
Universitá degli Studi di Napoli “Federico II”

Doctoral Thesis

Dottorato in Ingegneria Informatica ed Automatica

XXVII Ciclo

Securing Embedded Digital Systems For
In-Field Applications

Author:

Mario Barbareschi

Supervisor:

prof. Antonino Mazzeo

Coordinator:

prof. Franco Garofalo

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Seclab Group

Department of Electrical Engineering and Information Technology

March 2015

http://www.unina.it
mailto:mario.barbareschi@unina.it
mailto:mazzeo@unina.it
mailto:franco.garofalo@unina.it
http://www.seclab.unina.it
http://www.dieti.unina.it

“Computers are incredibly fast, accurate, and stupid. Humans are incredibly slow, inac-

curate and brilliant. Together they are powerful beyond imagination.”

Albert Einstein

UNIVERSITÁ DEGLI STUDI DI NAPOLI “FEDERICO II”

Abstract

Department of Electrical Engineering and Information Technology

Doctor of Philosophy

Securing Embedded Digital Systems For In-Field Applications

by Mario Barbareschi

Nowadays, special purpose embedded system design relies on the availability of the

hardware configurable technology. Space missions, aerospace defense, high performance

computing and networking applications benefit from the adoption of field programamble

gate arrays (FPGAs) as they provide high degrees of flexibility, fast time-to-market, and

low overall non-recurring engineering costs (NRE), but they almost lack in providing

security mechanisms to protect intellectual properties (IPs) configured on them. The

FPGA programming process is accomplished by a configuration file, so called bitstream

and hacking attempts can succeed in either cloning the bitstream or, by means of reverse

engineering techniques, extracting from it some IPs. Furthermore, through the program-

ming interface, a malicious bitstream can be injected such that the device is reconfigured

with a new configuration which overwrites the previous one. The consequences could be

really dangerous, not only for the application, but also because they can cause money

loss. Since the FPGA programming is pretty much like to software developing process,

some existing techniques can be adopted in order to secure the device, mainly involving

cryptography primitives. They can guarantee authenticity and confidentiality by ex-

ploiting a key stored in each device, but they can be successfully hacked with physical

attacks on the device, such that the key is discovered or the configuration file in plain is

extracted once deciphered. Recently in the literature, a new technique has been intro-

duced to cope with these issues, called Physically Unclonable Function, since it provides

a unique, unclonable and unpredictable hardware fingerprint. Even with the best design

effort, PUFs suffer from instability such that their values are variable in time. To face

with these issues, this doctoral thesis shows the research activity conducted with the

aim of exploring the security threats that characterize the configurable devices and of

defining involved roles and new techniques for a design methodology able to guaran-

tee several security attributes, demonstrating the feasibility with a very extended case

study, based on a mobile scenario in which high throughput traffic analyzer IP core is

distributed to a reconfigurable devices population.

http://www.unina.it
http://www.dieti.unina.it

Preface

Some of the research and results described in this Ph.D. thesis has undergone peer

review and has been published in, or at the date of this printing is being considered for

publication in, academic journals, books, and conferences. In the following I list all the

papers developed during my research work as Ph.D. student.

1. Mario Barbareschi, Salvatore Del Prete, Francesco Gargiulo, Antonino Mazzeo,

and Carlo Sansone. Decision tree-based multiple classifier systems: an fpga per-

spective. In Multiple Classifier Systems. Springer, 2015

2. Mario Barbareschi, Alessandra De Benedictis, Antonino Mazzeo, and Antonino

Vespoli. Providing mobile traffic analysis as-a-service: design of a service-based

infrastructure to offer high-accuracy traffic classifiers based on hardware accelera-

tors. (In press) Journal of Digital Information Management (JDIM), 2015

3. Mario Barbareschi, Pierpaolo Bagnasco, and Antonino Mazzeo. Quality trends

analysis for the anderson puf varying the supplied voltage. In Design & Technology

of Integrated Systems In Nanoscale Era (DTIS), 2015 10th IEEE International

Conference On. IEEE, 2015

4. Mario Barbareschi, Ermanno Battista, Antonino Mazzeo, and Nicola Mazzocca.

Testing 90nm microcontroller sram puf quality. In Design & Technology of Inte-

grated Systems In Nanoscale Era (DTIS), 2015 10th IEEE International Confer-

ence On. IEEE, 2015

5. Mario Barbareschi, Lionel Torres, and Giorgio Di Natale. Ring oscillators analy-

sis for fpga security purposes, March 2015. URL http://www.date-conference.

com/conference/workshop-w10. DATE W10 TRUDEVICE 2015, online publi-

cation

6. Mario Barbareschi, Antonino Mazzeo, and Pierpaolo Bagnasco. Implementing reli-

able mechanisms for ip protection on low-end fpga devices, March 2015. URL http:

//www.date-conference.com/conference/workshop-w10. DATE W10 TRUDE-

VICE 2015, online publication

iv

http://www.date-conference.com/conference/workshop-w10
http://www.date-conference.com/conference/workshop-w10
http://www.date-conference.com/conference/workshop-w10
http://www.date-conference.com/conference/workshop-w10

7. Mario Barbareschi, Antonino Mazzeo, and Antonino Vespoli. Malicious traffic

analysis on mobile devices: a hardware solution. (In press) International Journal

of Big Data Intelligence, 2(2), 2015

8. M. Barbareschi, A. Mazzeo, and A. Vespoli. Un laboratorio elettronico su smart-

phone per dispositivi a microcontrollore. Mondo Digitale, 13(51):207–215, 2014

9. Alessandro Cilardo, Mario Barbareschi, and Antonino Mazzeo. Secure distribution

infrastructure for hardware digital contents. IET Computers & Digital Techniques,

8(6):300–310, 2014

10. Mario Barbareschi, Ermanno Battista, Nicola Mazzocca, and Sridhar Venkatesan.

A hardware accelerator for data classification within the sensing infrastructure. In

Information Reuse and Integration (IRI), 2014 IEEE 15th International Confer-

ence on, pages 400–405. IEEE, 2014

11. Mario Barbareschi, Ermanno Battista, Antonino Mazzeo, and Sridhar Venkatesan.

Advancing wsn physical security adopting tpm-based architectures. In Information

Reuse and Integration (IRI), 2014 IEEE 15th International Conference on, pages

394–399. IEEE, 2014

12. Mario Barbareschi, Alessandra De Benedictis, Antonino Mazzeo, and Antonino

Vespoli. Mobile traffic analysis exploiting a cloud infrastructure and hardware

accelerators. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2014 Ninth International Conference on, pages 414–419. IEEE, 2014

13. Mario Barbareschi, Ermanno Battista, Valentina Casola, and Nicola Mazzocca. On

the adoption of fpga for protecting cyber physical infrastructures. In P2P, Par-

allel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International

Conference on, pages 430–435. IEEE, 2013

14. Mario Barbareschi, Antonino Mazzeo, and Antonino Vespoli. Network traffic anal-

ysis using android on a hybrid computing architecture. In Algorithms and Archi-

tectures for Parallel Processing, pages 141–148. Springer International Publishing,

2013

15. Flora Amato, Mario Barbareschi, Valentina Casola, Antonino Mazzeo, and Sara

Romano. Towards automatic generation of hardware classifiers. In Algorithms and

Architectures for Parallel Processing, pages 125–132. Springer, 2013

16. Flora Amato, Mario Barbareschi, Valentina Casola, and Antonino Mazzeo. An

fpga-based smart classifier for decision support systems. In Intelligent Distributed

Computing VII, pages 289–299. Springer International Publishing, 2014

Contents

Abstract iii

Preface iv

Contents vii

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Thesis Contribution . 5

1.2 Manuscript Reminder . 7

2 Attacks and Countermeasures Overview of SRAM FPGA Technology 9

2.1 FPGA Vulnerabilities . 12

2.1.1 Readback Attack . 12

2.1.2 Cloning SRAM FPGA configuration attack 13

2.1.3 Bitstream reverse engineering attack 14

2.1.4 Side-channels attacks . 15

2.1.5 Physical attacks . 17

2.2 Security Countermeasures . 18

2.2.1 Bitstream encryption . 19

2.2.1.1 Known attacks against bitstream encryption 21

2.2.2 Physically Unclonable Functions 22

2.2.2.1 PUFs properties . 25

Unclonability . 25

Uniqueness . 25

Unpredictability . 26

One-way property . 26

Evaluability . 26

Tamper-evident . 26

2.2.3 Known attacks against PUFs . 27

Model-based attack . 27

vii

Contents viii

SCA . 27

3 Secure Infrastructure for Hardware Digital Content Distribution 29

3.1 Existing Research Proposals . 30

3.2 Digital Right Management . 31

3.2.1 Roles in hardware-level DRM . 33

3.2.2 Attacks scenario . 35

Malicious bitstreams . 35

IP theft and reverse engineering of bitstreams 35

Digital right tampering . 35

Software tampering . 35

3.2.3 DRM hardware functions . 36

HDC validation . 36

HDC distribution and billing 36

HDC digital rights . 36

3.3 Hardware Architecture . 36

3.4 Infrastructure Architecture . 39

3.5 Security Evaluation . 41

3.5.1 Malicious bitstreams . 41

Genuine host environment 41

Hacked host environment 42

3.5.2 IP theft and reverse engineering 42

Network sniffing . 42

Device hacking . 43

3.5.3 Right Object tampering . 43

RO tampering based on cryptanalysis 43

RO tampering by device hacking 43

3.5.4 Software hacking . 43

3.6 Prototypical Implementation and Results 44

3.6.1 Software environment: Zedroid . 45

3.6.2 HDC lifecycle managing framework 45

3.6.3 Integrating dynamic hardware components 47

3.6.4 Configuration time overhead . 48

3.6.5 Case-study and experimental results 48

3.7 Considerations on the Approach Improvement 49

4 Enable Security Through Physically Unclonable Functions 53

4.1 The Anderson PUF . 55

4.1.1 Anderson PUF implemented on Virtex-5 57

4.1.1.1 Anderson PUF implemented on Spartan-3E 58

4.1.2 Enhanced Anderson PUF . 59

4.1.2.1 Enhanced Anderson PUF implemented on Spartan-3E . . 61

4.1.3 Experimental validation . 61

4.1.3.1 Global uniqueness . 62

4.1.3.2 Reliability . 63

4.1.3.3 Uniformity . 65

4.2 Ring Oscillator as Secrecy Source for PUFs 66

Contents ix

4.2.1 Research work on RO characterization 67

4.2.2 RO frequencies characterization . 67

4.2.3 RO structure and measurement architecture 68

4.2.4 Result and validation . 69

4.2.4.1 Analysis of the logic which surrounds the RO 70

4.2.4.2 Analysis of the stages number and routing 73

4.2.4.3 Temperature analysis . 76

4.2.4.4 Aging analysis . 77

4.3 Frequencies Signature PUF . 78

4.3.1 A model of read frequencies . 79

4.3.2 Frequencies as a signature . 81

4.3.2.1 S̃m,d in hardware . 84

4.3.3 FS PUF: signatures comparison . 85

4.3.3.1 Distance metrics . 85

4.3.3.2 Score test . 87

Statistical model of the score test 88

4.3.3.3 Statistical model parameters 90

4.3.3.4 Consideration about tm 92

4.3.4 Experimental result . 93

5 Network Traffic Analysis: a Case Study 95

5.1 Traffic Analysis for Security Purposes . 96

5.2 Related Research Efforts . 97

5.3 Decision Tree Hardware Implementation 99

5.3.1 Programmable decision trees . 100

5.3.2 Implementing static Decision Trees 101

Boolean net details . 101

FPGA implementation . 104

5.3.3 Automatic hardware core generation 105

5.3.4 Integration within real device . 106

5.3.5 Time performance . 109

Loop-back measurement . 110

5.3.6 Energy performance . 110

5.4 Distribution Infrastructure . 111

5.4.1 Analysis on the distributed layers 114

6 Conclusion and Future Directions 117

Bibliography 121

List of Figures

2.1 A simple view of the in-field application layers, which hardware can be
configured with some IP cores. 9

2.2 A schematic overview of roles and project flows which involve in design
and deployment phases for FPGA. 11

2.3 A side channel attack equipment to perform a power analysis on a smart
card and extract the secret key. The attack was performed during the
SCA session of TRUDEVICE summer school (Lisboa, July 2014). 16

2.4 Design flow with the encryption mechanisms and user-defined key. 19

2.5 The Arbiter PUF exploit one symmetric path, selecting it by means of
multiplexers, in order to extract one response bit. 23

2.6 Simple authentication protocol based on the challenge-response mecha-
nism of PUFs. 24

3.1 Schematic of the classical architecture of a DRM infrastructure in the
software domain. 32

3.2 Physical architecture of a device compliant with the proposed secure core
distribution infrastructure. 38

3.3 Architecture of the secure core distribution infrastructure. 39

3.4 Structure of a digital RO for HDCs. 41

3.5 Structure of the Zedroid architecture, equipped with the software and
hardware components in order to support pay-per-use scheme. 46

3.6 Delay curves related to the partial reconfiguration of plain and encrypted
bitstreams, varying with the bitstreams file size. 49

3.7 In the photo the Zedboard is running the Zedroid software stack on which
it is downloaded an Android video player app with an hardware acceler-
ator for the H.264 infra-frame prediction. 50

4.1 Differences between bitstreams with and without binding to a specific
device’s PUF. 54

4.2 Logic schematics of the Anderson PUF cell. The solid lines draw the
original Anderson PUF [8], and the dotted lines indicate the architecture
with a 1-bit challenge response, proposed by Hori et al. in [54] 56

4.3 High level view of Xilinx FPGA Configurable Logic Blocks for Virtex-5
and Spartan-3E architecture. 57

4.4 Implementations of the Anderson PUF cell. 59

4.5 Global Uniqueness evaluated through the fractional Hamming Distances
distributions. 63

4.6 Ring Oscillator based PUF architecture: a functional overview. 66

4.7 Ring oscillator loop designs. 68

xi

List of Figures xii

4.8 High level schematic view of the adopted design architecture. 70

4.9 Distribution of ROs frequencies values, considered as percentage variation
from the average, with different places for counters and Chipscope debug
logic. 71

4.10 A schematic overview of the implemented intrusive logic, which fit the
internal structure of the Spartan-6 device. 72

4.11 Distribution of ROs frequencies values with an intrusive surrounding logic,
considered as percentage variation from the value of ROs without the logic. 73

4.12 Frequency distribution for two different mapping 4-stages RO configura-
tions placed over all the FPGA device. 75

4.13 Values for all ROs frequencies varying the working temperature. 77

4.14 Difference quotient distributions evaluated before and after 40◦C. 77

4.15 Frequency distributions measured on the same device before and after the
aging process. 78

4.16 Frequency distributions measured on the same device before and after the
aging process. 78

4.17 Temperature (but also other working parameters) can differently affect
two RO, causing unstable responses for the RO PUF. 79

4.18 Comparison between Sm,d and S̃m,d. 84

4.19 pdd and pdd′ evaluated by varying the threshold τ 89

4.20 FAR and FRR evaluated trough the Equations 4.14 and 4.15 varying the
number of ROs, the threshold and the minimum score value. 91

5.1 An example of Decision Tree with 4 nodes, 3 features and 3 classes. The
colored dotted lines indicate the paths for the two features values examples.100

5.2 Hardware implementation of the prediction algorithm for the tree in Fig-
ure 5.1 . 102

5.3 Automatic process flow for implementing a hardware predictor. 106

5.4 Hardware overview of the Zynq platform, which is configured with a net-
work analyzer accelerator. 107

5.5 Zedroid project is running a simple App to manage the hardware network
classifier. 108

5.6 Time analysis of 30 experiments conducted on the Zynq FPGA architecture.109

5.7 Global packets latency, measured using the Central Interconnection and
redirecting the traffic on the programmable logic through loop-back traffic
generation. 110

5.8 Dynamic power consumption against the number of trees nodes. 110

5.9 Overview of a two-tier service-based traffic analysis infrastructure. 112

5.10 Analysis of the traffic classification accuracy reached thanks to dynamic
reconfiguration and automatic generation of updated traffic models. . . . 115

List of Tables

I Global uniqueness and Reliability estimated for some delay-based PUFs. . 65

II Mean values and standard deviations of RO frequencies for different stages.
The Intra-die and Inter-die are calculated among 10 ROs and 10 devices. 75

III Frequencies and difference quotients for ROs placed in even and odd
columns varying the working temperature. 77

IV Measurement error εs associated with different stages. 80

V FS PUF evaluated in terms of FAR and FRR trough experimental cam-
paigns conducted on the Xilinx Spartan-6 FPGA family. The value are
obtained by tuning the minimum value of the score. 94

xiii

Abbreviations

AES Advanced Encryption Standard

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BOM Bill Of Material

CLB Configurable-Logic Block

COTS Component-Off-The-Shelf

DES Data Encryption Standard

DRM Digital Right Management

FAR False Acceptance Rate

FRR False Rejection Rate

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDC Hardware Digital Content

IC Integrated Circuit

ICAP Internal Configuration Access Port

IP Intellectual Property

JTAG Joint Test Action Group

LUT Look-Up Table

MRK Master Reconfiguration Key

NRE Non-Recurring Engineer

NVM Non-Volatile Memory

OTP One-Time Programmable

PUF Physical(-ly) Uunclonable Function

RO Right Object in Chapter 3; Ring Oscillator in Chapter 4

SAM Secure Access Module

xv

Abbreviations xvi

SCA Side Channel Attack

SDPR Self Dynamic Partial Reconfiguration

SIM Subscriber Identification Module

SoC System on Chip

SoPC System on Programmable Chip

TPM Trusted Platform Module

WSN Wireless Sensor Network

Dedicated to the friendship and the memory of Francesco Esposito
(1988 - 2011)

xvii

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs), since their first introduction in the 1985,

have become increasingly important and essential in the electronic industry. They are

today adopted in fielded devices for an extremely wide spectrum of application domains,

ranging from consumer electronics to mission-critical equipments, since they are a valid

alternative for application specific integrated circuits (ASICs). The cost for a digital

system design based on FPGA is lower than the ASIC, although large scale production

of the latter surely ensues much cheaper silicon devices. ASICs provide the ultimate

in performance, power consumption and number of integrated transistors. Projects

based on such technology take very long designing time and expansive costs, with the

constraint that, once produced, the digital design that they realize is fixed in silicon and

cannot be modified. Meanwhile, developing design changes is much easier adopting the

FPGA technology, with also enormous benefits for the time-to-market in digital system

projects. Hence, FPGA technology represents a viable solution that is exploitable for

small and medium companies which are facilitated in designing innovative solutions and

technological novelties in low production scales. In other words, the adoption of FPGAs

enables even individual electronic engineers or small teams to realize their digital designs,

avoiding huge non-recurring engineering (NRE) costs and the licenses purchasing for

expansive synthesis tools used within the ASIC design flow. As indeed, in the silicon

manufacturing, to succeed in the consumer market, the production volume for an ASIC

has to be enough to divide the NRE costs, as they can run into million dollars, over the

produced units to have an acceptable end price for each chip.

1

2 Chapter 1 Introduction

Historically, FPGA technology was largely adopted not only in prototyping ASICs, but

also as glue-logic between integrated circuits (ICs) hosting small finite state machines

(FSMs) and data processing tasks. As they grown in logic capacity and in elabora-

tion speed due to internal structure enhancing, they have been adopting in networking

and telecommunication applications, exploiting the huge internal parallelism to meet re-

quirements for large data elaboration. Later on, they gradually have been appreciating

by industrial companies which started to adopt the FPGA technology in automotive,

processing control and consumer electronics.

Even still so far from ASIC, surely over the time the gap between FPGA and ASIC

technologies have been reduced. Modern FPGA technology embeds powerful processing

systems, devising the System on Programmable Chip (SoPC) market segment, support-

ing the developing of systems able to run common operating systems together with

custom peripherals, such as Linux, and providing dedicated hardware entities, in hard

or soft manner, such as arithmetic and digital signal processing cores, which make easier

and quicker the embedded systems designing process [56]. Furthermore, from the early

2000s, they have been equipped with complex and fast communication protocols, able to

guarantee high bandwidth and throughput. In combination with classical computer de-

signing, FPGAs can be connected through the peripheral component interconnect (PCI)

or Ethernet standards with a complex computer system. Thus a new market segment has

been created, called reconfigurable computing, which exploits inherent parallelism degree

and reconfigurability of the FPGA technology in order to provide hardware accelerators

for software tasks. For instance, crypto-analytic algorithms or simulator engines can

take advantage adopting FPGAs to run heavy parallel elaboration processes [62, 51, 30].

Nowadays, FPGAs are practically suitable to design just about anything, directly com-

peting against ASIC technology. Some examples of fielded devices where FPGAs can

play a key role include domestic appliances, machine-to-machine devices, such as smart

grid sensors and smart meters as well as actuators, for example, smart street lights

and smart water heaters, point-of-sale terminals, set-top boxes, personal medical de-

vices and digital media players. Specifically, in automotive industry, advanced driving

assistance systems, such as global position system maps, advanced front-lighting sys-

tem, 3D visualization, collision avoidance system, already make extensive use of FPGA

devices. Furthermore, FPGA technology in military and aerospace applications, such

as RADAR and SONAR, warfare electronics, unmanned vehicles, rovers and satellite is

Chapter 1 Introduction 3

also expected to contribute to market growth in the next future. As for the consumer

electronics market segment, thanks to the growing popularity of smartphones, advanced

touch screen functions, phablets, smartwatches, wearable devices, tablets and so on, is

expected to drive the demand for FPGA soon. Most, if not all these devices are today

connected to some kind of network, forming what is commonly called the ‘Internet of

Things’ [28]. In fact, current estimates indicate that there are some five times more

Internet-connected devices than personal computers.

In the above scenario, two fundamental aspects can be easily recognized. On one hand,

current fielded electronic systems are much closer in nature to mobile devices than

traditional desktop computers. They are essentially embedded systems having various

levels of complexity, as they are characterize by severe constraints on computational and

energetic resources, most often equipped with a tailored operating system and software

environment. On the other hand, the open and connected nature of fielded devices can

easily introduce serious security vulnerabilities, treating the applications mission. In

particular, while FPGAs provide inherent advantages at the design level, that is, lower

time-to-market, easy debugging, near-zero NRE costs, really low bill of material (BOM),

rapid prototyping and hardware reconfigurability, they also pose a number of security

challenges which might deeply affect the system operation, as they are much closer in

nature to the software domain than to mere hardware development.

The FPGA programming is accomplished by providing a configuration file, so called bit-

stream, downloaded through a configuration interface, mostly using the joint test action

group (JTAG) protocol, onto the configuration memory. JTAG is an IEEE standard

(1149.1) developed in the 1980s mainly to allow access to the boundary scan chain for

test purposes [1], but it has also become a versatile and easy-to-use protocol outside the

silicon foundries for giving debug access to IC on boards. Indeed, for the technology

continuity, FPGA suppliers adopted such protocol to allow the developers to access the

configuration infrastructure. Since JTAG is inherently non secure, because it does not

provide neither any access control mechanism nor data confidentiality, the programming

interface might be exploit as a backdoor by attackers whose goal is to access both the

bitstream and configuration memory.

Malicious users can exploit the JTAG vulnerability reconfiguring the device with a bit-

stream which is different from the one originally released or reading back the bitstream

4 Chapter 1 Introduction

whereby the FPGA has been programmed. As result, the device could be damaged and,

consequently, the application will fail, or some sensitive information can be disclosed,

jeopardizing the the user privacy or manufacturer business. Specifically, injecting bit-

streams which contain hardware trojans [110] in the FPGA, might succeed in causing

various types of damages on the device, depending on the privilege granted by the

surrounding environment. A bitstream extraction enables to reuse it for other FPGA

devices, violating the intellectual property (IP). In fact, the bitstream is produced for a

specific device type and it can practically be used to configure all FPGA devices which

correspond to such type.

The way in which bitstream is encoded is almost unknown and undocumented, but

surely it is not enciphered or confidential in a cryptographic sense, mainly because

FPGA vendors want keep this encoding a secret as the bitstream is tightly coupled

with the chip internal layout design. As it turns out to be hard, but not impossible, to

interpret, in some design projects the bitstream is considered as a secure storage. Reverse

engineering techniques can be successfully applied on bitstreams with the aim to extract

secrets, e.g. when the application involves cryptography primitives, the bitstream on

the FPGA might contain some keys or key materials [25]. Such techniques might be

even able to extract and violating single IP cores programmed onto the FPGA.

FPGAs suppliers have taken into account the weaknesses and, little by little, pro-

grammable devices and tool-sets are providing some mechanisms which offer security

and protection. Furthermore, the research community has given a huge effort in devis-

ing new techniques which can be implemented on FPGAs and sometimes cooperating

with mechanisms inherently available onto devices. The main exploited security tech-

nique is the cryptography: once the bitstream has been output by the synthesis tool,

the user can pick a key whereby the software encrypts the sensitive information of the

bitstream. The same key has to be programmed into the FPGA device in order to allow

the dedicated hard-wired crypto-engine to eventually decrypt ciphered bitstreams before

write it in the configuration memory. Furthermore, the FPGA can be programmed in

a way which makes impossible the read-back of programmed bitstreams from the in-

ternal configuration memory. Malicious users who succeed in obtaining the encrypted

bitstream cannot use it since they do not know which key has been used for both con-

figuring the FPGA and enciphering the bitstream. Moreover, they can neither use it on

Chapter 1 Introduction 5

other devices without install on them the same key used to encipher the bitstream nor

apply reverse engineer process on its payload.

For the FPGA security design methodology, another technique can deal with IP viola-

tion, providing both authenticity and secure key material for cryptographic primitives,

based on the Physically Unclonable Function (PUF). In the silicon manufacturing, PUF

is the most breakthrough in semiconductor security. The manufacturing process of

ICs has unavoidable variations: each circuit design exhibits slightly different electrical

behavior from one chip to the next, even though the design, mask and fab are identi-

cal. The PUF exploits imperfections that each design circuit instance has in order to

output responses which depend on given inputs, namely challenges, providing a chal-

lenge/response pairs (CRPs) set as a device fingerprint. Extracted CRPs, among a

PUF population, are unclonable, unpredictable, non-reversible, unique, tamper-evident,

easy-to-evaluate with a low overhead. PUFs can be successfully adopted to enhance the

security of bitstreams, i.e. IP cores, which are distributed among FPGAs [63, 48, 124],

even for old families which design project was originally thought without any secure

mechanism, exploiting binding mechanism [123], but they cannot guarantee integrity

and confidentiality of the bitstream.

