(π) = (
∏ω
i=1 1 · 0i · 2,

∏ω
i=1 0 · 1i · 0). Therefore, player ∃ does

not win a, since there is no finite set R ⊂ Rq(c) for which dl((c, w),Rq(c) \ R) < ω.
[Item 3] Consider as weighted arena A the infinite one depicted in Figure 1.9 having

set of positions Ps , N ∪ {(i, j) ∈ N × N : j < i} and moves defined as follows: if

12

Chapter 1. On Promptness in Parity Games

j < i− 1 then ((i, j), (i, j + 1)) ∈ Mv else ((i, j), i) ∈ Mv . In addition, the coloring of the
positions are cl(i) = 2 and cl((i, j)) = 1. Now, it is immediate to see that, on the underlying
colored arena Ã, Player ∃ wins the FP game a, since all requests on the unique possible play
π =

∏ω
i=0(

∏i−1
j=0(i, j)) · i are responded. However, it does not win the PP game a, since

dl((c, w),Rq(c)) = ω, where (c, w) = pf(π) = (
∏ω
i=0 1i · 2, 1ω). Indeed, there is no finite

set R ⊂ Rq(c) for which dl((c, w),Rq(c) \ R) < ω.

[Item 4] Consider as weighted arena A the one depicted in Figure 1.5 having just the path
π = v · vω with payoff (c, w) = pf(π) = (1 · 0ω, 0 · 1ω). Player ∃ wins the PP game a,
since there is just one requests, which we can simply avoid to consider. However, as already
observed in Item 1, the FP game a on the underlying colored arena Ã is not won by the
same player.

[Item 5] Consider again as weighted arena A the one depicted in Figure 1.5. As already
observed in Item 4, the PP game a is won by player ∃. However, it does not win the BCP
game a, since dl((c, w), 0) = ω.

[Item 6] Consider as weighted arena A the one depicted in Figure 1.6 having just the path
π = v · vω with payoff (c, w) = pf(π) = (1 · 0ω, 1 · 0ω). Player ∃ wins the BCP game a,
since there is just one requests, which we can simply avoid to consider, and its delay is equal
to 1. However, as already observed in Item 1, the FP game a on the underlying colored
arena Ã is not won by the same player. �

1.4 Polynomial Reduction

In this section, we face the computational complexity of solving full parity, prompt parity
and bounded cost parity games. Then, due to the relationships among the winning conditions
described in the previous section, we propagate the achieved results to the other conditions as
well.

The technique we adopt is to solve a given game through the construction of a new game
over an enriched arena, on which we play with a simpler winning condition. Intuitively, the
constructed game encapsulates, inside the states of its arena, some information regarding the
satisfaction of the original condition. To this aim, we introduce the concepts of transition
table and its product with an arena. A transition table is an automaton without acceptance
condition, which is used to represent the information of the winning condition mentioned
above. Then, the product operation allows to inject this information into the new arena. In
particular, the transition table uses non deterministic states to let the player ∃ to forget some
requests. This will be useful to handle the reduction from prompt parity condition.

The constructions we propose are pseudo-polynomial. However, if we restrict to the case
of having only 0 and 1 as weights over the edges, then they become polynomial, due to the
fact that the threshold is bounded by the number of edges in the arena. Moreover, since a

13

1.4. Polynomial Reduction

game with arbitrary weights can be easily transformed into one with weights 0 and 1, we
overall get a polynomial reduction for all the cases. Note that to check whether a value is
positive or zero can be done in linear time in the number of its bits and, therefore, it is linear
in the description of its weights.

In the following, for a given set of colors Cl ⊆ N, we assume ⊥ < i, for all i ∈ Cl.
Intuitively, ⊥ is a special symbol that can be seen as lower bound over color priorities.
Moreover, we define R , {c ∈ Cl : c ≡ 1(mod 2)} to be the set of all possible request
values in Cl with R⊥ , {⊥} ∪ R.

1.4.1 Transition Tables

A transition table is a tuple T ,〈Sm,St, tr〉, where Sm is the set of symbols, St∆ and StN

with St , St∆ ∪ StN are disjoint sets of deterministic and non deterministic states, and
tr : (St∆ × Sm → St) ∪ (StN → 2St) is the transition function mapping either pairs of
deterministic states and symbols to states or non deterministic states to sets of states. T is
deterministic if tr : St∆ × Sm→ St and StN = ∅. The order (resp., size) of T is |T | , |St|
(resp., ‖T ‖ , |tr|). A transition table is finite iff it has finite order. Let Ã = 〈A,Cl, cl〉 be
a colored arena, where A = 〈Ps∃,Ps∀,Mv 〉 is the underlying arena and T , 〈Cl,St, tr〉 a
transition table. The product Ã⊗T is an arena in which vertexes are pairs of vertexes from Ã
and states from T . Then, such pair belongs to the player ∃ iff the first component belongs to
the player ∃ in the original arena Ã or the second is a non deterministic state. Moreover, the
moves are determined by the moves in Ã and the transition table T . Formally, Ã⊗T ,〈Ps?∃,

Ps?∀,Mv?〉 is the product arena defined as follows:

• Ps?∃ , Ps∃ × St∆ ∪ Ps× StN ;

• Ps?∀ , Ps∀ × St∆;

• Mv? : Ps × St → Ps × St such that ((v, s), (v, s)) ∈ Mv? iff (v, v) ∈ Mv

and one of the following condition holds.

1. s ∈ St∆ and s = tr(s, cl(v));

2. s ∈ StN , v = v and s = tr(s).

Similarly, let A = 〈A,Cl, cl,Wg,wg〉 be a weighted arena with A = 〈Ps∃,Ps∀,Mv 〉
and T ,〈Cl×Wg,St, tr〉 a transition table. Then, A⊗T ,〈Ps?∃,Ps?∀,Mv?〉 is the product
arena as before, except for the case 1 in which we use s = tr(s, (cl(v),wg((v, v)))).

1.4.2 From Full Parity to Büchi

In this section, we show a reduction from full parity games to Büchi games. The reduction is
done by constructing an ad-hoc transition table T that maintains basic informations of the

14

Chapter 1. On Promptness in Parity Games

parity condition. Then, the Büchi game uses as an arena an enriched version of the original
one, which is obtained as its product with the built transition table. Intuitively, the latter keeps
track, along every play, of the value of the biggest unanswered request. When such a request
is satisfied, this value is set to the special symbol ⊥. To this aim, we use as states of the
transition table, together with the symbol ⊥, all possible request values. Also, the transition
function is defined in the following way: if a request is satisfied then we move to state ⊥,
otherwise, we move to the state representing the maximum between the new request it reads
and the previous memorized one (kept into the current state). Hence, both states and symbols
in the transition table associated to the Büchi game are colors of the colored arena of the
full parity game. Consider now the arena built as the product of the original one with the
above described transition table and use as colors the values 1 and 2, assigned as follows:
if a position contains ⊥, color it with 2, otherwise, with 1. By definition of full parity and
Büchi games, we have that a Büchi game is won over the new built arena if and only if the
full parity game is won over the original arena. Indeed, over a play of the new arena, meeting
a bottom symbol infinitely often means that all requests found over the corresponding play of
the old arena are satisfied. The formal construction of the transition table and the enriched
arena follow. For a given full parity (FP) game a ,〈Â, FP, v〉 induced by a colored arena
Ã = 〈A,Cl, cl〉, we construct a deterministic transition table T , 〈Cl,St, tr〉, with set of
states St , R⊥ and transition function defined as follows:

• tr(r, c) ,

⊥, if r < c and c ≡ 0(mod 2);

max{r, c}, otherwise.

Now, let A? =< Ps?∃,Ps?∀,Mv? > be the product arena of Ã and T and consider the
colored arena Ã? , 〈A?, {1, 2}, cl?〉 such that, for all positions (v, r) ∈ Ps?, if r = ⊥ then
cl?((v, r)) = 2 else cl?((v, r)) = 1. Then, the B game a? = 〈Â?,B, (v,⊥)〉, with Â?

induced by the colored arena Ã?, is such that player ∃ wins a iff it wins a?.

Theorem 1.4.1 For every FP game a with k ∈ N priorities, there is a B game a?, with order
|a?| = O(|a| · k), such that player ∃ wins a iff it wins a?.

Proof. [If] By hypothesis, we have that player ∃ wins the B game a? on the colored arena
Ã, which induces a payoff arena Â. This means that, there exists a strategy σ?∃ ∈ Str∃(a∗) for
player ∃ such that for each strategy σ?∀ ∈ Str∀(a∗) for player ∀, it holds that pf(v, (σ?∃, σ

?
∀)) ∈

B. Therefore, for all π? ∈ Pth(a?�σ?
∃
), we have that pf(π?) |= B. Hence, there exists a finite

set R ⊆ Rq(cπ?) such that Rq(cπ?) \ R ⊆ Rs(cπ?) with cπ? = pf(π?). Now, construct
a strategy σ∃ ∈ Str∃(a) such that, for all π ∈ Pth(a�σ∃), there exists π? ∈ Pth(a?�σ∃?),
with π = π?�. To do this, let ext : Hst∃ −→ R⊥ be a function mapping each history
ρ ∈ Hst∃(a) to the biggest color request not yet answered along a play or to ⊥, in case there
are not unanswered requests. So, we set σ∃(ρ) , σ?∃((lst(ρ), ext(ρ)))�1, for all ρ ∈ Hst∃(a).

15

1.4. Polynomial Reduction

At this point, for each strategy σ∀ ∈ Str∀(a), there is a strategy σ?∀ ∈ Str∀(a?) such that
cπ , pf(v, (σ∃, σ∀)) ∈ FP, cπ? , pf(v, (σ

?
∃, σ

?
∀)) ∈ B and cπ = (cπ?)�1. Set σ?∀ using σ∀

as follows: σ?∀((v, r)) = σ∀((v, r
′)) where r′ = tr(r, cl(v)). Since pf(π?) |= B, we have that

cπ? ∈ (Cl∗ · 2)ω. Due to the structure of the transition table and the fact that we give a priority
2 to the vertexes in which there are not unanswered requests, we have that Rq(cπ?) = Rs(cπ?)

and so Rq(cπ) = Rs(cπ) .
[Only If] By hypothesis, we have that player ∃ wins the game a on the colored arena Ã

which induces a payoff arena Â. This means that, there exists a strategy σ∃ ∈ Str∃(a) for
player ∃ such that for each strategy σ∀ ∈ Str∀(a) for player ∀, it holds that pf(v, (σ∃, σ∀)) ∈
FP. Therefore, for all π ∈ Pth(a�σ∃), we have that pf(π) |= FP. Hence, Rq(cπ) = Rs(cπ)

with cπ = pf(π). Now, we construct a strategy σ?∃ ∈ Str∃(a?) for player ∃ on Ã? as
follows: for all vertexes (v, r), where r ∈ R⊥, it holds that σ?∃(v, r) = σ∃(v). We prove that
pf(π?) |= B for all play π? ∈ Pth(a?�σ?

∃
), i.e., there exists a finite set R ⊆ Rq(cπ?) such

that Rq(cπ?) \ R ⊆ Rs(cπ?) with cπ? = pf(π?). To do this, we project out π from π?, i.e.,
π = π?�, whose meaning is π?i = (πi, ri), for all i ∈ N. It easy to see that π ∈ Pth(a�σ∃)
and then pf(π) |= FP. By contradiction, assume that pf(π?) 2 B. Consequently, there are
no vertexes (v,⊥) that appear infinitely often. This means that there exists a position i ∈ N
in which there is a request r ∈ Rq(cπ) not satisfied. But this means pf(π) 2 FP, which is
impossible. �

In the following, we report some examples of arenas obtained applying the reduction
mentioned above. Observe that each vertex of the constructed arena is labeled with its name
(in the upper part) and, in according to the transition function, by the biggest request not
responded (in the middle part) and its color (in the lower part).

v
⊥
2

v
1
1

Figure 1.10: From Full Parity to
Buchi.

Example 1.4.1 Consider the colored arena depicted in
Figure 1.10. It represents the reduction from the colored
arena Ã drawn in Figure 1.2 where player ∃ wins the FP
game a as all requests are responded. It easy to see that
player ∃ wins also the B game a? in Figure 1.10, as the
vertex (v,⊥) with priority 2 is visited infinitely often.

v
⊥
2

v
1
1

Figure 1.11: From Full Parity to
Buchi.

Example 1.4.2 Consider, now, the arena depicted in Fig-
ure 1.11. It represents a reduction from the colored arena
Ã drawn in Figure 1.5 where player ∃ loses the FP game
a as we have that the request at the vertex v is never
responded. It easy to see that player ∃ also loses the B
game a? in Figure 1.11 as he visits only finitely often the vertex (v,⊥).

16

Chapter 1. On Promptness in Parity Games

1.4.3 From Bounded-Cost Parity to Parity

In this section, we show a construction that allows to reduce a bounded-cost parity game to a
parity game. The approach we propose extends the one given in the previous section by further
equipping the transition table T with a counter that keeps track of the delay accumulated
since an unanswered request has been issued. Such a counter is bounded in the sense that if
the delay exceeds the sum of weights of all moves in the original arena, then it is set to the
special symbol >. The idea is that if in a finite game such a bound has been exceeded then
the adversarial player has taken at least twice a move with a positive weight. So, he can do
this an arbitrary number of times and delay longer and longer the satisfaction of a request
that therefore becomes not prompt. Thus, we use as states in T , together with >, a finite set
of pairs of numbers, where the first component, as above, represents a finite request, while
the second one is its delay. As first state component we also allow ⊥, since with (⊥, 0) we
indicate the fact that there are not unanswered requests up to the current position. Then, the
transition function of T is defined as follows. If a request is not satisfied within a bounded
delay, then it goes and remains forever in state >. Otherwise, if the request is satisfied, then
it goes to (⊥, 0), else it moves to a state that contains, as first component, the maximum
between the last request not responded and the read color and, as second component, the one
present in the current state plus the weight of the traversed edge.

Now, consider the product arena A? of T with the original arena and color its positions
as follows: unanswered request positions, with delay exceeding the bound, are colored with 1,
while the remaining ones are colored as in the original arena. Clearly, in A?, a parity game
is won if and only if the bounded-cost parity game is won on the original arena. The formal
construction of T and A? follow.

For a given BCP game a , 〈Â,BCP, v〉 induced by a weighted arena A = 〈A,Cl, cl,

Wg,wg〉, we construct a deterministic transition table T , 〈Cl ×Wg,St, tr〉, with set of
states St , {>} ∪ R⊥ × [0, s], where we assume s ,

∑
m∈Mv wg(m) to be the sum of all

weights of moves in A, and transition function defined as follows:

• tr(>, (c, w)) , >;

• tr((r, k), (c, w)) ,


(⊥, 0), if r < c and c ≡ 0(mod 2);

>, if k + w > s;

(max{r, c}, k + w), otherwise.

Let A? =< Ps?∃,Ps?∀,Mv? > be the product arena of A and T , and Ã? , 〈A?,Cl, cl?〉 the
colored arena such that the state (v,>) is colored with 1, while all other states are colored as
in the original arena (w.r.t. the first component). Then, the P game a? =〈Â?, P, (v, (⊥, 0))〉
induced by Ã? is such that player ∃ wins a iff it wins a?.

17

1.4. Polynomial Reduction

Theorem 1.4.2 For every finite BCP game a with k ∈ N priorities and sum of weights s ∈ N,
there is a P game a?, with order |a?| = O(|a| · k · s), such that player ∃ wins a iff it wins
a?.

Proof. [If] By hypothesis, player ∃ wins the game a? on the colored arena Ã, which
induces a payoff arena Â. This means that there exists a strategy σ?∃ ∈ Str∃(a?) for player
∃ such that for each strategy σ?∀ ∈ Str∀(a?) for player ∀, it holds that pf(v, (σ?∃, σ

?
∀)) ∈ P.

Therefore, for all π? ∈ Pth(a?�σ?
∃
), we have that pf(π?) |= P, hence, there exists a finite set

R ⊆ Rq(cπ?) such that Rq(cπ?) \ R ⊆ Rs(cπ?) with cπ? = pf(π?). Now, we construct a
strategy σ∃ ∈ Str∃(a) such that, for all π ∈ Pth(a�σ∃), there exists π? ∈ Pth(a?�σ∃?), i.e.,
π = π?�. Let ext : Hst∃ −→ (R⊥× N) be a function mapping each history ρ ∈ Hst∃(a) to a
pair of values representing, respectively, the biggest (color) request not yet answered along the
history and the sum of the weights over the crossed edges, from the last response of the request.
So, we set σ∃(ρ) , σ?∃((lst(ρ), ext(ρ)))�1, for all ρ ∈ Hst∃(a). At this point, for each
strategy σ∀ ∈ Str∀(a), there is a strategy σ?∀ ∈ Str∀ such that (cπ, wπ) , pf(v, (σ∃, σ∀)) ∈
BCP, cπ? , pf(v, (σ

?
∃, σ

?
∀)) ∈ P and cπ = (cπ?)�1. Set σ?∀ using, trivially, σ∀ as follows:

σ?∀((v, (r, k))) = (σ∀(v), (r
′
, k
′
)) where (r′, k′) = tr((r, k), (cl(v),wg((v, σ∀(v))))). Let

b = max{k ∈ N | ∃ i ∈ N, ∃ v ∈ St(a), r ∈ R⊥.(π
?)i = (v, (r, k))} be the maximum value

the counter can have and s =
∑

e∈Mv wg(e) the sum of weights of edges over the weighted
arena A. Since pf(π?) |= P, by construction, we have that there is no state (v,>) in π?.
Moreover, all states (v, (r, k)) in π? have k ≤ b ≤ s. In other words, b corresponds to the
delay within which the request is satisfied. Thus, there exists both a finite set R ⊆ Rq(cπ)

such that Rq(cπ) \ R ⊆ Rs(cπ) and a bound b ∈ N for which dl((cπ, wπ),Rq(cπ)) ≤ b.
[Only If] By hypothesis, player ∃ wins the game a on the weighted arena A, which

induces a payoff arena Â. This means that there exists a strategy σ∃ ∈ Str∃(a) for player
∃ such that for each strategy σ∀ ∈ Str∀(a) for player ∀, it holds that pf(v, (σ∃, σ∀)) ∈
BCP. Therefore, for all π ∈ Pth(a�σ∃), we have that pf(π) |= BCP. Hence, there exists
a finite set R ⊆ Rq(cπ) such that Rq(cπ) \ R ⊆ Rs(cπ) and a bound b ∈ N for which
dl((cπ, wπ),Rq(cπ)) ≤ b, where (cπ, wπ) = pf(π). Let s be the sum of weights of edges in
the original arena A, previously defined. Now, we construct a strategy σ?∃ ∈ Str∃(a?) for
player ∃ on A? as follows: for all vertexes (v, (r, k)), where r ∈ R⊥ and k ∈ [0, s], it holds
that σ?∃(((v, (r, k)))) = (σ∃(v), (r

′
, k
′
)) where (r

′
, k
′
) = tr((r, k), (cl(v),wg((v, σ∃(v))))).

We want to prove that pf(π?) |= P, for all plays π? ∈ Pth(a?�σ?
∃
), i.e., there exists a finite set

R ⊆ Rq(cπ?) such that Rq(cπ?) \ R ⊆ Rs(cπ?) with cπ? = pf(π?). To do this, first suppose
that, for all plays π? ∈ Pth(a?�σ?

∃
), π? does not cross a state of the kind (v,>) ∈ St(a?) and

projects out π from π?, i.e., π = π?�. It easy to see that π ∈ Pth(a�σ∃) and, so, pf(π) |=
BCP. Consequently, pf(π) |= P. Now, due to our assumption, the colors in pf(π) and pf(π?)

are the same, i.e., cπ = cπ? . Thus, it holds that pf(π?) |= P. It remains to see that our
assumption is the only possible one, i.e., it is impossible to find a path π? ∈ Pth(a?�σ?

∃
),

18

Chapter 1. On Promptness in Parity Games

containing a state of the the kind (v,>) ∈ St(a?). By contradiction, assume that there exists
a position i ∈ N in which there is a request r ∈ Rq(cπ?) \R not satisfied within delay at most
s. Moreover, let j be the first position in which a state of kind (v,>) is traversed. Between
the states (vi, (ri, ki)) = (π?)i and (vj , (rj , kj)) = (π?)j , there are no states whose color is
an even number bigger than cl(vi). Then, it holds that

∑j
h=i wg(h) > s, i.e., at least one of

the edges is repeated. Let l and l
′

with l < l
′

be two positions in π in which the same edge
is repeated, i.e., (πl, πl+1) = (πl′ , πl′+1). Observe that wg((πl′ , πl′+1)) > 0 since otherwise
we would not have exceeded the bound s. Furthermore, πl+1 = πl+1′ is necessarily a state of
player ∀. So, he has surely a strategy forcing the play π to pass infinitely often through the
edge (πl′ , πl′+1). This means that pf(π) 2 BCP, which is impossible.

�

In the following, we report some examples of arenas obtained applying the reduction
mentioned above. Observe that, each vertex of the constructed arena is labeled with its name
(in the upper part) and, in according to the transition function, by the pair containing the
biggest request not responded and the counter from the last request not responded (in the
middle part) and its color (in the lower part).

v
(⊥,0)

1

v
(1,1)

0

Figure 1.12: From Bounded-Cost Parity to Par-
ity.

Example 1.4.3 Consider the weighted arena de-
picted in Figure 1.12. It represents the reduction
from the weighted arena A drawn in Figure 1.6,
where player ∃ wins the BCP game a as the re-
quest at the vertex v is not responded but it has
a bounded delay equals to 1. It easy to see that
player ∃ wins also the P game a? obtained from the same weighted arena A as he can
visit infinitely often the vertex (v, (1, 1)) having priority 0 but only finitely often the vertex
(v, (⊥, 0)) with priority 1.

v
(⊥,0)

3

v
(3,2)

1

v
(3,3)

2

v
(3,3)

1

v
>
1

v
>
1

Figure 1.13: From Bounded-Cost Parity to Parity.

Example 1.4.4 Consider the weighted
arena in Figure 1.13. It represents the
reduction from the weighted arena A
drawn in Figure 1.3 where player ∃
loses the BCP a since the request at
the vertex v is never responded and there is a unique play in which the delay is incremented
by 1 in an unbounded way. It easy to see that player ∃ loses also the P game a? obtained
from the same weighted arena A as there exists a unique play where the special states (v,>)

and (v,>) with priority 1, are the only ones visited infinitely often.

19

1.4. Polynomial Reduction

1.4.4 From Prompt Parity to Parity and Büchi

Finally, we show a construction that reduces a prompt parity game to a parity game. In
particular, when the underlying weighted arena of the original game has only positive weights,
then the construction returns a Büchi game. Our approach extends the one proposed for the
above BCP case, by further allowing the transition table T to guess a request value that is not
meet anymore along a play. This is done to accomplish the second part of the prompt parity
condition, in which a finite number of requests can be excluded from the delay computation.
To do this, first we allow T to be nondeterministic and label its states with a flag α ∈ {D,∃}
to identify, respectively, deterministic and existential states. Then, we enrich the states by
means of a new component d ∈ [0, h], where h , |{v ∈ Ps : cl(v) ≡ 1(mod 2)}| is the
maximum number of positions having odd priorities. So, d represents the counter of the
forgotten priority, which it is used to later check the guess states. The existential states belong
to player ∃. Conversely, the deterministic ones belong to player ∀. As initial state we have
the tuple (v, ((⊥, 0, D), 0))) indicating that there are not unanswered and forgotten requests
up to the current deterministic position. The transition function over a deterministic state is
defined as follows. If a request is not satisfied in a bounded delay, (i.e., the delay exceeds
the sum of the weights of all moves in the original arena) then it goes and remains forever
in state (v,>) with priority 1; if the request is satisfied then it goes to (v, ((⊥, d,D), 0))

indicating that in this deterministic state there is not an unanswered request and the sum of
the weight of the edges is 0); otherwise it moves to an existential state that contains, as first
component, the triple having the maximum between the last request not responded and the
read color, the counter of forgotten priority, and a flag indicating that the state is existential.
Moreover, as a second component, there is a number that represents the sum of the weights
of the traversed edges until the current state. The transition function over an existential state
is defined as follows. If d is equal to h (i.e., the maximum allowable number of positions
having an odd priority), then the computation remains in the same (deterministic) state;
otherwise, the computation moves to a state in which the second component is incremented
by the weight of the crossed edge. Note that the guess part is similar to that one performed
to translate a nonderministic co-Büchi automaton into a Büchi one [KMM06]. Finally, we
color the positions of the obtained arena as follows: unanswered request positions, with
delay exceeding the bound, are colored by 1, while the remaining ones are colored as in the
original arena. In case the weighted arena of the original game has only positive weights, then
one can exclude a priory the fact that there are unanswered requests with bounded delays.
So, all these kind of requests can be forgotten in order to win the game. Thus, in this case,
it is enough to satisfy only the remaining ones, which corresponds to visit infinitely often
a position containing as second component the symbol ⊥. So it is enough to color these
positions with 2, all the remaining ones with 1, and play on this arena a Büchi condition. The
formal construction of the transition table and the enriched arena follow.

20

Chapter 1. On Promptness in Parity Games

For a PP game a ,〈Â, PP, v〉 induced by an arena A =〈A,Cl, cl,Wg,wg〉, we build
a transition table T , 〈Cl×Wg, St, tr〉, with sets of states St∆ , {>} ∪ ZD × [0, s] and
StN , Z∃ × [0, s], where we assume s ,

∑
m∈Mv wg(m) to be the sum of all weights of

moves in the original arena and Zα , R⊥ × [0, h]× α, and its transition function defined as
follows:

• tr(>, (c, w)) , >;

• tr(((r, d,D), k), (c, w)) ,


((⊥, d,D), 0), if r<c ∧ c≡0(mod 2);

>, if k + w > s;

((max{r, c}, d,∃), k + w), otherwise.

• tr(((r, d,∃), k)) ,

{((r, d,D), k)}, if d = h;

{((r, d,D), k), ((⊥, d+ 1, D), 0)}, otherwise.

Observe that, the set Zα is the Cartesian product of the biggest unanswered request, the
counter of the forgotten priority and, a flag indicating whether the state is deterministic or
existential.

Let A? = A ⊗ T be the product arena of A and T and consider the colored arena
Ã? ,〈A?,Cl, cl?〉 such that, for all positions (v, t) ∈ Ps?, if t = > then cl?((v, t)) = 1 else
cl?((v, t)) = cl(v). Then, the P game a? = 〈Â?, P, (v, ((⊥, 0, D), 0))〉 induced by Ã? is
such that player ∃ wins a iff it wins a?.

Theorem 1.4.3 For every PP game a with k ∈ N priorities and sum of weights s ∈ N, there
is a P game a?, with order |a?| = O(|a| · k · s), such that player ∃ wins a iff it wins a?.

Proof. [If] By hypothesis, player ∃ wins the game a? on the colored arena Ã, which
induces a payoff arena Â. This means that there exists a strategy σ?∃ ∈ Str∃(a?) for player
∃ such that for each strategy σ?∀ ∈ Str∀(a?) for player ∀, it holds that pf(v, (σ?∃, σ

?
∀)) ∈ P.

Therefore, for all π? ∈ Pth(a?�σ?
∃
), we have that pf(π?) |= P. Hence, there exists a finite set

R ⊆ Rq(cπ?) such that Rq(cπ?) \ R ⊆ Rs(cπ?) with cπ? = pf(π?). Now, we construct a
strategy σ∃ ∈ Str∃(a) such that, for all π ∈ Pth(a�σ∃), there exists π? ∈ Pth(a?�σ∃?), i.e.,
π = π?�. Let ext : Hst∃ −→ (R⊥ × [0, h] ×D) × N be a function mapping each history
ρ ∈ Hst∃(a) to a tuple of values that represent, respectively, the biggest color request along
the history ρ that is both not answered and not forget by σ∃?, the number of odd priorities
that are forgotten, and the sum of the weights over the crossed edges since the more recent
occurrence of one of the following two cases: the last response of a request or the last request
that is forgotten. So, we set σ∃(ρ) , σ?∃((lst(ρ), ext(ρ)))�1, for all ρ ∈ Hst∃(a). At this
point, for each strategy σ∀ ∈ Str∀(a), there is a strategy σ?∀ ∈ Str∀ such that (cπ, wπ) ,

pf(v, (σ∃, σ∀)) ∈ PP, cπ? , pf(v, (σ
?
∃, σ

?
∀)) ∈ P and cπ , (cπ?′)�1 where π?

′
is obtained

21

1.4. Polynomial Reduction

from π? by removing the vertexes of the form (v, ((r, d,∃), k)) that are the vertexes in which
it is allowed to forget a request. Now, set σ?∀ using σ∀ as follows: σ?∀(v, ((r, d, α), k)) =

(σ∀(v), ((r
′
, d
′
, α
′
), k

′
)) where ((r

′
, d
′
, α
′
), k

′
) = tr(((r, d, α), k), (cl(v),wg((v, σ∀(v)))).

Let b = max{k ∈ N | ∃ i ∈ N,∃ v ∈ St(a), r ∈ R⊥, d ∈ [0, h], α ∈ {D,∃}.(π?)i =

(v, ((r, d, α), k))} be the maximum value that the counter can have and s =
∑

e∈Mv wg(e)

the sum of weights of edges over the weighted arena A. Since pf(π?) |= P, by construction
we have that there is no state (v,>) in π?. Moreover, all states (v, ((r, d, α), k)) in π? have
k ≤ b ≤ s. Thus, there exists both a finite set R ⊆ Rq(cπ) such that Rq(cπ) \ R ⊆ Rs(cπ)

and a bound b ∈ N for which dl((cπ, wπ),Rq(cπ) \ R) ≤ b.

[Only If] By hypothesis, player ∃ wins the game a on the weighted arena A, which
induces a payoff arena Â. This means that there exists a strategy σ∃ ∈ Str∃(a) for player ∃
such that, for each strategy σ∀ ∈ Str∀(a) for player ∀, it holds that pf(v, (σ∃, σ∀)) ∈
PP. Therefore, for all π ∈ Pth(a�σ∃) we have that pf(π) |= PP. Hence, there ex-
ists a finite set R ⊆ Rq(cπ) such that Rq(cπ) \ R ⊆ Rs(cπ) and there exists a bound
b ∈ N for which dl((cπ, wπ),Rq(cπ) \ R) ≤ b, with (cπ, wπ) = pf(π). Let h ,
|{v ∈ Ps : cl(v) ≡ 1(mod 2)}| be the maximum number of positions having odd priorities.
Moreover, let s be the sum of all weights of moves in the original game a, previously defined.
Now, we construct a strategy σ?∃ ∈ Str∃(a?) for player ∃ on A? as follows. For all ver-
texes (v, ((r, d,D), k)) ∈ StN (a?), we set σ?∃(v, ((r, d,D), k)) = (σ∃(v), ((r

′
, d
′
, α
′
), k

′
))

where ((r
′
, d
′
, α
′
), k

′
) = tr(((r, d,D), k), (cl(v),wg((v, σ∃(v)))). Moreover, for all vertexes

(v, ((r, h,∃), k)) ∈ StN (a?), we set σ?∃(v, ((r, h,∃), k)) = (σ∃(v), ((r, h,D), k)). Now, let
frg : StN → N be a function such that frg(v) is the maximum odd priority that player
∃ can forget, i.e., the highest odd priority that can be crossed only finitely often in a�σ∃
starting at v. At this point, if d < h, i.e., it is still possible to forget other h − d priorities,
then we set σ?∃(v, ((r, d,∃), k)) = (σ∃(v), ((⊥, d + 1, D), 0)) if r ≤ frg(v), otherwise,
σ?∃(v, ((r, d,∃), k)) = (σ∃(v), ((r, d,D), k)). We want to prove that pf(π?) |= P, for all play
π? ∈ Pth(a?�σ?

∃
), i.e., there exists a finite set R ⊆ Rq(cπ?) such that Rq(cπ?) \ R ⊆ Rs(cπ?)

with cπ? = pf(π?). Starting from π?, we construct π?
′

by removing the vertexes of the
form (v, ((r, d,∃), k)) that are the vertexes in which is allow to forget a request . Then, we
project out π from π?

′
, i.e., π = π?

′
�. It easy to see that π ∈ Pth(a�σ∃) and, so, pf(π) |=

PP. Consequently, pf(π) |= P. The colors in pf(π) and pf(π?
′
) are the same, i.e., cπ = cπ?′ .

Thus, it holds that pf(π?
′
) |= P and so pf(π?) |= P. At this point, it just remains to see that

our assumption is the only possible one, i.e., it is impossible to find a path π? ∈ Pth(a?�σ?
∃
)

containing a state of the the kind (v,>) ∈ St(a?). To do this, we use the same reasoning
applied in the proof of Theorem 1.4.2. �

It is worth observing that the estimation on the size of a? in Theorem 1.4.3 is quite coarse
since several type of states can not be reached by the initial position.

22

Chapter 1. On Promptness in Parity Games

v
((⊥,0,D),0)

1

v
((1,0,∃),1))

0

v
((1,0,D),1))

0

v
((1,0,∃),2))

0

v
((⊥,1,D),0))

0

v
((1,0,D),2))

0

v
>
1

Figure 1.14: From Prompt Parity to Parity (Figura 5).

In the following, we report some examples of arenas obtained by applying the reduction
mentioned above. Observe that each vertex of the constructed arena is labeled by its name (in
the upper part) and, according to the transition function, by the tuple containing the biggest
request not responded, the maximum number of forgotten positions having odd priorities in
the original arena, a flag indicating a deterministic or an existential state, a counter from the
last request not responded (in the middle part), and its color (in the lower part).

Example 1.4.5 Consider the weighted arena depicted in Figure 1.14. It represents the
reduction from the arena drawn in Figure 1.5. In this example, player ∃ wins the PP game a
because only the request at the vertex v is not responded and this request is not traversed
infinitely often. Moreover, as previously showed, player ∃ also wins the P game a? obtained
from the same weighted arena in Figure 1.14. In more details, starting from the initial
vertex (v, ((⊥, 0, D), 0)) with priority 1, player ∀ moves the token to the existential vertex
(v, ((1, 0,∃), 1)) having priority 0. At this point, player ∃ has two options: he can forget
or not the biggest odd priority crossed up to now. In the first case, he moves to the vertex
(v, ((⊥, 1, D), 0)), having priority 0, where player ∀ can only cross infinitely often this vertex,
letting player ∃ to win the game. In the other case, he moves to the vertex (v, ((1, 0, D), 1))

with priority 0 from which player ∀ moves to the vertex (v, ((1, 0, ∃), 2)) having priority
0. From this vertex, player ∃ can still decide either to forget or not the biggest odd priority
crossed up to now. In the first case player ∃ wins the game by crossing infinitely often the
vertex (v, ((⊥, 1, D), 0)) with priority 0. In the other case, he loses the game and so he will
never take such a move. In conclusion, player ∃ has a winning strategy against every possible
strategy of the player ∀.

23

1.4. Polynomial Reduction

v
((⊥,0,D),0)

1

v
((1,0,∃),0))

0

v
((1,0,D),0))

0

v
((⊥,1,D),0))

0

v
((1,0,∃),1))

0

v
((1,0,D),1))

0

C
>
1

v
((1,0,∃),0))

2

v
((1,0,D),0))

2

v
((1,0,∃),1))

2

v
((1,0,D),1))

2

v
((⊥,1,D),0))

2

v
((⊥,1,D),0))

1

v
((1,1,∃),0))

0

v
((1,1,D),0))

0

v
((1,1,∃),1))

0

v
((1,1,D),1))

0

C
>
1

v
((1,1,∃),1))

2

v
((1,1,D),1))

2

v
((1,1,∃),0))

2

v
((1,1,D),0))

2

Figure 1.15: From Prompt Parity to Parity.