1.1 Thesis Contribution

Many factors have to be taken into account when the security of applications deployed on

the basis of FPGA technology becomes a crucial aspect that cannot be more postponed.

First of all, security is not an absolute attribute and it must be conjugated with other

design aspects, such as costs, mission time, time-to-market, power consumption, targeted

technology, functional requisites, and so on. Indeed cryptography is not always a viable

solution, because needs proper dedicated cryptography mechanisms implemented on

chip. Not all the FPGA are equipped with security mechanisms based on cryptography

functions and mainly only high-end and modern devices embed them. However, PUFs

are easy to integrate in digital design as they are inherently available on any IC, but

special attention has to be posed to the quality of the generated CRPs set. PUFs are

not stable and their quality has to be proved before being eligible as security primitives.

As indeed, the literature has been posing a huge effort in devising high quality and more

and more stable PUFs architectures.

6 Chapter 1 Introduction

Below, with the aim to put in evidence the research activity contribution of this work,

there are listed the research questions which I answered:

1. Which are the vulnerabilities that effectively jeopardize fielded applications secu-

rity which rely on reconfigurable digital devices and, exploiting such weaknesses,

which are risks associated to them?

2. Since the FPGA reprogrammability creates the possibility of distributing hardware

cores, who are the main actors which are involved in the scenario in which there

is an IP core market which distributes them as bitstreams?

3. How the ultimate FPGA technology can guarantee in security, adopting mecha-

nisms inherently embedded by the vendors? How can they be integrated with the

remain system, such as the software and operating systems?

4. As for old-families and low-end FPGAs, are PUFs suitable to guarantee minimal

security mechanisms? To this aim, which PUFs architectures are available on such

a FPGA target?

5. Exploiting reconfiguration and security mechanisms, is it possible to give a com-

prehensive and complete case-study in which, not only the performance plays a

crucial role, but also the security of distributed bitstream is analyzed within the

proposed techniques?

As for the last question, the addressed case study is the design of a hardware accelerator

for the traffic analysis in the mobile context. As the mobile global traffic will amount

to an unexpected value of 24.3 exabytes by 2019 and the smartphone will generate the

three-quarters of them, with a speed greater than 2 Mbps [88], and since the number of

threats which arrive from the Internet traffic is increasingly, the network traffic analysis

is a task that must be integrated within the personal mobile devices. The needing

for traffic model updates and the high throughput, in combination with a low-energy

consumption requirement, makes the FPGA and a decision tree (DT) based hardware

accelerator a very effective solution.

Chapter 1 Introduction 7

1.2 Manuscript Reminder

This doctoral thesis is structured as follows:

• the Chapter 2 gives an extensive list of vulnerabilities which afflict the FPGA

technology, detailing each of them in a technologically manner. Furthermore,

some countermeasures are discussed, introducing the main addressed techniques

in this doctoral thesis: the encryption of bitstreams and PUFs;

• the Chapter 3 introduces the Digital Right Management architecture to define a

secure infrastructure to distributed hardware cores as bitstreams. Indeed, envi-

sioning a real scenario in which devices can partially reconfigure the hardware, the

involved roles and the security requirements are discussed in order to discuss and

prove the effectiveness of the approach;

• in Chapter 4 two PUFs architectures are illustrated and presented. In particular,

the Anderson PUF, which is implemented on a Xilinx Spartan-3E family, and a

new PUF architecture, based on the frequencies signature, which is robust against

external disturbances;

• the Chapter 5 presents the case study by detailing the methodology exploit to

automatically built hardware predictor of trained traffic model, demonstrating the

feasibility of the approach. In particular, the hardware accelerator can be securely

distributed to devices and it can be updated by collecting new information of traffic

from the same devices exploiting an envisioned two-tier service-based architecture;

• At the end, Chapter 6 concludes this doctoral thesis.

Chapter 2

Attacks and Countermeasures

Overview of SRAM FPGA

Technology

From the research activity background given in the Chapter 1, the FPGA technology

emerges as a critical point in guaranteeing in-field applications security. From a layer

point of view, such applications can be modeled as in Figure 2.1, in which the hardware

layer, represented by the FPGA, hosts some IP cores. Without any trustworthiness

guarantee on the underlying hardware, all stacked layers cannot be considered secure.

Another problem that arises from the Figure 2.1 is the trust in composition. Given that

different design tool-sets produce each layer, or a part of it, and the absence, or the

impossibility, of an overarching security architecture, the security associated with the

system is as much as least trusted design path.

FPGA

IP Core IP Core

Software

Communication

Figure 2.1: A simple view of the in-field application layers, which hardware can be
configured with some IP cores.

9

10 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

If a critical feature for the security is implemented somewhere in the layers, e.g. the key

storage, there is no way to verify that someone cannot tamper or disclose that key. Even

with the best approach, i.e. having the control on all the designing processes, cannot

assure that the FPGA vendor designed the device without any backdoor or that the

silicon foundry did not add some hardware trojans during the manufacturing process.

Indeed, being a component-off-the-shelf (COTS), it is right to inquire these questions as

much as to raise doubts about the presence of intentional or unintentional design flaws

in the IP cores or about the software bugs of involved operating systems which might

be exploitable by attacker, and so on.

Indeed, it is possible to affirm that, first of all, in-field applications security relies on the

trustworthiness of hardware platforms. The aim of the research activity is not investigate

all the non-security sources, hence it is mandatory to start from a trustworthy point in

the design chain, otherwise the design level entry has to go back really far, up to the

foundry which produces the device or the security of tools involved in the projecting of

the FPGA internal design. Hereafter FPGA devices and involved design tool-sets will be

considered as the trustworthy level entry. This assumption is not so strong and not so far

from the reality, because customers are the first money resources for hardware suppliers

and non-secure tools and devices will cause a customer satisfaction degradation, hence

a huge money loss for FPGA manufacturer companies. In fact, as the FPGA market

segment is really competitive, companies want to have the reputation of being honest,

technologically advanced, sellers of secure and high quality devices. These are the most

precious assets because are slowly gained by the manufacturer and really easy to lost.

Stated considerations does not imply a greater security level, since, unlikely for fixed and

static designed hardware, the FPGA poses a wide range of vulnerabilities because, inher-

ently, the reconfiguration feature implies access to the configuration memory. The only

advantage from the security point of view is that, contrary to the ASIC design, sensitive

designs are transformed directly by the end-user in hardware components and, conse-

quently, in IP core to configure on the FPGA, without risks of IP theft [116], because no

third-parties are involved in the production flow. Figure 2.2 reports a schematic overview

of FPGA design flows. The core designer is the IP provider and is able to provide IP

cores as HDL projects or as netlist description. The system designer is responsible for

the system project, which can be realized with external provided IP, providing as fi-

nal result the bitstream file. The system manufacturer configures the FPGA with the

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 11

HDL Code

Synthesis
Flow

Netlist

HDL Code

Synthesis
Flow

Netlist

Core
Designer

System
Designer

Implementation
Flow

Bitstream

FPGA

System
Manufacturer

Bitstream

PROM

FPGA

System
Owner

Network

Bitstream

PROM

FPGA

Figure 2.2: A schematic overview of roles and project flows which involve in design
and deployment phases for FPGA.

obtained bitstream. The system owner is able to reproduce the same mechanism, but

doing it directly in-field.

As for third-party IPs, in the industrial globalized economy, the adoption of hardware

cores off the shelf is practically a business standard practice. The IP core market is

strategic and leads to produce and design an increasingly number of cores, mainly be-

cause:

• the design flow is shorter because the reuse strategy guarantee well-tested and

dependable components, thus the time-to-market is reduced;

• external IP supplier increases the licensing market, hence profits become higher.

The configurable technology opens more expansion possibilities for the IP marker, since

during the device life-cycle many IP cores can be billed and installed on the same device,

giving the possibility of maintenance and updates. Moreover, self-dynamic partial recon-

figuration (SDPR) interestingly allows to accomplish such updates in an easy and quick

way. The FPGA technology that supports SDPR enables the changing of a specific part

12 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

of the running design, without affecting remain design parts, hence keeping the system

properly working.

This new possibility is hard to realize, since requires really high security level which

must protect IPs against attacks. Hence, the next Section introduces the main FPGA

vulnerabilities which are useful to comprehend the context in which, later in this doctoral

thesis, different solutions are discussed.

2.1 FPGA Vulnerabilities

In the digital application design, security techniques constantly evolves. New defense

mechanisms are put in place against malicious hacking attacks, but later the system

security will be jeopardized by other new attacks that require new countermeasures. In

the last years, this security methodology cycle has involved also FPGAs, as they are

used in many digital applications that require security features and attackers exploit

vulnerabilities to attack such applications. The next Subsections list the most relevant

vulnerabilities known in the literature. The first attacks are specifically related to the

inner nature of the FPGA and, in particular, to the configurability feature. Then, the

Section 2.2 gives an overview of existing countermeasures and the ongoing research on

new techniques.

2.1.1 Readback Attack

Most FPGA devices provide debug features, as in the case of ASIC design, via JTAG.

Not only this protocol is explored for the configuration of the device, but at the same

time it allows the readback of the configuration memory of the FPGA. On demand, it

is possible to download the current configuration, as a snapshot, from the FPGA. As

indeed, the dynamic produced and changed data on LUTs, flip-flops, BRAM, etc., are

different from the initial configuration file and can be dynamically gather by reading

back the current configuration of the device. Surely, what is read back is not the entire

bitstream file, since the snapshot misses the header, footer, no-operation, error detection

code and initialization commands.

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 13

The idea of the readback attack is simply to read the configuration of the FPGA through

the programming interface in order to, by adding what is missing, build the original

bitstream file. By applying the readback different times, the attacker is able to observe

changes on the FPGA even clock-cycle accurately. Some FPGA families allow to disable

the readback functionality providing a security bit. Indeed, more than one bit can

be used to disable several features, such as the JTAG boundary access. Mainly, the

deactivation of such features is accomplished by some anti-fuses, in order to have a

permanent secure configuration once the device is deployed. The idea to disable the

boundary access was patented in [9], and described for Xilinx devices in [111]. There are

no documented or evince of invasive attacks that re-enabled the readback feature once

disabled.

The debugging needs for the readback, so once disabled it is not possible to put the

device under test again. Indeed, by properly instrumenting the design, it is possible to

extract information about the execution state for specific hardware entities [46]. Xilinx

introduced Chipscope suite, which provides hardware probes and the software to debug

designs configured on the FPGA [11]. Altera, in the same way, provides SignalTap [115],

but apparently without exploiting the readback feature, so inherently the Altera devices

are not vulnerable to this kind of attack.

2.1.2 Cloning SRAM FPGA configuration attack

The FPGA technology based on SRAM does not keep the configuration permanently,

because when it is disconnected from the power the memory looses the stored data.

Hence, at each power-up the device has to be reprogrammed again, by downloading the

bitstream from an external non-volatile storage, e.g. PROM or FLASH. An attacker can

easily succeed an eavesdrop attack during the programming phase and obtain a copy of

the bitstream file.

This attack can be avoided by enciphering the payload of the bitstream with a secret

key. As indeed, even if the attacker succeeds in coming into possession of the bitstream,

it will be not able to access the original content without having available the key used

to encipher it.

14 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

2.1.3 Bitstream reverse engineering attack

The bitstream contains the configuration bits that program both the configurable logic

and routing paths as established by the user design. Even if this mechanism is pretty

clear, the bitstream encoding is practically unknown and without any documentation

provided by vendors. Mainly, the way in which vendors encode the bitstream is non-

divulged because it is highly coupled with the FPGA internal design and they want to

keep it secret. The encoding is an information available only with a signing of non-

disclosure agreement. From the user point-of-view this is an advantage because, as it

turns out to be very hard to interpret, the bitstream can be considered as a secure

storage for design IPs and sensitive information.

However, it is well-known that security-by-obscuring is an approach that is susceptible

to affordable attacks. Reverse engineering techniques can be successfully applied on

bitstreams to obtain the netlist or something that is similar to the HDL project used

to produce it, or to partially reverse it to extract sensitive data, such as keys, from

BRAM, LUT or memory cell initialization bits, without having the aim to reproduce

full functionality. The full reversal would allow, of course, to manipulate entirely all the

designs for a particular FPGA device, obtaining infringed configuration files that are

hard to detect.

Two documented reverse engineering experiments are documented in the literature, one

performed by NeoCAD and the other by Clear Logic, even if they are not properly

examples. Indeed, as reported in [65, 116], they did not reverse the bitstream itself, but

they hacked the bitstream generation software tool in order to generate bitstreams able

to be configure on FPGAs of Xilinx and Altera respectively.

Anyway, the complexity, the size, the obscurity, the diversity among devices and fami-

lies that characterize bitstreams really make the reverse engineering task dramatically

expansive. As indeed, the literature misses documented reverse engineering successes

for modern FPGAs and the legal aspect of the activity is surely a deterrent for such

attempts. In fact, the reverse engineering activity might violate the end-user license

agreement (EULA) and, consequently, attackers can be sued for damages.

There are some documented partial information extractions, but there is a general lack

of automated and general processes, as reported by Ziener et al. in [126]. Furthermore,

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 15

there was a quite interesting amount of tools and research groups which promised reverse

engineering features, but none is now effectively working [89]. Very recently Benz et al.

have devised a method to succeed the bitstream information extraction by exploiting a

mapping database [25], but the research activity is so far from obtaining interesting and

utilizable results.

2.1.4 Side-channels attacks

The nano-scale that characterizes ICs makes them really hard to probe, such that an

attacker is not able to retrieve information about data and operations from them. As

in the bitstream case, data contained in the IC design are considered securely stored

because it is pretty hard to conduct nano-probing attack attempts. This forbids anyone

to access IC structures and extract data from it. For long time, cryptographic algorithm

relied on this assumption and the involved keys and partial produced data were consid-

ered really hard to extract. But so far, Kocher in [61] proposed a technique which is

able to break different cryptographic algorithms by correlating the execution time with

the key bits. He proposed the first side channels attack (SCA), a class of attacks that

extracts on-chip secret data exploiting the external observable phenomena of electronic

devices, unintentionally produced by internal operations. The challenge for the designer,

which aim is to project devices robust against SCA, is the isolation of internal sensitive

operations from their surrounding environment as they are able to interact with off-chip

devices with sound, energy consumption variations, electromagnetic and heat radiations

[55]. Some SCAs do not require any knowledge on the chip design and are defined as

black-box attacks.

As for the FPGA technology, in the literature power analysis attacks [90, 106, 107, 91,

108, 105] and electromagnetic emanation analysis [27, 34] have been addressed.

The power analysis techniques consists in probing the absorbed current, hence the power,

during the time. In CMOS technology the main source of power consumption is caused

by state changes, 1 to 0 and vice versa, due to the capacitance loading. Collecting the

power trace, an attacker can correlate the power consumption with internal operation

states, retrieving the targeted data. In [90] a simple power analysis were conducted and,

as result, the paper authors succeeded in attacking an elliptic curve implementation on

Xilinx Virtex 220 nm device. The authors of [106] addressed the impossibility to attack

16 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

Figure 2.3: A side channel attack equipment to perform a power analysis on a smart
card and extract the secret key. The attack was performed during the SCA session of

TRUDEVICE summer school (Lisboa, July 2014).

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 17

paralleled cryptographic architectures with the simple power analysis if other operations

are running at the same time on chip. Later, in [107] a differential power attack succeeded

on the Advanced Encryption Standard (AES) and Data Encryption Standard (DES).

However countermeasures specific for the FPGA have been proposed. One solution has

been presented by Tiri et al., which exploits a technique called wave dynamic differential

logic [113]. The main idea is to dissipate the power independently from the logic

transistor using the differential logic, such that one logic works exactly in opposite

from boolean-logic values point-of-view, and the pre-charging of gates. The solution is

really expansive, since requires almost doubling logic elements and, consequently, makes

the circuit speed lower. Furthermore, since during the manufacturing process ICs are

subjected to uncontrolled and unavoidable imperfections, that as explained later in this

Chapter (Subsection 2.2.2 are used to realize PUFs), differential logic will always have

some observable power variability.

As for the electromagnetic emanation analysis, this technique relies on the production

of electromagnetic fields when the circuit moves electric charges during the execution

of internal operations. The field can be probed using fine-tuned antennas, amplifying

the signal even without removing the chip package. Authors of [27] reported the first

electromagnetic emanation SCA on a AES architecture implemented on a 130 nm Altera

Cyclone FPGA. Then in [34] an implementation of the elliptic curve crypto-engine on

220 nm Xilinx Virtex have been attacked. Recently, Kim et al., reported in [60] a

comparison beetween electromagnetic emanation and power analysis SCA techniques.

2.1.5 Physical attacks

Silicon devices can be physically attacked with invasive probing which aims to extract

secret from it. For sure, since the die is packaged, the techniques requires the removal

of the package and the treatment of the die in order to access metal layers. Chemical

treatments or laser cutter can drill the die, creating some holes for the probes insertion.

In order to allow the attacker to accurately observe the die with a microscope and to

control the probes and the die position, the physical attack requires a micro-probing

station. A more sophisticated technique involves the focused ion beams, which creates

incisions at nanometer scale and deposits metal connections, taking high resolution

images of the die under attack. Physical attacks on FPGAs are not really feasible, since

18 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

the shrinking feature size, the IC complexity, the significant number of metal layers, the

invasive and destructive nature of probing attacks and the complexity of required tools

make them extremely expansive.

Other physical attacks are the semi-invasive attacks, which only require the package

removal. In fact it is possible to inspect the die surface by means of imaging techniques or

by thermal analysis. Firstly introduced by Skorobogatov in [103], semi-invasive attacks

are cheaper than invasive ones, as they do not need an extensive knowledge of the chip.

Even though they are feasible to be executed on FPGA devices, no semi-invasive attacks

are documented in the scientific public literature.

2.2 Security Countermeasures

Once an attack is disclosed and documented, it is possible to evaluate the vulnerabilities

that it exploits and to propose one or more countermeasures against it. First of all,

the introduction of new protection is not trivial. Indeed, before the adoption of a

countermeasure, the system designer has to evaluate the cost for a security solution

together with the probability of an attack, the risk associated with it, required skills

to carry it out and the time needed to introduce it in the existing design methodology.

Furthermore, some countermeasures imply more than one system modification which

could be costly in accomplishing.

As for the FPGA technology, countermeasures can be classified in FPGA manufac-

turer mechanisms or user-defined techniques. The former represent in-built mechanisms,

maybe integrated with the design flow, which FPGA devices provide to end-users. The

latter are mainly good practices or secure techniques which can be implemented within

the user design. Additionally, countermeasures are further categorized in active and

passive. Active techniques are physical or algorithmic deterrents which goal is to pre-

vent dangerous actions attempts of malicious users, such as device tampering or IP and

device theft. Passive mechanisms can provide only the proof of intrusion or attacks

attempts. In fact, their aim is not to prevent the attack itself, only to recognize it.

In the next subsections, two main techniques are illustrated: bitstream encryption and

Physically Unclonable Functions.

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 19

HDL Code

Implementation
Flow

Enciphered
Bitstream

FPGA

User Defined Key

Figure 2.4: Design flow with the encryption mechanisms and user-defined key.

2.2.1 Bitstream encryption

To provide confidentiality to the bitstream sensitive content, an encryption algorithm

can be adopted by system designers. Correspondingly, the FPGA must be equipped

with a decryption algorithm able to properly decipher the bitstream payload.

Encrypting the bitstream, once produced at the end of the design flow, and decrypting it

onto the FPGA forbids the cloning attack, the reverse engineering attack and tampering

attempts. The first commercial implementation of the encryption mechanism was in the

Actel 60RS SRAM FPGAs family employing a scheme in which, by using the same fixed

keys, all the produced bitstreams were encrypted and all the manufactured FPGAs were

configured. Hence, this first attempt was only effective in protecting the user design

against the reverse engineering, but it did not prevent cloning attacks [58]. Furthermore,

succeeding only one single attack enables to decrypt of all bitstreams produced for the

Actel 60RS FPGA, making it more attractive for the attackers. Additionally, since the

key is fixed and defined inside the synthesis software, rather that attack the device by

means of the reverse engineering, attackers might try to attack the software.

The Xilinx Virtex-II family devices were equipped with bitstream decryption build-in

mechanism, allowing end-users to configure custom defined keys. Thenceforth, this func-

tionality has been become pretty common, especially for high and middle-end devices.

Once the bitstream is completed by the implementation tool, the software looks for an

20 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

user-define key in order to encipher the payload of the bitstream (Figure 2.4). The user

has to install the same key picked in this phase on the FPGA equipped with built-in

decryption circuit, before try to configure the ciphered bitstream. When the configu-

ration process starts, the internal logic of the FPGA recognizes, by reading the header

data, that the bitstream payload is encrypted and redirects the bit flow to the decryp-

tion circuit, which deciphers the stream and pushes it into the configuration memory,

as usual. Not only an attacker is not able to perform a reverse engineering attack on

the bitstream, but additionally, contrary to the previous implementation devised by Al-

tera, the bitstream cannot be used on other FPGAs which are not configured with the

key used during the ciphering operation. Later, Altera introduced the same mechanism

starting from the Stratix II family, allowing also the user to force any bitstream trough

the decryption engine, such that only ciphered bitstreams are considered as licit, hence

the FPGA is protected from the execution of unauthorized bitstreams.

The two previous mechanisms rely on the user-defined key and, in order to thwart

its disclosure and consequently nullifying the encryption, it must be kept secret inside

the device. One solution is the adoption of volatile on-chip storage, mainly based on

low-power memories, which are powered by a backup battery through dedicated pads,

such that when the FPGA is disconnected from the power supply the key continues to

be properly stored. Another solution is represented by on-chip non-volatile memories

(NVM), which permanently store the decryption key. Contrary to the NVM solution,

the volatile memory is more resilient to attackers’ tampering attempts, since during the

physical attacks the battery supply must be always connected to avoid the key loss. But

the battery itself requires additional space and a specific holder on board. Nevertheless,

system manufacturers have to add the battery cost to the BOM and have to take into

account its maintenance during the device lifetime.

Altera Stratix II FPGAs are equipped with a NVM which stores the 128 bit key for

the AES decryption, but a special circuitry is needed for the key configuration. With

the introduction of the Stratix III family, Altera provides the devices with volatile and

non-volatile key registers which can be directly configured through the JTAG protocol.

Differently, Xilinx Virtex-II FPGAs have been providing with volatile storage to con-

figure devices with 256 bit key for the 3-DES and users are able to accomplish the key

configuration through JTAG. More recently, Xilinx has been starting to provide AES

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 21

decryption algorithm from the Virtex-4 forward and NVM key register, based on anti-

fuse technique, from the Virtex-6 and in all series 7 devices. The anti-fuse technology

is one-time programmable (OTP) and allows key program only once, such that during

the device lifetime it cannot be changed. When Xilinx devices are configured to work

with enciphered bitstream, inherently the readback feature and the Dynamic Partial

Reconfiguration (DPR) are disabled. But, using the Internal Configuration Access Port

(ICAP) it is still possible to internally read back the configuration bits. Hence, to avoid

cloning attack, the other design parts, including the software, have to be secured to avoid

access to the ICAP. With the introduction of series 7, the DPR is no more disabled and

actually even partial bitstreams can be enciphered and dynamically configured onto the

FPGA.

2.2.1.1 Known attacks against bitstream encryption

As stated, without having available the key involved in the bitstream encryption process,

an attacker cannot either clone the bitstream or reverse engineering it. The only way to

obtain the key is attack the device, by means of SCAs (see Subsection 2.1.4) or physical

attacks (see Subsection 2.1.5).

In the literature, there are reported some successful attacks. The first one was performed

in 2011 by Moradi et al. [83]. Authors described the attack to the built-in bitstream

decryptor of commercial FPGAs, targeting, in particular, a Xilinx Virtex-II Pro device.

In the same year, Moradi supposed that the exporting of the SCA technique on other

Xilinx families, such as Virtex 4, Virtex 5 and Spartan 6 is not only affordable, but

the attack to the built-in decryptor mechanism requires a moderate effort [84]. In 2012

Skorobogatov and Woods performed a pipeline emission analysis to found a backdoor in

military grade Actel/Microsemi ProASIC3 FPGA, one of the most secure manufactured

FPGA in the market [102]. The most recently attack reported in the literature is by

Moradi at al. in [85]. First of all they reverse-engineered the details of the proprietary

and unpublished Altera Stratix II bitstream encryption scheme from the Quartus II

software and, by using this knowledge, they illustrated a SCA technique that is able to

retrieve the full 128-bit AES key in less than three hours.

22 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

2.2.2 Physically Unclonable Functions

The Physically Unclonable Function (PUF) is a function that is able to extract secrets

that are physically imprinted on a manufactured IC. To this aim, PUFs exploit tolerate

manufacturing process imperfections of silicon devices to map a set of inputs, defined

as challenges, to a set of outputs, namely responses, forming the challenge/response

pairs (CRPs) set. Silicon PUFs have drawn a great attention because they directly ex-

ploit the photolithography manufacturing process, hence they do not require additional

techniques or specific technologies in order to introduce randomness in the challenge-

response behavior. As a matter of fact, programmable devices, such as FPGAs, can be

configured with PUFs architectures even if they were not specifically designed with this

aim. Since the variability of physical quantities on ICs is an uncertainty source, such

that it is unavoidable and uncontrollable, it is unlikely to reproduce two silicon devices

with the same defects. Furthermore, the mapping function for the responses generation

is hard to predict and, consequently, to simulate. PUFs have a wide range of appli-

cations as they can be considered as a hardware fingerprint:secure key generation [3],

device authentication [64, 109] and intellectual properties protection [63, 123].

The first idea of PUF was patented by Nanneche et al. in [87], which supposed an

authentication mechanism based on the random distribution of ferrite particles over a

plastic card. The term PUF was coined 6 years later by Pappu [94]. The first silicon

implementation of PUF was illustrated by Gassed et al. in 2002 [44]. They implemented

a PUF circuit that exploited delay variations of integrated transistor and wires to extract

responses by means of a self oscillating circuit, nowadays addressed as ring oscillator

PUF. Another delay based PUF architecture is the Arbiter PUF, which structure is

reported in Figure 2.5, introduced in [66], which using two symmetric paths, is able to

generate one output bit. Other PUFs architectures can be considered delay based, such

as the Anderson PUF, which uses a glitch generated by the difference of delay between

two shift registers/multiplexers to preset a flip flop [8]. Kumar et al. introduced in [63]

the Butterfly PUF, which exploits two cross-coupled D-latches, and two symmetrical

paths to set/reset them.

Completely different, memory based PUFs are based on start-up values of memory cells,

which are unpredictable, unclonable, easy to evaluate and, mainly, they are technologi-

cally available on a wide range of ICs, hence do not require additional resources. In [49]

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 23

D Q

c[0] c[1] c[N-1]

0

0

1

1

0

0

1

1

0

0

1

1

Figure 2.5: The Arbiter PUF exploit one symmetric path, selecting it by means of
multiplexers, in order to extract one response bit.

this concept was exploited for FPGAs which embed SRAM blocks, but also other mem-

ory types can be exploited for the aim, such as the D flip-flop PUFs, which basically

exploit the same mechanisms of the SRAM puf, but using the D flip-flop of FPGAs

[71]. Recently, a PUF design based on the Spin-Transfer-Torque Magnetic memories

(STT-MRAMs) has been introduced in [33] and [118].

PUFs can be further categorized in weak and strong. The former are PUFs with a

small (or even singleton) CRPs set, such that can be only adopted as key storage or

material. The latter are PUFs which CRPs set cardinality is really huge and they can

be also adopted in authentication protocols. A simple authentication protocol can be

implemented as reported in Figure 2.6. A trusted-third party (TTP) randomly extracts

a subset of CRPs set from a device which embeds a PUF before deploy it. This subset

is stored in a secure database, completing what is called PUF enrollment phase. When

the TTP has to remotely authenticate a deployed device, it picks a challenge from the

stored subset and queries the device PUF in order to receive a response. If the received

response is equal to the stored one, the device is authenticated. Since challenges and

responses are exchanged in plain, each used challenge will not be used again in order to

avoid the man-in-the-middle attack.

PUFs are able to successfully substitute volatile or non-volatile memories to store crypto-

graphic keys. Indeed, instead of storing the key in a register, the cryptographic algorithm

can directly use as key a PUF response. Such architecture is addressed as hardware en-

tangled cryptography [70]. The advantages are the uniqueness of PUFs generated keys

and the inherently protection of the challenge/response mechanism. Indeed, contrary

24 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

PUF

Authentic
Device

Challenges Responses

AB193F27

2D87CE45

9A96BCC1

B470123E

446A71FF

018EFD4A

Secure
Database

Enrollment
Phase

PUF

Device

==

challenge

response

Figure 2.6: Simple authentication protocol based on the challenge-response mecha-
nism of PUFs.

to memory approaches, PUFs give a response only when the circuit is powered-up and

a challenge is provided. Furthermore, the nature of electrical phenomena makes the

PUFs tamper evident circuit, such that a physical attack against a device permanently

changes the responses of the PUF which is embedded on it.

The silicon PUFs responses are not stable during the time, hence they cannot be consider

as functions in mathematical manner. PUFs exploit electrical phenomena, mainly the

signal propagation delay, as secrecy source, and they are susceptible to uncontrollable

working conditions, such as supply voltage fluctuations, temperature variations, electro-

magnetic fields interactions, device aging, and so on, producing noisy responses in time.

This implies that each challenge might be mapped into more than one response. Fuzzy

extractor techniques can be successfully adopted to recover noisy responses. It involves

the evaluation of the PUF stability in order to extract some data, namely helper data,

which can be used to provide noise-free responses. Since the helper data cannot be used

by attacker to guess the PUFs responses, it is not critical and can be even stored in

non-secure memories [37].

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 25

2.2.2.1 PUFs properties

This subsection illustrates a formal perspective of the PUF, mainly to better understand

properties which characterize it. First of all let the PUF be a mathematical application

which associate challenges to responses. Ideally such application is a function:

θ ∈ Θ : C → R|θ (c) = r, c ∈ C, r ∈ R. (2.1)

C is defined as the allowable challenges set and R is the responses one. Θ includes all

the PUFs population in order to identify silicon devices which embed them. It is worth

noting that, in real cases, the challenge-response relation is substituted by θ (c) ≈ r.

From the probability point of view, r is the most probable response that can be output

from the PUF by stimulating it with the challenge c.

Unclonability The main PUF property is the unclonability and can be formally

described as the impossibility to obtain a PUF θ̂ which is identical to θ, such that

the latter can replace the former. Being a physical object, the unclonability can be

considered in a mathematical or physical manner. Mathematical unclonability implies

that it is hard to find a mathematical procedure that is able to provide the same CRPs

set:

@f : ω (c) = f (c) = r, ∀c ∈ C. (2.2a)

Physical unclonability indicates that it is hard to reproduce a PUF which can be recog-

nized as another one:

@σ : θ (c) = σ (c) = r, ∀c ∈ C. (2.2b)

Uniqueness The PUF uniqueness property is formulated as:

@θ̃ ∈ Θ : θ̃ (c) = θ (c) = r, ∀c ∈ Ĉ ⊆ C. (2.3)

The definition can be interpreted in ambiguous way since it seems to be overlapped or

very similar to the uniqueness statement (Equation 2.2b). However this is not true,

because the requirement to be unique for a θ is the non-existence of another θ̃ that

specifically belongs to Θ, unlike the unclonability that requires the non-existence of

26 Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology

a generic function that is able to substitute a given PUF. Moreover, the uniqueness

requires to be valid only for a subset of C.

Apart the theoretical meaning, the uniqueness has a practical usefulness. Indeed, let

ċ ∈ C be a random picked value and ṙ = θ (ċ); the pair (ċ, θ (ċ)) induces a partition

into Θ such that Θ̇ ∪ Θ̄ = Θ and θ̇ (ċ) = ṙ,∀θ̇ ∈ Θ̇ and consequently θ̄ (ċ) 6= ṙ,∀θ̄ ∈ Θ̄.

A successive picking of c̈ ∈ C define another pair (c̈, θ (c̈)) such that causes a partition

in Θ̇, and so on. By nesting this approach, so successive applications of other c values

on θ, the set Ψ = {(ċ, θ (ċ))} will cause increasingly smaller partitions, up to having a

singleton set in which only one function, θ, fulfills all the conditions. The success of

this procedure and the required steps to complete it depend on the Θ cardinality, the

characteristics of the PUF θ and of the picked c.

Unpredictability The unpredictability property can be directly inherited from the

definition of mathematical unclonability, Equation 2.2a.

Ψ = {(c, θ (c))} ,@Φ : Φ (Ψ, cp) = θ (cp) = rp, ∀cp ∈ C. (2.4)

What is requested to be unpredictable for a function is the inability to create a procedure

Φ that, having a certain amount of challenge-response pairs Ψ for a PUF θ, is able to

provide the same output of θ for a generic challenge c. The existence of this procedure

is in directly contrast with the unclonability because Φ represents a mathematical clone

that can predict the θ responses.

One-way property Formally θ is a one-way function ⇐⇒ given r = θ (c) it is

hard to find λ : λ (r) = c̄ and θ (c̄) = r, ∀c̄ ∈ C̄ ⊆ C. As for the hash functions, in this

definition “hard” is meant in the computational theory sense, so that given one output

r of a PUF θ, it is very expansive to find one input c̄ such that θ (c̄) = r.

Evaluability Given θ ∈ Θ and c ∈ C, θ is evaluable if it is not hard to evaluate θ (c).

Tamper-evident θ has the tamper-evident property ⇐⇒ any attempt to tamper

the PUF θ permanently changes it in θ′ : θ′ (c) 6≈ θ (c) , ∀c ∈ C.

Chapter 2 Attacks and Countermeasures Overview of SRAM FPGA Technology 27

2.2.3 Known attacks against PUFs

Not all the proposed PUFs architectures have the previously listed properties and some

of them are partially proved. Recently, some PUFs have been discovered susceptible of

attacks. Surely, these attacks are specialized for a specific PUF design and cannot be

universally applied to every PUF.

Model-based attack Some PUFs are susceptible of model based attack. In par-

ticular, strong PUFs, i.e. PUFs with a large CRPs set, can be attacked by means of

machine learning algorithms. If their interface is public, as in the authentication scheme

reported in Figure 2.6, and can be easily accessed, it is possible to obtain some CRPs.

Model based attacks require a huge amount of CRPs during the learning phase and,

consequently, for the strong PUF it is not a hard-to-meet constraint. Once extracted,

the data model is able to give predictions with an high accuracy rate. In [96] Ruhrmair

et al. have demonstrated this approach attacking some implementations: RO PUF,

arbiter PUF and arbiter variants. Trained models were able to predict a response for

a given challenge with an accuracy rate near to 99%. Another interesting result has

been reported in [73] by Mahmoud et al.: combining machine-learning techniques with

leak information through side channel, authors have attacked a xor arbiter PUFs with

challenge width of 64, 128 and 256 bits.

Weak PUFs cannot be a target of such attacks, since they cannot be provide a CPRs

set huge enough to train a useful model.

SCA As previously introduced in Subsection 2.1.4, SCA analyzes with statistical tools

secondary effects produced by ICs when they are working, especially targeting crypto-

graphic algorithms. Even if the PUF itself is SCA-resistant, post-processing techniques

can jeopardizes the secrecy as they might be weak against SCAs. The first SCA attack

on post-processing algorithm was performed in [57] by Karakoyunlu and Sunar. The

complexity of the fuzzy extractor obligates the system designer to implement it through

a software algorithm, that is easy to break by means of SCA.

Exploiting electromagnetic emission of ROs, even very small, some papers reported

attacks that can be used to guess the ROPUF responses [79, 78, 80]. At the same time,

they have provided some countermeasures to avoid such SCAs.

Chapter 3

Secure Infrastructure for

Hardware Digital Content

Distribution

The FPGA security is a fundamental aspect for in-field applications, which exploit such

reconfigurable technology not only for immediate accessibility in the market, but also for

inherently features that define new design paradigms. In particular, the reconfiguration

ability is able to provide an interesting adaptability and flexibility to the functionality

and computation required when, some point in time, the current configuration is inade-

quate. Being in-field, such feature has to be remotely exploited by transmitting the new

configuration. More largely, this scenario can be extended considering a market in which

device reprogrammability creates the possibility of distributing hardware cores, pretty

much like software digital contents. The hardware update mechanism must guarantee

the respect of the IPs rights associated with it.

To effectively extend the above scenario, since the hardware update is so close to the

software case, it is mandatory to explore existing techniques for the software domain,

identifying involved roles and mutual relations among them. In the next Section, some

proposals from the research literature are given, then the Digital Right Management

(DRM) technology is briefly discussed in order to list and detail who are the parties

involved in the envisioned scenario.

29

30 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

3.1 Existing Research Proposals

Several proposals in the literature protect the IP of full and partial bitstreams by using

encryption schemes. In [52], the authors implemented on a Virtex5 a partial reconfigura-

tion module exploiting AES-GCM in order to implement encryption and authentication.

Some performance analysis are provided. In [26], the authors proposed an efficient Au-

thenticated Encryption scheme tailored for FPGA bitstream protection. It is based on

the AES-based authenticated encryption scheme. The authors of [36] focused on spoofing

and reply attacks. With spoofing, an attacker can replace the data with fake information

(see Subsection 2.1.2). With a reply attack, an attacker can record the bitstream sent by

the user to the FPGA and re-send it in order to delete subsequent configurations. The

authors proposed a frame tailored for trusted FPGAs or trusted boards whereby they

guarantee confidentiality, integrity, authenticity and up-to-datedness based on AES and

Hashed Message Authentication Code (HMAC) algorithms. The authors of [45] pro-

poses a technique to make Xilinx low-cost FPGAs as secure as high-end FPGAs without

adopting an encryption scheme. They use one or more PUF (see Subsection 2.2.2) to

generate a signature used by a host to obfuscate the hardware description language

(HDL) code, such as a finite state machine (FSM) state coding. The generated bit-

stream is well-functioning only for a specified device. In [59], the authors illustrated

a methodology to defend an IP by using trusted platforms based on FPGA dynamic

reconfiguration capabilities. They identified the players, such as the system integrator,

trusted authority, FPGA fabric vendor and so on, and defined a few solutions to add, up-

date, store and catalog an IP. They provided also a proof-of-concept implementation on a

Virtex-II FPGA, but no details about the protocols were given. Couture and Kent [31]

extended a licensing approach to hardware components. The authors concluded that

this approach requires a modified FPGA architecture equipped with a secure NVM and

a tamper-resistant unique identifier. Güneysu et al. in [50] proposed a volume licensing

scheme for FPGA bitstreams. The proposal requires changes to the FPGA configuration

controller, since a secondary key register is needed in addition to the built-in encryption

mechanism. Furthermore, the solution is limited to the protection of full FPGA con-

figuration, so it is not possible to protect partial soft IP cores. Drimer et al. extended

this work for the protection of multiple cores [38]. Maes et al. in [72] proposed an IP

protection mechanism for FPGA designs at the level of individual IP cores. In fact,

although the reseach activity of this doctoral thesis was developed independently, the

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 31

proposal in [72] is closely related to the solution which is here proposed. Indeed, simi-

larly to the work presented here, they relied on self-reconfiguring capabilities, they only

used primitives already available in existing FPGA devices, and required an external

TTP. This makes it possible to enforce a pay-per-use licensing scheme. Unlike the work

presented here, however, they did not exploit built-in mechanisms for partial bitstream

encryption, hence requiring a configuration bitstream with a custom AES engine to be

expressly installed upon each partial configuration. In addition, the metering service is

managed online by the TTP, unlike the concept of RO used here, borrowed from the

DRM domain, letting the end used autonomously consume hardware contents. Fur-

thermore, Maes et al. did not demonstrate any practical implementation, particularly

concerning the connection with the software layers and the possible implications in terms

of software DRM [72]. At the end, Thanh et. al in [112] gave an overview on techniques

and involved services for an IP protection infrastructure, but without exploiting AES

decryption inherently installed on the FPGA.

3.2 Digital Right Management

DRM refers to the protection, distribution, modification and enforcement of the rights

associated with the use of digital contents [39, 95]. Figure 3.1 shows the classical ar-

chitecture of a DRM infrastructure in the software domain. The content provider (the

party who has created the content) packages data according to a DRM specification and

establishes one or more sets of usage rights and related usage costs. Consumers can buy

and download contents and associated rights from third-party sources, for example, from

the website of a content distributor. In this scenario, a client DRM-enabled platform

guarantees that a proper license has been obtained by the user and enforces rules for

playing contents. All DRM mechanisms rely on some form of specialized hardware to

achieve secure delivery of contents, usage rights and authentication. Indeed, since user

identification, cryptographic capabilities and the ability to resist against external tam-

pering are vital to DRM systems, implementations of DRM are often based on trusted

computing platforms [47], which provide the above benefits as a native feature. Such

platforms mount an additional chip, the Trusted Platform Module (TPM), similar to

a smartcard in its internal structure, providing security functions such as platform at-

testation, protected storage and sealing, to measure and validate the hardware and/or

32 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

Product
Info

Content
Repository

DRM
packager

Content
Server

Encryption

Content

Metadata

Encryption

Keys

Rights

Rendering
Application

DRM
Controller

Identities

License
Server

Rights
Encryption

Keys

Identities

DRM
license

generator

Financial
Transaction

Client

Figure 3.1: Schematic of the classical architecture of a DRM infrastructure in the
software domain.

software configurations of the platform [47]. In particular, the Open Mobile Alliance

(OMA) DRM specification [4] provides a reference architecture for DRM in mobile and

handheld devices. Based on trusted computing facilities, the OMA DRM architecture

specifies the scheme of Figure 3.1 by defining four actors that interact with each other

in order to distribute protected digital contents to end-users. The content issuer, as

the owner of the digital content, firstly converts the content to an appropriate format

and then negotiates a right object (RO) with one or more right issuers (RI). The RO

describes constraints and permissions granted to the DRM Agent for a specific content.

Before selling an RO to the end-user, the RI sets up a trusted relationship with the

DRM agent, enabling such features as mutual authentication and encryption needed to

distribute copyrighted content. In OMA DRM specification, these trust relationships are

based on public-key infrastructure certificates issued by a third-party trusted authority,

attesting both users and RI identity.

DRM plays an important role in current mobile environments. For example, Android

3.0 [35] and higher platforms provide an extensible DRM framework that lets appli-

cations manage protected contents using a variety of DRM mechanisms. The DRM

framework offers an abstract, unified Application Programming Interface (API) hiding

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 33

the complexity of content management operations. The architecture of the framework is

plugin-based, allowing device manufacturers, content owners and Internet digital media

providers to easily implement and extend the mechanisms, enforcing content protection

through Android applications. A prominent example of an extension is the Widevine

third-party plugin [2], built on top of the Android DRM framework, offering advanced

DRM and copy protection features. Protected content is secured using an encryption

scheme based on the open AES algorithm. An application can decrypt the content only

if it obtains a license from the Widevine DRM licensing server for the current user. The

Widevine DRM plugin integrates with the hardware platform to leverage the available

security capabilities. The level of security offered is determined by a combination of the

security capabilities of the hardware platform and the integration with Android and the

Widevine DRM plugin. In fact, Widevine DRM security supports three levels of secu-

rity [2], essentially depending on the portion of the underlying system that is physically

secured from hacking (e.g. DRM master keys, system boot, content rendering hardware

etc.).

3.2.1 Roles in hardware-level DRM

Device reprogrammability creates the possibility of distributing hardware cores, for ex-

ample, video codecs, pretty much like software digital contents, possibly on payment or

on a subscription basis. In fact, as part of the application logic, hardware accelerators

can be perceived as add-ons that can be downloaded, possibly on payment, and installed

on the user’s device to extend its processing capabilities. This resembles very closely

the scenario where software digital contents, for example, tones, MP3 files or mobile

application themselves, are distributed through a controlled licensing service.

With the aim to extend the notion of digital contents to reconfigurable hardware com-

ponents, called here hardware digital contents (HDCs), it is necessary to propose an

infrastructure for the secure distribution of such HDCs and a device architecture which

can implement secure mechanisms required by DRM. In particular, this Subsection de-

fines the roles involved in the distribution infrastructure, followed by a brief analysis of

the main security threats and the essential functions that the hardware solution must

offer.

34 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

End user The first identifiable role is the owner of the device, namely the End User.

The End User’s device contains a hardware-reconfigurable subsystem, which can be

possibly updated in the field. The End User requires the device to be secure, in order to

protect not only the personal data, but also to keep the system properly working. On the

other hand, the other parties want to protect themselves against the End User to avoid

the cloning of the equipment (e.g. by copying the FPGA bitstreams or partial ones) or

the unauthorized replacement of the FPGA design. For instance, in the case of pay-per-

use HDCs delivery system, the End User might reconfigure the system without effectively

complete any payment transaction. The End User also is a part of the licensing process

when it becomes the owner of the system and wants to bill new HDCs.

FPGA Fabric Vendor The manufacturer of the FPGA chip within the device is

identified as FPGA Fabric Vendor. It must guarantee some basic secure mechanisms in

order to provide integrity and confidentiality of both static and partial bitstreams. Its

devices should not be equipped with backdoors, because the FPGA Fabric Vendor has

to respect the intellectual property rights and avoid the usage by an attacker.

IPCore Vendor The design and the implementation of the intellectual property as

HDC is done by the IPCore Vendor. The HDCs are available as partial bitstreams to

be downloaded to the FPGA. The IPCore Vendor requires the protection of its own IP

rights, not only against the overbilling mechanism or unauthorized distribution, but also

to keep the design confidential. The IPCore Vendor is aware of the requirements that

it has to fulfill, such as the compliance with the IP design specification and with the

End User system. The pay-per-use mechanism is an IPCore Vendor’s concern, meaning

that the issued HDC has the responsibility to provide a cryptographic key specific to

the HDC.

Trusted-Third Party The TTP, or Trusted External Party, is an organization that

all parties rely on. The infrastructure guarantees that all the transactions among the

other parties are securely completed. For this reason, the TTP stores in a registry all

the parties’ keys, as well as the correspondence between the FPGA-ID and the installed

secret key. The TTP needs also to install the first license record when the End User

bills the HDC.

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 35

3.2.2 Attacks scenario

In Section 2.1 FPGA vulnerabilities have been listed and explained in detail. Here they

are considered as applied to the envisioned scenario, in which (partial) bitstreams are

distributed as HDC with digital rights.

Malicious bitstreams Third-party bitstreams are inserted into the hardware en-

vironment to either damage the device or steal sensitive information. In particular,

HDC bitstreams might contain hardware Trojans that, depending on the privilege levels

granted by the surrounding environment, might cause various types of damages on the

device.

IP theft and reverse engineering of bitstreams An attacker accesses the plain

bitstream in order to realize compatible, unprotected clones of the distributed compo-

nents. The original bitstream can be obtained by adding a proper header and other

configuration structures which are missing in the stolen bitstream (see Subsections 2.1.2

and 2.1.3).

Digital right tampering The end user manipulates the ROs associated with a

component downloaded to the device in order to obtain unauthorized accesses. This

might be done, for instance, by hacking the digital right representation in an NVM, for

example, by changing the value of a counter which keeps track of the remaining number

of uses.

Software tampering Since no assumption is made in this work on the security mea-

sures adopted by a software environment (in particular, here there are no assumptions

about the environment, which is not necessarily compliant with a trusted computing

architecture) an attacker might tamper with the software libraries interacting with the

reconfigurable hardware component. In particular, the software part coming with the

HDC might be completely hacked, while – in principle – the HDC might be emulated

in software by an unauthorized library injected by the attacker.

36 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

3.2.3 DRM hardware functions

In order to effectively tackle the above security threats, some vital functions have to be

supported by both the secure HDC distribution infrastructure and the corresponding

device architecture.

HDC validation HDCs are very low-level in nature, since they involve the hardware

part of the system. While the APIs ensures some form of isolation from the static part

of the FPGA and the software environment, the open nature of the platform might in-

troduce serious vulnerabilities exploited by malicious HDC developers. It would thus be

highly desirable that the distribution infrastructure offers an off-line validation service.

Given the reduced computing power normally available on the end user device, it is in

fact unlikely that an HDC check takes place on the device itself, like an antivirus scan

on a standard general purpose platform. Ideally, the HDC should undergo some form of

verification at the time of registration by means of an external player, which is also in

charge of HDC distribution and secure packaging.

HDC distribution and billing While validation guarantees the security from the

user’s perspective, the infrastructure should also offer a platform for the protection of the

Intellectual Property to third-party developers, ensuring secure distribution and billing

of HDCs. The infrastructure should enable various business models, including pay-per-

use policies for the downloaded components, preventing the uncontrolled redistribution

of HDCs.

HDC digital rights Each distributed HDC will have a set of digital rights associated

with it. These constitute the essential cryptographic element enforcing the distribution

policies requested by the third-party developers, for example, per-use licensing, duration-

based licensing and so on.

3.3 Hardware Architecture

With the goal to realize a working prototype of the device that can works within a DRM

architecture, the FPGA has to be picked among commercially available programmable

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 37

devices. This results in a number of technological constraints that were taken into

account for the definition of the device architecture and the main interactions taking

place for HDC distribution. The technological constraints directly reflect the security-

related features of existing FPGA families [104]. First, a secure configuration mode

should be available, where the configuration bitstream is stored outside the FPGA device

in an encrypted form and is only decrypted inside the FPGA within a secure perimeter.

Readback on the unencrypted bitstream is inhibited. Symmetric encryption (e.g. AES

encryption) is the only mechanism available as the built-in mechanism for securing the

FPGA bitstream, and a single symmetric key for enciphering both static and partial

bitstreams is available. Furthermore, no NVM is available on-chip in the hardware

execution environment, that is, the FPGA device. Concerning the interaction with the

End User’s host device, HDCs are accommodated on a partially reconfigurable part

of the FPGA (whose perimeter is defined statically at design time) although they are

provided with an API allowing them to interact with both the static part and a software

environment running outside the reconfigurable fabric.

The device architecture is shown in Figure 3.2. The hardware execution environment

contains a partially reconfigurable region that can host additional processing compo-

nents, for example, codecs. Third-party developers can implement and distribute their

own components, that is, HDCs, which must comply with an API exposed by the hard-

ware environment. Most likely, the whole application downloaded by the user will be

made of a software part containing non-critical parts and a hardware-accelerated por-

tion implemented in the form of an HDC. The FPGA is equipped with two built-in

security mechanisms. In particular, the master reconfiguration key (MRK) is a symmet-

ric encryption key used by the on-chip configuration circuitry to decrypt the (partial)

bitstreams downloaded to the FPGA. The FPGA device identifier (FID) is a unique

code associated with each different physical instance of the device, used to uniquely

bind a bitstream to a user device. The FID is non-critical in terms of security and can

be possibly accessed from the outside. Notice that both mechanisms reflect existing

security-related measures available on current FPGA devices [104, 32].

Two key components are built around the FPGA device on top of the basic architecture.

The secure initialization interface is essentially used to initialize the MRK. It is meant to

be accessed in a secure environment under the sole control of the TTP and possibly of the

FPGA fabric vendor. The SAM is a tamper-resistant device with encryption capabilities,

38 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

Figure 3.2: Physical architecture of a device compliant with the proposed secure core
distribution infrastructure.

supporting symmetric and public-key cryptography and secure non-volatile storage. It is

associated with the user identity and can be remotely accessed by the TTP online. In a

real scenario, the SAM is likely to coincide with a Subscriber Identification Module (SIM)

normally available in handheld devices, smart meters, set-top boxes and all devices that

need to have a cryptographic identity. More generally, in trusted computing platforms

the SAM will coincide with the TPM, which is equivalent to a smartcard in functionality.