24

Chapter 1. On Promptness in Parity Games

Example 1.4.6 Consider the weighted arena depicted in Figure 1.15. This arena represents
the reduction from the arena in Figure 1.1. In this example, player ∃ loses the PP a against
any possible move of the opponent because the delay between the request and its response
is unbounded. Moreover, as proved, player ∃ loses also the P game a? obtained from the
same weighted arena A, against any possible move of the opponent. In detail, we have that
the game starts in the vertex (v, ((⊥, 0, D), 0)) having priority 1. At this point, player ∀ is
obliged to go to the vertex (v, ((1, 0,∃), 0)) with priority 0. Then, player ∃ has two options
that are either to forget or not forget the biggest odd priority crossed.

1. In the first case he goes to the vertex (v, ((⊥, 1, D), 0)) having priority 0. From this
vertex, player ∀, in order to avoid losing, does not cross this vertex infinitely often, but
he moves the token in the vertex (v, ((⊥, 1, D), 0)) having priority 2. From this vertex,
player ∀ is obliged to move the token in the vertex (v, ((⊥, 1, D), 0)) with priority 1

and yet to the vertex (v, ((1, 1,∃), 0)) having priority 1. At this point, player ∃ can
move the token only to the vertex (v, ((1, 1, D), 0)) with priority 0, which belong to
player ∀. Then, this player, moves the token in the vertex (v, ((1, 1,∃), 1)) with priority
0. From this vertex, player ∃ can only move the token to the vertex (v, ((1, 1, D), 1))

from which player ∀ wins the game by forcing the token to remain in the diamond
vertex (C,>) which we use to succinctly represent a strong connected component,
fully labeled by 1, from which player ∃ cannot exit.

2. In the other case, player ∃ goes to the vertex (v, ((1, 0, D), 0)) having priority 0.
At this point, player ∀ may decide to go either in the vertex (v, ((1, 0,∃), 0)) hav-
ing priority 2 or in the vertex (v, ((1, 0, ∃), 1)) with priority 0. From the vertex
(v, ((1, 0, ∃), 0)), player ∃ can decide either to forget or not the biggest odd priority
crossed.

(a) In the first case, player ∃ moves the token to the vertex (v, ((⊥, 1, D), 0)) having
priority 2 and the play continues as in step 1, starting from this vertex.

(b) In the other case, player ∃ moves the token to the vertex (v, ((1, 0, D), 0))

belonging to the player ∀ which moves the token at the initial vertex. At this point,
player ∃ moves the token to the initial vertex (v, ((⊥, 0, D), 0)) having priority
1. From this vertex, player ∀ goes to the vertex (v, ((1, 0, ∃), 0)) with priority 0.
Then, player ∃ can either forget or not the biggest odd priority crossed. From this
state, we have already seen that he can win the game.

From the vertex (v, ((1, 0,∃), 1)) with priority 0, player ∃ can:

(a) decide to forget the biggest odd priority and then to move the token to the vertex
(v, ((⊥, 1, D) 0)) having priority 0. At this point, the play continues as in step 1

starting from this vertex.

25

1.5. Discussion

(b) decide to not forget the biggest odd priority and then to move the token to the
vertex (v, ((1, 0, D), 1)) belonging to the player ∀, which force the token to
remain in the diamond vertex (C,>) having priority 1, winning the game.

In case the weighted arena A is positive, i.e., wg(v) > 0 for all v ∈ Ps, we can improve
the above construction as follows. Consider the colored arena Ã? ,〈A?, {1, 2}, cl?〉 such that,
for all positions (v, t) ∈ Ps?, if t = ((⊥, d,D), 0) for some d ∈ [0, h] then cl?((v, t)) = 2

else cl?((v, t)) = 1. Then, the B game a? = 〈Â?,B, (v, ((⊥, 0, D), 0))〉 induced by Ã? is
such that player ∃ wins a iff it wins a?.

By means of a proof similar to the one used to prove Theorem 1.4.3 , we obtain the
following.

Theorem 1.4.4 For every PP game a with k ∈ N priorities and sum of weights s ∈ N defined
on a positive weighted arena, there is a B game a?, with order |a?| = O(|a| · k · s), such
that player ∃ wins a iff it wins a?.

1.5 Discussion

Recently, promptness reasonings have received large attention in system design and verifi-
cation. This is due to the fact that, while from a theoretical point of view questions like “a
specific state is eventually reached in a computation” have a clear meaning and application in
formal verification, in a practical scenario, such a question results useless if there is no bound
over the time the required state occurs. This is the case, for example, when we deal with live-
ness and safety properties. The question becomes even more involved in the case of reactive
systems, well modeled as two-player games, in which the response can be procrastinated later
and later due to an adversarial behavior.

In this work, we studied several variants of two-player parity games working under a
prompt semantics. In particular, we gave a general and clean setting to formally describe
and unify most of such games introduced in the literature, as well as to address new ones.
Our framework helped us to investigate peculiarities and relationships among the addressed
games. In particular, it helped us to come up with solution algorithms that have as core engine
and main complexity the solution of a parity or a Büchi game. This makes the proposed
algorithms very efficient. With more details, we have considered games played over colored
and weighted arenas. In colored arenas, vertexes are colored with priorities and the parity
condition asks whether, along paths, every odd priority (a request) is eventually followed
by a bigger even priority (a response). In addition, weighted arenas have weights over the
edges and consider as a delay of a request the sum of the edges traversed until its response
occurs. Also, we have differentiated conditions depending on whether it occurs not-full (all
requests, but a finite number, have to be satisfied), full (all requests have to be satisfied) or

26

Chapter 1. On Promptness in Parity Games

semi-full (the condition is a conjunction of two request properties, one behaving full and the
other not-full).

As games already addressed in the literature, we studied the cost parity and bounded-
cost parity ones and, for both of them, we provided algorithms that improve their known
complexity. As new parity games, we investigated the full parity, full-prompt parity, and
prompt parity ones. We showed that full parity games are in PTIME, prompt parity and cost
parity are equivalent and both in UPTIME ∩ COUPTIME. The latter improves the known
complexity class result of [FZ12] to solve cost parity games because our algorithm reduces
the original problem to a unique parity game, while the one in [FZ12] performs “several
calls” to a parity game solver. Tables 1.1 and 1.2 report the formal definition of all conditions
addressed in the chapter along with the full/not-full/semi-full behavior. Tables 1.3 summarizes
the achieved results. In particular, we use the special arrow←↩ to indicate that the result is
trivial or an easy consequence of another one in the same row.

Conditions Colored Arena (Colored) Weighted arena

Parity (P) UPTIME ∩ COUPTIME [Jur98] ←↩
Full Parity (FP) PTIME [Thm 1.4.1] ←↩

Prompt Parity (PP) PTIME [Thm 1.4.4] UPTIME ∩ COUPTIME [Thm 1.4.3]
Full Prompt Parity (FPP) ←↩ PTIME [FP + Cor 1.3.1]
Cost Parity (CP) PTIME [PP + Cor 1.3.2] UPTIME ∩ COUPTIME [PP + Cor 1.3.2]
Bounded Cost Parity (BCP) PTIME [FPP + Cor 1.3.3] UPTIME ∩ COUPTIME [Thm 1.4.2]

Table 1.3: Summary of all winning condition complexities.

As future work, there are several directions one can investigate. For example, one can
extend the same framework in the context of multi-agent systems. Recently, a (multi-agent)
logic for strategic reasoning, named Strategy Logic [MMPV12] has been introduced and
deeply studied. This logic has as a core engine the logic LTL. By simply considering as a
core logic a prompt version of LTL [KPV09], we get a prompt strategy logic for free. More
involved, one can inject a prompt µ-calculus modal logic (instead of LTL) to have a proper
prompt parity extension of Strategy Logic. Then, one can investigate opportune restrictions to
the conceived logic to gain interesting complexities for the related decision problems. Overall,
we recall that Strategy Logic is highly undecidable, while several of its interesting fragments
are just to 2EXPTIME-COMPLETE. As another direction for future work, one may think to
extend the prompt reasoning to infinite state systems by considering, for example, pushdown
parity games [Wal01, ALM+13, BSW03]. However, this extension is rather than an easy task
as one needs to rewrite completely the algorithms we have proposed.

27

CHAPTER 2

Solving Parity Games in Scala

Contents
2.1 Preliminaries . 31

2.1.1 The Zielonka Recursive Algorithm 32

2.2 PGsolver Analisys and Improved Algorithm 33

2.3 Scala Implementations . 36

2.3.1 Improved Algorithm in Scala . 37

2.4 Benchmarks . 39

2.4.1 Trends Analysis for Random Arenas 41

2.4.2 Trends Analysis for Special Games 41

2.5 Discussion . 43

Chapter 2. Solving Parity Games in Scala

Parity games [EJ91, Zie98] are abstract infinite-duration games that represents a powerful
mathematical framework to address fundamental questions in computer science and math-
ematics. They are strict connected with other games of infinite duration, such as mean and
discounted payoff, stochastic, and multi-agent games [Ber07, CDHR10, CHJ05, CJH04].

In formal system design and verification [CGP02, KVW00], parity games arise as a natural
evaluation machinery to automatically and exhaustively check for reliability of distributed
and reactive systems [AMM13, AKM12, KVW01]. More specifically, in formal verification,
model-checking techniques [CE81, QS81] allow to verify whether a system is correct with
respect to a desired behavior by checking whether a mathematical model of the system meets
a formal specification of the expected execution. In case the latter is given by means of a
µ-calculus formula [Koz83], the model checking problem can be translated, in linear-time,
into a parity game [EJ91]. Hence, every parity game solver can be used in practice as a model
checker for a µ-calculus specification (and vice-versa). Using this approach, liveness and
safety properties can be addressed in a very elegant and easy way [MMS13]. Also, this offers
a very powerful machinery to check for component software reliability [AMM13, AKM12].

In the basic settings, parity games are two-player turn-based games, played on directed
graphs, whose nodes are labeled with priorities (i.e., natural numbers). The players, named
player 0 and player 1, move in turn a token along graph’s edges. Thus, a play induces an
infinite path and player 0 wins the play if the greatest priority visited infinitely often is even;
otherwise, player 1 wins the play.

Condition Complexity

Recursive [Zie98] O(e · nd)

Small Progress Measures [Mar00] O(d · e · (n
d
)
d
2)

Strategy Improvement [Jen00] O(2e · n · e)

Dominion Decomposition [Mar08] O(n
√
n)

Big Step [Sve07] O(e · n
1
3
d)

Table 2.1:
Parity algorithms along with their computational

complexities.

The problem of finding a win-
ning strategy in parity games is
known to be in UPTime ∩ CoUP-
Time [Jur98] and deciding whether
a polynomial time solution exists
or not is a long-standing open ques-
tion. Aimed to find the right com-
plexity of parity games, as well
as come out with solutions work-
ing efficiently in practice, several
algorithms have been proposed in
the last two decades. In Table 2.1,
we report the most common ones
along with their known computational complexities, where parameters n, e, and d denote
the number of nodes, edges, and priorities in the game, respectively (for more details, see
[Fri09, Oli09]).

All above mentioned algorithms have been implemented in PGSolver, written in OCaml by
Oliver Friedman and Martin Lange [Fri09, Oli09], a collection of tools to solve, benchmark

29

and generate parity games. Noteworthy, PGSolver has allowed to declare the Zielonka
Recursive Algorithm as the best performing to solve parity games in practice, as well as
explore some optimizations such as decomposition into strong connect components, removal
of self-cycles on nodes, and priority compression [Ada09, Mar00].

Despite the enormous interest in finding efficient algorithms for solving parity games,
less emphasis has been put on the choice of the programming language. Mainly, the scientific
community relies on OCaml as the best performing programming language to be used in this
setting and PGSolver as an optimal and de facto platform to solve parity games. However,
starting from graphs with a few thousand of nodes, even using the Zielonka’s algorithm,
PGSolver would require minutes to decide the given game, especially on dense graphs.
Therefore a natural question that arises is whether there exists a way to improve the running
time of PGSolver. We identify three research directions to work on, which specifically involve:
the algorithm itself, the way it is implemented, and the chosen programming language. As
a result we introduce, in this chapter, a slightly improved version of the Classic Zielonka
Algorithm along with a heavily optimized implementation in Scala Programming Language
[Ode04, Ode08]. Scala is a high-level language, proven to be well performing [Hun11],
with object and functional oriented features, that recently has come to the fore with useful
applications in several fields of computer science including formal verification [Bar11]. Our
experiments show that, by using all Scala features extensively, we are able of gaining two
order of magnitude in running time with respect to the implementation of the Zielonka’s
algorithm in PGSolver.

In details, the main goal of this work is the design and development of a new tool for
solving parity games, based on an improved version of the Zielonka Recursive Algorithm,
with performance in mind. Classical Zielonka algorithm requires to decompose the graph
game into multiple smaller arenas, which is done by computing, in every recursive call, the
difference between the current graph and a given set of nodes. This operation (Algorithm
2.1, lines 10 and 15) turns out to be quite expensive as it requires to generate a new graph
at each iteration. Somehow such a difference operation has the flavor of the complicancy of
complementing automata in formal verification [Tho90]. Remarkably, our improved version
guarantees that the original arena remains immutable by tracking the removed nodes in every
subsequent call and checking, in constant time, whether a node needs to be excluded or not.
Casting this idea in the above automata reasoning, it is like enriching the state space with two
flags (removed, ¬removed), instead of performing a complementation.

In this chapter we consider and compare four implementations. The Classic (C) and
Improved (I) Recursive (R) algorithms implemented in Scala (S) and OCaml (O). Using
random generated games, we show that IRO gains an order of magnitude against CRO, as
well as CRS against CRO. Remarkably, we show that these improvements are cumulative by
proving that IRS gains two order of magnitude against CRO.

30

Chapter 2. Solving Parity Games in Scala

We have been able to achieve this kind of performance optimization by deeply studying
the way the classic Recursive algorithm has been implemented in PGSolver and concentrating
on the following tasks of the algorithm, which we have deeply improved: finding the maximal
priority, finding all nodes with a given priority, and removing a node (including related edges)
from the graph. Parsing the graph in Scala, we allocate an Array, whose size is fixed to the
number of nodes of the graph. In addition we populate at the same time the adjacency list and
incidence list for each node, which avoids to build a transposed graph. We make also use of
an open source Java library called Trove that provides a fast and lightweight implementation
of the java.util Collection API.

Finally, we want to remark that, among all programming languages, we have chosen
to investigate Scala as it shares several modern and useful programming language aspects.
Among the others, Scala carries functional and object-oriented features, compiles its programs
for the JVM, is interoperable with Java and an high-level language with a concise and clear
syntax. The results we obtain strongly support our choice and allow to declare Scala as a clear
winner over OCaml, in terms of performance.

2.1 Preliminaries

For reasons of self content, in this section we briefly introduce the notion of of Parity Games,
the classic version of Zielonka Recursive Algorithm and its implementation in PGSolver.

A Parity Game can be defined as a tuple G = (V, V 0, V1, E,Ω) where

• (V, E) forms a directed graph whose set of nodes is partitioned into V = V0 ∪ V1;

• V0 and V1 are two non empty sets of nodes , where V0 ∩ V1 = ∅;

• Ω : V → N is the priority function that assigns to each node a natural number called
the priority of the node.

We assume E to be total, i.e. for every node v ∈ V , there is a node w ∈ V such
that (v, w) ∈ E. In the following we also write vEw in place of (v, w) ∈ E and use
vE := {w | vEw}. Parity games are played between two players called Player 0 and Player 1.
Starting in a node v ∈ V , both players construct an infinite path (the play) through the graph
as follows. If the construction reaches, at a certain point, a finite sequence v0...vn and vn ∈ V
then player i selects a node w ∈ vnE and the play continues with the sequence v0...vnw.
Every play has a unique winner, defined by the priority that occurs infinitely often. Precisely,
the winner of the play v0v1v2... is player i iff max{p | ∀j .∃k ≥ j : Ω(vk) = p}mod 2 = i.

Strategy A strategy for player i is a partial function σ : V ∗V → V , such that, for all
sequences v0...vn with vj+1 ∈ vjE, with j = 0, ..., n−1, and vn ∈ Vi we have that

31

2.1. Preliminaries

σ(v0...vn) ∈ vnE. A play v0v1... conforms to a strategy σ for player i if, for all j we
have that, if vj ∈ Vi then vj+1 = σ(v0...vj).

A strategy σ for player i (σi) is a winning strategy in node v if player i wins every play
starting in v that conforms to the strategy σ. In that case, we say that player i wins the game
G starting in v. A strategy σ for player i is called memoryless if, for all v0...vn ∈ V ∗Vi and
for w0...wm ∈ V ∗Vi, we have that if vn = wm then σ(v0...vn) = σ(w0...wm). That is, the
value of the strategy on a path only depends on the last node on that path. Starting from G

we construct two sets W0,W1 ⊆ V such that Wi is the set of all nodes v such that Player
i wins the game G starting in v. Parity games enjoy determinacy meaning that for every
node v either v ∈ W0 or v ∈ W1 [EJ91]. The problem of solving a given parity game is to
compute the sets W0 and W1, as well as the corresponding memoryless winning strategies,
σ0 for Player 0 and σ1 for Player 1 on their respective winning regions. The construction
procedure of winning regions makes use of the notion of attractor.