Moreover, in the particular case of a mobile device equipped with a SIM card, the

TTP can coincide with the Mobile Network Operator (MNO), or can obtain the access

to the user SIM from the MNO as a service. The SAM is vital in the envisioned

architecture in that it provides a cryptographically secure storage for the ROs associated

with each HDC, making the application stateful (unlike the FPGA itself), and linking

the device identity with the user identity. Based on the above architecture, the following

assumptions can be made concerning the security at the level of the device:

• the architecture surrounding the FPGA is not necessarily secure, in particular it

must not necessarily be a trusted computing platform;

• the device can be physically tampered with;

• the SAM, along with the ROs in its NVM, can be removed and replaced with a

fake SAM;

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 39

Figure 3.3: Architecture of the secure core distribution infrastructure.

• the secure initialization interface is always accessible for writing the MRK (al-

though the genuine MRK is always initialized in a secure environment).

3.4 Infrastructure Architecture

Figure3.3 describes the proposed infrastructure for HDC distribution along with the

interactions between the players.

The MRK initialisation involves the TTP and the End User, relying on the secure

initialization interface. The process is write-only, meaning that the MRK can never

be readback. Any attempt to access the initialization interface will result in the loss

of previous MRK, making the bitstreams specific to this device unusable. Notice that

the physical architecture is constrained by existing FPGA security mechanisms. In

particular, the MRK key enters the FPGA in a plain form and can be read by probing

the device pins during initialization. That implies that the initialization process must

always take place in a secure environment, possibly at manufacturing time. Notice that

40 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

current technologies, such as Xilinx bitstream encryption, allows the non-volatile storing

of the decryption key by either storing it in a RAM powered by a small backup battery

or by using non-volatile OTP fuses.

The TTP can also interact with the SAM in the device to securely transfer the secret

key used by the SAM to authenticate the FPGA requesting access to the ROs. Since

the SAM (e.g. the user SIM card) represents a secure perimeter with its own identity

and cryptographic capabilities, the interaction between the TTP and the SAM can take

place at any time, possibly mediated by the MNO, in a secure way, even when the SAM

and the FPGA are placed in an untrusted device.

A bitstream registration/validation/encryption procedure takes place between the TTP

and the IPCore Vendor. This interaction takes place online through a standard secure

channel, most likely an SSL-secured connection, in order to authenticate the TTP and

preserve confidentiality of the HDC bitstream. Having full access to the bitstream, the

TTP validates its structure by both checking its compliance with the standard API as

well as its trustworthiness, for example, the absence of hardware trojans. Notice that

it is very unlikely that the user device can autonomously perform such check directly

on their device: On the one hand, that would expose the bitstream outside a secure

perimeter and, on the other hand, it would require overly large analysis capabilities to

reside on the user device. This is a major reason explaining the role of the TTP.

Once the validated and encrypted HDC bitstream is obtained from the TTP, the IPCore

Vendor can distribute it directly to the end user, through possibly unsecure channels. It

also creates and issues the ROs associated with the HDC. Figure 3.4 depicts the generic

structure of an RO for an HDC. The ROs can define permissions, constraints and obli-

gations enforced on the use the HDC. For instance, a limited number of uses can be

granted for the distributed HDC, for example, for a trial installation. The management

of the ROs (e.g. the count of the different uses) requires an NVM which, because of

the above technological constraints, is hosted outside the FPGA in the SAM. The API

available from the static part of the design to the HDC exposes the required interface

to authenticate the HDC to the SAM through a challenge-response process before read-

ing/updating the ROs associated with the HDC stored on the SAM. Notice that, as

discussed later, the authentication of the FPGA to the SAM is key to guaranteeing a

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 41

Figure 3.4: Structure of a digital RO for HDCs.

trustworthy manipulation of the ROs, which do not reside on the HDC itself because of

the lack of NVM in the FPGA.

3.5 Security Evaluation

This section reviews the attack scenarios previously identified and analyzes the impact of

the security mechanisms put in place by the proposed infrastructure. For each security

threat, more than one scenario is figured out, illustrating how they enable the attack

and discussing its potential consequences on the system integrity.

3.5.1 Malicious bitstreams

Genuine host environment This scenario assumes that an IPCore Vendor wants to

inject a malicious HDC bitstream into the end user device without the user’s collusion.

This implies that the software environment on the device is still genuine. The environ-

ment natively prevents FPGA configuration outside the secure environment accessed

only by the TTP (see Figure 3.2). In particular, no MRK update can take place. As a

consequence, only bitstreams previously validated and hence signed by the TTP can be

downloaded to the FPGA. Of course, the authorized bitstreams can be deemed safe as

42 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

long as the TTP is able to successfully detect malicious bitstreams upon validation, for

example, hardware trojans. A further level of protection is provided by the API exposed

by the static part and the software environment to the partially reconfigurable HDC,

which guarantees the isolation of the hosted component from the low-level features of

the user device.

Hacked host environment This scenario hypothesizes that the end users is actively

involved in the attack in that he/she intentionally allows low-level modifications to

the device, for example, replacing system components such as the SAM. No malicious

modification, however, is possible within the secure environment accessed by the TTP to

initialise the MRK. In case the MRK is stored in an on-chip RAM within the FPGA, by

hacking the low-level features of the device, particularly the FPGA configuration logic,

the user can inject their own MRK and consequently generate arbitrary bitstreams.

However, apart from potentially causing damages to the device, this type of vulnerability

by no means allows the generation of false ROs enabling unauthorized access to genuine

bitstreams, since these are still enciphered with a legal secret MRK. In fact, hacked

bitstreams can interact with the SAM, but they cannot authenticate themselves to the

SAM, which will not allow any read/update operation on the stored ROs. Notice that

the MRK can never be read back from the FGPA and can only be overwritten in case

it is stored on an on-chip RAM powered by a back-up battery. On the other hand, if

the MRK is stored in an NVM (e.g. fuses within the FPGA), the MRK cannot even be

modified, which would provide improved security (while reducing the flexibility of the

distribution infrastructure).

3.5.2 IP theft and reverse engineering

Network sniffing HDC bitstreams exist in an unencrypted form only within the

IPCore Vendor’s and the TTPs perimeter. Furthermore, they need to travel from the

IPCore Vendor to the TTP across an untrusted communication channel. For this type of

interaction, however, the channel can be easily secured through standard mechanisms,

particularly an SSL connection. After being encrypted, the bitstream can be safely

distributed through unprotected channels, for example, through the Internet.

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 43

Device hacking Bitstreams are stored in an encrypted form on the device. This

makes it impossible to reverse engineer the HDC by reading it from the device configu-

ration store, in addition to ensuring the confidentiality of the keys used for authenticating

the FPGA to the SAM and decrypting the ROs. Encrypted bitstreams are decrypted

within the FPGA after being downloaded from the configuration store. Consequently,

the only possibility of obtaining the unencrypted bitstream at run-time would be to un-

package the FPGA while it is powered up and probing the running configuration. Such

a process is extremely unlikely to be feasible in practice. Nevertheless, its cost would be

overly large compared to the illegal monetary gain it can possibly enable for the class

of applications previously envisioned in this manuscript.

3.5.3 Right Object tampering

RO tampering based on cryptanalysis ROs are securely stored within the SAM,

which only grants access to authenticated external components, namely the HDCs run-

ning within the FPGA. Furthermore, ROs might be optionally encrypted by means of an

RO key (ROK) defined by the IPCore Vendor and hardwired in the HDC. ROs cannot

thus be sniffed by physically probing the device. Securing the bitstream against IP theft

by encryption also guarantees the protection of the ROKs stored in it.

RO tampering by device hacking Attacks not relying on cryptanalysis might

instead consist in hacking the physical device, by replacing the whole NVM containing

the ROs, for example, to restore the initial value of a counter. This vulnerability would

inherently rely on the fact FGPAs need an external storage for handling non-volatile

data. Here the use of a SAM is key, as it provides a secure perimeter where ROs can be

stored and securely exchanged. Replacing the SAM has no effect since an authentication

process takes place between the FPGA and the SAM. The use of the ROK to encrypt

the ROs, possibly chosen by the IPCore Vendor on a per-device basis, provides a further

level of protection.

3.5.4 Software hacking

If the device surrounding the FPGA is not a trusted computing platform in itself, the

software environment can be easily tampered with. In particular, an attacker can easily

44 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

reverse engineer the software part accompanying the HDC. In fact, in a real-world sce-

nario, HDCs are likely to implement only a performance-critical kernel of an application

(e.g. an intra-frame predictor as a part of a software video codec). By analyzing the

interface of the hardware component, the attacker could reproduce in software the func-

tionality implemented by the HDC and hack the high-level application by replacing the

FPGA with their own software routine. Obviously, however, even in the case that such

hacking can reproduce a functionally equivalent HDC in software, the performance levels

would be orders of magnitude lower, providing no practical incentives to the attackers,

since the main value carried by a genuine HDC lies in its hardware-supported execution

speed.

3.6 Prototypical Implementation and Results

In this section, an implementation of the FPGA-based End User’s device is presented,

demonstrating the proposed architecture. To this aim, a commercial configurable plat-

form, namely a Xilinx Zynq-7000 XC7Z020 mounted on a Zedboard development kit, is

adopted, allowing to prototype both the hardware reconfigurable part and the software

environment of the user device (see Figure 3.2). The system includes the Xilinx FPGA,

a 512 MB DDR3, 256 MB Quad-SPI Flash, SDCard slot, Ethernet, USB OTG, HD-

MI/VGA and audio lines. The FPGA is a System on Programmable Chip; indeed, it has

a fixed processing system that can operate independently of the FPGA Programmable

Logic (PL). The core of the processing system is an ARM dual-core Cortex A9 32/32 KB

I/D caches, 512 KB L2 cache. Some peripherals are available to the processing system,

including the Device Configuration (DevC).

The DevC allows the processor to download full/partial bitstreams to the FPGA PL. It is

also equipped with a built-in AES decryption engine, coupled to the HMAC engine, that

can be activated to allow the configuration of encrypted bitstreams. The HMAC provides

private key authentication using the SHA-256 hash function. The AES encryption key

(i.e. the MRK) can be stored in the Battery Backed RAM (BBRAM) or in eFUSE array.

The BBRAM is a reprogrammable/zeroisable memory that can be considered an NVM

if a battery power supply is provided, because the battery guarantees the key storing

when the device is powered off. The eFUSE is an OTP NVM, called eFUSE array. Both

the registers provide secure storage because they are inaccessible to an attacker. In fact,

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 45

all the memory components (on chip memory, L1 and L2 cache, AXI block RAM, PL

configuration memory, BBRAM and eFUSE) reside within the security perimeter of the

FPGA [98]. Both BBRAM and eFUSE can be programmed with the AES key by using

the JTAG interface with Xilinx iMPACT tool. In addition, eFUSE contains some other

configuration bits, such as the disable read bit, that inhibits the AES key readback.

Once these bits, including the key, are written in the eFUSE, they cannot be changed

and, if the readback is disabled, they can never be read.

3.6.1 Software environment: Zedroid

In order to prototype the software stack of the user device, the FPGA was equipped

with a software environment tailored for the Zedboard, obtained by porting the Google’s

Android operating system for the Zynq platform, called Zedroid. The porting involved

adapting the whole Android software stack and services on the Zynq PS core, supporting

possible hardware extensions [14]. For instance, in this specific case, the Linux device

tree had been patched to make the DevC and the custom accelerator visible to Android,

and the kernel to support the DevC driver that manages the DPR process. As for the PL

hardware, the Zedroid porting provides a basic HDMI core interface using the on-board

ADV7511 chip and a blank processing accelerator, both defined with an AXI interface.

By using the USB OTG protocol, the system accesses a SIM card reader to the system.

The SIM includes a secure NVM which contains the ROs, providing information about

the HDC payments/uses, because the FPGA is not equipped with an internal secure

NVM. Figure 3.5 shows a schematic view of the described architecture. Concerning

the hardware components, the FPGA hosts the HDMI and the AES decryption engine;

concerning the software, the Android stack includes the kernel objects (KOs) and the

user application that will be discussed in the next Subsections.

3.6.2 HDC lifecycle managing framework

To manage the installation of the accelerators via partial reconfiguration mechanisms,

a framework that exposes some APIs has been developed. The APIs guarantee the

dynamic configuration of a new hardware unit, by means of the DevC, within the Java

code. As highlighted by Figure 3.5, the DevC driver structure is made of two parts. The

low-level part, integrated in the Linux Kernel and User space, avoids inconsistent state of

46 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

FPGA (Artix 7)

Dual Core ARM A9

AES-
Decryption HDC-slot

HDMI-controller

Ethernet, USB, UART, ...

Caches, AXI Bus

Linux Kernel

Android Libraries
Android Runtime

Application Framework

Android Applications

H
a
rd

w
a
re

S
o
ft
w
a
re

L
a
ye

r
L
a
ye

rD
ev

C

xdev cfg.ko hdc driver.ko

HDC Interface

User Application

DevC APIs

USB VCP

Sim Module

Figure 3.5: Structure of the Zedroid architecture, equipped with the software and
hardware components in order to support pay-per-use scheme.

the system. For instance, it provides synchronization mechanisms, by exploiting a kernel

mutex, that resolves contentions when multiple partial reconfigurations are requested.

This mechanism is replicated for each accelerator slot available on the PL, but for the

experiments only a single accelerator has been considered. The high-level part of the

driver is implemented by means of JNI functions: they allow an application running on

the Dalvik Virtual Machine to call user space functions directly. By using these APIs,

an Android Activity, or Service, requests for a partial reconfiguration. If the accelerator

is not configured, the operation succeeds, else an error state is returned. Since at startup

no HDC is installed, any attempts of accessing a blank device are forbidden by the low-

level driver. Only after a partial reconfiguration operation it will be possible to access

the new peripheral. When an Activity is to be destroyed, or paused, the accelerator is

set free to grant other Activities access to the configuration of the accelerators. The

behavior of the Activity on those events is a developer’s concern, because the use of the

accelerator is tightly coupled with the Activity functions. After each installation, the

accelerator is activated by checking a proper RO. This means that the Android App

needs to query the SIM to receive an enciphered token used to activate the accelerator.

The implementation of the token checking is an IPCore Vendor’s concern. This solution

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 47

involves both the IPCore Vendor and the TTP in the bitstream billing and access process.

3.6.3 Integrating dynamic hardware components

As for the HDC interaction with the user space software, the Zedroid project provides

useful tools to easily integrate new hardware components. First of all, into the Device

Tree of the Zedroid source files, a generic peripheral is declared so that, at boot time, the

Linux Kernel is ready to load drivers for the dynamic devices. This peripheral is referred

as a dummy or blank device. The configuration required for a Device Tree entry are the

physical address, a unique ID, the interruption manager and so on. These values, for

dummy device, are fixed and generic in order to support a high range of peripherals. To

deploy new peripherals in the Zedroid environment (we can refer it as hdc device), the

software designer needs to define a KO which manages the interaction between the user,

that is, Android applications, and the hardware component. To this aim, the Zedroid

project provides a driver template which contains the functions needed to dynamically

mount the hardware, by loading it in the kernel. Since the obtained driver is a KO, the

system needs to run insmod to dynamically mount new drivers onto Linux Kernel space.

This command installs a loadable module (i.e. driver) in the running kernel (Figure 3.5).

If the procedure succeeds, the peripheral will look like a file under/dev system folder

(e.g. /dev/hdc device). All the information about the peripheral is retrieved from the

Device Tree dummy entry, because the drive template file declares itself as compatible

with the dummy device. To unmount the driver, in order to change it with another one,

it is necessary to call rmmod. The template main functions are the file operations (read,

write and seek), which implement the access logic to the peripheral. By using Java File

class, it is possible to access this peripheral from the Android user space, instantiating

a File object pointing to the right path (/dev/hdc device). In the Zedroid source a Java

Class, named ZedPeriph is available. This class, implemented with Singleton design

pattern, declares some useful functions (such as open, close, seek, read and write) used

to easily access the peripheral. By inheriting it, a developer can easily implement the

main driver functionality, that is, the control, data transfer and status logic.

48 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

3.6.4 Configuration time overhead

In order to derive a quantitative analysis of the overhead introduced by the support for

HDC distribution, some experiments were ran. In particular, the analysis regards the

overhead required by the partial reconfiguration task using partial encrypted bitstreams

and the overhead required for the SIM communication. As for partial reconfiguration,

the differences between the plain and ciphered bitstreams are highlighted. To this aim,

five partial block rectangles were designed, varying the sizes of the occupied resource,

starting from the hardware project described above. The block sizes are as follows:

1600 × {1; 1.5; 2; 3; 6} LUTs. For each partial block definition, two different hardware

accelerators with an AXI stream interface were synthesized and the obtained partial

bitstreams converted from the .bit to .bin format by using the Promgen software tool.

Also, in order to measure the time to complete each partial reconfiguration process,

the DevC driver was instrumented to count how many microseconds occur between the

start and the end of the DMA transfer process. Each experiment was run nine times to

average out the interferences caused by the Android OS and underlying Linux Kernel.

Figure 3.6 shows the partial reconfiguration delay curves varying on the size of the bin

file, referring to the plain and ciphered bin files, obtained by linear interpolation of

the experiments. The values of the experiments related to the two different accelerator

implementations were merged, because it is possible to observe that the configuration

overhead depends only on the file size. The configuration delay trend is linear with

respect to the size of the .bin in both cases, but the slope of the ciphered case is about

four times larger than the plain one. In fact, the PCAP module in the DevC works

with a frequency clock scaled down by a factor four, directly impacting the effective

maximum throughput.

3.6.5 Case-study and experimental results

To demonstrate the proposed solution, a further experimental activity was conducted

where the main interactions of the proposed distribution infrastructure were reproduced.

From this additional test activity, the related overhead was quantified. Assume that a

media player application, downloaded from the app store, includes a hardware acceler-

ator, to be dynamically configured onto the system as an HDC, available at an extra

fee. This accelerator implements the H.264 intra-frame prediction in order to enhance

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 49

Figure 3.6: Delay curves related to the partial reconfiguration of plain and encrypted
bitstreams, varying with the bitstreams file size.

the frame-per-second rate. By accessing the billing system, provided by the TTP as a

normal online store, the End User is able to complete the payment transaction and get

the access to the accelerator, provided by the application. This right is issued by the

TTP as an RO and has to be written in the SIM. The accelerator is downloaded by the

application as a partial enciphered bitstream by means of a URI. Once the application is

configured by the Android Activity, it interacts with the SIM to see if it has the rights to

access the accelerator. The SIM returns a ciphered token used by the Android Activity

to activate the accelerator and to start the video playing. The application implements

all the H.264 decompression process in software, except the intra-frame prediction, im-

plemented by the installed HDC. This designed prototype was used to measure the time

overhead required by RO managing in such a scenario. The SIM module communicates

through a USB VCP at a baud rate of 9600 bps. The time requested to save a RO and

to query the SIM for the RO were measured: the saving process requires on average

241 ms, the query about 182 ms. As for the hardware accelerator, the IPCore contains

an H.264 infra-frame prediction and a 256-bit tiny AES core – used to process the RO

on chip – requiring 6231 LUTs, 6752 Slice Registers and 98 Block RAM, that is, around

10% of the available resource. The overall overhead, measured from the DevC DMA

starting time to the HDC activation, is 867 ms on average.

3.7 Considerations on the Approach Improvement

In addition to the definition of the infrastructure and device architecture, a major lesson

learned from this experience lies in the analysis of the security-related features and

50 Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution

Figure 3.7: In the photo the Zedboard is running the Zedroid software stack on
which it is downloaded an Android video player app with an hardware accelerator for

the H.264 infra-frame prediction.

limitations of current FPGA devices. This Chapter is concluded by drawing a few

proposals for the evolution of FPGA features that may enable the full realization of the

secure HDC distribution concept:

• Separate encryption keys: current FPGAs rigidly use a single key for encrypt-

ing both static and partial bitstreams. This limitation inherently requires that

the TTP, that is, the manager of the security architecture (embracing the static

reconfigurable part of the user device) and the HDC developer (involving the par-

tially reconfigurable region) rely on the same secret key. However, since there may

be many independent developers, and each developer should not access the IP of

other developers, the only solution was to let only the TTP know the encryption

key and encipher the bitstreams in place of all the developers. By supporting sep-

arate encryption mechanisms for static and partial bitstreams, this fundamental

limitation would be overcome.

• On-chip FPGA authentication: current FPGAs do not provide a secure perime-

ter with a cryptographic identity (possibly, based on public-key cryptography). So,

no authentication and secure remote communication is possible between the FPGA

Chapter 3 Secure Infrastructure for Hardware Digital Content Distribution 51

and a remote party, for example, the TTP. On the other hand, this is inherently

possible with the SAM. However, being physically separated, the FPGA and the

SAM must authenticate with each other for preserving the security of the interac-

tions, for example, managing and transferring the ROs. This complication would

be completely overcome if the FPGA would be provided with an on-chip authen-

tication mechanism, which would allow the FPGA to directly establish a secure

channel with the TTP. This would greatly simplify the interactions. In particular,

the MRK initialisation process could take place remotely at any time, without

requiring a secure environment.

• On-chip NVM: having NVM on the FPGA would remove the need for an ex-

ternal SAM device. The internal memory would be only used to make the FPGA

stateful and store some information needed to track the state of the ROs. The

bulk information, that is, the ROs themselves, may still reside outside the FPGA,

possibly in an encrypted form on an external flash device. The state stored within

the on-chip NVM would be essentially only used to prevent replay attacks, possibly

re-encrypting ROs at each use so that the user cannot simply restore the initial

value of the external NVM to gain illegal uses of the HDC. This solution would

only require a limited amount of NVM to be available on the FPGA.

• Reusing built-in encryption cores: the prototypical implementation is equipped

with an AES core on the static part of the FPGA. This is only required by DRM-

related operations. On the other hand, the FPGA is already provided with an

AES hardened core, required to decrypt the (partial) bitstreams, and only used

at configuration time. Making such core available to the DRM-related operations

would of course save a significant amount of hardware resources that could be

exploited for the user design.

Chapter 4

Enable Security Through

Physically Unclonable Functions

The previous Chapter has demonstrated the feasibility of protecting IP trough cryptog-

raphy, also enabling powerful pay-per-use mechanism through the DRM architecture.

But the proposed solutions relies on the availability of built-in decriptor, such that it is

possible (partially) configure the FPGA by means of enciphered bitstreams. Old-family

or low-end FPGAs were designed without any security mechanism, hence they are still

vulnerable to the attacks listed in Section 2.1.

In this scenario, PUFs, previously introduced in Subsection 2.2.2, are an emergent so-

lution to prevent at least bitstream theft and device cloning. All the other attacks are

still effective, since the involved bitstreams are in plain and the FPGA has no inherently

countermeasures. Through a binding mechanism, indeed, a design in the bitstream can

be forced to work only on a particular device. Normally, the bitstream produced for a

particular device family is able to be configured on any device which belongs to such a

family. In this case, any attack that is able to retrieve the bitstream enables to clone a

targeted device, as illustrated in Figure 4.1A. But exploiting a PUF, even if attackers

obtain the the bitstream, they will be not able to use it on other devices, since, ex-

ploiting the unclonability (mathematical 2.2a and physical 2.2b) and uniqueness (2.3)

properties, there are not FPGAs with the same PUF.

Recently, a bitstream binding technique has been proposed by Zhang et al. in [123,

122, 125]. In particular, authors proposed the first non-encryption IP binding method,

53

54 Chapter 4 Enable Security Through Physically Unclonable Functions

FPGA

PROM

FPGAFPGAFPGAFPGAFPGA

Readback

Eavesdrop

.bit

(A) Eavesdrop and readback attacks succeed
on bitstream without any protection.

FPGA

PROM

Readback

Eavesdrop

.bit

PUF

FPGA

PUF

(B) Eavesdrop and readback attacks cannot
clone devices due to bitstream biding through

a PUF.

Figure 4.1: Differences between bitstreams with and without binding to a specific
device’s PUF.

which combines the unclonable PUF responses for a particular device with a finite state

machine (FSM). Interestingly, the adoption of sequential circuits in FPGA designs/IP

cores enables to restrict the bitstream to running only onto authorized FPGA chips. The

FSM is designed such that both states and transitions depend on the PUF responses.

The FSM checks its current state, and if the reached state is a lock state, it means that the

PUF response is incorrect and that the device is not authorized to run the IP, thus the IP

core is disabled. Its implementation is based on the concept of augmented FSM, which is

a regular FSM with the addition of an exponential number of states and transitions, such

that extracting its State Transition Graph representation is computationally intractable,

making reverse engineering unfeasible. Moreover, Zhang et al. have shown a pay-per-

device licensing mechanism exploitable by IP vendors which release licenses specifically

for an FPGA device. Similarly to the scenario drawn in Section 3.2, the licensing

mechanism involves the FPGA vendor, the authors devised a prototyping architecture

the FSM-based lock mechanism proposed in the binding scheme. As anticipated in the

previous Chapter, also Gören et al. in [45] have introduced a similar approach for a

low-end device family, i.e. Spartan-6, which enables the secure configuration of partial

bitstreams through a binding mechanism based on a FSM.

Therefore, to enable such a mechanism on old and low-cost FPGA families, the design of

trustworthy PUFs is crucial. Not all the available architectures are suitable to implement

on the FPGA technology. Indeed, some PUFs, such as the arbiter PUF (Figure 2.5),

require symmetric routing. This condition is hard to meet in FPGA design since the

routing resources are fixed in foundry and it is not possible to control the path to have

a perfect symmetric conditions on involved delays.

Chapter 4 Enable Security Through Physically Unclonable Functions 55

To this aim, during the doctoral research activity, two valid candidates have been stud-

ied. One is represented by the Anderson PUF, which is logically simple and requires few

resources compared to other PUFs, but it is specifically designed for Xilinx Devices. In-

deed, the two above cited research works have adopted the Anderson PUF, respectively

for the Xilinx Zynq-7000 and Xilinx Spartan-6 families. The other one is the Ring Os-

cillator (RO) PUF, which is the most investigated PUF since the RO primitive is easily

exploitable on all the silicon technology, hence the RO PUF can be even considered as

an universal PUF.

4.1 The Anderson PUF

The Anderson PUF can be mainly characterized as reliable, scalable, and easily to

size. As indeed, the Anderson PUF is composed by some primitive elements, defined as

Anderson cells, which output only 1-bit PUF response. The structure is composed of two

shift-registers, two 2-to-1 multiplexers and one D flip-flop. Each shift-register is coupled

with a multiplexer, and the output is synchronous with the clock signal and generates an

alternating sequence of logic-0 and logic-1. However, their waveforms are complementary

to each other. When one outputs a logic-1, the other shift-register outputs a logic-0,

and vice-versa. Moreover, each multiplexer address signal is driven by the output of a

shift-register, and the 0 data input of multiplexers is stuck to logic-0. Figure 4.2 reports

the structure of the Anderson PUF cell, consisting of the elements drawn with solid

lines. Multiplexer B has its 1 data input tied to logic-1 (depicted with the grey color in

Figure 4.2), and its output N1 is connected to the 1 data input of the multiplexer A.

The output of the multiplexer A (the N2 signal) drives the preset input port of the D

flip-flop, which is initialized to logic-0. Since the preset and clear ports are asynchronous

(independent from the system clock), the value held by the flip-flop may be changed to

logic-1 from logic-0 by a positive glitch that appears on the preset port. Furthermore,

the flip-flop is configured as one-catcher. Therefore, when the flip-flop memorizes logic-1

it will remain in this state indefinitely.

From a logical perspective, since shift-register outputs are complementary to each other,

the signal N2 is always logic-0. However, although the two pairs of shift-register/multiplexer

should be physically identical, their delays are different due to intrinsic manufacturing

imperfections. Indeed, we can list two cases:

56 Chapter 4 Enable Security Through Physically Unclonable Functions

0

0

0 1

1

1

0
1

0
1

A

B

C

shift in

shift in

x

clock

clock

preset
D Q

DFF

0’’

0’’

0’’

1’’

Shift
Register

A

N1

N2

1’’

D2

D1

clock

Shift
Register

B

clock

Shift
Register

C

Shift
Register

E

’’1

Figure 4.2: Logic schematics of the Anderson PUF cell. The solid lines draw the
original Anderson PUF [8], and the dotted lines indicate the architecture with a 1-bit

challenge response, proposed by Hori et al. in [54]

1. if the delay of the A pair is shorter than the B pair, when shift-register A shifts

from logic-0 to logic-1, multiplexer A selects the 1 data input, but signal N1 has

not yet transitioned from logic-1 to logic-0. Therefore, signal N2 is determined by

the value of signal N1, which is logic-1 until it transitions to logic-0. During this

time interval, a glitch will appear on N2 ;

2. if the delay of the A pair is greater than the B pair, when shift-register B shifts

from logic-0 to logic-1, the A multiplexer has not yet selected the 0 data input.

Again, signal N2 is determined by the value of N1, which is logic-1, and a glitch

will appear on N2 until the A pair transitions from logic-1 to logic-0.

The glitch shape, in particular its width, is determined by the difference of involved

delays. Anderson claimed that if the glitch is too short, the routing network might be

able to filter it before it reaches the preset input of the flip-flop [8]. But to be effective,

the glitch width has also to be greater than the amount of time required to effectively

preset the flip-flop (time constraint). Hence, a glitch appearing on N2, and consequently

on the preset input of the flip-flop, does not directly imply that the PUF cell response

is logic-1. Therefore, a glitch tuning process is required during the PUF design.

Chapter 4 Enable Security Through Physically Unclonable Functions 57

LUT

LUT

LUT

LUT

FF

SLICEM

CLB

FF

FF

FF LUT

LUT

LUT

LUT

FF

FF

FF

FF

SLICEL

(A) Virtex-5 architecture.

LUTF

LUTG

FFX

SLICEM

CLB

FFY

LUTF

LUTG

FFX

SLICEM

FFY

LUTF

LUTG

FFX

FFY

LUTF

LUTG

FFX

FFY

SLICEL

SLICEL

(B) Spartan-3E architecture.

Figure 4.3: High level view of Xilinx FPGA Configurable Logic Blocks for Virtex-5
and Spartan-3E architecture.

4.1.1 Anderson PUF implemented on Virtex-5

Virtex-5 is built on a 65 nm process, and similarly to other Xilinx FPGAs, it is based on

Configurable Logic Blocks (CLBs) arranged in a two-dimensional array (Figure 4.3A).

A CLB comprises a pair of slices, each containing four 6-input LUTs, four flip-flops

and other logic elements. Slices can be of two types: (i) slice L, which provides logic,

arithmetic, and ROM functions; (ii) slice M, which includes the slice L functions, and

also implements memory functions, such as distributed RAM and shift-registers. Each

CLB can contain either two slices L or one slice M and one slice L. Both slices are

equipped with a carry chain structure which can be used to propagates carry signals

only through column-aligned slices.

Shift operations of the Anderson PUF are implemented using two slices M, in particular

two LUTs configured as 16-bit shift-registers. The two multiplexers are interconnected

using the carry chain, and the flip-flop can be located in the same slice in which the

other elements are allocated. Therefore, the Anderson PUF cell could be theoretically

implemented using only one slice, but glitch modulation has to be considered. To this

aim, Anderson increased the glitch pulse width by varying the distance between the two

multiplexers. The best tuning was shown to be composed of 5 intermediate carry chain

multiplexers. Indeed, Anderson stated that this configuration produced the best results

in terms of responses quality [8].

58 Chapter 4 Enable Security Through Physically Unclonable Functions

4.1.1.1 Anderson PUF implemented on Spartan-3E

Spartan-3E architecture (Figure 4.3B) is different from the Virtex-5 structure. Indeed,

each CLB is formed of four slices grouped in pairs, and each pair is organized as a column

with an independent carry chain. Each slice is mainly composed of two 4-input LUTs,

namely F-LUT and G-LUT, and two flip-flops, namely FFX and FFY. Right pairs slices

belong to the slice L type, while left pairs belong to the slice M type.

Implementing the Anderson PUF on Spartan-3E involves the testing of different PUF

cell architectures, since it is possible to act on several design parameters, which represent

the degrees of freedom of the PUF cell design process. Indeed, the flip-flop can be either

implemented using the FFX or the FFY storage element, and it can also be placed into

the same slice used for the others PUF cell elements or into a different one. Similarly, it

is possible to vary the multiplexers locations by picking either the slices M or the slices

L, but having them on the same column, such that they can use the same carry chain.

By varying the multiplexers and the flip-flop locations, it is possible to modulate the

glitch pulse width. Furthermore, shift-registers can be either implemented by F-LUT or

G-LUT of slices M. However, from experimental measurements, this parameter resulted

to be a non-influencing factor as long as the symmetry constraint is met, meant both

shift-registers should be mapped in the homologous LUTs. Additionally, it is possible

to vary both the number of shifting bits and the initialization values of the two shift-

registers, originally configured as 16-bit shifting 0x5555 and 0xAAAA values. Indeed,

Huang et al. claimed that these values are not suitable for generating an unbiased PUF

response, because there is a good chance that a positive glitch will appear independently

by which shift-register/multiplexer pair is faster [54]. Hence, they proposed 0x8888 and

0x4444 values, and they showed that using this configuration better results could be

obtained. Nevertheless, these values have been tested with all the implementations, but

the obtained PUF response has been always equal to 0. Hence, in the further discussions

these configurations will be not considered.

After testing several different PUF cell implementations, it is possible to identify the

best PUF cell architecture (Figure 4.4A), by means of quality parameters (see Sub-

section 4.1.3). The selected architecture requires 5 slices and 2 CLBs, shift-registers

are implemented using G-LUTs and their output is fed back to their input in order

to allow the same output sequence to continue beyond the initial 16 cycles. Moreover,

Chapter 4 Enable Security Through Physically Unclonable Functions 59

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEM

SLICEM

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEL

SLICEL

CLB

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEM

SLICEM

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEL

SLICEL

CLB

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

(A) Basic Anderson PUF cell.

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEM

SLICEM

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEL

SLICEL

CLB

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEM

SLICEM

LUT F

LUT G

preset
D Q

FFX

LUT F

LUT G

preset
D Q

FFX

SLICEL

SLICEL

CLB

challenge

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

preset
D Q

FFY

(B) Enhanced Anderson PUF cell.

Figure 4.4: Implementations of the Anderson PUF cell.

shift-registers A and B are configured to shift the 16-bit values of 0x5555 and 0xAAAA,

respectively. Multiplexers are implemented using the slice L carry chain, resulting in a

cascade of 5 multiplexers. The D flip-flop is located into the same slice of multiplexer

A, and it uses the FFY storage element.

4.1.2 Enhanced Anderson PUF

The Anderson PUF cannot work in a challenge-response paradigm, but only as unique

signature generator, since input (challenge) signals are not involved. To address this

issue, authors in [54] proposed the PUF cell structure shown in Figure 4.2, which is

formed by the original PUF cell elements (depicted with solid lines) and additional ones

(depicted with dotted lines). Indeed, one extra multiplexer C is located between the A

60 Chapter 4 Enable Security Through Physically Unclonable Functions

and the B one, and two additional multiplexers (D1 and D2), accordingly with the value

of the challenge x, drive the output of the extra shift-register E into the input of the shift-

registers B and the C. Shift-register E and A are configured to output an alternating

and complementary sequence of logic-0s and logic-1s. If x = 1, the multiplexer D1

feeds the input of the shift-register C with the output of the shift-register E, while

the multiplexer D2 feeds the input of shift-register B with a constant logic-1 value.

Therefore, the multiplexer C outputs depend on the shift-register E output, and the

multiplexer B forwards its output. Conversely, if x = 0, the multiplexer D1 feeds the

input of the shift-register C with a constant logic-1 value, while the multiplexer D2

feeds the input of the shift-register B with the output of the shift-register E. In this

case, the multiplexer C outputs a constant logic-1, and the multiplexer B can either

output a logic-0 or a logic-1 accordingly to the output of the shift-register E. Therefore,

the purpose of the challenge signal is to pick two multiplexers in order to compare their

delays. The allocation of multiple enhanced Anderson cells does not request to replicate

each time the shift-register E, because its role is just to provide the right sequence to

the shift-register B or C accordingly with the challenge signal.

Following this procedure, signal x for each PUF is one challenge bit, and considering

N PUF cells, the PUF is able to generate 2N responses. However, since the Anderson

PUF is a concatenation of elementary cells which outputs are not dependent on other

challenge inputs, the output of the PUF is easy to predict. Indeed, a simple attack is

trivial to be successfully accomplished, considering two responses from challenges which

all bits are fixed to logic-0s and logic-1s. Thus, compounding bits from the two previous

responses, which rely on given challenge bits, it is easy to exactly emulate all the 2N

possible PUF outputs. Indeed, it is necessary to collect two responses from the PUF with

only two challenges inputs (e.g. bit-string of zeros and bit-string of 1), then, according

to the challenge to predict, the proper responses bits have to be picked. To address this

issue, more challenge bits have to be integrated into the PUF cell design by following

the procedure described above, or using a hash-function which produces responses hard

to predict, e.g. r′ = hash (c⊕ PUF (c)).

Chapter 4 Enable Security Through Physically Unclonable Functions 61

4.1.2.1 Enhanced Anderson PUF implemented on Spartan-3E

The degrees of freedom of the Enhanced Anderson PUF cell are the same of the Anderson

PUF cell. However, since more logical elements are required, there are fewer possible

implementations for the matching of the Enhanced PUF cell into 2 CLBs.

Among all possible implementations, which are in number less than the porting of the

previous architecture, the best PUF cell architecture have been identified (Figure 4.4B).

It requires 7 slices and 2 CLBs. The flip-flop is positioned into the slice M slice above the

shift-register A one, and it is implemented using the FFX storage element. The external

shift-register E is configured to output 0xAAAA, and the A one with 0x5555 value.

Both shift-registers have their output connected to their input in order to allow the

same output sequence to continue beyond the initial 16 cycles. Moreover, the output of

the shift-register E drives the input of the two additional multiplexers D1 and D2, which,

according to the challenge signal value, generate the configurations for the shift-registers

B and C. Therefore, one of the two shift-registers outputs 0xAAAA, and the other all

logic-1s. In particular, multiplexers D1 and D2 are implemented using G-LUT s of the

same slices where multiplexers B and C are implemented. As for the basic Anderson

PUF, the optimal carry chain length turned out to be composed of 5 multiplexers.

4.1.3 Experimental validation

This Subsection illustrates the experimental results obtained from the PUF architectures

described above in Subsections 4.1.1.1 and 4.1.2.1. In particular, 15 Xilinx Spartan-

3E FPGAs (XC3S1200E) on Digilent Nexys 2 boards involved in each experimental

campaign. Since the XC3S1200E FPGA has 60 CLB rows for each CLB column and

each Anderson PUF cell (for both the architectures) requires 2 CLB rows, it is possible to

instantiate 30 PUF cells on a single CLB column, thus achieving a 30-bit PUF response

per CLB column. Each experiment involved a 60-bit PUF response, hence 2 entire

CLB columns were required. Furthermore, the FPGA was split in 11 non-overlapping

vertical regions, resulting in 11 different 60-bit PUF implementations per FPGA, thus

11×15 = 165 different PUFs. Their responses were sampled at the FPGA start-up using

Xilinx ChipScope Pro tool. However, the Enhanced Anderson PUF involves a different

procedure since it requires challenge inputs. Therefore, two challenges were adopted,

62 Chapter 4 Enable Security Through Physically Unclonable Functions

one composed of all logic-0s and one composed of all logic-1s, and a different ChipScope

instance in order to set the challenge bits and to clear the value held by the flip-flops.

The following procedure has been applied for each challenge:

• the signal clear is set to logic-1 in order to reset the values held by the flip-flops;

• the challenge is applied;

• the signal clear is set to logic-0, hence the flip-flops are free to latch any positive

glitch appearing on their preset input ports;

• the response is sampled.

In order to evaluate the quality of the PUF architectures, the gathered responses were

analyzed with some quality metrics, which goal is to evaluate how the PUFs are close to

some ideal properties given in Subsection 2.2.2.1. Further results are briefly summarized

in Table I, along with some other delay-based PUFs available in the literature.

4.1.3.1 Global uniqueness

In order to adopt PUFs in security applications, their responses have to be unique among

a population of devices. To this aim, the global uniqueness metric can be adopted in

order to measure the variation of PUF responses to the same set of challenges, but

on different devices. The global uniqueness can be obtained as the average fractional

Hamming Distances (fHDs) between all the PUFs responses pairs extracted from the

combination of different devices, FPGA regions, and challenges (if any). The HD is a

function on two binary strings of equal length which returns the number of homologous

bits that differ, or, in other words, the minimum amount of substitutions needed to

change one string into the other. The fHD normalizes the HD between 0 and 1, dividing

the HD by the string length. Moreover, let R be the number of PUFs responses resulting

from the product between the amount of different devices (15) and the PUF instances

(11). Let ri and rj (i 6= j) be two of the R N -bit responses, the percentage measure for

the global uniqueness can be defined as:

Uniqueness =
2

R(R− 1)

R−1∑
i=1

R∑
j=i+1

HD(ri, rj)

N
× 100%. (4.1)

Chapter 4 Enable Security Through Physically Unclonable Functions 63

(A) Basic Anderson PUF. (B) Enhanced Anderson PUF.

Figure 4.5: Global Uniqueness evaluated through the fractional Hamming Distances
distributions.

If PUFs output uniformly distributed and independent random response bits, the global

uniqueness is close to 50% on average. Values higher or lower than 50% result in lower

chip-distinguishability.

Since 165 different PUFs instances were defined, the global uniqueness of the Anderson

PUF can be evaluated by calculating 165×164
2 = 13530 Hamming Distances. Their aver-

age yield to a global uniqueness of 47.18%, and Figure 4.5A shows the distribution of

the Hamming Distances, which can be assumed to be Gaussian with a mean of 28.30

and a standard deviation of 6.68. It follows that the average response distance is equal

to 28.30, which is really close to the ideal value of 30 (all the responses differ from one

another for half bits).

The same procedure can be applied on the Enhanced Anderson PUF to evaluate the

global uniqueness. However, since there are 2 challenges for each PUF, the number of

unique response pairs is equal to (165×2)×[(165×2)−1]
2 = 54285. Their average yield to

a uniqueness of 49.37%, and the Hamming Distance distribution (Figure 4.5B) can be

assumed to be Gaussian with with a mean of 29.62 and a standard deviation of 4.82,

slightly better than the normal Anderson PUF.

4.1.3.2 Reliability

Ideally, a PUF should always be able to exactly reproduce the same response when the

same challenge is applied. However, as anticipated before, since PUFs are based on

variations of electrical characteristics, a number of response bits might change under

64 Chapter 4 Enable Security Through Physically Unclonable Functions

either stable or variable environmental conditions, such as temperature and power sup-

ply. To this aim, the reliability metric can be used to estimate the percentage number

of bits in a response which does not change value among responses obtained from a

repeatedly applied challenge. For a device d, let M be the number of measurements of

N -bit responses, r
′
d,j (j = 1, 2, ...,m), and rd be the baseline reference response of the

d -th device. The reliability can be estimated as:

Reliability (d) =

1− 1

M

M∑
j=1

HD(rd, r
′
d,j)

N

× 100%.

A PUF with stable responses achieves a high value of reliability, thus its value should

be as close as possible to 100%.

The reliability values of the proposed implementations were calculated both under stable

and variable temperature, while applying a fixed voltage of 1.20V. Each PUF response

has been sampled 37 times per PUF instance (and with the same applied challenge for

the Enhanced PUF), and a temporal majority vote has been applied to determine the

most frequent response.

However, even if the temperature on chip is unknown, due to the lack of sensors on

board, since the experiments have been conducted in a short time, we can assume

that the temperature was stable and equal to the room temperature of about 24◦C.

Furthermore, the baseline reference response was picked as the most frequent one, and

the reliability was calculated as its fractional Hamming Distance with the other 36

responses. The average values of reliability for the 165 PUF instances are 99.85% and

99.91% for the Anderson PUF and the Enhanced architecture, respectively.

Applying the same methodology, it is possible to estimate average reliability values under

different conditions. In particular, some experiments were conducted heating the chip

for at least 5 minutes with a warm air flow. By exploiting a temperature sensor next

to the FPGA die, the temperature was measured and it was equal to about 70◦C. Also

in this scenario, the baseline reference response was the most frequent one obtained in

the previous experiments. Evaluating the fractional Hamming Distance with the other

majority responses under the higher temperature value, reliability value for the normal

Anderson PUF is equal to 90.79%, while the enhanced architecture achieve the value of

Chapter 4 Enable Security Through Physically Unclonable Functions 65

Global Uniqueness Reliability

Arbiter PUF [66] 23% 99.70%

RO PUF [109] 46.15% 99.52%

Anderson PUF Virtex-5 [8] 48% 96.40%

Anderson PUF Zynq-700 [124] 49.6% 96.3%

Anderson PUF Virtex-6 [54] N/A 92.97%

Anderson PUF Spartan-6 [45] N/A N/A

Anderson PUF Spartan-3E 47.18% 90.79%

Anderson PUF Spartan-3E (Enhanced) 49.37% 98.14%

Table I: Global uniqueness and Reliability estimated for some delay-based PUFs.

98.14%. The enhanced architecture is considerably better than the normal one under

temperature variations.

4.1.3.3 Uniformity

A PUF is expected to generate responses containing ideally the same number of logic-

0s and logic-1s. Therefore, the uniformity metric (also called randomness by Hori et

al. in [53]) can be exploited to estimate the distribution of logic-0 and logic-1 in PUF

responses. Let N be the number of response bits, and i be the i -th response, the

percentage measure for uniformity of response ri = ri,1ri,2...ri,N can be defined as:

Uniformity (i) =
1

N

N∑
b=1

ri,b × 100%.

A value of 100% means that all ri response bits are logic-1. For true random bits,

uniformity should be as close as possible to its ideal value of 50%. Let R be the number

of responses, resulting from the product between the amount of different PUF instances

and input challenges (if any). The average uniformity can be calculated as:

Uniformity =
1

R

R∑
i=1

Uniformity (i)

Experimental measurements yield to average uniformity values of 50.59% and 50.99%

for the Anderson PUF and the Enhanced architecture, respectively. Being really close to

the 50% ideal value, these results confirm once again the good properties of the proposed

designs.

66 Chapter 4 Enable Security Through Physically Unclonable Functions

RO1

RO2

RON

…

Counter

Counter

challenge

Figure 4.6: Ring Oscillator based PUF architecture: a functional overview.

4.2 Ring Oscillator as Secrecy Source for PUFs

RO is a widespread adopted primitive in the hardware design. Thanks to its easiness in

the implementation in HDL, it can be used in any hardware technology. In the FPGA

design, ROs are mainly exploited to implement secure primitives, such as True Random

Number Generator (TRNG) and PUFs. The former is an unstable circuit which has

to output a stream of random bits, the latter is a primitive which provides unique and

stable hardware fingerprints. Both rely on the RO, but differently, as the TRNG exploits

the randomness of oscillations jitter [42, 76] and the PUF exploits the randomness of

oscillation frequencies for different ROs [74, 109].

Figure 4.6 illustrates a generic RO PUF architecture. The mechanism exploited by the

PUF is a differential frequency measurement operation. Providing a challenge, a pair

of ROs is selected and two frequencies are measured by means of counters. Once the

frequencies fa and fb are gathered, the PUF gives one response bit:

r =

1 fa ≤ fb

0 fa > fb

(4.2)

Before try to analyze the RO PUF, this Section introduces a set of experiments which

aim is to characterize the frequency behavior. Then, the Subsection 4.3 details a new

PUF architecture which is based on ROs.

Chapter 4 Enable Security Through Physically Unclonable Functions 67

4.2.1 Research work on RO characterization

In the literature, a significant amount of research papers have addressed the character-

ization of ROs and the sensitiveness problem of ROs from external and uncontrolled

working conditions. Sedcole et al. in [100] showed a characterization analysis for ROs

implemented on 18 Altera Cyclone II FPGAs, demonstrating a systematic process vari-

ability. In [75], Maiti et al. characterized the ROs frequencies over a population of 193

Xilinx Spartan-3E S500 FPGAs, giving details about an implementation of RO PUF.

Later, the authors of [119] gave a deeper analysis of frequency distribution used in [75].

In particular, through the Anderson-Darling test, similarity analysis and principal com-

ponent analysis, they demonstrated that ROs are eligible secure primitives, since they

are well distributed among different devices and hard to predict. Authors of [92] pro-

posed a technique to mitigate the temperature effect on the RO PUF responses stability.

Merli et al. in [77] addressed the problem of the logic which surrounds RO, giving an

exhaustive frequencies characterization on a Xilinx Spartan-3E devices, with the aim to

define a useful technique to deal with PUF response instability. Amouri et al. analyzed

the transistor aging effect on Spartan 6 FPGA devices exploiting the oscillation frequen-

cies from RO [7]. In particular they stressed devices and measured the impact of such a

stress on ROs frequencies, demonstrating a degradation of 5.17% on read frequencies.

4.2.2 RO frequencies characterization

The RO PUF is an easily implementable hardware primitive and, with respect to other

proposed PUFs architectures, it does not require special attention to symmetric place-

ment, since the RO structure is a single closed loop [109]. For the FPGA technology, this

implies a suitable implementation for every device and family. The design parameters

which characterize the RO loop are identifiable in: the number of stages, the routing

and the placement. As for the first, it affects the oscillation frequency because the in-

creasing of involved stages in the loop causes a greater delay. In the same manner, the

routing has to be considered as longer connections cause slower oscillation frequencies.

At the end, the placement of the RO loop involves the choice of which basic elements

implement the ring stages, i.e., the relative position among loop stages and the position

of them within the chip.

68 Chapter 4 Enable Security Through Physically Unclonable Functions

enable output

(A) Ring oscillator loop controlled by a AND
control gate (odd inverters).

enable output

(B) Ring oscillator loop controlled by a NAND
control gate (even inverters).

Figure 4.7: Ring oscillator loop designs.

Other parameters alter the RO frequency, in particular the working conditions of the de-

vice. Mainly, they can be considered as unwanted side effects, which cannot be controlled

at design level and during the runtime. The supplied voltage is directly related to the

signal propagation delay, hence the RO frequency is sensitive to the voltage variations.

Those variations can be caused either by unstable supplied voltage or by variable work-

load of the logic that surrounds the RO, which absorbs a significant current and causes

a local voltage drop. Hence, the switching activity, i.e. the logical values switching

frequency of the signals of the surrounding logic, represents a disturb.

The die temperature, similarly to the voltage, is able to cause a degradation of the

design performance, since at higher temperature values the signal propagation delay

increases. Even in this case, two sources can be identified. Obviously the environmental

temperature in which the circuit works is responsible for the signal delay over all the

die, but a secondary contribution can be caused by local heating. Indeed, a high speed

circuitry is able to warm the surrounding area due to dissipation effect, hence it might

affect the speed of other on-chip structures.

Another investigated side effect is the aging of the chip. Indeed, even with perfect and

stable working conditions, during the chip lifetime, the frequency can be altered by the

aging in a permanent manner. In fact, contrary to previous discussed effects, the aging of

the chip is incremental and cannot be recovered once happened. Aging has different con-

tributions, such as the hot carrier injection, the oxide breakdown, the electromigration

phenomenon, the negative and positive bias temperature instability [68].

4.2.3 RO structure and measurement architecture

The RO structure adopted to characterize the frequencies is reported in Figure 4.7. A

control gate interrupts the ring in order to enable or disable the oscillation and its output

Chapter 4 Enable Security Through Physically Unclonable Functions 69

is exploited to obtain the oscillating signal. If the number of inverting stages are odd, the

control gate must be an and-gate (Figure 4.7A), otherwise a nand-gate (Figure 4.7B).