Attractor Let U ⊆ V and i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U⊆W
and whenever v∈Vi and vE ∩W 6= ∅ , or v∈V1−i and vE ⊆ W then v ∈ W . Hence, the
i-attractor of U contains all nodes from which Player i can move “towards” U and Player
1 − i must move “towards” U . The i-attractor of U is denoted by Attri(G,U). Let A be
an arbitrary attractor set. The game G \ A is the game restricted to the nodes V \ A, i.e.
G \A = (V \A, V0 \A, V1 \A,E \ (A×V ∪ V×A),Ω|V \A). It is worth observing that the
totality of G \A is ensured from A being an attractor. Formally, for all k ∈ N, the i-attractor
is defined as follows:

Attr0i (U) = U ;

Attrk+1
i (U) = Attrki (U)∪{v ∈ Vi | ∃w ∈ Attrki (U) s.t. vEw}

∪ {v ∈ V1−i | ∀w : vEw ⇒ w ∈ Attrki (U)} ;

Attri(U) =
⋃
k∈NAttr

k
i (U) .

2.1.1 The Zielonka Recursive Algorithm

Here, we describe the Zielonka Recursive Algorithm, using the basic concepts introduced in
the above, and we make some observations regarding its implementation in PGSolver. The
algorithm to solve parity games introduced by Zielonka comes from Mc-Naughton’s work
[McN93]. The Zielonka Recursive Algorithm [McN93], as reported in Figure 2.1, uses a
divide and conquer technique to sove parity games. It constructs the winning sets for both
players using the solution of subgames. It removes the nodes with the highest priority from
the game, together with all nodes (and edges) attracted to this set. The algorithm win(G)

takes as input a graph G and, after a number of recursive calls over ad hoc built subgames,

32

Chapter 2. Solving Parity Games in Scala

1

2 function win (G) :
3 i f V == ∅ :
4 (W0,W1) = (∅ , ∅)
5 e l s e :
6 d = max p r i o r i t y in G
7 U = { v ∈ V | priority(v) = d }
8 p = d % 2
9 j = 1 − p1

10 A = Attrp(U)

11 (W
′
0 , W

′
1) = win (G \A)

12 i f W
′
j == ∅ :

13 Wp = W
′
p ∪A

14 Wj = ∅
15 e l s e :
16 B = Attrj(W

j
1)

17 (W
′
0 , W

′
1) = win (G \B)

18 Wp = W
′
p

19 Wj = W
′
j ∪B

20 re turn (W0,W1)

Figure 2.1: Zielonka Recursive Algorithm

returns the winning sets (W0,W1) for player 0 and player 1, respectively. The running time
of this algorithm is exponential in the number of priorities.

2.2 PGsolver Analisys and Improved Algorithm

PGSolver is a tool developed by Oliver Friedman and Martin Lange [Fri09, Oli09]. This tool is
from some years now, the de-facto tool for solving parity games. It contains implementations
in OCaml of about 10 algorithms, including the one implemented in this study: Zielonka’s
Recursive Algorithm. For benchmarking purposes, PGSolver comes with tools to generate
different kind of games, from random to special cases, and lets customize the kind of the game
wanted passing as command line flags the number of nodes, available priorities, minimum
and number of edges. In [Ant14], we used PGSolver as a comparison to generate and
then benchmark multiple games. PGSolver offers many optimizations techniques found in
literature for example Jurdziński suggests to perform SCCs decomposition of a graph. Other
optimizations are related to detection of special cases such as self-cycle games, one-parity
game, one-player game, and priority compression and propagation. The step of priority
compression attempts to reduce the number of priorities in a parity game, while the priority
propagation aimed to increase priority but to reduce the range of priorities in a game and
therefore compress the overall priorities. The tool itself allowed to explore the previously
hidden area of practical process. For example, contrary to common believe, an increasing large
number of priorities does not necessarily impose a great difficulty in practice, this observation
was also confirmed in [Ant14]. The recursive algorithm by Zielonka, was declared the best

33

2.2. PGsolver Analisys and Improved Algorithm

performing one when compared to the other algorithms if no optimizations or preprocessing
steps were applied. Also, SCC decomposition was proven to be highly profitable alongside
the elimination of self-cycles. It is important to note that not every optimization can speed
up every algorithm. For example, the recursive algorithm can achieve best result from the
elimination of self-cycles and priority compression; this is highly reasonable due to the fact
that without self-cycle elimination it would require more recursive calls. This work is a
result of a deep analysis of PGSolver’s capabilities in solving parity game in an efficient
and performant manner. In more details, even using the Zielonka’s Recursive Algorithm,
with SCC decompositions enabled PGSolver would require minutes to decide games with
few thousands of nodes, especially on dense graphs. Our investigation starts with the way
Zielonka’s Recursive has been implemented: the graph data structure is represented as a fixed
length Array of tuples, where every tuple contains information about a node, such as the player,
priority and adjacency list. Before every recursive call is performed, the implementation
performs the difference between the actual graph and the attractor set, outputting a new graph
as well as building the transposed graph. In addition the attractor function implemented in
PGSolver uses a TreeSet as data structure guaranteeing only logarithmic search, inserts and
removals. One may say that the added complexity for making a new graph or building the
transposed is still linear time on the actual graph, but it is worth noting that general-purpose
memory allocators are very expensive as the per-operation cost floats around one hundred
processor cycles [Gay98]. Through these years many efforts have been made to improve
memory allocation writing custom allocators from scratch, a process known to be difficult
and error prone [Ber01, Ber13].

In more detail, our implementation our implementation focuses on three key point of
the Recursive Zielonka Algorithm. The first point is that in which the algorithm computes
the difference between the graph and the attractor, returning a new graph (see lines 11 and
17, Figure 2.1). The second point is that in which, in every call the attractor function builds
the transposed graph (see line 10, Figure 2.1). The last point is that in which the attractor
calculates the number of successors for the opponent player, in every iteration, possibly
visiting several times the same node (see line 16, Figure 2.1). Thanks to these arguments
and with the aim of performance optimizations, a slightly improved version of the recursive
algorithm has been obtained. The improved algorithm and its attractor function are listed,
respectively, in Figure 2.2 and 2.3.

Let G be a graph. Removing a node from G and building the transposed graph takes
time Θ(|V |+ |E|). Thus dealing with dense graph such operation takes Θ(|V |2). In order
to reduce the running time complexity caused by these graph operations, we a requirement
for immutability of the graph G ensuring that every recursive call uses the graph without
applying any modification to the state of the graph. Therefore, to construct the sub-games, in
the recursive calls, we keep track of each node that is going to be removed from the graph,

34

Chapter 2. Solving Parity Games in Scala

1 function win (G) :
2 T = G. t r a n s p o s e ()
3 Removed = {}
4 re turn winI (G,T,Removed)
5

6 function winI (G,T,Removed) :
7 i f |V | == |Removed| :
8 re turn (∅ , ∅)
9 W = (∅, ∅)

10 d = maximal p r i o r i t y in G
11 U = { v ∈ V | priority(v) = d }
12 p = d % 2
13 j = 1 − p
14 W

′
= (∅, ∅)

15 A = A t t r (G,T,Removed, U, p)
16 (W

′
0 ,W

′
1) = winI (G,T,Removed ∪ A)

17 i f W
′
j == ∅ :

18 Wp = W
′
p ∪A

19 Wj = ∅
20 e l s e :
21 B = A t t r (G,T,Removed,W

′
j , j)

22 (W
′
0 ,W

′
1) = winI (G,T,Removed ∪ B)

23 Wp = W
′
p

24 Wj = W
′
j ∪B

25 re turn (W0,W1)

Figure 2.2: Improved Recursive Algorithm

1 function A t t r (G, T , Removed , A, i) :
2 tmpMap = []
3 f o r x = 0 t o |V | :
4 i f x ∈ A tmpMap = 0
5 e l s e tmpMap = −1
6 i n d e x = 0
7 whi le index < |A| :
8 f o r v0 ∈ adj(T,A[index]) :
9 i f v0 /∈ Removed :

10 i f tmpMap [v0] == −1:
11 i f p l a y e r (v0) == i :
12 A = A ∪ v0
13 tmpMap [v0] = 0
14 e l s e :
15 a d j c o u n t e r = −1
16 f o r x ∈ adj(G, v0) :
17 i f (x /∈ Removed) :
18 a d j c o u n t e r += 1
19 tmpMap [v0] = a d j c o u n t e r
20 i f a d j c o u n t e r == 0 :
21 A = A ∪ v0
22 e l s e i f (p l a y e r (v0) == j
23 and tmpMap [v0] > 0) :
24 tmpMap [v0] −= 1
25 i f tmpMap [v0] == 0 :
26 A = A ∪ v0
27 re turn A

Figure 2.3: Improved Recursive Attractor

35

2.3. Scala Implementations

1 def win (G: GraphWi thSe t s)
2 : (A r r a y B u f f e r [I n t] , A r r a y B u f f e r [I n t]) = {
3 v a l W = Array (A r r a y B u f f e r . empty [I n t] , A r r a y B u f f e r . empty [I n t])
4 v a l d = G. m a x p r i o r i t y ()
5 i f (d > −1) {
6 v a l U = G. p r i o r i t y M a p . g e t (d) . f i l t e r (p => !G. e x c l u d e (p))
7 v a l p = d % 2
8 v a l j = 1 − p
9 v a l W1 = Array (A r r a y B u f f e r . empty [I n t] , A r r a y B u f f e r . empty [I n t])

10 v a l A = A t t r (G, U, p)
11 v a l r e s = win (G−− A)
12 W1(0) = r e s . 1
13 W1(1) = r e s . 2
14 i f (W(j) . s i z e == 0) {
15 W(p) = W1(p) ++= A
16 W(j) = A r r a y B u f f e r . empty [I n t]
17 } e l s e {
18 v a l B = A t t r (G, W1(j) , j)
19 v a l r e s 2 = win (G−− B)
20 W1(0) = r e s 2 . 1
21 W1(1) = r e s 2 . 2
22 W(p) = W1(p)
23 W(j) = W1(j) ++= B
24 }
25 }
26 (W(0) , W(1))
27 }

Figure 2.4: Improved Algorithm in Scala

adding all of them to a set called Removed. The improved algorithm is capable of checking if
a given node is excluded or not in constant time as well as it completely removes the need for
a new graph in every recursive call.

2.3 Scala Implementations

Scala is the programming language designed by Martin Odersky, the codesigner of Java
Generics and main author of javac compiler. Scala defines itself as a scalable language,
statically typed, a fusion of an object-oriented language and a functional one. It runs on
the Java Virtual Machine (JVM) and supports every existing Java library. Scala is a purely
object-oriented language in which, like Java and Smalltalk, every value is an object and every
operation is a method call. In addition Scala is a functional language where every function is
a first class object, also is equipped with efficient immutable data structures, with a strong
selling point given by Java interoperability. However, it is not a purely functional language as
objects may change their states and functions may have side effects. The functional aspects
are perfectly integrated with the object-oriented features. The combination of both styles
makes possible to express new kinds of patterns and abstractions. All these features make
Scala programming language as a clever choice to solve these tasks, in a strict comparison
with other programming languages available such as C, C++ or Java. Historically, the first
generation of the JVM was entirely an interpreter; nowadays the JVM uses a Just-In-Time
(JIT) compiler, a complex process aimed to improve performance at runtime. This process

36

Chapter 2. Solving Parity Games in Scala

can be described in three steps: (1) source files are compiled by the Scala Compiler into Java
Bytecode, that will be feed to a JVM; (2) the JVM will load the compiled classes at runtime
and execute proper computation using an interpreter; (3) the JVM will analyze the application
method calls and compile the bytecode into native machine code. This step is done in a
lazy manner: the JIT compiles a code path when it knows that is about to be executed. JIT
removed the overhead of interpretation and allows programs to start up quickly, in addition
this kind of compilation has to be fast to prevent influencing the actual performance of the
program. Another interesting aspect of the JVM is that it verifies every class file after loading
them. This makes sure that the execution step does not violate some defined safety properties.
The checks are performed by the verifier that includes a complete type checking of the entire
program. The JVM is also available on all major platforms and compiled Java executables can
run on all of them with no need for recompilation. The Scala compiler scalac compiles a Scala
program into Java class files. The compiler is organized in a sequence of successive steps. The
first one is called the front-end step and performs an analysis of the input file, makes sure that
is a valid Scala program and produces an attributed abstract syntax tree (AST); the back-end
step simplifies the AST and proceeds to the generation phase where it produces the actual
class files, which constitute the final output. Targeting the JVM, the Scala Compiler checks
that the produced code is type-correct in order to be accepted by the JVM bytecode verifier. In
[20], published by Google, Scala even being an high level language, performs just 2.5x slower
than C++ machine optimized code. In particular it has been proved to be even faster than Java.
As the paper notes: “While the benchmark itself is simple and compact, it employs many
language features, in particular high level data structures, a few algorithms, iterations over
collection types, some object oriented features and interesting memory allocation patterns”.

2.3.1 Improved Algorithm in Scala

In this section we introduce our implementation of the Improved Recursive Algorithm in
Scala, listed as Figure 2.4 and Figure 2.5. Aiming at performance optimizations we use a
priority HashMap where every key is a certain priority and a value is a set of each node
v where priority(v) = key. As fast and JVM-Optimized HashMaps and ArrayLists we
use the ones included in the open source library Trove. In addition, using the well known
strategy pattern [GHJV94] we open the framework for further extentions and improvements.
The intended purpose of our algorithm is to assert that the performance of existing tools for
solving parity games can be improved using the improved algorithm and choosing Scala as
the programming language. We rely on Scala’s internal features and standard library making
heavy use of the dynamic ArrayBuffer data structure. In order to store the arena we use an
array of Node objects. The Node class contains: a list of adjacent nodes, a list of incident
nodes, its priority and the player; the data structure also implements a factory method called
“−− (set : ArrayBuffer[Int])” that takes an ArrayBuffer of integers as input, flags all the

37

2.3. Scala Implementations

1def A t t r (G: GraphWithSets ,
2A: A r r a y B u f f e r [I n t] , i : I n t)
3: A r r a y B u f f e r [I n t] = {
4v a l tmpMap = Array
5. f i l l [I n t] (G. nodes . s i z e)(−1)
6v a r i n d e x = 0
7A. f o r e a c h (tmpMap () = 0)
8whi le (i n d e x < A. s i z e) {
9G. nodes (A(i n d e x))
10.<∼ . f o r e a c h (v0 => {
11i f (!G. e x c l u d e (v0)) {
12v a l f l a g = G. nodes (v0) . p l a y e r == i

13i f (tmpMap (v0) == −1) {
14i f (f l a g) {
15A += v0
16tmpMap (v0) = 0
17} e l s e {
18v a l tmp = G. nodes (v0)
19.∼>
20. c o u n t (x => !G. e x c l u d e (x)) − 1
21tmpMap (v0) = tmp
22i f (tmp == 0) A += v0
23}
24} e l s e i f (! f l a g && tmpMap (v0) > 0){
25tmpMap (v0) −= 1
26i f (tmpMap (v0) == 0) A += v0
27}
28}
29})
30i n d e x += 1
31}
32A
33}

Figure 2.5: Improved Attractor in Scala

38

Chapter 2. Solving Parity Games in Scala

Figure 2.6: Random Games Chart in Logarithmic Scale

nodes in the array as excluded, and returns the reference to the new graph. In addition, there
is also a method called max priority() that will return the maximal priority in the graph and
the set of nodes with that priority. The Attractor function makes deeply use of an array of
integers named tmpMap that is preallocated using the number of nodes in the graph with a
negative integer as default value; we use tmpMap when looping through every node in the
set A given as parameter, to keep track of the number of successors for the opponent player.
We add a node v ∈ V to the attractor set when its counter (stored in tmpMap[v]) reaches 0
(adj(v) ⊆ A and v ∈ Vopponent) or if v ∈ Vplayer; using an array of integers, or an HashMap,
to serve this purpose, guarantees a constant time check if a node was already visited and
ensures that the count for the opponent’s node adjacency list takes place one time only. These
functions are inside a singleton object called ImprovedRecursiveSolver that extends the Solver
interface.