In order to measure the RO frequency value, a simple measure architecture is exploited,

similar to the RO PUF case, which requires only two counters. One counter establishes

the time window in which the frequency measurement has to be accomplished, hence

it is timed by the system clock, which frequency is C, and it is configured to count up

to a maximum fixed value T . The other is fed with the RO output, so it counts the

edges (rising or falling) of the oscillations. When the first clock reaches the established

maximum counting value, the RO is disabled and the RO frequency can be obtained as

R × C/T , with R the number of counted oscillations edges. Due to the uncertainty on

the system clock phase, this measurement introduces a measurement error ε = ± C
2×T .

The measurement architecture is implemented on Xilinx Spartan-6 XC6LX16 45 nm

devices within Nexys3 boards. Each CLB of Spartan-6 technology contains a pair of

slices, slice L and slice X or slice M and slice X, and all of them are equipped with four

6-input LUTs. The two different slices couples are alternated among CLBs columns [120].

The targeted FPGA device has a CLB array composed of 18 columns and 60 rows.

The clock counter width is 18 bits and the RO counter width is fixed to 24 bits. This

choice enables to keep the RO and the two counters bounded in a block of 12 CLB,

such that it can be easily placed over allowed FPGA positions. Furthermore, each

implemented entity is fixed in position within the cell and in used basic elements. This

implies that each cell translation does not alter the design at the netlist level description.

In order to read the bits contained in the RO counter, the design architecture is instru-

mented with Xilinx Chipscope, in particular with one Virtual IO port and one ICON,

and, by adopting the Xilinx software libraries, the value can be elaborated by a PC in

which the board is plugged-in (Figure 4.8). Like the RO measurement cell, all involved

Chipscope cores are bounded in a fixed shape and constrained in location and basic

elements.

4.2.4 Result and validation

This Subsection collects all the experiment and details all the issues involved with mea-

suring technique previously introduced, analyzing read frequencies that are gathered

70 Chapter 4 Enable Security Through Physically Unclonable Functions

clock counter

ring oscillator
counter

ring
oscillator

VIO ICON

FPGA

JTAG PC

Figure 4.8: High level schematic view of the adopted design architecture.

under different conditions. Thus, all the experimental analysis are listed below, in order

to illustrate how ROs frequencies are altered by external and uncontrolled conditions.

4.2.4.1 Analysis of the logic which surrounds the RO

As the surrounding logic is unavoidable to on-chip measure the frequency, it is necessary

to evaluate how components surrounding ROs may influence their frequencies. At this

aim, first of all the impact of the proximity of both two counters and the Chipscope

logic to the RO were evaluated and, to avoid unwanted effects of temperature varia-

tions, the external temperature was fixed at 26.6◦C by means of a thermal chamber.

In particular, tests targeted a single 5-stage RO, implementing it by exploiting several

synthesis, changing the on-chip position of the clock counter, RO counter and Chipscope

logic, one by one keeping the other fixed. The design diversity allowed to see how the

surrounding logic involved in a frequency measurement affects read frequency values. In

each experimental campaign ∼1000 experiments were ran and each one was repeated

25 times in order to mitigate the measuring error by averaging the values. Figure 4.9

reports frequencies distributions, obtained by allocating counters and Chipscope in dif-

ferent positions, considered as percentage variations from the average value. As for

the RO counter, its position mostly does not influences the frequency value, except for

some positions around the same rows in which the RO is placed, causing an increase

of 0.1% on read values (Figure 4.9A). Differently, the read frequency is sensitive to

the placement of the clock counter, with an alternating of decreases and increases of

−1%/+ ∼ 3% (Figure 4.9B). In both the cases, the measured frequencies turned out to

Chapter 4 Enable Security Through Physically Unclonable Functions 71

99.7 % 99.8 % 99.9 % 100 % 100.1 %
0

0.05

0.1

0.15

0.2

Frequency (MHz)

D
e

n
s
it
y

(A) Frequencies distribution moving the RO
counter.

99 % 100 % 101 % 102 % 103 %
0

0.1

0.2

0.3

0.4

Frequency (MHz)

D
e

n
s
it
y

(B) Frequencies distribution moving the clock
counter.

99.9 % 99.95 % 100 % 100.05% 100.1 % 100.15%
0

0.02

0.04

0.06

0.08

Frequency (%)

D
e

n
s
it
y

(C) Frequencies distribution moving the the
Chipscope logic bounded in a rectangle.

99.9 % 99.95 % 100 % 100.05% 100.1 % 100.15%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
e

n
s
it
y

(D) Frequencies distribution moving the Chip-
scope logic bounded in a square.

Figure 4.9: Distribution of ROs frequencies values, considered as percentage variation
from the average, with different places for counters and Chipscope debug logic.

be stable when counters were placed close to ROs. Figures 4.9C and 4.9D show that the

impact of Chipscope on read frequencies is practically insignificant, even changing the

shape in which its logic is bounded. In particular, placing Chipscope logic in different

vertical positions does not have any significant effect, but moving it horizontally causes a

slightly frequencies decrease (maximum ∼0.05%) proportionally to the distance. Hence

Chipscope can be considered as a non-intrusive surrounding logic. Indeed, during the

oscillations sampling process, its logic does not work.

To better evaluate the effect of an intrusive logic that heavily works near the RO, an

architecture characterized by a pseudo-random behavior was designed. It is inspired by

the Linear Feedback Shift Register (LFSR). Compared to a classic LFSR, which is a

single shift register which combines some values with a xor function to drive the shift-in

input, the surrounding logic was defined to perfectly fit the slices structure, guaranteeing

a higher workload. Since each slice contains four 6-input LUTs and their outputs can

be registered in flip-flops, a very pervasive surrounding logic has to exploit all LUTs

inputs with high switching activity signals and has to occupy as much as resource in the

slices, including registers. Figure 4.10 shows an high level schematic of the devised logic.

Each CLB has two slices which generate pseudo-random switching activity exploiting

four parallel 6-input xor functions and storing the generated output values in flip-flops.

The input assignment for xor function involves four signals locally picked, i.e. within the

72 Chapter 4 Enable Security Through Physically Unclonable Functions

CLB

slice

slice

CLB

Figure 4.10: A schematic overview of the implemented intrusive logic, which fit the
internal structure of the Spartan-6 device.

CLB, and two from outside signals of neighbor CLBs. Iterating such structure in a loop

generates an auto-sustained signal switching, like the LFSR, but with more simultaneous

activities per clock-cycle.

The cells activity can be easily disabled driving the signal clock-enable for all the involved

flip-flops. The density of this intrusive logic, evaluated as the the number of occupied

LUTs on four times the number of occupied slices, reaches values between 75% and

85%. Figure 4.11 reports three experiments with different intrusive logic configurations,

respectively 3×8, 8×6 and 6×18, considering the frequency as percentage against average

values of targeted RO measured without any insertion of intrusive logic. In all reported

cases the logic causes a frequency decreasing around 0.4% when it is on and, surprisingly,

it causes a frequency increasing of about 0.15% when it is off. Moreover, the logic is

more intrusive in frequencies measurements when the prominent dimension is the height,

hence the logic turns out to be more invasive if it is vertically stretched.

Chapter 4 Enable Security Through Physically Unclonable Functions 73

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
e

n
s
it
y

Logic Off

Logic On

(A) Frequencies distribution considering a
shape of 3×8 CLB.

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
e

n
s
it
y

Logic Off

Logic On

(B) Frequencies distribution considering a
shape of 8×6 CLB.

99.7 % 99.8 % 99.9 % 100 % 100.1% 100.2%
0

0.05

0.1

0.15

0.2

Frequency (%)

D
e

n
s
it
y

Logic Off

Logic On

(C) Frequencies distribution considering a
shape of 6×18 CLB.

Figure 4.11: Distribution of ROs frequencies values with an intrusive surrounding
logic, considered as percentage variation from the value of ROs without the logic.

4.2.4.2 Analysis of the stages number and routing

The frequency value of ROs is thightly coupled with the number of stages in the ring,

such that longer loops cause lower frequencies. In order to study the frequency behavior

in a statistical manner, a huge quantity of frequencies were extracted from different

locations on chip and by exploiting several chips. Let fn,m,d,s be the frequency read

from the n-th RO at the m-th experiment with s inverting stages placed on the d-th

device. Then, let N , M D and S be respectively the number of ROs that have been

placed on chip, the number of trials to sample the same RO, the number of involved

devices and the set of the different defined stages. For the sake of ease, let fn,d,s be the

mean frequency value obtained averaging all the k trials:

fn,d,s =
1

M

M−1∑
m=0

fn,m,d,s. (4.3)

For each s it is possible to calculate the associated average frequency value:

fs =
1

D

D−1∑
d=0

1

N

N−1∑
n=0

fn,d,s =
1

D

D−1∑
d=0

fd,s =
1

N

N−1∑
n=0

fn,s =
1

D ·N
D−1∑
d=0

N−1∑
n=0

fn,d,s∀s ∈ S.

74 Chapter 4 Enable Security Through Physically Unclonable Functions

Then, the global standard deviation is defined as:

σ (s) =

√√√√√D−1∑
d=0

N−1∑
n=0

(fn,d,s − fs)2

D ·N ,∀s ∈ S.

Other standard deviations can be computed, considering the distribution of frequencies

within the same device and among different devices. To this aim, the intra-die standard

deviation is defined as:

σintra = σd,s =

√√√√√N−1∑
n=0

(fn,d,s − fd,s)2

N
, ∀s ∈ S, ∀d. (4.4a)

Contrary to the intra-die, the inter-die standard deviation has to be calculated among

different devices, hence:

σinter = σn,s =

√√√√√D−1∑
d=0

(fn,d,s − fn,s)2

D
, ∀s ∈ S, ∀n. (4.4b)

Five different loops were defined: their number of inverting stages was in the range [4, 8].

In each design, the control gate of the loop was fixed in the bottom LUT of the slice

X and the loop has been arranged in the other available LUTs in slice X and the other

slice, which kind (M or L) depends on the CLB column. Each RO measurement block

is implemented in every allowable place on the FPGA, as in the previous experimental

campaigns, obtaining about 1000 different design implementations, hence ∼1000 fre-

quency values. Ten devices were involved in the measurement campaign. The Table II

lists mean and standard deviation values of frequencies for the five configurations.

The higher is the amount of stages, the lower are both average values and associated

standard deviations. This implies that if the loop is longer, the values are closer to

the average frequency values. Indeed, since each loop stage introduces a delay that is

affected by uncertainty due to manufacturing variations, the uncertainty on the global

delay turns out averaged.

The same happens also considering standard deviations of frequencies among different

devices. In fact, in the same table there are two other standard deviations varying the

Chapter 4 Enable Security Through Physically Unclonable Functions 75

RO Stages Mean (MHz)
Standard Deviation (MHz)1

Global Intra-die Inter-die

4 351.4552 7.1784 1.5295 2.5168

5 347.3760 7.0729 1.0850 2.0569

6 259.1042 5.1403 0.9113 1.4903

7 201.2785 3.6479 0.5729 0.9840

8 190.6770 3.7693 0.5320 0.8398

Table II: Mean values and standard deviations of RO frequencies for different stages.
The Intra-die and Inter-die are calculated among 10 ROs and 10 devices.

200 250 300 350 400
0

0.05

0.1

0.15

0.2

Frequency (MHz)

D
e
n
s
it
y

Figure 4.12: Frequency distribution for two different mapping 4-stages RO configu-
rations placed over all the FPGA device.

number of RO stages: one is the average value, among 10 devices, of standard devia-

tions calculated considering 10 different ROs, i.e., average intra-chip standard deviation

reported in Equation 4.4a; the other is the average value, among 10 ROs, of standard

deviations calculated for 10 different devices, i.e., average inter-chip standard deviation

reported in Equation 4.4b. These two quantities represent how scattered are frequencies

and, since intra-chip dispersion is greater than inter-chip ones, they illustrate that fre-

quencies are closer among them when they are picked from the same device than the case

in which they are from different devices. Moreover their dispersion values are inversely

proportional to the number of stages.

Furthermore, besides the RO structure, the placement and routing of the loop plays

a crucial role in determining the oscillating frequencies. In order to put in evidence

the relationship among different routing configurations and corresponding frequencies,

two identical 4-stages ROs were designed, but with different mapping within a slice

X. In particular, the architectures were obtained by swapping two stages in the LUT

assignment such that involved paths were different at least for two stages. The two

1As explained later, the RO frequency characterization is different considering RO implemented in
CLBs of even columns and odd columns. Standard deviations reported in table are evaluated considering
both the frequency distributions associated to odd and even columns. The experimental values for each
frequency group are close to σ/

√
2, since for each kind of CLB the standard deviations are very similar.

76 Chapter 4 Enable Security Through Physically Unclonable Functions

configurations were placed in every allowable location on the FPGA and their frequency

distributions are reported in Figure 4.12. The average values differ from one another by

∼100 MHz and their standard deviations by ∼2.35 MHz. Moreover, each distribution

contains two well-distinguishable frequencies peaks. Correlating the frequencies with

the spatial position, it is possible to note that ROs which are placed within a CLB

in even columns, characterized by a slice X and slice L pair, have frequencies that in

values are less than others placed in odd columns, characterized by a slice X and slice

L pair. This happens even if the RO structure is entirely placed within a slice X. We

can conclude that the two different distribution peaks are caused by different involved

routing resources.

4.2.4.3 Temperature analysis

The working temperature for an integrated circuit is directly related to the signal prop-

agation delay. Indeed, high working temperatures cause a performance degradation in

terms of speed. In order to analyze the effect of temperature changing on ROs fre-

quencies, 5 stages ROs were characterized on a single device under 6 different external

fixed temperature: 0◦C, 13.3◦C, 26.6◦C, 40◦C, 53.3◦C and 66.6◦C. To this aim, the

FPGA was placed in a thermal chamber which keeps the temperature with a precision

of 0.1◦C. When the thermal chamber reached the right temperature, the frequency mea-

surement process have started after 30 minutes in order to be sure that the die has

uniformly reached the same external temperature before starting each test campaign.

Figure 4.13 illustrates all measured frequencies varying the temperature within the range

[0◦C, 66.6◦C]. They are inversely proportional to temperature values and the relation-

ship between them is quite close to be a linear function. The only observable exception

is after 40◦C because the curve start to be more descendant. To better analyze the

relationship between the temperature value and the ROs frequencies, we can consider

the difference quotient for each temperature range, namely how the frequency decreases

increasing the temperature of 13.33◦C.

Chapter 4 Enable Security Through Physically Unclonable Functions 77

Temperature
(◦C)

Even Column Odd Column
Frequency Difference Frequency Difference

(MHz) Quotient (MHZ) Quotient

0 348.5540 361.8935

13.3 344.7655 -0.2842 357.9787 -0.2937

26.6 340.8063 -0.2970 353.8691 -0.3083

40 336.8726 -0.2951 349.7988 -0.3054

53.3 332.4376 -0.3327 345.1964 -0.3453

60 327.7191 -0.3540 340.2945 -0.3677

Table III: Frequencies and difference quotients for ROs placed in even and odd
columns varying the working temperature.

0 10 20 30 40 50 60 70
320

330

340

350

360

370

F
re

q
u
e
n
c
y
 (

M
H

z
)

Temperature (°C)

Figure 4.13: Values for all ROs fre-
quencies varying the working tempera-

ture.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

Difference Quotient (MHz/°C)

D
e
n
s
it
y

[0°C, 40°C]

[40°C, 66.66°C]

Figure 4.14: Difference quotient dis-
tributions evaluated before and after

40◦C.
Figure 4.14 shows two distributions difference quotients calculated for all ROs. The blue

histogram is related to the temperatures less than 40◦C, while the red to the temper-

ature greater than 40◦C. They indicates that the average values of difference quotients

are respectively -0.29 MHz/◦C and -0.36 MHz/◦C. Both are distributed with a standard

deviation of ∼0.013 MHz/◦C.

As for the even and odd CLB columns, there is a difference in terms of difference quotient,

as illustrated in Table III. The distance between the difference quotient of even and odd

columns can be approximated as constant and equal to 0.015 MHz/◦C. This implies that

the frequencies of ROs placed in even columns are more sensitive than others placed in

odd columns.

4.2.4.4 Aging analysis

The aging is an unavoidable process that afflicts any IC, causing performance degrada-

tion and leakage current increase. In order to evaluate its impact on ROs, it is possible

to perform aging acceleration through stressful working conditions, in particular with

high temperature and supplied voltage. At this aim, the FPGA core was stressed with

78 Chapter 4 Enable Security Through Physically Unclonable Functions

300 305 310 315 320 325 330
0

0.01

0.02

0.03

0.04

0.05

Frequency (MHz)

D
e
n
s
it
y

Fresh

Aged

Figure 4.15: Frequency distributions measured on the same device before and after
the aging process.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Different Quotient (MHz/Week)

D
e
n
s
it
y

Figure 4.16: Frequency distributions measured on the same device before and after
the aging process.

an external power supply at 1.8 V (+50% more than the nominal value) and heating the

chip up to 80◦C for 7 days. In order to clear the effects of the reversible aging process,

the FPGA was recovered in 3 days under nominal working conditions but at 80◦C. As

in the temperature experiments, a 5 stages ROs was adopted to characterize the device

before and after the aging process. Figure 4.15 illustrates such characterization through

frequency histograms. The aged device frequency distribution has the same shape as

the fresh version and it is shifted by ∼0.6 MHz. Indeed, as reported in Figure 4.16, the

difference quotient values are distributed as a gaussian which means is around 0.6 MHz.

4.3 Frequencies Signature PUF

This Section introduces a new technique to recognized a device by exploiting ROs.

Contrary to available RO PUF architectures, which compares two ROs to extract a 1-

bit response, this technique considers directly frequency values to discriminate several

silicon devices. For this reason, the devised PUF is defined as Frequencies Signature

Chapter 4 Enable Security Through Physically Unclonable Functions 79

F
re

q
u
en

cy

Temperature

Figure 4.17: Temperature (but also other working parameters) can differently affect
two RO, causing unstable responses for the RO PUF.

based PUF (FS PUF). The FS PUF does not provide sequences of bits, but a mechanism

to authenticate silicon devices. Such mechanism, applying some transformations to the

read frequencies, is inherently immune to external changes. The FS PUF effectiveness it

is mathematically demonstrated and empirically evaluated trough experimental results.

4.3.1 A model of read frequencies

Experiments conducted and illustrated in Subsection 4.2.4 put in evidence that, for

each RO, measured frequencies are distributed as a gaussian N
(
µ, σ2

)
, which mean

and standard deviation can be estimated with some frequency samples. Considering the

Equation 4.2, when the distributions associated to the selected frequencies are character-

ized by two mean values very similar or, in general, by two gaussian distributions which

have a significant frequency values in common, the stability of such a pair turns out to

be very low. Furthermore, if this situation does not seem to be possible at normal work-

ing conditions, with external disturbances it might happen. For instance, with regards

to the temperature variations, two frequencies generated by two ROs can be differently

modified because of their difference quotients, causing a reversing of their mutual order,

as pictured in Figure 4.17.

Ideally, the RO PUF has to work with frequencies which values are stable and determin-

istic during the time. But there are some unavoidable uncertainty sources, mainly caused

by the electric phenomenon itself and by the measurement architecture. The mere RO

frequency value, of course, depends on the manufacturing variations and on the work-

ing conditions. We can assume that a read frequency f is a quantity characterized as

80 Chapter 4 Enable Security Through Physically Unclonable Functions

RO Stages
Measurement

Error (Hz)

4 136,137.27

5 124,100.96

6 94,084.62

7 80,469.53

8 77,047.38

Table IV: Measurement error εs associated with different stages.

follows:

fn,m,d,s = f̂n,m,d,s + εn,m,d,s + tn,m,d,s. (4.5)

In the equation, f̂ is the inherently RO frequency, ε is the error associated with the

measure and t is a quantity given by the uncontrolled operational conditions, such as

the temperature.

As for the f̂ , previous experimental campaigns demonstrates that it is a quantity dis-

tributed as a gaussian curve (Subsection 4.2.4). Within the same device, the associated

standard deviation σd,s is always less than the one considering several devices, i.e. σn,s,

as reported in Table II. Moreover, such quantities decrease with the stages’ growing.

The measurement operation introduces an error ε, which is random and cannot be

directly controlled, but at least can be estimated. We can assume that it is an additive

white gaussian noise (AWGN), hence its values are distributed all around the 0: ε ∼
N
(
0, σ2ε

)
. Indeed, considering that ε afflicts all the measurement fn,m,d,s,∀n,m, d, s (see

Subsection 4.2.4.2), its standard deviation can be calculated as:

σεn,d,s =

√√√√√M−1∑
m=0

(fn,m,d,s − fn,d,s)2

M
.

In the equation, fn,d,s is the average value over M trials (see Equation 4.3). Then, σεs

can be globally estimated over all the done experiments as average value:

σεs =
1

D

D−1∑
d=0

1

N

N−1∑
n=0

σεn,d,s =
1

D ·N
D−1∑
d=0

N−1∑
n=0

σεn,d,s .

Table IV reports the values of εs against different number of stages. Like other standard

deviations reported in Table II, it decreases with the growth of the RO loop stages.

Chapter 4 Enable Security Through Physically Unclonable Functions 81

As one can notice, there is a trade off given by the choice of the number of stages, the

associated measurement error and the frequency dispersion. Indeed, the best situation

for the PUF based on ROs is a high frequency dispersion, in order to have better unique-

ness, and low measurement error, in order to reach better stability of measured values.

This implies that with a huge population, which requires a very widespread frequencies

range, a low number of stages should be picked. Hence, to face with huge measurement

error, a significant number of trials (i.e. measurements) has to be accomplished in or-

der to mitigate the contribution of the error. Otherwise, with a small population, the

number of stages could be higher, with a small error value. Hereafter, all the definitions

and experiments will be given considering a 5-stages RO and the subscript s will be no

more considered. This assumption simplifies all the further discussions.

At the end, as for the t in the Equation 4.5, this quantity can be considered as a

shift for the frequency value. Indeed, external uncontrolled working conditions, such as

temperature and voltage, cause a shift related to the expected value. Such shift is strictly

coupled with the frequency reference. For instance, the reference frequency should be

measured under fixed conditions of temperature (e.g. 25◦C), voltage (e.g. 1.2V), etc.

For the scope of the FS PUF, t does not need to be defined in someway, since, as shown

in the next Subsection, it is not considered as part of the signature.

4.3.2 Frequencies as a signature

This Subsection introduces the device signature obtained as collection of some measured

frequencies. With this goal, let Sm,d be the frequencies associated to the d-th device;

m indicates a single measurement among different trials, accomplished in order to have

more than one signature for each device. To better clarify, m can be considered as a

discrete time variable, since Sm,d and Sm′,d are collected from the same device, but in

two different instants. Formally, Sm,d is a N dimensional vector defined as follows:

Sm,d = {fn,m,d} , ∀n ∈ [0, . . . , N − 1]→ Sm,d = {f0,m,d, f1,m,d, . . . , fN−1,m,d} .

Substituting each component fn,m,d with the definition 4.5, the signature definition can

be expressed as a sum of three vectors:

Sm,d = {fn,m,d} =
{
f̂n,m,d

}
+ {εn,m,d}+ {tn,m,d} , ∀n ∈ [0, . . . , N − 1] . (4.6)

82 Chapter 4 Enable Security Through Physically Unclonable Functions

In particular, from 4.6 it is clear that each n-th component has a frequency value f̂d,

which is characterized by a known mean and, since Sm,d is extracted within the same

device, by a known (intra-die) standard variation, both given by the Table II considering

5 stages, f̂d ∼ N (µfd , σd). Furthermore, such frequency value does not depend on the

m variable, as at each trial the value is the same. In other words, each RO instance

during the manufacturing process is characterized by f̂n,d as a fixed value of a gaussian

distribution (previously defined) and does not change its inherently value during the

time. Indeed, as reported by the model in the Equation 4.5, f̂n,d is not the actual

oscillation frequency, but it has to be considered together with the quantity t.

As for the measurement error, each n-th component of Sm,d is affected by a value εn,m,d.

We can assume that the distribution of ε does not depend on the specific device, trial or

RO, since the error is given by frequency measurement process itself. At each measure-

ment it can be considered as a value of an AWGN process. Moreover, ε has the same be-

havior averaged over time (E
m

[εn,m,d|n, d]), averaged over the realizations (E
n

[εn,m,d|m, d])

and averaged over the devices (E
d

[εn,m,d|n,m]). In fact, there are no differences in mea-

suring from another RO the frequency value or repeating from the same RO another

frequency measurement, since the conditions on all the cases are the same. Of course,

the measurement design has to be symmetric with the respect to ROs and the same for

all the devices. Hence, formally:

E
m

[εn,m,d|n, d] = E
n

[εn,m,d|m, d] = E
d

[εn,m,d|n,m] = 0. (4.7)

The equation 4.7 is valid for a significant instances of ε values, hence:

E
m

[εn,m,d|n, d] =
1

M

M−1∑
m=0

εn,m,d
M→∞−−−−→ 0. (4.8a)

E
n

[εn,m,d|m, d] =
1

N

N−1∑
n=0

εn,m,d
N→∞−−−−→ 0. (4.8b)

E
d

[εn,m,d|n,m] =
1

D

D−1∑
d=0

εn,m,d
D→∞−−−−→ 0. (4.8c)

As anticipated before, t defines, for each component, a frequency shift due to operational

conditions. Experimental results discussed in Subsection 4.2.4.3 and 4.2.4.4 highlight

Chapter 4 Enable Security Through Physically Unclonable Functions 83

that the difference quotients are not the same for every RO, but they are distributed as

gaussian curves. Consequently, even if under the same working conditions, t is a quantity

that slightly differs among the components of the signature Sm,d. The assumption that

all the tn are equal for each component causes a small error (compared to the error

value), hence hereafter tm = tn,m,∀n ∈ [0, . . . , N − 1]. Indeed, this substitution is able

to add an error of maximum ∼1 MHz and with a very low probability2.

With the previous consideration, Sm,d can be simplified:

Sm,d =
{
f̂n,d

}
+ {εn,m,d}+ tm.