2.4 Benchmarks

In this section we study, analyze and evaluate the running time of our four implementations:
Classic Recursive in OCaml (CRO), Classic Recursive in Scala (CRS), Improved Recursive
in OCaml (IRO) and Improved Recursive in Scala (IRS). We have run our experiments on
multiple instances of random parity games. We want to note that IRS does not apply any
preprocessing steps to the arena before solving. All tests have been run on an Intel(R) Xeon(R)
CPU E5620 @ 2.40GHz, with 16GB of Ram (with no Swap available) running Ubuntu 14.04.
Precisely, we have used 100 random arenas generated using PGSolver of each of the following
types, given N = i× 1000 with i integer and 1 ≤ i ≤ 10 and a timeout set at 600 seconds.
In the following, we report six tables in which we show the running time of all experiments
under fixed parameters. Throughout this section we define aboT when the program has been
aborted due to excessive time and aboM when the program has been killed by the Operating
System due to memory consumption. In Figure 2.6 we also report the trends of the four
implementations using a logarithmic scale with respect to seconds. This figure is based on the

39

2.4. Benchmarks

averages of all results reported in the tables below.
N nodes, N colors, adj(N2 , N) N nodes, N colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.204 1.99 0.505 0.752

2× 103 0.456 13.208 1.918 3.664

3× 103 1.031 41.493 2.656 6.147

4× 103 1.879 96.847 6.728 15.966

5× 103 2.977 183.589 12.616 27.272

6× 103 3.993 306.104 19.032 41.051

7× 103 4.989 486.368 27.05 50.367

8× 103 6.103 aboT 36.597 70.972

9× 103 7.287 aboT 55.171 97.216

10× 103 8.468 aboT 68.303 113.36

N IRS CRO CRS IRO

1× 103 0.179 1.21 0.454 0.583

2× 103 0.389 8.075 1.173 2.366

3× 103 0.868 25.097 2.656 6.147

4× 103 1.279 57.186 4.23 10.452

5× 103 2.273 108.983 9.206 20.377

6× 103 2.772 183.884 12.562 27.489

7× 103 3.748 291.077 17.942 37.521

8× 103 3.942 418.377 22.105 47.502

9× 103 4.989 593.721 23.93 61.593

10× 103 6.413 aboT 42.408 80.508

N nodes, 2 colors, adj(N2 , N) N nodes, 2 colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.189 1.98 0.481 0.702

2× 103 0.469 12.941 1.55 3.17

3× 103 1.046 41.584 3.995 7.428

4× 103 1.712 96.545 5.378 13.823

5× 103 2.414 181.225 11.273 22.575

6× 103 3.458 307.233 16.472 35.269

7× 103 4.612 484.159 26.448 49.311

8× 103 6.003 aboT 28.968 65.674

9× 103 7.03 aboT 43.666 85.909

10× 103 8.938 aboT 57.18 110.814

N IRS CRO CRS IRO

1× 103 0.159 1.226 0.385 0.468

2× 103 0.341 7.965 1.004 2.162

3× 103 0.797 25.114 2.305 6.014

4× 103 1.123 56.422 3.699 9.421

5× 103 1.704 108.584 6.12 14.971

6× 103 2.243 182.935 10.099 22.621

7× 103 3.324 286.503 13.898 32.335

8× 103 3.95 430.265 19.743 44.281

9× 103 4.597 aboT 28.742 56.81

10× 103 5.651 aboT 33.639 71.434

N nodes,
√
N colors, adj(N2 , N) N nodes,

√
N colors, adj(1, N)

N IRS CRO CRS IRO

1× 103 0.204 1.978 0.468 0.71

2× 103 0.456 13.114 1.575 3.203

3× 103 1.031 41.493 3.868 7.492

4× 103 1.621 96.55 5.744 13.97

5× 103 2.439 183.589 10.72 22.98

6× 103 3.372 307.426 15.978 34.78

7× 103 4.662 485.826 26.432 48.875

8× 103 6.499 aboT 34.741 66.423

9× 103 7.147 aboT 48.915 86.645

10× 103 8.988 aboT 56.656 111.492

N IRS CRO CRS IRO

1× 103 0.162 1.218 0.384 0.475

2× 103 0.344 7.947 1.034 2.195

3× 103 0.788 25.029 2.406 5.944

4× 103 1.105 57.307 3.835 9.608

5× 103 1.678 108.623 6.34 15.165

6× 103 2.281 182.154 9.871 22.859

7× 103 3.193 285.28 14.338 32.536

8× 103 4.185 422.74 20.362 44.515

9× 103 5.009 599.071 24.347 57.022

10× 103 5.76 aboT 35.024 72.291

40

Chapter 2. Solving Parity Games in Scala

2.4.1 Trends Analysis for Random Arenas

Figure 2.7: Trends Chart

The speedup obtained by our implementa-
tion of the Improved Recursive Algorithm
is in most cases quite noticeable. Figure
2.7 shows the running time trend for Im-
proved and Classic Algorithm on each plat-
form. The seconds are limited to [0, 100].
As a result we show that even with all pre-
processing steps enabled in PGSolver, IRS is
capable of gaining two orders of magnitude
in running time.

2.4.2 Trends Analysis for Special Games

Focusing on Classic Recursive in PGSolver and our Improved Recursive in Scala, here we
show the running times for non-random games generated by PGSolver. In particular we use
four types of non-random games, these experiments have been run against PGSolver using the
Classic Recursive Algorithm with all optimizations disabled and all solutions were matched
to ensure correctness.

Clique[n] games are fully connected games without self-loops, where n is the number of
nodes. The set of nodes is partitioned into V0 and V1 having the same size. For all v ∈ Vp,
priority(v) % 2 = p. For our experiments we set n = 2kwhere 8 ≤ k ≤ 14. Table below
reports the running time for our experiments and these results are drawn in Figure 2.8.

n 28 29 210 211 212 213 214

IRS 0.05 0.07 0.12 0.46 1.18 4.87 17.39

CRO 0.09 0.61 4.37 29.58 229.78 aboT aboM

Figure 2.8: Clique Trends

In Ladder[n] game, every node in
V0 has priority 2 and every node in V1
has priority 1. In addition, each node
v ∈ V has two successors: one in V0
and one in V1, which form a node pair.
Every pair is connected to the next pair
forming a ladder of pairs. Finally, the
last pair is connected to the top. The pa-
rameter n specifies the number of node

41

2.4. Benchmarks

pairs. For our tests, we set n = 2kwhere 7 ≤ k ≤ 19 and report our experiments in the table
below whose trend is drawn in Figure 2.9.

Figure 2.9 shows better performance for CRO than IRS using low-scaled values as input
parameter. This behaviour is not surprising as there is a warming-up time required by the Java
Virtual Machine.

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.05 0.08 0.11 0.13 0.15 0.19 0.25 0.38 0.48 0.93

CRO 0.00 0.00 0.01 0.01 0.03 0.06 0.13 0.3 0.65 1.39 2.93 6.21 11.71

Figure 2.9: Ladder Trends

Model Checker Ladder[n] con-
sists of overlapping blocks of four
nodes, where the parameter n specifies
the number of desidered blocks. Every
node is owned by player 1, V1 = V and
V0 = ∅, and the nodes are connected
such that every cycle passes through a
single point of colour 0. For our exper-
iments we set n = 2k where 7 ≤ k ≤
19, report our experiments in the table
below and draw the trends in Figure 2.10.

n 27 28 29 210 211 212 213 214 215 216 217 218 219

IRS 0.01 0.02 0.03 0.04 0.07 0.12 0.14 0.16 0.19 0.21 0.26 0.39 0.65

CRO 0.00 0.00 0.01 0.01 0.02 0.05 0.10 0.22 0.47 0.99 2.12 4.16 8.31

Figure 2.10: Model Checker Ladder Trends

Jurdzinski[n, m] games are de-
signed to generate the worst-case be-
haviour for the Small Progress Measure
Solver [Mar00]. The parameter n is
the number of layers, where each layer
has m repeating blocks that are inter-
connected as described in [Mar00].

As this game takes two parameters,
in our test we ran two experiments: one
where n is fixed to 10 and m = 10× 2k, for k = 1, 2, 3, 4, 5 and one where m is fixed to 10
and n = 10× 2k, for k = 1, 2, 3, 4, 5. The results of our expreriments are reported in the

42

Chapter 2. Solving Parity Games in Scala

m 10× 21 10× 22 10× 23 10× 24 10× 25

IRS 0.21 0.48 1.54 4.55 15.31

CRO 0.23 0.79 3.14 15.77 65.85

n 10× 21 10× 22 10× 23 10× 24 10× 25

IRS 0.28 0.77 3.02 30.02 232.24

CRO 0.42 2.94 22.69 184.12 aboT

Table 2.2: Jurdzinski Trends.

tables below. The trends are drawn in Table 2.2.

2.5 Discussion

PGSolver is a well-stablished framework that collects multiple algorithms to decide parity
games. For several years now this platform has been the only one available to solve and
benchmark in practice. Given PGSolver’s limitations addressing huge graphs, several attempts
of improvement have been carried out recently. Some of them have been implemented as
preprocessing steps in the tool itself (such as priority compression or SCC decomposition
and the like), while others chose parallelism techniques, such as Cuda [?], applied to the
algorithms. However these improvements often do not show the desired performance.

In this chapter we started from scratch by revisiting the Zielonka Recursive Algorithm,
implemented an improved and the classic versions in Scala and OCaml, comparing among
them. The choice of Scala as a programming language has been not casual, but rather it comes
out from a deep study focused on performance and simplicity. Scala is interoperable with
Java libraries, has a concise and clear syntax, functional and object oriented features, runs on
the Java Virtual Machine and has been proven to be high performing. Our main result is a
new and fast tool for solving parity games capable of gaining up to two orders of magnitude
in running time. In conclusion we state that there is place for a faster and better framework to
solve parity games and this work is a starting point raising several interesting questions. For

43

2.5. Discussion

example, what if one implements the other known algorithms to solve parity games in Scala?
PGSolver showed that Zielonka’s algorithm is the best performing. Can one reproduce the
same results in Scala? We leave all these questions as future work.

44

CHAPTER 3

Graded Strategy Logic

Contents
3.1 Graded Strategy Logic . 46

3.1.1 Model . 47

3.1.2 Syntax . 48

3.1.3 Semantics . 49

3.2 Strategy Equivalence . 51

3.2.1 Elementary Requirements . 51

3.2.2 Play Requirement . 52

3.2.3 Strategy Requirements . 53

3.3 Main Results . 55

3.3.1 Determinacy . 55

3.3.2 Model Checking . 58

3.4 Discussion . 61

3.1. Graded Strategy Logic

In the game-theoretic setting modeling critical scenarios, knowing the existence of a
strategy to achieve a certain goal is sometimes not sufficient. It may be vital, indeed, to ensure
that some redundant strategy to play exists in case of some fault. Establishing how many
different strategies a game admits for its agents allows to grade its resilience as well. In this
chapter, we overcome the above limitations by introducing and studying Graded Strategy
Logic (GSL) as an extension, along with graded quantifiers, of the recently introduced
framework of Strategy Logic [MMV10]. Precisely, in GSL we make use of the existential
〈〈x ≥ g〉〉ϕ and universal [[x < g]]ϕ graded strategy quantifiers to require that there are at
least g or all but less than g strategies x satisfying ϕ, respectively. Then, by using the classical
binding operator of SL, it is possible to associate these strategies to specific agents.

GSL can have useful applications in several multi-agent game scenarios. For example, in
safety-critical systems, it may be worth knowing whether a controller agent has a redundant
winning strategy to play in case of some fault. Having more than a strategy may increase
the chances for a success [ATO+09]. Such a redundancy can be easily expressed in GSL
by requiring that at least two different strategies exist for the achievement of the safety goal.
Another useful example concerns Nash Equilibria. With GSL one can determine whether
there exists more than a winning strategy and so derive important game-theoretic properties
about the game such as uniqueness of the equilibrium.

On dealing with GSL formulas, an aspect that requires some attention is the way strategies
are counted. Indeed there may be strategies that look different but produce the same outcome,
which therefore need to be count as one. To this aim, we introduce a suitable equivalence
relation over profiles based on the strategic behavior they induce and this represents by itself
an important contributions of this chapter. Other contributions relate to the investigation
of basic game-theoretic and verification questions over a fragment of GSL. Recall that
model checking is non-elementary-complete for SL and thus there is no hope for a better
complexity for GSL. For this reason we have concentrated on the vanilla version of the
SL[1G] fragment of SL. We recall that SL[1G] has been introduced in [MMPV12]. As for
ATL, the vanilla version of SL[1G] further requires that two temporal operators in a formula
are always interleaved by a strategy quantifier. As main result, we prove that the model-
checking problem is PTIME-COMPLETE. Moreover, we have studied and obtained positive
results about the determinacy of turn-based games.

3.1 Graded Strategy Logic

In this section, we introduce syntax and semantics of Graded Strategy Logic (GSL, for short),
an extension of Strategy Logic (SL, for short) [MMV10], that allows to reason about the
number of strategies that an agent may exploit in order to satisfy a given temporal goal. We
recall that SL simply extends LTL with two strategy quantifiers and a binding construct used

46

Chapter 3. Graded Strategy Logic

to associate an agent to a strategy.

3.1.1 Model

Similarly to SL, as semantic framework we use a game structure [AHK02], i.e., a generaliza-
tion of both Kripke structures [Kri63] and labeled transition systems [Kel76], in which the
system is modeled as a game where players perform actions chosen strategically as a function
on the history of the play.

Definition 3.1.1 (Game Structure) A game structure is a tuple G ,〈AP,Ag,Ac,St, tr, ap,

s〉, where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac and St

are enumerable non-empty sets of actions and states, sI ∈ St is a designated initial state, and
ap : St→ 2AP is a labeling function that maps each state to the set of atomic propositions
true in that state. Let Dc , Ag ⇀ Ac to be the set of decisions, i.e., partial functions
describing the choices of an action by some agent. Then, tr : Dc→ (St ⇀ St) denotes
the transition function mapping every decision δ∈Dc to a partial function tr(δ) ⊆ St×St

representing a deterministic graph over the states.

The set of decisions in a state s ∈ St is dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))}. We
require the absence of end-states, i.e., dc(s) 6= ∅. Also, we define the active agents in s
as ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)} and the related associated actions as
ac(s, a) , {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}. A game structure G naturally induces
a graph〈St,Ed 〉 with Ed =

⋃
δ∈Dc tr(δ), where the infinite paths starting at the initial state

sI represent all possible plays (whose set is denoted by Pth) and its finite paths are called
histories (whose set is denoted by Hst). A strategy is a function σ ∈ Str , Hst → Ac

prescribing which action has to be performed given a certain history. In particular, we say that
σ ∈ Str(A) ⊆ Str is A-coherent w.r.t. a set of agents A ⊆ Ag if σ(ρ · s) ∈ ac(s, a), for all
histories ρ · s ∈ Hst and agents a ∈ ag(s) ∩A. Intuitively, this means that σ only prescribes
actions that can be used by all agents in A. We also use of the classic concepts of profile
ξ ∈ Prf ⊆ Ag → Str, which specifies an a-coherent strategy ξ(a), for each agent a ∈ Ag,
and of the associated play π = play(ξ).

As a running example, consider the game structure GS depicted in Figure 3.1. It represents
a model of a scheduler system in which two processes, P and P, can require the access to
a shared resource, like a processor, and an arbiter A is used to solve all conflicts that may
arise when contending requests are made. The processes can use four actions: i for idle, r
for request, f for free/release, and a for abandon/relinquish. The first means that the process
does not want to change the current situation in which the entire system reside. The second is
used to ask for the resource, when this is not yet owned, while the third releases it. Finally,
the last is asserted by a process that, although has asked for the resource, did not obtain it
and so it decides to relinquish the request. The whole scheduler system can reside in the

47

3.1. Graded Strategy Logic

I

1 2

1/2 2/1

W

PP 7→ii

PP 7→ri PP 7→ir

PP 7→rr

PP 7→ii

PP 7→fi

PP 7→fr

PP 7→ir

PP 7→ii

PP 7→if

PP 7→rf

PP 7→ri

AP 7→ii

AP 7→2i

P 7→f

AP 7→ii

AP 7→1i

P 7→f

PP 7→aa

PP 7→ia PP 7→ai

APP 7→1ii APP 7→2ii

Figure 3.1: A scheduler system GS .

states I, 1, 2, 1/2, 2/1 and W, where the first three are ruled by the processes, the last by all
the agents, and 1/2 (resp, 2/1) by P (resp., P) and A. The idle state I indicates that none
of the processes owns the resource, while a state k ∈ {1, 2} asserts that process Pk is using
it. The state 1/2 (resp. 2/1) indicates that the process P (resp., P) has the resource, while
its competitor requires it. Finally, the waiting state W represents the situation in which an
action from the arbiter is required in order to solve a conflict between contending requests.
To denote who is the owner of the resource, we label 1 and 1/2 (resp., 2 and 2/1) with the
atomic proposition r (resp., r). A decision is graphically represented by ~a 7→ ~c, where ~a is
a sequence of agents and ~c is a sequence of corresponding actions. For example PP → ir

indicates that agents P and P take actions i and r, respectively.

3.1.2 Syntax

GSL extends SL by replacing the classic universal and existential strategy quantifiers 〈〈x〉〉
and [[x]], where x belongs to a countable set of variables Vr, with their graded version
〈〈x≥ g〉〉 and [[x<g]], in which the finite number g ∈ N denotes the corresponding degree.
Intuitively, these quantifiers are read as “there exist at least g strategies” and “all but less
than g strategies”, respectively.

Definition 3.1.2 (GSL Syntax) GSL formulas are built inductively by means of the follow-
ing context-free grammar, where a ∈ Ag, x ∈ Vr, and g ∈ N:

48

Chapter 3. Graded Strategy Logic

ϕ := LTL(ϕ) | 〈〈x ≥ g〉〉ϕ | [[x < g]]ϕ | (a, x)ϕ.

As usual, to provide the semantics of a predicative logic, it is necessary to define the
concept of free and bound placeholders of a formula. As for SL, since strategies can be
associated to both agents and variables, we need the set of free agents/variables free(ϕ) as the
subset of Ag ∪Vr containing (i) all agents a for which there is no binding (a, x) before the
occurrence of a temporal operator and (ii) all variables x for which there is a binding (a, x)

but no quantification 〈〈x ≥ g〉〉 or [[x < g]]. A detailed definition can be found in [MMPV14].
In case free(ϕ) = ∅ the formula ϕ is named sentence. Since a variable x may be bound to
more than one agent at the time, we also need the subset shr(ϕ, x) of Ag containing those
agents for which a binding (a, x) occurs in ϕ.

In this chapter, we prefer to focus on the One-Goal fragment of GSL (GSL[1G], for
short) [MMPV12, MMPV14] that is already able to describe interesting properties that are
not expressible in graded ATL. To formalize its syntax, we first need to introduce some
notions. A quantification prefix over a set V⊆Vr of variables is a word ℘∈{〈〈x≥g〉〉, [[x<g]]

: x∈V ∧ g∈N}|V| of length |V| such that each x∈V occurs just once in ℘. A binding prefix
over A⊆Ag is a word [∈{(a, x) : a∈A ∧ x∈Vr}|A| such that each a∈A occurs exactly
once in [. We now have all tools to define the syntactic fragment we want to analyze. The
idea behind GSL[1G] is that, after a quantification prefix, we can just have a single goal, i.e.,
a formula of the kind [ψ, where [is a binding prefix.

Definition 3.1.3 (GSL[1G] Syntax) GSL[1G] formulas are built inductively through the fol-
lowing context-free grammar, where ℘ and [are quantification and binding prefixes:

ϕ := LTL(ϕ) | ℘[ϕ.

An example of GSL[1G] property, in the context of the scheduler system, is given by
the sentence ϕ = ℘[ψ, with ℘ = 〈〈x ≥ k〉〉[[y < g1]][[y < g2]], [= (A, x)(P, y)(P, y),
and ψ= F(r ∨ r), which asserts the existence of at least k strategies for the arbiter A to
ensure that one of the two processes P and P receives the resource, once less that g1 and g2
strategies, can be avoided by them, respectively.

3.1.3 Semantics

Similarly to SL, the interpretation of a GSL formula requires a valuation for its free place-
holders. This is done via assignments, i.e., partial functions χ ∈ Asg , (Vr ∪ Ag) ⇀ Str

mapping variables and agents to strategies. An assignment χ is complete iff it is defined
on all agents, i.e., χ(a) ∈ Str(a), for all a ∈ Ag ⊆ dom(χ). In this case, it directly
identifies the profile χ�Ag given by the restriction of χ to Ag. In addition, χ[e 7→ σ], with
e ∈ Vr ∪ Ag and σ ∈ Str, is the assignment defined on dom(χ[e 7→ σ]) , dom(χ) ∪ {e}

49

3.1. Graded Strategy Logic

that differs from χ only on the fact that e is associated with σ. Formally, χ[e 7→ σ](e) = σ

and χ[e 7→ σ](e′) = χ(e′), for all e′ ∈ dom(χ) \ {e}. Finally, given a formula ϕ, we say that
χ is ϕ-coherent iff (i) free(ϕ) ⊆ dom(χ), (ii) χ(a) ∈ Str(a), for all a ∈ dom(χ) ∩Ag, and
(iii) χ(x) ∈ Str(a), for all x ∈ dom(χ) ∩Vr and a ∈ shr(ϕ, x).

We now define the semantics of a GSL formula ϕ w.r.t. a game structure G and a ϕ-
coherent assignment χ. In particular, we write G, χ |= ϕ to indicate that ϕ holds in G under
χ. The semantics of LTL formulas and agent bindings are defined as in SL. The definition
of graded strategy quantifiers, instead, makes use of a generic equivalence relation ≡ϕG on
assignments that depends on the structure and the formula under exam. This equivalence
is used to reasonably count the number of strategies that satisfy a formula w.r.t. an a priori
fixed criterion. Observe that we use a relation on assignments instead of a more direct one on
strategies, since the classification may also depend on the context determined by the strategies
previously quantified. In Section 3.2, we will come back on the properties the equivalence
has to satisfy in order to be used in the semantics of GSL.

Definition 3.1.4 (GSL Semantics) Let G be a CGS and ϕ a GSL formula. For all ϕ-
coherent assignments χ ∈ Asg, the relation G, χ |= ϕ is inductively defined as follows.

1. All LTL operators are interpreted as usual.

2. For each x ∈ Vr, g ∈ N, and ϕ ∈ GSL, it holds that:

(a) G, χ |= 〈〈x ≥ g〉〉ϕ iff
|({χ[x 7→ σ] : σ ∈ ϕ[G, χ](x)}/≡ϕG)| ≥ g;

(b) G, χ |= [[x < g]]ϕ iff
|({χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)}/≡¬ϕG)| < g;

where η[G, χ](x) , {σ ∈ Str(shr(η, x)) : G, χ[x 7→ σ] |= η} is the set of shr(η, x)-
coherent strategies that, being assigned to x in χ, satisfy η.

3. For each a ∈ Ag, x ∈ Vr, and ϕ ∈ GSL, it holds that G, χ |= (a, x)ϕ iff G, χ[a 7→
χ(x)] |= ϕ.

Intuitively, by using the existential quantifier 〈〈x ≥ g〉〉ϕ, we can count how many
equivalence classes w.r.t. ≡ϕG there are over the set of assignments {χ[x 7→ σ] : σ ∈
ϕ[G, χ](x)} that, extending χ, satisfy ϕ. The universal quantifier [[x<g]]ϕ is simply the dual
of 〈〈x≥ g〉〉ϕ and it allows to count how many classes w.r.t. ≡¬ϕG there are over the set of
assignments {χ[x 7→ σ] : σ ∈ ¬ϕ[G, χ](x)} that, extending χ, do not satisfy ϕ. It is worth
noting that, all GSL formulas with degree 1 are SL formulas. Also, the verification of a
sentence ϕ does not depend on assignments, so, we just write G |= ϕ.

Consider again the sentence ϕ of the scheduler example. Once a reasonable equivalence
relation on assignments is fixed (see Section 3.2), one can see that GS |= ϕ with k ≥ 0 and
(g1, g2) = (1, 2) but GS 6|= ϕ with (k, g1, g2) = (1, 1, 1). Indeed, if the processes use the

50

Chapter 3. Graded Strategy Logic

same strategy, they may force the play to be in (I+ · W)∗ · Iω + (I+ · W)ω, so they either avoid
to do a request or relinquish a request that is not immediately served. Consequently, to satisfy
ϕ, we need to verify the property against all but one strategy of P, i.e., the one used by P.
Under these assumptions, we can see that the arbiter A has an infinite number of different
strategies by suitably choosing the actions on all histories ending in the state W.

Before continuing, we show how GATL can be embedded into GSL[1G]. In [FNP09a],
the authors introduce two different semantics for their logic, called off-line and on-line.
Under the first one, over a game structure with agents α and α, the GATL formula 〈〈α〉〉gψ
is equivalent to the GSL[1G] sentence 〈〈x ≥ g〉〉[[x < 1]](α, x)(α, x)ψ. Under the second
semantics, instead, it is equivalence to the sentence [[x < 1]]〈〈x ≥ g〉〉(α, x)(α, x)ψ. It is
evident than that the counting over strategies in GATL is limited to the existential agent only.
Moreover, we want to note that, the criteria at the base of the strategy classification is strictly
coupled with the three temporal operators Xϕ, ϕ1Uϕ2, and Gϕ admitted in the syntax and
cannot be easily extended to the whole LTL.

3.2 Strategy Equivalence

Our definition of GSL semantics makes use of an arbitrary equivalence relation on assign-
ments. This choice introduces flexibility in its description, since one can come up with
different logics by opportunely choosing different equivalences. In this section, we focus
on a particular relation whose key feature is to classify as equivalent all assignments that
reflect the same “strategic reasoning”, although they may have completely different structures.
Just to get an intuition about what we mean, consider two assignments χ and χ and the
corresponding involved strategies associated with the agents a and a. Assume now that, for
each i∈{1, 2}, the homologous strategies χ(ai) and χ(ai) only differ on histories never
met by a play because of a specific combination of their actions. Clearly, χ and χ induce
the same agent behaviors, which means to reflect the same strategic reasoning. Therefore, it
is natural to set them as equivalent, as we do.

In the sequel, in order to illustrate the introduced concepts, we analyze subformulas of the
above described sentence 〈〈x≥k〉〉[[y<1]][[y<2]](A,x)(P,y)(P,y)F(r∨r), together
with their negations, over the game structure GS of Figure 3.1.

3.2.1 Elementary Requirements

Logics usually admit syntactic redundancy. For example, in LTL we have ¬X(p ∧ q) ≡
X¬(p ∧ q) ≡ X(¬p ∨ ¬q). Also, the semantics is normally closed under substitution. Yet
for LTL, this means that ¬X(p ∧ q) can be replaced with X¬(p ∧ q) or X(¬p ∨ ¬q), without
changing the meaning of a formula. GSL should not be an exception. To ensure this, we

51

3.2. Strategy Equivalence

require the invariance of the equivalence relation on assignments w.r.t. the syntax of the
involved formulas.

Definition 3.2.1 (Syntax Independence) An equivalence relation on assignments ≡·G is
syntax independent if, for any pair of equivalent formulasϕ1 andϕ2 and (free(ϕ1)∪free(ϕ2))-
coherent assignments χ, χ ∈ Asg, we have that χ ≡ϕ

G χ iff χ ≡ϕ

G χ.

As declared above, our aim is to classify as equivalent w.r.t. a formula ϕ all assignments
that induce the same strategic reasoning. Therefore, we cannot distinguish them w.r.t. the
satisfiability of ϕ itself.

Definition 3.2.2 (Semantic Consistency) An equivalence relation on assignments ≡·G is
semantically consistent if, for any formula ϕ and ϕ-coherent assignments χ, χ ∈ Asg, we
have that if χ ≡ϕGχ then either G, χ |= ϕ and G, χ |= ϕ or G, χ 6|= ϕ and G, χ 6|= ϕ.

3.2.2 Play Requirement

We now deal with the equivalence relation for the basic case of temporal properties. Before
disclosing the formalization, we would like to give an intuition on how to evaluate the
equivalence of two complete assignments χ and χ w.r.t. their agreement on the verification
of a generic LTL property ψ. Let π and π with π 6= π be the plays satisfying ψ induced by
χ and χ, respectively. Also, consider their maximal common prefix ρ = prf(π, π) ∈ Hst.
If the latter history can be extended to a play in such a way that ψ does not hold, we are sure
that the reasons why both the assignments satisfy the property are different, as they reside in
the parts the two plays diverge. Consequently, we can assume χ and χ to be non-equivalent
w.r.t. ψ. Conversely, if all infinite extensions of ρ necessarily satisfy ψ, we may affirm that
this is already a witness of the verification of the property by the two plays and, so, by the
two assignments. Hence, we can assume χ and χ to be equivalent w.r.t. ψ.

In the following, we make often use of the concept of witness of an LTL formula ψ as
the set Wψ , {ρ ∈ Hst : ∀π ∈ Pth . ρ < π ⇒ π |= ψ} containing all those histories that
cannot be extended to a play that violates the property.

Definition 3.2.3 (Play Consistency) An equivalence relation on assignments ≡·G is play
consistent if, for any LTL formula ψ and ψ-coherent assignments χ, χ ∈ Asg, we have
that χ ≡ψGχ iff either π = π or prf(π, π) ∈ Wψ, where π = play(χ�Ag) and
π = play(χ�Ag) are the plays induced by χ and χ, respectively, and Wψ ⊆ Hst represents
the witness set of ψ.

To see how to apply the above definition, consider the formula ψ = F(r ∨ r) and
let Wψ be the corresponding witness set, whose minimal histories can be represented by

52

Chapter 3. Graded Strategy Logic

the regular expression I+ · (1 + 2) + (I+ · W)+ · (1 + 2 + 1/2 + 2/1). Moreover, let
χ, χ, χ ∈ Asg({A, P, P}) be three complete assignments on which we want to check the
play consistency. We assume that each χi associates a strategy χi(a) = σai with the agent
a ∈ {A, P, P} as defined in the following, where ρ, ρs ∈ Hst with lst(ρ) 6= I and ρs · s ∈
Hst: for the arbiter A, we set σA/(ρW · W), 2, σA//(ρ/ · 1/2) =σA(ρ/ · 2/1),i, and
σA(ρW · W)=σA/(ρ/ · 2/1),1; for the processes, instead, we set σP//(ρ)=σP//(ρ),i,

σP/(ρI · I) =σP//(ρI · I),r, and σP (ρI · I),i. Now, one can see that χ ≡ψGχ, but

χ6≡ψGχ. Indeed, χ, χ, and χ induce the plays π=I · W · 2/1 · 1/2ω, π=I · W · 2/1ω, and
π=I · 1ω, respectively, where ρ=prf(π, π)=I · W · 2/1 and ρ=prf(π, π)=I are
the corresponding common prefixes. Thus, ρ belongs to the witness Wψ, while ρ does
not. As another example, consider the formula ψ = G(¬r ∧ ¬r), which is equivalent to
the negation of the previous one, and observe that its witness set Wψ is empty. Moreover, let
χ, χ, χ ∈ Asg({A, P, P}) be the three complete assignments we want to analyze. The
strategies for the the arbiter A are defined as above, while those of the processes follows:
σPi//(ρ), i, σPi/(ρI · I), r, σPi/(ρW · W), a, and σPi (ρI · I) = σPi (ρW · W), i, for all
i ∈ {1, 2} and ρ, ρs ∈ Hst with lst(ρ) 6∈ {I, W} and ρs · s ∈ Hst. Now, one can see that
χ≡ψGχ, but χ6≡ψGχ. Indeed, χ and χ induce the same play (I · W)ω, while χ runs along
Iω. Thus, χ and χ are equivalent, but χ and χ are not.

3.2.3 Strategy Requirements

The semantics of a binding construct ϕ=(a, x)η just involves a redefinition of the underlying
assignment χ, since it asserts that ϕ holds under χ once the inner part η can be satisfied by
associating the agent a to the strategy χ(x). Thus, the equivalence of two assignments χ and
χ w.r.t. ϕ necessarily depends on that of their extensions on a w.r.t. η.

Definition 3.2.4 (Binding Consistency) An equivalence relation on assignments ≡·G is
binding consistent if, for any formula ϕ = (a, x)η and ϕ-coherent assignments χ, χ ∈ Asg,
we have that χ ≡ϕGχ iff χ[a 7→χ(x)]≡ηGχ[a 7→χ(x)].

To get familiar with the above concept, consider the formula [ψ, where [,

(A, x)(P, y)(P, y), and let χ, χ, χ ∈ Asg({x, y, y}) be the assignments assuming as
values the strategies χi(x) , σAi and χi(yj) , σ

Pj
i previously defined, where i ∈ {1, 2, 3}

and j ∈ {1, 2}. Then, by definition, it is immediate to see that χ ≡[ψG χ, but χ6≡[ψG χ.
Before continuing with the analysis of the equivalence, it is important to make an obser-

vation about the dual nature of the existential and universal quantifiers w.r.t. the counting of
strategies. We do this by exploiting the classic game-semantics metaphor originally proposed
for first-order logic by Lorenzen and Hintikka, where the choice of an existential variable is
done by a player called ∃ and that of the universal ones by its opponent ∀. Consider a sentence

53

3.2. Strategy Equivalence

〈〈x≥g1〉〉[[x<g2]]η, having 〈〈y≥h1〉〉η1 and [[y<h2]]η2 as two subformulas in η. When
player ∃ tries to choose h1 different strategies y to satisfy η1, it has also to maximize the
number of strategies x verifying [[x<g2]]η to be sure that the constraint ≥ g1 of the first
quantifier is not violated. At the same time, player ∀ tries to do the opposite while choosing
h2 different strategies y not satisfying η2, i.e., it needs to maximize the number of strategies
x falsifying η in order to violate the constraint < g2 of the second quantifier.

With this observation in mind, we can now treat the equivalence for the existential
quantifier. Two assignments χ and χ are equivalent w.r.t. a formula ϕ=〈〈x≥g〉〉η if player
∃ is not able to find a strategy σ among those satisfying η, to associate with the variable x,
that allows the corresponding extensions of χ and χ on x to induce different behaviors w.r.t.
η itself. In other words, ∃ cannot distinguish between the two assignments, as they behave the
same independently from the way they are extended.

Definition 3.2.5 (Existential Consistency) An equivalence relation on assignments
≡·G is existentially consistent if, for any formula ϕ = 〈〈x ≥ g〉〉η and ϕ-coherent assignments
χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for each strategy σ ∈ η[G, χ](x) ∪ η[G, χ](x), it
holds that χ[x 7→ σ]≡ηGχ[x 7→ σ].

To clarify the above definition, consider the formula ϕ = 〈〈y≥2〉〉[ψ and let χ, χ, χ ∈
Asg({x, y}) be the three assignments assuming as values the strategies χi(x) , σAi and
χi(y) , σ

P
i previously defined, where i ∈ {1, 2, 3}. It is possible to see that χ≡ϕGχ, but

χ6≡ϕGχ. By definition, χ≡ϕGχ iff, for each strategy σ ∈ ([ψ)[G, χ](y)∪([ψ)[G, χ](y),

it holds that χ[y 7→ σ]≡[ψG χ[y 7→ σ]. Now, observe that the strategy σP introduced above
is the unique one that allows χ and χ to satisfy [ψ once extended on y. At this point, we can
easily show that χ[y 7→ σP]≡[ψG χ[y 7→ σP], as the the derived complete assignments
χ[y 7→ σP]◦ [and χ[y 7→ σP]◦ [induce the same play (I ·W)ω. The non-equivalence of
χ and χ easily follows from the fact that σP 6∈([ψ)[G, χ](y), as χ[y 7→σP]◦[induces
the play I · 2ω that does not satisfy ψ. Thus, χ[y 7→σP] 6≡[ψG χ[y 7→σP].

We conclude with the equivalence for the universal quantifier. Two assignments χ and
χ are equivalent w.r.t. a formula ϕ = [[x<g]]η if, for each index i ∈ {1, 2} and strategy σi
player ∀ chooses among those satisfying η under χi, there is a strategy σ−i this player can
choose among those satisfying η under χ−i such that, once the two strategies are associated
with the variable x, they make the corresponding extensions of assignments equivalent w.r.t.
η. This means that the parts of the game structure that are reachable under χ and χ contain
exactly the same information w.r.t. the verification of the inner formula. In other words, ∀
cannot distinguish between the two assignments, as the induced subtrees of possible plays are
practically the same.

Definition 3.2.6 (Universal Consistency) An equivalence relation on assignments
≡·G is universally consistent if, for any formula ϕ = [[x < g]]η and ϕ-coherent assignments

54

Chapter 3. Graded Strategy Logic

χ, χ ∈ Asg, we have that χ ≡ϕGχ iff, for each i ∈ {1, 2} and strategy σi ∈ η[G, χi](x),
there is a strategy σ−i ∈ η[G, χ−i](x) such that χ[x 7→ σ]≡ηGχ[x 7→ σ].