Interestingly the average value of defined Sm,d components has the following form:

E
n

[Sm,d|m, d] = E
n

[
f̂n,d|m, d

]
+ E

n
[εn,m,d|m, d] + E

n
[tm|m, d] ≈ µfd + tm.

In particular, such approximation is better with greater values of N (Equation 4.8b),

since the involved average error is only an estimator. It is worth noting that E
n

[Sm,d|m, d]

contains the value tm, which can be exploited to remove it from each component of Sm,d.

Let S̃m,d be the signature obtained by subtracting from each component of Sm,d the

average value E
n

[Sm,d|m, d]:

S̃m,d = Sm,d − E
n

[Sm,d|m, s] ≈
{
f̂n,d

}
− µfd + {εn,m,d}

=
{
f̃n,d

}
+ {εn,m,d} , ∀n ∈ [0, . . . , N − 1] .

Consequently, S̃m,d does not depend on the working conditions and each frequency

component has a new value, given by f̂n,d − µfd = f̃n,d. In particular, f̃n,d now is

characterized by the gaussian distribution of f̂n,d, but the mean value is close to 0

by definition. Such distribution depends only on manufacturing variations and each

value f̃n,d is related exclusively on it. Furthermore, f̃n,d depends on the selected ROs

and, hence, on the number of ROs (N) in the signature, because picking different ROs

changes the value µfd . Consequently, it is not possible to extract the pure f̂n,d, but at

least S̃m,d contains an expression of the measured frequencies which is not influenced

by working conditions. Surely, for higher values of N , µfd becomes more close to real

2The hypothesis in t introduced the maximum error for each component when the different quotient
of the considering RO is very far from the mean value of the distribution. Being a gaussian, this situation
is unlikely.

84 Chapter 4 Enable Security Through Physically Unclonable Functions

(A) Linear plot of Sm,d with 20 ROs frequen-
cies at different temperature.

(B) Linear plot of S̃m,d with 20 ROs frequencies
at different temperature.

Figure 4.18: Comparison between Sm,d and S̃m,d.

average frequency, hence components of S̃m,d are less susceptible to changes of N and

of ROs.

Figures 4.18A and 4.18B illustrate Sm,d and S̃m,d respectively, characterized by 20 dif-

ferent ROs and 6 trials made at different temperature. S̃m,d, as observed from the

Equation 4.9, is free of any shift caused by external conditions, even if for some RO a

considerable residual error can be observed, partially given by the ε values. Moreover,

all the components are distributed around 0, as a consequence of the subtraction of µfd .

4.3.2.1 S̃m,d in hardware

Having the PUF mechanism implemented in hardware guarantees a stronger security

than in the case when some software modules are involved, such as in the case of noisy

responses which have to be recovered by a fuzzy extractor (see Subsection 2.2.2). Indeed,

as introduced in Chapter 2, the software trustworthiness relies on the hardware, which

has to guarantee protection against attacks. If the PUF is one of the mechanisms which

cooperates to enable the system security, the software needs to be trusted in someway,

with additional precautions, e.g. the chain of trust.

Since the main goal of this Chapter is to give a PUF which can be available on old and

low-end FPGA manufactured without any built-in mechanism, S̃m,d has to be available

directly in hardware. Once the frequencies are read from the ROs, to obtain S̃m,d it

is necessary to calculate the average value of Sm,d and subtract it to each frequency

component of the signature. As for the average value, it involves the addition of all

Chapter 4 Enable Security Through Physically Unclonable Functions 85

the frequency and a division by N , that is a natural number. To avoid the adoption

of a complex division algorithm, which requires a significant amount of resources to be

accomplished in hardware, the FS PUF can be designed with a signature Sm,d which

number of components N is a power of 2: N = 2x. Indeed, the evaluation of the mean

from 2x binary values requires to add them without considering the x least significant

bits, since the division by a power of two, induced by the mean, is equivalent to a right

shift. The possible loss of precision caused by the shifted-out bits is not critical, since

they represent the decimal part of the mean value against very higher values.

Therefore, in order to obtain S̃m,d in hardware, the only hardware operations required

are the addition and the subtraction.

4.3.3 FS PUF: signatures comparison

As anticipated before, the aim of the FS PUF is not to provide response bits, as in

common PUF architectures (e.g. the Anderson PUF, illustrated in Section 4.1). The

scope of the FS PUF is to provide an effective method to authenticate devices by means

of measured frequencies from ROs. Given a test procedure ξ and two signatures Sm,d,

the authentication mechanism has to work as follows:

ξ
(
S̃m,d, S̃m′,d′

)
=

1 d = d′, ∀m,m′

0 d 6= d′, ∀m,m′
(4.9)

Furthermore, ξ has to be easy to evaluate and to implement in hardware. As stated be-

fore, this enables to embed not only the FS PUF within a device, but also the comparison

mechanism without occupying too much resources.

4.3.3.1 Distance metrics

There are many available metric functions which are able to compare two vectors to

measure how similar are them. For instance, the euclidean distance or the angles between

two vectors could be candidates as ξ function. But, first of all, they are not easy

to compute in hardware, since they requires complex arithmetic operations and could

involve also floating point units. Then, their outputs are not binary, as represented

by the Equation 4.9 and need for further evaluations to decide if two signatures are

86 Chapter 4 Enable Security Through Physically Unclonable Functions

generated from the same devices. Indeed, once computed, the euclidean distance and

the angle formed by vectors give a number that has to be compared with a threshold. If

the distance is under the threshold or if the angle is in a given range, the signatures are

enough similar, then they are classified as provided by the same device. The threshold

definition is not an easy task and even not so effective, since the choice of such a value

affects all FS PUFs instances effectiveness. For instance, let
∥∥Wd,d′

∥∥ be the euclidean

norm (L2 norm) of the vector obtained by subtraction of the corresponding components

of S̃m,d and S̃m′,d′ :

∥∥Wd,d′
∥∥ =

∥∥∥S̃m,d − S̃m′,d′∥∥∥ =
∥∥∥{f̃n,d}+ {εn,m,d} −

{
f̃n,d′

}
−
{
εn,m′,d′

}∥∥∥
=

√
N−1∑
n=0

(
εn,m,d − εn,m′,d′

)2
d = d′,∀m,m′√

N−1∑
n=0

[(
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)]2
d 6= d′,∀m,m′

The corresponding ξ function obeys to this inequality:

ξ
(
S̃m,d, S̃m′,d′

)
=
∥∥Wd,d′

∥∥ ≤ τ.
The goal of ξ is to discriminate if Wd,d′ contains only measurement error (d = d′) or not

(d 6= d′), hence τ has to be defined such that it is greater than all the Wd,d′ with d = d′

and less than Wd,d′ with d 6= d′. It is easy to imagine that this bi-partition of Wd,d′

values could not be easily accomplished, implying a high number of false positives (S̃m,d

is recognized as a signature generated by another d′ device) with a more permissive

threshold or false negatives (S̃m,d is not recognized as a signature provided by the device

d itself) with a less permissive threshold. Moreover, to avoid a high false rejection rate

(FRR) in this case, τ has to be fixed at the worst case value, that is the case in which

measurement errors on each component are maximum:

τ =

√√√√N−1∑
n=0

max
m,d,m′,d′

[(
εn,m,d − εn,m′,d′

)2]
.

Such defined threshold generates high false acceptance rate (FAR) because it includes

with high probability also signatures which distance is under the threshold due to prox-

imity of some homologous measured frequencies. The FAR can decrease with a higher

number of instantiated ROs (N) such that the probability to generate false positives

Chapter 4 Enable Security Through Physically Unclonable Functions 87

becomes smaller. The same discussion is still valid for other tests which exploit some

kind of distance, but are not reported here for sake of brevity.

4.3.3.2 Score test

The threshold selection illustrated before is a critical operation, since it affects the

FS PUF instances in terms of FAR and FRR. In particular, this happens because the

threshold is applied to a single value given by a metric (e.g. norm or angle). Splitting

the signatures in L sub-parts enables to compare them with more than one test and

threshold. Assuming that each comparison gives 0 or 1, as illustrated before in the

Equation 4.10, all the tests establish a score in the range [0, L]. A score of L implies a high

similarity between S̃m,d and S̃m′,d′ , vice-versa a score of 0 implies a high dissimilarity.

Contrary to the case of only one comparison test, the choice of the threshold with

L tests is less critical because comparisons results are masking by the score. Changing

different thresholds affect a subset of L tests; indeed, scores are lower with less permissive

thresholds, or higher with more permissive values. The minimum score required to

recognize two signatures as generated from the same device can be tuned in order to

obtain good FAR and FRR values.

Considering L = N and a unique threshold in each test, comparisons take into account

all homologous components of each vector with one test. Hence, with N comparisons

between components of S̃m,d and S̃m′,d′ , the signatures can be considered as provided

by the same device if at least l of them succeed. Formally, let χ be the binary function

which compares two real numbers and outputs 0 or 1:

χ : R× R→ {0, 1} |χ (a, b) =

1 if |a|≤ b

0 if |a|> b

Then, ξ can be defined as follows:

ξ
(
S̃m,d, S̃m′,d′

)
= χ

(
l,

N−1∑
n=0

χ
((
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)
, τ
))

, l ∈ [0, . . . , L] .

(4.10)

This form of ξ exploits the score obtained by comparing each component of the signature

S̃m′,d′ against S̃m,d (or conversely S̃m,d against S̃m′,d′) with a threshold. Hence, if at least

l tests succeed, the signatures are classified as provided by the same device. Furthermore,

88 Chapter 4 Enable Security Through Physically Unclonable Functions

such ξ function requires only subtractions and comparisons, suitable to be implemented

in hardware without adopting any software module.

Statistical model of the score test The effectiveness of the score test, given in the

Equation 4.10, relies on the choice of an appropriate threshold τ and minimum score l.

Such parameters can be retrieved from a statistical model of the test introduced by ξ

over a set of signatures.

The function ξ can me modeled as a Bernoulli process, in which each test performed by

χ
((
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)
, τ
)

has a value of either 0 or 1 and for each n the

probability that χ = 1 is p. Each comparison is memoryless, so all evaluations of χ are

independent. This assumption relies on the independence of each measured frequency,

hence on the FS PUF design that has to properly retrieve frequencies from ROs. In

other words, given that the probability p is known, n − 1 χ tests do not provide any

additional information about the n-th χ.

As for p, the probability that χ = 1 can be defined as follows:

p = P
(
χ
((
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)
, τ
)

= 1
)

=

=
∣∣∣ (f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

) ∣∣∣ ≤ τ =

=

P
(∣∣f̃n,d − f̃n,d′ + εn,m,d − εn,m′,d′

∣∣ ≤ τ) d 6= d′,∀n ∈ [0, N − 1] , ∀m ∈ [0,M − 1]

P
(∣∣εn,m,d − εn,m′,d′∣∣ ≤ τ) d = d′,∀n ∈ [0, N − 1] , ∀m ∈ [0,M − 1]

(4.11)

Since involved random variables are characterized by gaussian distribution, which param-

eters have been illustrated in Tables II and IV, each probability can be easily evaluated

by means of the primitive erf (x). Hence, the Equation 4.11 can be specialized in:

p = P
(
χ
((
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)
, τ
)

= 1
)

=

=

τ∫
−τ

1√
2π
(
2σ2intra + 2σ2ε

)e− τ2

2(2σ2intra+2σ2ε) d 6= d′,∀n ∈ [0, N − 1] , ∀m ∈ [0,M − 1]

τ∫
−τ

1√
2π (2σ2ε)

e
− τ2

4σ2ε d = d′,∀n ∈ [0, N − 1] , ∀m ∈ [0,M − 1]

(4.12)

Chapter 4 Enable Security Through Physically Unclonable Functions 89

Figure 4.19: pdd and pdd′ evaluated by varying the threshold τ .

In particular, frequency variables picked from different devices are distributed asN
(
µ, σ2intra

)
,

hence when d 6= d′ the variance associated with
(
f̃n,d + εn,m,d

)
−
(
f̃n,d′ + εn,m′,d′

)
is(

2σ2intra + 2σ2ε
)
.

Since the probability p has 2 different forms, which depend on the fact that d and d′ are

the same device or not, let pdd′ be the value given by Equation 4.12 in the first case and

pdd the value in the second case. Consequently they can be evaluated as:

pdd =
1

2

(
1 + erf

(
τ√

2 (2σ2ε)

))
− 1

2

(
1 + erf

(
−τ√

2 (2σ2ε)

))
(4.13a)

pdd′ =
1

2

1 + erf

 τ√
2
(
2σ2intra + 2σ2ε

)
− 1

2

1 + erf

 −τ√
2
(
2σ2intra + 2σ2ε

)

(4.13b)

The Figure 4.19 reports graphs for both the probability pdd and pdd′ . In particular,

the curve of pdd increases faster than the pdd′ , since the variance associated with the

gaussian distribution for pdd′ is greater than the one of pdd, which contains only the

variance of two measurements gaussian noise processes. Therefore, this guarantees that

it is possible to pick a threshold τ such that pdd ≈ 1 keeping pdd′ still at a very low value

near 0.

As for the FAR and the FRR, they can be estimated by exploiting the Equation 4.10.

FAR can be expressed as the probability to have a false negative is given by the com-

plementary probability to have at least l χ tests on N trials which succeed given that

90 Chapter 4 Enable Security Through Physically Unclonable Functions

d = d′:

FAR = 1−
N∑
i=l

(
N

i

)
pidd (1− pdd)(N−l) (4.14)

The FRR can be calculated as the probability to have at least l χ tests on N trials which

succeed given that d 6= d′, hence:

FRR =
N∑
i=l

(
N

i

)
pidd′ (1− pdd′)(N−l) (4.15)

Even if not explicitly reported, the FAR and the FRR depend not only on l and N , but

also on τ , σε, σintra. In particular, the last two parameters are given by the particular

implementation of ROs and by the technological target. For the Xilinx Spartan-6, they

are reported in Tables II and IV. In Figure 4.20, FAR and FRR are evaluated varying

N , τ and l. In particular, the Figure 4.20A shows the two rates varying N , with

l = N − 1 and τ = 3
√

2σε. The picked value of the threshold guarantees that 99.7%

of the components of Wd,d′ belongs to the interval [−τ, τ] when d = d′, i.e. when Wd,d′

contains only the measurement error. The probability to reject a legit signature grows

with the number of involved ROs, since it is less probable to have a positive response with

a greater number of χ tests, and the probability to accept a non-legit signature decreases,

since it is unlikely that N − 1 χ tests give a positive response. Figure 4.20B illustrates

FAR and FRR varying the threshold value keeping N = 9 and l = 8. In particular,

the FAR decreases with more permissive threshold values, because it is unlikely that

χ tests give a positive response with tight ranges, and the FRR increases since the

probability to have a positive response from χ tests grows with the threshold. At the

end, the Figure 4.20C shows the impact of the minimum score value l on the rates

keeping constant τ = 3
√

2σε and N = 25. The FAR is 0 up to l = 18, then increases up

to value near 1, while the FRR decreases. The behavior is similar varying the number

of ROs (Figure 4.20A).

4.3.3.3 Statistical model parameters

The previous Subsection illustrates a statistical model able to evaluate the FAR and

FRR values, taking into account 5 parameters:

1. σε, the standard deviation associated with the measurement error;

Chapter 4 Enable Security Through Physically Unclonable Functions 91

(A) FAR and FRR evaluation varying with the number of involved ROs N .

(B) FAR and FRR evaluation varying with the threshold τ .

(C) FAR and FRR evaluation varying with the minimum score value l.

Figure 4.20: FAR and FRR evaluated trough the Equations 4.14 and 4.15 varying
the number of ROs, the threshold and the minimum score value.

92 Chapter 4 Enable Security Through Physically Unclonable Functions

2. σinter, the standard deviation associated with the frequency distribution;

3. τ , the threshold for the χ tests;

4. N , the number of involved ROs;

5. l, the minimum number of χ tests required by the function ξ to give a positive

result;

As for the first two parameters, they depend only on the technological target in which the

FS PUF has to work and on the design of both the measurement architecture and ROs.

Indeed, σε and σinter, discussed in Subsections 4.2.4 and 4.3.1, are different changing the

number of stages in the loop. Hence, the only way to manipulate them is working with

the number of stages, routing strategies, etc. Furthermore, the measurement error can

be reduced considering wider counters and slower system clocks.

For the FPGA technology, the estimation of such quantities is not trivial, since the only

way to obtain them is just to run some experiments to retrieve as many frequencies as

possible and try to estimate them. It is hard to exactly know how many experiments

are enough to obtain a confident approximation for both the parameters. For the ASIC

technology, the evaluation of such two parameters can be accomplished by means of

simulation campaigns (e.g. exploiting the Monte Carlo method), hence there is no need

to have available some manufactured ICs.

Consequently, the other parameters can be tuned in order to obtain the wanted FAR

and FRR. As indeed, the statistical model provided by Equations 4.14 and 4.15 can be

used only to retrieve an estimation of the rates knowing the 5 parameters, but it is not

possible to query which parameters can satisfy given values of FAR and FRR. But at

least the Figure 4.20 shows the trends of both the rates varying them one by one.

4.3.3.4 Consideration about tm

The introduced score test relies on the signature S̃m,d reported in the Equation 4.9. In

particular, S̃m,d is defined through an approximation because of the average value of

the measurement error. But another source of uncertainty is given by the assumption

that tn,m = tm,∀n. Indeed, even if this approximation introduces a small error, the

score test can also handle it in an easy way. In fact, since tn is distributed as a gaussian

Chapter 4 Enable Security Through Physically Unclonable Functions 93

(see Figures 4.17 and 4.16), the value tn,m − E
n

[tn,m|m] involved in the computation of

S̃m,d is characterized by a standard variation which can be estimated trough previous

experimental campaign and, for the sake of simplicity, it can be included within the σε.

Since the contribution of the σt is extremely smaller than σε (101 Hz against 105 Hz),

the FAR and FRR modestly benefit.

4.3.4 Experimental result

Exploiting the frequencies value collected during the experimental campaigns illustrated

in the Subsection 4.2.4, the score test can be evaluated on a significant amount of real

data; in particular three data sets can be analyzed:

• normal working conditions: 10 devices, 938 ROs per device, 25 measurements for

each RO;

• temperature variations: 1 device, 938 ROs, 9 measurements for each RO, 6 tem-

perature values;

• aging: 1 device, 938 ROs, 20 measurements for each RO, 2 characterization (fresh

and aged).

The results in terms of FAR and FRR are reported in Table V. They were calculated

by tuning the l value, i.e. the minimum score which establish if two signatures are

produced from the same device or not (see ξ function in the Equation 4.10). In the

case of uncontrolled working conditions, i.e. without keeping the temperature stable,

even with only 2 ROs the FAR is 0 and FRR is 9.239e-03 and with 5 ROs. It is worth

noting that with only 2 ROs the RO PUF is able to discriminate only 2 device since it

can produce only one response bit. Contrary to this case, the FS PUF is discriminating

10×938
9 devices. As for the temperature case, the best conditions are with 9 and 10 ROs,

while for the aging the best conditions are with 7 and 8 ROs.

94 Chapter 4 Enable Security Through Physically Unclonable Functions

Number Uncontrolled Conditions Temperature Variations Aging
of ROs FAR FRR FAR FRR FAR FRR

2 0 9.239e-03 3.217e-08 8.152e-02 2.011e-09 7.731e-02

3 2.001e-09 3.703e-02 1.044e-08 1.703e-02 1.233e-08 3.099e-02

4 0 1.268e-03 7.150e-09 3.484e-02 6.255e-10 5.211e-02

5 0 0 0 1.103e-02 0 2.893e-03

6 0 0 0 0 4.924e-08 3.782e-03

7 0 0 5.267e-07 1.137e-04 0 0

8 1.739e-11 6.641e-07 0 2.259e-06 0 0

9 0 0 0 0 2.152e-10 0

10 0 0 0 0 0 2.439e-09

11 0 0 0 2.747e-13 0 0

Table V: FS PUF evaluated in terms of FAR and FRR trough experimental campaigns
conducted on the Xilinx Spartan-6 FPGA family. The value are obtained by tuning

the minimum value of the score.

Chapter 5

Network Traffic Analysis: a Case

Study

This Chapter illustrates an exhaustive case study with a twofold aim:

• demonstrate that the FPGA is suitable to implement high throughput algorithms,

accelerating their execution with respect to a software implementation;

• show the feasibility of the deploying an application in a large-scale scenario, in-

volving hardware in-field updates.

In order to match both the goals, the case study focuses on a network traffic analysis

hardware accelerator distributed among a smartphones population. The network an-

alyzer is based on Decision Tree (DT) predictor algorithm and it is implemented as

hardware accelerator of a mobile node, which hardware technology is based on FPGA.

Moreover, the generation of such accelerator is made automatically through a methodol-

ogy that involves a software algorithm, which transforms predictor model based on DT

into HDL projects, and a distributed infrastructure, which distributes new hardware

version of DT and collects new threats from the device population.

95

96 Chapter 5 Network Traffic Analysis: a Case Study

5.1 Traffic Analysis for Security Purposes

Mobile traffic is significantly growing, thanks to the increased access capacity provided

by 3G and 4G technologies and to the rising computing power of the latest smart de-

vices. According to Cisco’s Global Mobile Data Traffic Forecast Update [88], global

mobile data traffic grew 81% in 2013, reaching 1.5 exabytes per month at the end of

the year. Most of this traffic is generated by smart devices including smartphones,

tablets and wearable devices, which are increasingly adopted in domains where sensi-

tive information are exchanged and processed, such as entertainment, healthcare and

business applications. Traffic monitoring and traffic analysis are fundamental means to

acquire information about incoming flow for the detection of anomalous behaviors, viral

infections and hacking attempts, in addition to being a powerful tool to define accurate

network models, validate new protocols and applications, diagnose network failures, and

ultimately enhance network performance and quality of service. The application of traf-

fic analysis techniques to the mobile domain is not straightforward, mainly due to the

devices’ distributed nature and resource constraints. Because of the large number of

devices and the huge amount of involved traffic data, performing traffic analysis as a

centralized task would sensibly reduce network performance and may not be a viable

solution. On the other hand, running complex traffic analysis tools on a mobile device

would heavily affect the device’s energy consumption.

Moreover, due to applications’ dynamicity, traffic models used by mobile devices would

rapidly become outdated, thus requiring periodic updating to include new threats and

to possibly take into account the feedback coming from other devices. Machine learn-

ing algorithms have been widely adopted for traffic analysis, thanks to their flexibility

and the capability of dynamically generating updated models from feedback knowledge.

These techniques, which typically require high computational capabilities for large data

sets, can be successfully implemented in hardware, by adopting, for example, hardware

accelerators, which allow complex computations at reduced power. However, even when

providing the mobile nodes with the capability of processing traffic data by means of

advanced algorithms implemented in hardware, the efficacy of the traffic analysis mech-

anism is still limited, due to the fact that the traffic model is statically embedded in the

hardware configuration. Indeed, the recent advances in hardware reconfiguration tech-

nology would allow to dynamically reconfigure the hardware design of a physical device,

Chapter 5 Network Traffic Analysis: a Case Study 97

thus enabling the dynamic update of the traffic model according to network behavior,

in order to enhance classification accuracy of network packets.

With respect to the accuracy of traffic models used by devices, it is quite evident that

the traffic involving a single device may not be enough to carry out complex evalua-

tions, while the correlation of traffic data involving heterogeneous and geographically

distributed sources may sensitively enhance the model used for traffic classification. In

such scenario, of course, a direct exchange of information among nodes is not feasible

and a different communication paradigm is required. In particular, some sort of central-

ized or distributed processing entity must be envisioned, provided with specific features,

i.e.: it must be easily accessible from mobile nodes, physically located anywhere and rep-

resented by heterogeneous devices, and it must allow such nodes to share information

about unclassified traffic flows or detected threats and to obtain a security character-

ization of unclassified suspicious traffic. The service-oriented paradigm is particularly

suited to cope with the above-mentioned requirements: services can be easily invoked

through simple APIs by heterogeneous devices, and are being increasingly adopted in

mobile applications thanks to their flexibility.

5.2 Related Research Efforts

Recently, in the literature, a significant number of research papers on mobile traffic

analysis have arisen, with a special attention to the smartphone domain, trying to char-

acterized the involved traffic and providing some architectural solutions for the security.

Authors of [40] presented a detailed analysis of smartphones’ traffic by collecting traffic

data from users’ terminals. In [86], the authors proposed an innovative approach to

develop a honeypot with aim to collect malwares in FPGA architecture, they also used

partial reconfiguration to update the network interface to reject the new threats found.

As for security issues, since the smartphones malware are significantly growing in num-

ber, several techniques, mainly based on intrusion detection features, have been proposed

to protect mobile devices. Luo et al. [69] presented a security framework to protect

smartphones, listing security issues and the techniques, by means of architectural mod-

ules, that are able to deal with each of them. Even if an intrusion detection system

(IDS) for network activities analysis against policy violations was designed, they did

98 Chapter 5 Network Traffic Analysis: a Case Study

not discuss neither an implementation nor the efficacy of this module. In an analogous

manner, the authors of [97] devised an IDS specifically tailored for smartphones, named

SIDS, but even in this case, neither details were given about the implementation, sup-

posed to be in software, nor on the resources impact for a mobile system. More recently,

the authors of [10] integrated in Android a network classifier, based on DT, executing a

software routines on incoming packets demonstrating the efficacy of the approach. They

illustrated details on involved features and algorithms, but no performance details on a

real system were given. Unlike [10], the aim of this case study is to implement the same

approach, but exploiting a real reconfigurable hardware device rather than a software

approach to accomplish the traffic analysis.

As for the classification architecture, several FPGA-based traffic analyzer implemen-

tations have been proposed in order to speed up the classification processes [99, 101].

The most suitable architecture is the one based on DTs, since their adoption does not

require arithmetic operations, which are expansive to implement in hardware, but only

comparisons, easy to realize. In [114] two architectures were proposed to classify packets

traffic using FPGAs. Both the architectures use a programmable classifier exploiting

the C4.5 algorithm. Using NetFPGA, in [82] the authors proposed a traffic classifier

by using C4.5. The main architectural characteristic is the programmability by the

software, without loss of service, using memories that store the classifier. The C4.5

classification algorithm is very promising for big data analysis, it performs very well in

many application domains as the predictor works on the tree structure built during the

learning phase. It was presented by Quinlan in [93] and soon was adopted in a broad

range of applications such as image recognition, medical diagnosis, fraud detection and

target marketing.