Finally, to better understand the above definition, consider the formula ϕ= [[y< 1]]η,
where η=[[y<2]][ψ, and let χ, χ, χ ∈ Asg({x}) be the three assignments assuming as
values the strategies χi(x) , σAi previously defined, where i ∈ {1, 2, 3}. We can now see
that χ≡ϕGχ, but χ 6≡ϕGχ. First, observe that η[G, χ](y) = η[G, χ](y) = Str. Indeed,
for all strategies σ ∈ Str, we have that G, χ[y 7→ σ] |= η and G, χ[y 7→ σ] |= η, since
G, χ[y 7→ σ, y 7→ σ′] |= [ψ and G, χ[y 7→ σ, y 7→ σ′] |= [ψ, for all σ′ ∈ Str such
that σ 6= σ′. This is due to the fact that the plays π and π induced by the two complete
assignments χ[y 7→σ, y 7→σ′] ◦ [and χ[y 7→σ, y 7→σ′] ◦ [differ from (I+ · W)∗ · Iω

and (I+ · W)ω, as the strategies of the two processes are different. Also, they share a common
prefix ρ = prf(π, π) belonging to Wψ, since the strategies of the arbiter only differ on
the histories ending in the state 2/1. We can now show that χ and χ are equivalent, by
applying the above definition in which we assume that σi = σ−i. To prove that χ and
χ are non-equivalent, we show that there is a strategy σ ∈ η[G, χ](y) for χ such that,
for all strategies σ′ ∈ η[G, χ](y) for χ, it holds that χ[y 7→ σ] 6 ≡ηGχ[y 7→ σ′]. As
before, observe that η[G, χ](y) = η[G, χ](y) = Str and choose σ ∈ Str as the strategy
σP previously defined. At this point, one can easily see that all plays compatible with
χ[y 7→σ] ◦ [pass through either I · 1 or I · W · 2/1, while a play compatible with χ ◦ [
cannot pass through the latter history. Thus, the non-equivalence of the two assignments
immediately follows.

3.3 Main Results

In this section, we address two fundamental questions about GSL[1G] over turn-based game
structures, namely, determinacy and model checking. For the sake of clarity of exposition, we
restrict our attention to the case of 2 agents only. Also, for complexity reasons, we provide
a procedure for a vanilla fragment of the logic in which all temporal properties are used as
in CTL and ATL. The whole logic will be then object of the extended version of this work.
Observe that, by applying a conversion from concurrent to turn-based structures similar to the
one described in [MMS14], we can lift our model-checking procedure to the more complex
context of concurrent games.

3.3.1 Determinacy

Recall that the determinacy has been first proved for classic Borelian turn-based two-player
games in [Mar75]. However, the proof used there does not directly apply to our graded
setting. To give an evidence of the differences between the two frameworks, observe that

55

3.3. Main Results

in SL[1G, 2AG] sentences of the kind 〈〈x〉〉[[x]]η imply [[x]]〈〈x〉〉η, while in GSL[1G, 2AG] the
corresponding implication 〈〈x ≥ i〉〉[[x < j]]η ⇒ [[x < j]]〈〈x ≥ i〉〉η does not hold. The
determinacy property we are interested in is exactly the converse direction, i.e., [[x<j]]〈〈x≥
i〉〉η ⇒ 〈〈x≥ i〉〉[[x < j]]η. In particular, we extend the Gale-Stewart Theorem [PP04], by
exploiting a deep generalization of the technique used in [FNP09a]. The idea consists of a
fixed-point calculation over the number of winning strategies an agent can select against all
but a fixed number of those of its opponent. Regarding this approach, we observe that the
simpler counting considered in [FNP09a] is restricted to existential quantifications.

Construction 3.3.1 (Grading Function) Consider a two-agent turn-based game structure
G with Ag = {α, α}. Moreover, let ψ be an LTL formula, where Wψ,W¬ψ ⊆ Hst denotes
the witness sets for ψ and ¬ψ, respectively. It is immediate to see that, in case sI ∈Wψ (resp.,
sI ∈W¬ψ), all strategy profiles are equivalent w.r.t. the temporal property ψ (resp., ¬ψ). If
sI ∈ X , Hst \ (Wψ ∪W¬ψ), instead, we need to introduce a grading function Gαψ : X→ Γ,
where Γ , N→ (N ∪ {ω}), that allows to determine how many different strategies the agent
α (resp., α) owns w.r.t. ψ (resp., ¬ψ). Informally, Gαψ(ρ)(j) represents the number of winning
strategies player α can put up against all but at most j strategies of its adversary α, once the
current play has already reached the history ρ ∈ X. Before continuing, observe that α has
sometimes the possibility to commit a suicide, i.e., to choose a strategy leading directly to a
history in W¬ψ, with the hope to win the game by collapsing all strategies of its opponent into
a unique class. The set of histories enabling this possibility is defined as follows: S , {ρ ∈ X

: ∃ρ′ ∈W¬ψ . ρ < ρ′ ∧ ∀ρ′′ ∈ Hst . ρ ≤ ρ′′ < ρ′ ⇒ ρ′′ ∈ Hstα}, where Hstα = {∀ρ ∈ Hst

: ag(lst(ρ)) = {α}} is the set of histories ending in a state controlled by α. Intuitively, this
agent can autonomously extend a history ρ ∈ S into one ρ′ ∈ W¬ψ that is surely loosing,
independently from the behavior of α. Note that there may be several suicide strategies, but
all of them are equivalent w.r.t. the property ψ. Also, against them, all counter strategies of
α are equivalent as well. At this point, to define the function Gαψ, we introduce the auxiliary
functor Fαψ : (X→ Γ)→ (X→ Γ), whose least fixpoint represents a function returning the
maximum number of different strategies α can use against all but a precise fixed number of
counter strategies of α. Formally, we have that:

Fαψ(f)(ρ)(j) ,


∑

ρ′∈suc(ρ)∩X f(ρ′)(j)+|suc(ρ)∩Wψ|, ifρ∈Hstαand j=0;∑
ρ′∈suc(ρ)∩X f(ρ′)(j), ifρ∈Hstαand j>0;∑
c∈C(ρ)(j)

∏
ρ′∈dom(c) f(ρ

′)(c(ρ′)), otherwise;

where suc(ρ) = {ρ′ ∈ Hst : ∃s ∈ St. ρs = ρ′} and C(ρ)(i) ⊆ (suc(ρ) ∩ Z) ⇀ N contains
all partial functions c ∈ C(ρ)(i) for which α owns a suicide strategy on the histories not in
their domains, i.e., (suc(ρ) ∩ Z) \ dom(c) ⊆ S, and the sum of all values assumed by c plus
the number of successor histories that are neither surely winning nor contained in the domain

56

Chapter 3. Graded Strategy Logic

of c equals to i, i.e., i =
∑

ρ′∈dom(c) c(ρ
′) + |suc(ρ) \ (X ∪ dom(c))|. Intuitively, the first

item of the definition simply asserts that the number of strategies F(f)(ρ)(0) that agent α has
on the α-history ρ, without excluding any counter strategy of its adversary, is obtainable as
the sum of the f(ρ′)(0) strategies on the successor histories ρ′ ∈ X plus a single strategy for
each successor history that is surely winning. Similarly, the second item takes into account
the case in which we can avoid exactly j counter strategies. The last item, instead, computes
the number of strategies for α on the α-histories. In particular, through the set C(ρ)(j), it
first determines in how many ways it is possible to split the number j of counter strategies
to avoid among all successor histories of ρ. Then, for each of these splittings, it calculates
the product of the corresponding numbers f(ρ′)(c(ρ′)) of strategies for α. We are finally able
to define the grading function Gαψ by means of the least fixpoint f? = Fαψ(f?) of the functor
Fαψ as follows: Gαψ(ρ)(j),

∑j
h=0 f

?(ρ)(h)+[ρ∈S ∧ j≥1]. Intuitively, Gαψ(ρ)(j) is the sum
of the numbers f?(ρ)(h) of winning strategies the agent α can exploit against all but exactly
h strategies of its adversary α, for each h ∈ [0, j]. Moreover, if ρ ∈ S, we need to add to
this counting the suicide strategy that α can use once α avoids to apply his unique counter
strategy. This is formalized through the standard notation [ð] [GKP94] that is evaluated to 1,
if the condition ð is true, and to 0, otherwise.

Thanks to the above construction, one can compute the maximum number of strategies
that a player has at its disposal against all but a fixed number of strategies of the opponent.
Next lemma, whose statement can be constructively proved by transfinite induction on
the recursions of the functor Fαψ, precisely describes this fact. Indeed, we show how the
satisfiability of a GSL[1G, 2AG] sentence 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ can be decided via
the computation of the associated grading function Gαψ.

Lemma 3.3.1 (Grading Function) Let G be a two-agent
turn-based game structure, where Ag = {α, α}, and ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)ψ a
GSL[1G, 2AG] sentence. Moreover, let Gαψ be the grading function and Wψ,W¬ψ,X ⊆ Hst

the sets of histories obtained in Construction 3.3.1. Then, G |= ϕ iff one of the following
three conditions hold: (i) i ≤ 1, j ≥ 0, and sI ∈Wψ; (ii) i ≤ 1, j ≥ 1, and sI ∈W¬ψ; (iii)
i ≤ Gαψ(sI)(j) and sI ∈ X.

Again by transfinite induction on its recursive structure, we can prove a quite natural but
fundamental property of the grading function, i.e., its duality in the form described in the
next lemma. To give an intuition, assume that agent α has at most j strategies to satisfy the
temporal property ¬ψ against all but at most i strategies of its adversary α. Then, it can be
shown that the latter has more than i strategies to satisfy ψ against all but at most j strategies
of the former.

57

3.3. Main Results

Lemma 3.3.2 (Grading Duality) Let Gαψ and Gα¬ψ be the grading functions and X ⊆ Hst

the set of histories obtainable by Construction 3.3.1. For all histories ρ ∈ X and indexes
i, j ∈ N, it holds that if Gα¬ψ(ρ)(i) ≤ j then i < Gαψ(ρ)(j).

Summing up the above two results, we can easily prove that, on turn-based game structures,
GSL[1G, 2AG] is determined. Indeed, suppose that sI ∈ X and G |= [[x ≤ j]]〈〈x ≥ i〉〉[ψ,
where [= (α, x)(α, x) (the case with sI ∈Wψ immediately follows from classic Martin’s
Determinacy Theorem [Mar75, Mar85]). Obviously, G does not satisfy the negation of this
sentence, i.e., G 6|= 〈〈x ≥ j + 1〉〉[[x ≤ i− 1]][¬ψ. Consequently, by Lemma 3.3.1, we have
that Gα¬ψ(sI)(i − 1) ≤ j. Hence, by Lemma 3.3.2, it follows that i ≤ Gαψ(sI)(j). Finally,
again by Lemma 3.3.1, we obtain that G |= 〈〈x ≥ i〉〉[[x ≤ j]][ψ, as required by the definition
of determinacy.

Theorem 3.3.1 (Determinacy) GSL[1G, 2AG] on turn-based game structures is determined.

3.3.2 Model Checking

We finally describe a solution of the model-checking problem for the above mentioned frag-
ment of GSL[1G, 2AG], which only admits simple temporal properties, i.e., ϕ1Uϕ2, ϕ1Rϕ2,
and Xϕ, where ϕ1, ϕ2, and ϕ are sentences. This fragment, called Vanilla GSL[1G, 2AG], is
in relation with GSL[1G, 2AG], as CTL and ATL are for CTL? and ATL?, respectively.

The idea here is to exploit the characterization of the grading function stated in
Lemma 3.3.1 in order to verify whether a game structure G satisfies a sentence ϕ = 〈〈x ≥ i〉〉
[[x ≤ j]](α, x)(α, x)ψ, while avoiding the naive infinite calculation of Fαψ least fixpoint. For-
tunately, due to the simplicity of the temporal property ψ, we have that the four sets Wψ,
W¬ψ, X, and S previously introduced are memoryless, i.e., if a history belongs to them, every
other history ending in the same state is also a member of these sets. Therefore, we can focus
only on states by defining Wψ , {s ∈ St : G, s |= Aψ}, W¬ψ , {s ∈ St : G, s |= A¬ψ},
X , St \ (Wψ ∪W¬ψ), and S , {s ∈ St : G, s |= E(αUA¬ψ)} via very simple CTL
properties. Intuitively, Wψ and W¬ψ contain the states from which agents α and α can ensure,
independently from the adversary, the properties ψ and ¬ψ, respectively. The set X, instead,
contains the states on which we have still to determine the number of strategies at disposal
of the two agents. Finally, S maintains the suicide states, i.e., those states from which α can
commit suicide by autonomously reaching W¬ψ. In addition, since at most j strategies of
α can be avoided while reasoning on the sentence ϕ, we need just to deal with functions in
the set Γ , [0, j]→ (N ∪ {ω}) instead of Γ , N→ (N ∪ {ω}). Consequently, the functor
Fαψ : (X→ Γ)→ (X→ Γ) can be redefined as follows:

58

Chapter 3. Graded Strategy Logic

F(f)(s)(h) ,


∑

s′∈suc(s)∩X f(s′)(h)+|suc(s)∩Wψ|, ifs∈Stαand h=0;∑
s′∈suc(s)∩X f(s′)(h), ifs∈Stαand h>0;∑
c∈C(s)(h)

∏
s′∈dom(c) f(s

′)(c(s′)), otherwise;

where suc(s)={s′∈St : (s, s′)∈Ed} and C(s)(i) ⊆ (suc(s) ∩ Z) ⇀ N contains all partial
functions c ∈ C(s)(i) for which α owns a suicide strategy on the states not in their domains,
i.e., (suc(s) ∩ Z) \ dom(c) ⊆ S, and the sum of all values assumed by c plus the number of
successors that are neither surely winning nor contained in the domain of c equals to i, i.e.,
i=

∑
s′∈dom(c)c(s

′)+ |suc(s)\(X∪dom(c))|. Similarly, the grading function Gαψ : X→ Γ

becomes Gαψ(s)(h),
∑h

l=0 f
?(s)(l) + [s ∈ S ∧ h ≥ 1], where f? is the least fixpoint of Fαψ.

Unfortunately, these redefinitions are not enough by their own to ensure that the fixpoint
calculation can be done in a finite, possibly small, number of iterations of the functor. This is
due to two facts: the functions in Γ have an infinite codomain and the game structure G have
cycles inside. In order to solve such a problem, we make use of the following observation.
Suppose that agent α has at least one strategy on one of its states s ∈ Stα that is also part
of a cycle in which no state of its opponent α is adjacent to the set W¬ψ. Then, α can
use this cycle from s to construct an infinite number of nonequivalent strategies, by simply
pumping-up the number of time he decides to traverse it before following the previously
found strategy. Therefore, in this case, we avoid to compute the infinite number of iterations
required to reach the fixpoint, by directly assuming ω as value. Formally, we introduce the
functor I : (X → Γ) → (X → Γ) defined as follows, where L ⊆ Stα denotes the set of
α-states belonging to a cycle of the above kind: I(f)(s)(h) = ω, if s ∈ L and f(s)(h) > 0,
and I(f)(s)(h) = f(s)(h), otherwise, for all s ∈ St and h ∈ [0, j]. At this point, by induction
on the ordering and topology of the strong connected components of the underlying game
structure, we can prove that f? = (I ◦ Fαψ)(f?) iff f? = Fαψ(f?), i.e., the functor obtained by
composing I and Fαψ have exactly the same fixpoint of Fαψ alone. Moreover, f? = (I ◦ Fαψ)n(f)

where j · |G| ≤ n and f is the zero function, i.e., f(s)(h) = 0, for all s ∈ St and h ∈ [0, j].
Hence, we can compute f? in a number of iterations of I ◦ Fαψ that is linear in both the degree
j and the size of G. We want to finally observe that the computation of the set L can be done
in quadratic time by using a classic Büchi procedure.

As an example of application of the model-checking procedure, consider the two-agent
turn-based game structure G depicted in Figure 3.2, with the circle states ruled by α, the
square ones by its opponent α, and where s and s are labeled by the atomic proposition p.
Also, consider the vanilla GSL[1G, 2AG] sentence ϕ = 〈〈x ≥ i〉〉[[x ≤ j]](α, x)(α, x)Fp. As
first thing, we need to compute the five preliminary sets of states WFp = {s, s} (the light-
gray area), W¬Fp = {s, s} (the dark-gray area), X = {s, s, s, s, s} (the white area
partitioned into strong-connected components), S = {s, s}, and L = {s}. At this point,
we can evaluate the fixpoint f? of the functor I◦Fαψ that can be obtained, due to the topology of

59

3.3. Main Results

s

s s

s

s s

s

s s

α 7→0

α 7→1

α 7→2

α 7→0

α 7→1
α 7→2 α 7→0

α 7→1

α 7→0

α 7→1

α 7→0

α 7→1
α 7→0

α 7→1

∅

α 7→0

α 7→1

α 7→0

α 7→1

Figure 3.2: A two-player turn-based game structure.

G, after seven iterations, i.e., f? = (I◦Fαψ)7(f). Indeed, at the first one, the values on the states
s and s are stabilized to f?(s)(0) = 1, f?(s)(0) = ω, and f?(s)(h) = f?(s)(h) = 0,
for all h ∈ [1, j]. After six iterations, we obtain f?(s)(0) = 0, f?(s)(h) = ω, for all
h ∈ [1, j], and f?(s)(h) = ω, for all h ∈ [0, j]. By computing the last iteration, we derive
f?(s)(0) = 1 and f?(s)(h) = ω, for all h ∈ [1, j]. Note that 7 is exactly the sum 1 + 5 + 1

of iterations that the components of the longest chain {s} < {s, s} < {s} need in order
to stabilize the values on their states. Finally, we can verify whether G |= ϕ, by computing
the grading function GαFp at s, whose values are GαFp(s)(0) = 1 and GαFp(s)(h) = ω, for all
h ∈ [1, j]. Thus, we have that G |= ϕ iff i = 1 or j > 0.

In order to obtain a PTIME procedure, we have also to ensure that each evaluation of the
composed functor I ◦ Fαψ can be computed in PTIME w.r.t. the above mentioned parameters.
Actually, the whole I and the first two items of Fαψ can be easily calculated in linear time.
On the contrary, the last item may in general require a sum of an exponential number of
elements. Indeed, due to all possible ways a degree j can be split among the successors of
a state s, we have that the corresponding set C(s)(j) may contain an exponential number
of functions. To avoid such a problem, exploiting a technique similar to the one proposed
in [BMM10, BMM12], we can linearly transform every game structure into an equivalent one,
where all states ruled by α have degree at most 2. In this way, the cardinality of C(s)(j) is

60

Chapter 3. Graded Strategy Logic

s s

s

s

s

s

s

s

s

s

α 7→0

α 7→1

α 7→2

α 7→0 α 7→#

α 7→0

α 7→#

α 7→1

α 7→2

α 7→0

Figure 3.3: Degree transformation.

bounded by j. For example, consider the left part of Figure 3.3 representing the substructure
of the previous game structure G induced by the state s together with its three successors. It
is not hard to see that we can replace it, in G, by the binary graph at its right, without changing
the number of strategies that the two agents have at their disposal.

Theorem 3.3.2 (Model Checking) The model-checking problem for Vanilla GSL[1G, 2AG]

is PTIME-COMPLETE w.r.t. both the size of the game structure and the sentence.

3.4 Discussion

In many multi-agent systems several agents simultaneously compete for the achievement of
an individual or conjoint goal. General questions often investigated in these settings are: is
there a winning strategy? Or, is the game surely winning?. Recently, opportune logics for the
strategic reasoning have been introduced for the specification of goals and through a suitable
application of classical existential and universal modalities it has been possible to address
positively the above questions [AHK02].

In game settings, however, questions of equal interest are: is the winning strategy unique?
what is the success rate of the game? is it true that all but k strategies for an agent are
winning? These questions are critical in addressing questions related to fundamental solution
concepts. For example in Nash Equilibrium uniqueness may provide further insights about
the properties of the equilibrium itself[Mye91]. Similarly, knowing that k strategies are not
winning at a certain round of a game while they become k − 1 at the successive round can
give insights about the way the competitive agents play. Unfortunately, standard methods to
investigate both non-uniqueness and non-universality of strategies are either very restrictive
or difficult to evaluate due to the complex combination of moves the agents can take [Mye91].

To answer all above questions we have introduced in this chapter GSL, an extension of
Strategy Logic along with graded modalities and investigated basic game-theoretic questions
along it. The use of a powerful formalism such as Strategy Logic ensures the ability of

61

Conclusion

dealing with very intricate game scenarios [MMPV14]. The obvious drawback of this is a
considerable amount of work on solving any related question [MMPV12]. One of the main
difficulties we have faced in GSL has been the definition of the right methodology to count
strategies. To this aim, we have introduced a suitable equivalence relation over strategy
profiles based on the strategic behavior they induce and studied its robustness. Also, we have
provided arguments and examples along this chapter to give an evidence of the usefulness of
GSL and the suitability of the proposed counting.

In order to provide results of practical use, we have investigated basic questions over
a restricted fragment of GSL. Precisely we have considered the case in which the graded
modalities are applied to the vanilla restriction of the one-goal fragment of SL [MMPV12].
The resulting logic, named Vanilla SL[1G], has been investigated in the turn-based setting. We
have obtained positive results about determinacy and showed that the related model-checking
problem is PTIME-COMPLETE.

The framework and the results presented in this chapter open for several future work
questions. First, it would be worth investigating the extension of existing formal verification
tools such as MCMAS [LR06] along with our results. We recall that MCMAS, originally
developed for the verification for multi-agent models with respect to specification given in
ATL [LR06], has been recently extended to handle Strategy Logic specifications [ČLMM14].
Under our formalism it is possible, in one round, to report that more than a strategy gives a
fault and possibly correct all of them. This in a way similar as the verification tool NuSMV
has been extended to deal with graded-CTL verification [FNP09a]. Another research direction
regards investigating the graded extension of other formalism for the strategic reasoning
such as ATL with context [BLLM09, LLM10], as well as, for the sake of completeness, to
determine the complexity of the model checking problem with respect other fragments of
Strategy Logic[MMPV14].

62

Conclusion

This thesis reports the results of three years of a continuous research work made under
the supervision of Prof. Aniello Murano and in collaboration with other colleagues of the
university of Napoli . The work has mainly concerned with quantitative aspects in open-
system specification, that has allowed us to introduce different new formalisms and algorithms
in this setting. Precisely, we have considered both the case in which the specification is glued
with the system model (the first part of the thesis) and the case in which it comes as an external
formalism (the second part of the thesis).

In the former case, the quantitative requirements we have considered regard the timing
aspects of the system, i.e., the elapsing of the time between the start of a particular task and
its accomplishment. Specifically, we have worked on several variants of parity games in
which the quantitative requirements was added to the classic qualitative one. The solution of
the considered specification (properly, winning conditions) have required ad hoc polynomial
reductions to either a Büchi or a Parity Game. Therefore, all the solutions we propose, are
optimal with respect to the known complexities to solve Büchi and Parity Games.

In the second part of the thesis we have concentrate on multi-agent (open) systems with
external quantitative specification. Precisely, we have introduced Graded Strategy Logic, an
extension of Strategy Logic, in order to count different strategies that an agent has available to
verify a given formula. The main difficulty in this setting has been to come out with a suitable
“semantic” counting over strategies. To this aim we have introduced an ad hoc equivalence
relation over strategies and proved to be robust and efficient for our aim. To give an evidence
of the usefulness of the introduced framework we have considered a fragment of Graded
Strategy Logic and proved that its model checking is solvable in PTIME.

Both the internal and external quantitative specifications we have considered are new and
open two different lines of research that, in our opinion, are prone to significant and future
improvements. In the internal case setting, one can consider additional or more sophisticated
values along the model. For example, one can consider to enrich the model with values
that record some energy consumption (as in energy parity game [CD10]) or to use multiple
values. Also, another interesting developments concerns to extend the prompt reasoning to
infinite state systems by considering, for example, Pushdown Parity Games [Wal01, ALM+13,
BSW03] or inject a prompt µ-calculus modal logic (instead of LTL) to have a proper prompt
parity extension of Strategy Logic.

In the external specification setting, the work done can be considered as a solid and robust
core-engine machinery to deal with sophisticated solution concepts. As next natural step
one may would extend our framework to reacher fragments of Graded Strategy Logic. Also
it would be useful to implement it in some well-known tools, such as MCMAS [ČLMM14,

Conclusion

LR06] that so far are only able to evaluate qualitative aspects of Strategy Logic. This is just
left as future work.

64

Bibliography

[Ada09] Adam Antonik and Nathaniel Charlton and Michael Huth. Polynomial-time
under-approximation of winning regions in parity games. ENTCS, 225:115–139,
2009.

[AH98] R. Alur and T. A. Henzinger. Finitary fairness. ACM Trans. Program. Lang.
Syst., 20(6), 1998.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
JACM, 49(5):672–713, 2002.

[AHK10] S. Almagor, Y. Hirshfeld, and O. Kupferman. Promptness in omega-Regular
Automata. In ATVA’10, LNCS 7388, pages 22–36, 2010.

[AKM12] B. Aminof, O. Kupferman, and A. Murano. Improved model checking of
hierarchical systems. Inf. Comput., pages 68–86, 2012.

[ALM+13] B. Aminof, A. Legay, A. Murano, O. Serre, and M. Y. Vardi. Pushdown module
checking with imperfect information. Inf. Comput., 223:1–17, 2013.

[AMM11] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems. In
FACS ’11, LNCS, pages 42–60. Springer, 2011.

[AMM13] B. Aminof, F. Mogavero, and A. Murano. Synthesis of hierarchical systems.
Science of Comp. Program., 83:56–79, 2013.

[Ant14] Antonio Di Stasio and Aniello Murano and Vincenzo Prignano and Loredana
Sorrentino. Solving Parity Games in Scala. pages 145–161, 2014.

[ATO+09] T. Antal, A. Traulsen, H. Ohtsuki, C.E. Tarnita, and M.A. Nowak. Mutation-
Selection Equilibrium in Games with Multiple Strategies. 258(4):614–622,
2009.

[Bar11] Barringer, Howard and Havelund, Klaus. TraceContract: A Scala DSL for trace
analysis. Springer, 2011.

[Ber01] Berger, Emery D and Zorn, Benjamin G and McKinley, Kathryn S. Composing
high-performance memory allocators. 36(5):114–124, 2001.

[Ber07] D. Berwanger. Admissibility in infinite games. In STACS’07, pages 188–199,
2007.

Conclusion

[Ber13] Berger, Emery D and Zorn, Benjamin G and McKinley, Kathryn S. OOPSLA
2002: Reconsidering custom memory allocation. ACM SIGPLAN Notices,
48(4):46–57, 2013.

[BLLM09] T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. Atl with strategy
contexts and bounded memory. In LFCS ’09, LNCS 5407, pages 92–106.
Springer, 2009.

[BMM09] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In
LICS’09, pages 342–351. IEEE Computer Society, 2009.

[BMM10] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic with
Binary Coding. In CSL’10, LNCS 6247, pages 125–139. Springer, 2010.

[BMM12] A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic.
Association for Computing Machinery, 2012.

[BSW03] A.-J. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with unbounded-
ness and regular conditions. In FSTTCS, pages 88–99, 2003.

[CD10] K. Chatterjee and L. Doyen. Energy Parity Games. CoRR, abs/1001.5183, 2010.

[CD12] K. Chatterjee and L. Doyen. Energy parity games. Theor. Comput. Sci., 458:49–
60, 2012.

[CDHR10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-
payoff and energy games. In FSTTCS’10, LIPIcs 8, pages 505–516, 2010.

[CE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In LP’81, LNCS 131, pages
52–71, 1981.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.

[CHH09] K. Chatterjee, T. A. Henzinger, and F. Horn. Finitary winning in ω-regular
games. ACM Trans. Comput. Logic, 11(1), 2009.

[CHJ05] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-payoff parity games.
In LICS’05, pages 178–187, 2005.

[CHP07] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR’07,
LNCS 4703, pages 59–73. Springer, 2007.

[CJH04] K. Chatterjee, M. Jurdzinski, and T. A. Henzinger. Quantitative stochastic parity
games. In SODA’04, pages 121–130, 2004.

66

Conclusion

[CLM15] P. Cermák, A. Lomuscio, and A. Murano. Verifying and Synthesising Multi-
Agent Systems against One-Goal Strategy Logic Specifications. 2015.

[ČLMM14] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A
Model Checker for the Verification of Strategy Logic Specifications. In CAV’14,
LNCS 8559, pages 524–531. Springer, 2014.

[DL+08] S. N. Durlauf, B. Lawrence, et al. The new Palgrave dictionary of economics.
2008.

[EJ88] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of
Programs (Extended Abstract). pages 328–337, 1988.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In
FOCS’91, pages 368–377, 1991.

[Fin72] K. Fine. In So Many Possible Worlds. NDJFL, 13:516–520, 1972.

[FMP08] A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Checking.
LMCS, 4(3):1–21, 2008.

[FNP09a] A. Ferrante, M. Napoli, and M. Parente. Graded-CTL: Satisfiability and Sym-
bolic Model Checking. In ICFEM’10, LNCS 5885, pages 306–325. Springer,
2009.

[FNP09b] A. Ferrante, M. Napoli, and M. Parente. Model Checking for Graded CTL. FI,
96(3):323–339, 2009.

[Fri09] Friedmann, Oliver and Lange, Martin. The PGSolver collection of parity game
solvers. University of Munich, 2009.

[FZ12] N. Fijalkow and M. Zimmermann. Cost-parity and cost-streett games. In
FSTTCS’12, pages 124–135, 2012.

[Gay98] Gay, David and Aiken, Alex. Memory management with explicit regions. 33(5),
1998.

[GHJV94] E. Gammaand, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Pearson Education, 1994.

[GKP94] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics - A Founda-
tion for Computer Science (2nd ed.). 1994.

[GOR97] E. Grädel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In LICS’97, pages 306–317. IEEE Computer Society, 1997.

67

Conclusion

[HB91] B. Hollunder and F. Baader. Qualifying Number Restrictions in Concept Lan-
guages. In 91, pages 335–346, 1991.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and
models of concurrent systems. NATO Advanced Summer Institutes vol. F-13.,
pages 477–498. Springer, New York, NY, USA, 1985.

[HTW08] F. Horn, W. Thomas, and N. Wallmeier. Optimal strategy synthesis in request-
response games. In ATVA’08, LNCS 5311, pages 361–373, 2008.

[Hun11] Hundt, Robert. Loop recognition in c++/java/go/scala. Proceedings of Scala
Days, 2011, 2011.

[Jen00] Jens Vöge and Marcin Jurdzinski. A Discrete Strategy Improvement Algorithm
for Solving Parity Games. pages 202–215, 2000.

[Jur98] M. Jurdzinski. Deciding the winner in parity games is in up ∩ co-up. Inf. Process.
Lett., 68(3):119–124, 1998.

[Kel76] R.M. Keller. Formal verification of parallel programs. CACM, 19(7):371–384,
1976.

[KMM06] O. Kupferman, G. Morgenstern, and A. Murano. Typeness for omega-regular
automata. Int. J. Found. Comput. Sci., 17(4):869–884, 2006.

[Koz83] D. Kozen. Results on the Propositional mu-Calculus. TCS, 27(3):333–354,
1983.

[KPV09] O. Kupferman, N. Piterman, and M. Y. Vardi. From liveness to promptness.
Formal Methods in System Design, 34(2):83–103, 2009.

[Kri63] S.A. Kripke. Semantical Considerations on Modal Logic. APF, 16:83–94, 1963.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded
µ-Calculus. In CADE’02, LNCS 2392, pages 423–437. Springer, 2002.

[KV97] O. Kupferman and M. Y. Vardi. Module checking revisited. In CAV’97, volume
1254 of LNCS, pages 36–47, 1997.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic Approach to
Branching-Time Model Checking. JACM, 47(2):312–360, 2000.

[KVW01] O.Kupferman, M.Vardi, and P.Wolper. Module Checking. IC,164(2):322–344,
2001.

68

Conclusion

[LLM10] A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts:
Expressiveness and Model Checking. In FSTTCS’10, LIPIcs 8, pages 120–132,
2010.

[LR06] A. Lomuscio and F. Raimondi. Model Checking Knowledge, Strategies, and
Games in Multi-Agent Systems. In AAMAS’06, pages 161–168, 2006.

[Luc00] Luca de Alfaro and Thomas A. Henzinger and Freddy Y. C. Mang. The Control
of Synchronous Systems. pages 458–473, 2000.

[Mar75] A.D. Martin. Borel Determinacy. AM, 102(2):363–371, 1975.

[Mar85] A.D. Martin. A Purely Inductive Proof of Borel Determinacy. In SPM’82, Recur-
sion Theory, pages 303–308. American Mathematical Society and Association
for Symbolic Logic, 1985.

[Mar93] Martı́n Abadi and Leslie Lamport. Composing Specifications. ACM Trans.
Program. Lang. Syst., 15(1):73–132, 1993.

[Mar00] Marcin Jurdzinski. Small Progress Measures for Solving Parity Games. pages
290–301, 2000.

[Mar08] Marcin Jurdzinski and Mike Paterson and Uri Zwick. A Deterministic Subexpo-
nential Algorithm for Solving Parity Games. SIAM J. Comput., 38(4):1519–1532,
2008.

[McN93] McNaughton, Robert. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65(2):149–184, 1993.

[MMPV12] F.Mogavero,A.Murano,G.Perelli, andM.Y.Vardi. What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logic. In CONCUR’12, LNCS 7454, pages
193–208. Springer, 2012.

[MMPV14] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning About Strate-
gies: On the Model-Checking Problem. ACM Trans. Comput. Log., 15(4):34,
2014.

[MMS13] F. Mogavero, A. Murano, and L. Sorrentino. On promptness in parity games. In
LPAR, pages 601–618, 2013.

[MMS14] F. Mogavero, A. Murano, and L. Sauro. Strategy Games: A Renewed Framework.
In AAMAS’14, pages 869–876, 2014.

[MMV10] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In
FSTTCS’10, LIPIcs 8, pages 133–144, 2010.

69

Conclusion

[Mos87] Andrzej Wlodzimierz Mostowski. Hierarchies of weak monadic formulas for two
successors arithmetic. Elektronische Informationsverarbeitung und Kybernetik,
23(10/11):509–515, 1987.

[Mye91] R.B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
1991.

[Ode04] Odersky, Martin and Altherr, Philippe and Cremet, Vincent and Emir, Burak
and Maneth, Sebastian and Micheloud, Stéphane and Mihaylov, Nikolay and
Schinz, Michel and Stenman, Erik and Zenger, Matthias. An overview of the
Scala programming language. 2004.

[Ode08] Odersky, Martin and Spoon, Lex and Venners, Bill. Programming in scala.
Artima Inc, 2008.

[Oli09] Oliver Friedmann and Martin Lange. Solving Parity Games in Practice. pages
182–196, 2009.

[Orn00] Orna Kupferman and P. Madhusudan and P. S. Thiagarajan and Moshe Y. Vardi.
Open Systems in Reactive Environments: Control and Synthesis. pages 92–107,
2000.

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57, 1977.

[PP04] D. Perrin and J. Pin. Infinite Words., volume 141 of Pure and Applied Mathe-
matics. Elsevier, 2004.

[PR89] Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. pages
179–190, 1989.

[QS81] J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs
in Cesar. In SP’81, LNCS 137, pages 337–351, 1981.

[Raj97] Rajeev Alur and Thomas A. Henzinger and Orna Kupferman. Alternating-Time
Temporal Logic. pages 23–60, 1997.

[RB94] E. Rasmusen and B. Blackwell. Games and information. Cambridge, MA, 15,
1994.

[Sve07] Sven Schewe. Solving Parity Games in Big Steps. pages 449–460, 2007.

[Tho90] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer
Science (vol. B), pages 133–191. MIT Press, 1990.

70

Conclusion

[Wal01] Igor Walukiewicz. Pushdown processes: Games and model-checking. Inf.
Comput., 164(2):234–263, 2001.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

71