In [43] and [81] the C4.5 algorithm was adapted within the framework of differential

privacy in distributed environments. In [67] the authors showed the power of C4.5 for

classifying the Internet application traffic, due to the discretization of input features

done by the algorithm during classification operations. The authors of [117] extended

the traditional decision tree based classifiers to work with uncertain data. The results

presented in these papers are very interesting, but they did not provide any automatic

tool to automatically generate the hardware architecture from the prediction model.

Chapter 5 Network Traffic Analysis: a Case Study 99

Algorithm 1 Binary Decision Tree predictor algorithm.

Require: A feature vector fvector and a classification model
Ensure: The predicted Class for the input fvector

node ← model.root
while !node.isLeaf do

if node.ρ (fvector [node.f] ,node.k) then
node ← node.childLeft

else
node ← node.childRight

end if
end while
return node.classValue

5.3 Decision Tree Hardware Implementation

Among available machine learning approaches, the literature proved the DT machine

learning approach to be one of the most effective in traffic analysis, since it is able to

achieve high efficacy in discriminating traffic behavior. DTs are tree-based predictor

models which consist in internal nodes, containing rules, and leaves, labeled with a

classification value: basically, a DT represents a set of rules which classify data according

to the conditions specified by the nodes. Generally a condition specifies an attribute

(feature) in the dataset, a relational operator and a constant. A condition may contain a

more complex expression over features, but here this case is not considering. Let Dk
ρ (f)

be a decision node which requires the feature input f and configured with parameters ρ

and k. In particular, Dk
ρ (f) = ρ (f, k), ρ ∈ {<,≤, >,≥,=, 6=} and k a constant involved

in the comparison. For instance, a decision could regard the TCP/UDP port number:

D1024
≤ (port) ≤ (port, 1024) = port ≤ 1024. Each decision returns a boolean value, since

the result is ever expressed with positive or negative response.

As for the predictor algorithm, it has to visit the tree according to the conditions of

each nodes, as specified by the Algorithm 1: starting from the root of the tree, the

evaluation of such conditions determines which child node has to be selected for the

next evaluations. At the end, when a leaf has been reached, the label of the leaf is

returned as the decision value of classification. Without loss of generality, the trees

considered here are only binary: indeed it is always possible to manipulate a n-ary tree

to obtain a binary one. A prediction algorithm is able to visit a binary DT by evaluating

the condition in each node and it steps to left if the condition turns out true, otherwise

to right. In Figure 5.1 there is an example of a binary Decision Tree: it is made of

100 Chapter 5 Network Traffic Analysis: a Case Study

a 4

a 6.3

b = foo

c 0
I I

II

II

III {a = 7, b = foo, c = 9}
{a = 5, b = foo, c = �1}

Figure 5.1: An example of Decision Tree with 4 nodes, 3 features and 3 classes. The
colored dotted lines indicate the paths for the two features values examples.

4 nodes evaluating conditions on 3 features and its leaves are labeled with 3 different

classes. The dotted lines represent the path of two example inputs: the red is the path

for {a = 5, b = foo, c = −1}, the green for {a = 7, b = foo, c = 9}.

5.3.1 Programmable decision trees

The non-programmability characteristic of the hardware makes the DT accelerator im-

plementation difficult to realize. As said before, DT predictor models are continuously

updated, especially in the network domain. In the literature, some programmable DT

accelerator architectures are available. They are designed in the structure, but their

behavior is determined through a configuration. The advantage, of course, is the pro-

gramming at runtime, but they are memory-based, resulting slower or bigger in the

area than fixed implementations. Also, since they have to be realized once, resulting

accelerators are static in parameters, meaning that such parameters cannot be changed.

For instance, in [16] the tree visiting accelerator unit can be programmed to compute

the prediction algorithm on different trees, but it is designed to execute the algorithm

over a maximum number of nodes. Hence, if an application requires a predictor which

nodes amount is bigger than the maximum available on the accelerator, the unit cannot

be used.

Chapter 5 Network Traffic Analysis: a Case Study 101

The SRAM based FPGA can mitigate the problem because it provides the DPR. Hence,

a hardware accelerator can be designed on a FPGA, without providing additional mem-

ory banks for the core configuration, and allowing the updating of it during the time. Of

course, the core update problem is not completely solved since the FPGA could poten-

tially not have enough available resources (such as clock distribution circuitry, look-up

tables, memory banks) in the dynamic partition to host future versions of the accelerator

that could be bigger in area.

5.3.2 Implementing static Decision Trees

As shown in the Algorithm 1, the predictor procedure is strictly sequential and cannot be

parallelized. In fact, each cycle decides, trough the evaluation over a feature value, for the

next cycle that has to be take into account, and so on. To reach high throughput in the

DT visiting avoiding sequential computations, a speculative approach can be considered.

The main idea is to evaluate which leaf is reached by computing in parallel all the nodes

conditions. The latter is performed by fast comparators, named Decison Boxes, which

work in parallel. Then, a boolean net decides, evaluating the outputs of the Decision

Boxes, which leaf, hence which class, the algorithm returns. In the evaluation performed

by the hardware accelerator, the speculation stands in computing some conditions of the

tree that are useless for the algorithm result, such that the Algorithm 1 would never

evaluated.

To better understand, consider the Figure 5.2 which depicts the hardware accelerator

unit for the DT prediction give in Figure 5.1. As one can see, considering the input

{a = 5, b = foo, c = −1} (the same input reported in Figure 5.1), the result is indepen-

dent from the evaluation performed by the Decision Box over b. Indeed, the node with

condition b = foo does not belong to the path that the visiting algorithm generates with

the input that is considering (Figure 5.1, red dotted line).

Boolean net details The boolean net is composed by different boolean functions

in form of sum of product (SoP), as many classes as in the predictor model. Let BFC

the SoP form for the class C. This function has to rise logic-1 when at least one of the

paths that leads to a leaf that is labeled as C is activated. Hence, to define the boolean

function for a given class C it is necessary to collect all the paths that lead to leaves

102 Chapter 5 Network Traffic Analysis: a Case Study

a

4

a

6.
3

b
=

fo
o

c

0

Class I

Class II

Class III

Decision Boxes

Boolean Net

Figure 5.2: Hardware implementation of the prediction algorithm for the tree in
Figure 5.1

of C. Let PC (i) be the i-th path that leads to the i-th leaf which is labeled as C. Let

the assertion AC (i) , i ∈ {0, 1, ..., leavesOf (C)− 1} be the logical intersection of all

decisions met along PC(i). The decisions are literals of this boolean function and can

be taken direct or negated. In other words, an assertion AC (i) is the intersection of

all intervals, defined by decisions Dk
ρ (f) ∈ PC (i), in which the input features belong to

such that they are representative of the class C. Formally, each assertion can be defined

as:

AC (i) =
∏

Dkρ (f)∈Pi

Dk
ρ (f) .

Finally, for each class C it is possible to define the boolean function as:

BFC =

leavesOf(C)−1∑
i=0

AC (i) =

leavesOf(C)−1∑
i=0

∏
Dkρ (f)∈PC(i)

Dk
ρ (f) .

Chapter 5 Network Traffic Analysis: a Case Study 103

An important observation to do on C4.5 algorithm is that some assertions may be redun-

dant. In fact, considering the example given in Figure 5.1, the paths to reach leaves la-

beled with the class I, are: PI (0) =
{
D6.3
≤ (a) , D4

≤ (a)
}

and PI (1) =
{
D6.3
≤ (a), Dfoo

= (b)
}

.

In particular, PI (0) has the associated assertion: AI (0) = D6.3
≤ (a) · D4

≤ (a) = D4
≤ (a).

Indeed, if a ≤ 4 is true, surely also a ≤ 6.3 turns out true.

Thanks to this observation, the number of literals in each assertion can be reduced.

Assertions which exploit this rule are defined as essential assertions. Furthermore, con-

sidering only essential assertions, it is possible to found an upper limit to the number of

decision boxes needed to evaluate them, that is an important result for the scalability

of the architecture.

Theorem 5.1. Essential assertion AC(i) contains at most 2 · |F | literals.

Proof. Let us consider the feature set {F} and Dk
ρ (f) ∈ PC (i).

Degeneracy Case :

f ∈ {F} does not appear in any Dk
ρ (f) ∈ PC(i), this means that it has not be chosen

by the learner as discriminating feature for the class C.

Case 1 :

f ∈ {F} is a continuos feature that appears at least once. Thus ρ ∈ {<, ≤, >, ≥},
f ∈ R. Dk

ρ (f) decides an interval ∀f :

• right interval of k ([k,+∞[or]k,+∞[), if ρ ∈ {>,≥};

• left interval of k (]−∞, k] or]−∞, k[), if ρ ∈ {<,≤}.

If in PC(i) the decision appears complemented, it is possible to simply choose the com-

plemented interval.

If f appears twice or more, Dk
ρ (f) , Dj

λ (f) ∈ PC(i)⇒ Dk
ρ (f) ∩Dj

λ (f) 6= ∅, because the

learner generates the conditions by splitting operation over them, consequently k 6= j.

So the intersection Dk
ρ (f) ∩Dλ

j (f) can generate:

1. a right interval if both the decisions define a right interval: [M,+∞[or]M,+∞[

with M = max (k, j),

104 Chapter 5 Network Traffic Analysis: a Case Study

2. a left interval if both the decisions define a left interval:]−∞,m] or]−∞,m[with

m = min (k, j),

3. an interval [m,M [or]m,M [or]m,M] or [m,M], with m = min (k, j) and M =

max (k, j).

This process can be iterated as many times as f appears in decisions along PC(i). In the

first two cases AC(i) requires only one decision (literal) on f , in the third an intersection

between two decisions.

Case 2 :

f is a nominal feature ⇒ ρ ∈ {==, ! =}, f can assume finite values. A Dk
ρ (f) appears

at most once on any path in the tree. So AC(i) requires only one decision on f .

FPGA implementation As previously said, each BFC is expressed as SoP. Consid-

ering the worst case, BFC has an and gate fan-in equal to 2 · |F |, and an or gate fan-in

equal to |C| − 1. The gates implementation delay grows with the size of the fan-in like

a step function on the FPGA technology, because the FPGA is able to implement each

function in a k-input LUT, consequently to realize gates with higher fan-in it combines

more that one LUT in a tree scheme. This scheme, where each gate has a maximum

fan-in of k (k-gate), can be successfully exploited to define a pipelined structure in which

each LUT output is registered in a dedicated flip-flop.

As for the area occupation, being N the total fan-in an integer multiple of k, and S the

depth of the tree, mi (the number of k-gates at i-th level) is: m0 =
⌈
N
k

⌉
; m1 =

⌈
m0
k

⌉
;

mi =
⌈mi−1

k

⌉
=
⌈mi−2

k2

⌉
=
⌈

N
ki+1

⌉
. In the last stage of the pipe there is only one k-gate:

ms−1 = 1 = N
kS

. So the relation between the tree depth S, the original fan-in N and the

fixed fan-in k is: kS = N , so S = lg(N)
lg(k) , hence the number of k-gates is:

#k − gates =
S−1∑
i=0

mi ' N ·
S−1∑
i=0

1

ki+1
= N ·

(
S∑
i=0

1

ki
− 1

)

= N ·
(

1−
(
1
k

)S+1

1− 1
k

− 1

)
=
N − 1

k − 1
, k > 1.

Chapter 5 Network Traffic Analysis: a Case Study 105

The total number of gates Ng for all BFC can be defined as:

Ng =
∑
∀C

(
2 · |F | − 1

k − 1
· leavesOf(C)

)
+
∑
∀C

(
leavesOf(C)− 1

k − 1

)
. (5.1)

where the first term is related to number of k-gates to implement the and with the worst

fan-in (N = 2 · |F |), while the second term is related to the or that has a fan-in equal

to the number of leaves (N = leavesOf(C)). To evaluate the total gates number of the

boolean net, two different cases can be considered:

Balanced Case: the leaves are equally distributed to each class; so leavesOf(C) =

DN+1
|C| . Substituting in 5.1:

Ng = |C| ·
(

2 · |F | − 1

k − 1
· DN + 1

|C| +

DN+1
|C| − 1

k − 1

)
=

2 · |F | · (DN + 1)− |C|
k − 1

. (5.2)

Unbalanced Case: each class has only one leaf, except for Ĉ class with leavesOf(Ĉ) =

DN + 1− (|C| − 1). Substituting in 5.1:

Ng =
2 · |F | − 1

k − 1
· (DN − |C|+ 2) +

2 · |F | − 1

k − 1
· (|C| − 1) +

(DN − |C|+ 2)− 1

k − 1

=
2 · |F | · (DN + 1)− |C|

k − 1
.

(5.3)

In both the equations 5.2 and 5.3 there is a linear dependence of Ng with the number

of decision nodes DN , this result demonstrates the scalability of the solution. As for

the tree depth, even though the number of gates does not change with the classificator

characteristic, S is different and, consequently, the pipe latency too.

5.3.3 Automatic hardware core generation

With the transformation rules given by the Theorem 5.1, an automatic process can be

defined such that from the training set it synthesizes the decision tree hardware. The

process flow is reported in Figure 5.3; it is made of three different steps that produce

in output three standard artifacts. The goal of the Data Processing is to automati-

cally structure data coming from heterogeneous sources into a common schema, hence

a data-preprocessing tool extracts the only relevant information to build a common

106 Chapter 5 Network Traffic Analysis: a Case Study

Data
Preprocessing

Decision Tree
Learner

Hardware
Synthesis

Hardware
Predictor

VHDL

PMML
PMML2VHDL

Data
Source

Structured
Data

Hardware
Project

Predictor Model

Figure 5.3: Automatic process flow for implementing a hardware predictor.

schema. This artifact, stored in a tabular format, is given in input to the model build-

ing step. It implements C4.5 learning algorithm, the output of this step is the predic-

tor model coded into PMML (Predictor Model Markup Language), a standard XML

schema for predictors. At this step, exploiting the PMML formalization, I developed

a tool, PMML2VHDL, that parses the decision tree predictor model and generates an

optimized hardware description for the predictor [6]. The tool adopts the VHDL as

output language, but other descriptions can be supported in future. Finally, in the last

step, the Hardware Synthesis, the VHDL is used as input for the hardware synthesizer

in order to obtain a working version of the predictor.

For the purposes of this experimental case study, the proposed predictor algorithm is

exploited to analyze the traffic, although it can be adopted to implement any DT model,

guaranteeing high throughput and feasibility in the implementation [5].

5.3.4 Integration within real device

In order to provide a prototype of device which classifies the Internet traffic with a hard-

ware accelerator, the same Zedroid project exploited in Section 3.6 has been adopted.

Figure 5.4 schematically details the integration of the hardware accelerator for the traffic

analysis within the Xilinx Zynq Architecture. As one can notice, the hardware accel-

erator unit is connected with the processing system by means of two AXI interfaces.

They provide the packets received by the Ethernet interface. The configuration uses the

Chapter 5 Network Traffic Analysis: a Case Study 107

AXI Interconnect

AXI Interconnect

AXI Interconnect AXI Interconnect

GP0 GP1 ACP HP

OCM

I/D Cache (32 KB)

L2 Cache (512 KB)

SCU

Header Manager Payload Manager

Classifier

DMA intr

intr out

ETH0

Ethernet
DMA

Central
Interconnect

DDR3
Controller

Feature
Extractor

Packet
Queue

Control
Logic

DDR3
Memory

Processing

System

Programmable

Logic

ARM
Cortex A9

ARM
Cortex A9

PCAP

Figure 5.4: Hardware overview of the Zynq platform, which is configured with a
network analyzer accelerator.

Ethernet wired interconnection, as Zynq does not provide a wireless one. Note that from

the analysis point of view there are no differences between these kinds of communication

since the analysis does not take into account the packet content.

Normally, the Ethernet DMA copies the received packets directly to the system memory.

Conversely, in this specific case, the DMA is configured at system boot to redirect all

traffic packets to the Programmable Logic (PL) section, where they are analyzed by a

hardware accelerator. As for the predictor hardware accelerator unit, the main block is

the Classifier, that detects malicious packets by using their features, properly extracted

by the Feature Extractor component. In order to reduce the latency of the approach,

each packet is split up into header and payload. Indeed, the custom peripheral separates

headers from payloads, copying the former into the level-2 (L2) cache and the latter into

the main memory: this way, packets headers will always be available in the high speed

L2 cache for the Linux specific tasks [121].

108 Chapter 5 Network Traffic Analysis: a Case Study

Figure 5.5: Zedroid project is running a simple App to manage the hardware network
classifier.

The model extraction has involved the C4.5 predictor algorithm and a data set com-

posed of 10200 packets, which were pre-labeled. Running different prediction algorithm

executions, changing each time the data set characteristics, such as the feature consid-

ered (from 6 to 20), the classification coarseness (from the binary classifier to 6 different

classes), 36 models were collected. Each execution was saved in PMML, converted in

VHDL, by means of the tool PMML2VHDL and synthesized by using Xilinx Vivado

2013.4 tool. From each experiment, it is possible to collect: the number of the tree

nodes, the accuracy obtained from the model and the dynamic power consumption. The

last parameters were retrieved through the following steps:

1. Synthesis and implementation of the core using Vivado tool: during this phase the

tool gives the maximum clock frequency by performing a timing analysis, in order

to check that both setup and hold timing constrains are not violated.

2. Definition of a test bench for the core: in this phase the test bench is exploited to

obtain the Switching Activity Interchange format (SAIF) file, which contains the

Chapter 5 Network Traffic Analysis: a Case Study 109

(A) Linear interpolation of maximum clock fre-
quency varying on trees nodes.

(B) Linear interpolation of packets latency in-
troduced by the accelerator varying on trees

nodes.

Figure 5.6: Time analysis of 30 experiments conducted on the Zynq FPGA architec-
ture.

switching activity for the core under test;

3. Power analysis: exploiting the SAIF, environmental parameters (junction tem-

perature, ambient temperature, airflow, board temperature, etc.), voltage supplier

values and the working frequency, it is possible to evaluate both static and dynamic

power consumption.

5.3.5 Time performance

To evaluate the latency introduced by such traffic analysis, performed by the hardware

accelerator, it is necessary to firstly measure the the clock frequency varying the number

of the nodes. In Figure 5.6A the maximum clock frequency varying on the number of

nodes are fitted with a linear function. The clock frequency is related to the worst logic

delay in the circuit. As said before, the implemented logic is realized in pipeline fashion.

So with the tree growing, the FPGA routing introduced delay between the pipeline

stages, that has a linear trend. The result implies that, also with big tree structure, the

hardware accelerator can work at high clock frequency values that varies linearly with

the tree nodes.

In Figure 5.6B, the latency linearly grows with the growing of nodes. This happens

because the pipeline stages, and their delays, increase with the number of decision boxes.

As the latency is the time value between the feature inputs and their classification output,

110 Chapter 5 Network Traffic Analysis: a Case Study

the result indicates that the time to have the classification result is very short also with

big tree structure.

Figure 5.7: Global packets latency,
measured using the Central Intercon-
nection and redirecting the traffic on
the programmable logic through loop-

back traffic generation.

Figure 5.8: Dynamic power con-
sumption against the number of trees

nodes.

Loop-back measurement In order to measure the time to complete a loop, so the

transmission and the receipt a packet, the most effective model was picked, i.e. the

one with the highest accuracy in classification, and was integrated in the system. Some

traffic flows were produced by an Android app; they differed from one another in the

size such that it was possible to appreciate the global delay in payload traversal through

the programmable logic, with and without the traffic analyzer, into the central memory.

Figure 5.7 shows the loop-back experimental result. The traffic redirection causes a

latency increment, due to the overhead introduced by the bus infrastructure on the PL

of the FPGA and the latency introduced by the hardware accelerating is very small.

5.3.6 Energy performance

As for the energy consumption, Figure 5.8 illustrates the dynamic power varying on

the number of nodes. There is a linear dependency of the energy consumption with

the number of nodes. As for the software implementation of the same algorithm, the

computational complexity of tree visiting is O (log2(n)), with n the number of tree nodes.

This means that the time and the energy consumption for the software implementation

have a logarithmic trend, but for the discussed approach they have a linear behavior,

even if the accelerator architecture exploits a speculative technique. However, comparing

software and hardware approaches, a huge difference in terms of throughput can be

noticed [5].

Chapter 5 Network Traffic Analysis: a Case Study 111

5.4 Distribution Infrastructure

As anticipated before, in Section 5.1, the service-oriented paradigm is particularly suited

to cope with the above-mentioned requirements: services can be easily invoked through

simple APIs by heterogeneous devices, and are being increasingly adopted in mobile

applications thanks to their flexibility. For this purposes, a two-tier service-based traffic

analysis infrastructure can be envisioned. Figure 5.9 proposes a service architecture.

In particular, at the mobile network layer, nodes run a high-accuracy hardware traf-

fic analyzer based on the embedded traffic model. On occurrence of specific events

(e.g., inability in classifying a packet or a packet flow), a node may invoke the service

layer through proper APIs, in order to get information about unclassified traffic and

to receive updates of the model, represented by a partial bitstream to re-configure the

node’s hardware with. At the service layer, traffic data involving heterogeneous and ge-

ographically distributed sources are correlated and processed with respect to the latest

information about security threats and application vulnerabilities, to produce enhanced

traffic models, which can be distributed to devices in an on-demand fashion according

to the as-a-Service paradigm.

The service layer must be provided with significant computational power in order to be

able to update the traffic model according to node-generated information. At the same

time, it must be equipped with large and scalable storage capability, in order to cope with

intensive and dynamic traffic flows coming from multiple sources. All the above discussed

requirements represent a technical challenge which can be effectively solved by means

of the adoption of the cloud computing paradigm: it features flexible high-performance

computing and high extensible data storage, and therefore it is particularly suited to

dynamically process huge amount of distributed data, in order to perform network traffic

analysis and target packet dissection for misclassified packets.

As anticipated, the service layer can be designed as a cloud computing infrastructure,

able to cope with flexibility, scalability and high-computation and storage requirements

typical of a large-scale traffic analysis application. The way in which the cloud-based

traffic analysis application is offered to devices in the given context is well represented

by the Software-as-a-Service (SaaS) model. From the business point of view, in the illus-

trated architecture, a cloud provider offers a traffic analyzer software to its customers,

112 Chapter 5 Network Traffic Analysis: a Case Study

…

Restful APIs

Virtualized Resources

Distributed Processing Provider Intrastructure

Applications and Operating System

Software Routines
for traffic AnalysisSoftware Routines
for traffic Analysis

Suspicious
Packets

Updated
Bitstream

HTTP
requests

HTTP
responses

Service
Layer

Mobile
Network
Layer

Static Hardware Dynamic Hardware

Application Interface

Compute Storage Network

SoPC with Custom Peripheral Hardware Accelerator

Classify
Packets

Classify
Flow

Software Routines
for Tra�c Analysis

Hardware
Management

Figure 5.9: Overview of a two-tier service-based traffic analysis infrastructure.

represented by the mobile devices owners, on a per-user/pay-as-you go basis, applying

the scheme proposed in the Chapter 3.

As an example, the cloud provider may allow all registered (free) customers to download

a basic configuration for the hardware accelerator implementing the local traffic analyzer

and to obtain periodic updates for it, taking advantage in turn of the amount of precious

data coming from the devices needed to enhance the model. On the other hand, premium

customers may be provided with more sophisticated models and with more frequent

updates.

Several technologies may be adopted to implement the mentioned cloud services. As here

the main focus is in on the whole architecture and not in a particular implementation

of each service, without loss of generality it is legit to assume that the cloud provider

offers RESTful based interfaces (RESTful APIs) for its services [41], and discuss those

APIs.

RESTful services are currently one of the most popular trends in developing cloud

services. RESTful APIs follow the SOA model and, therefore, are often used by web

Chapter 5 Network Traffic Analysis: a Case Study 113

service-based software architectures via XML or JSON for integration purposes. They

are consumed via an Internet browser or by web servers and are a very suitable solution

for the remote consumption of data processing services by heterogeneous users. RESTful

applications use HTTP methods (PUT, GET, POST, DELETE) to realize the four

CRUD (Create/Read/Update/Delete) operations, and can be very powerful, especially

when used in combination with JSON messages. JSON (Java Script Object Notation)

is a lightweight data interchange format that specifies parameters in the key-value pair

fashion. It is very easy for humans to understand and for machines to parse and process.

The service layer can be easily described through the set of exposed RESTful APIs,

which can be invoked by nodes to obtain predictor model updates or single responses to

a classification request. In the proposed solution, such APIs adopt JSON to specify the

parameters contained in the HTTP requests and responses exchanged among the cloud

services and the mobile nodes. The following main APIs were envisioned:

• Classify packet: obtain a classification for a given packet, identified by means of a

set of features;

• Classify flow: obtain a classification for an entire packet flow, identified by means

of a set of features;

• Get Updated Model: obtain the new predictor model in a well-known format (e.g.,

Predictor Model Markup Language - PMML);

• Get Updated Configuration: obtain the new predictor model in form of a partial

bitstream to load onto the device;

• Send flow: send the features related to a given flow (this actually increases the

volume of data available to the service to enhance its model).

Each of the APIs has its own URL and HTTP method (GET, POST, PUT, or DELETE).

In particular, the classify packet and classify flow, along with the send flow APIs adopt

the POST method, to push information about the packets to classify, while the get

updated configuration API uses the GET HTTP method. The get updated model API

has been introduced to extend the approach also to cases of pure software systems

willing to take advantage of the cloud distributed computation capabilities to perform

high-accuracy traffic analysis tasks.

114 Chapter 5 Network Traffic Analysis: a Case Study

To perform an API call, the client running on the mobile device has to perform a HTTP

request. Method parameters are passed in the URL query string or in the message body,

depending on the HTTP method. API responses are returned as JSON objects, which

typically include metadata (i.e., the response status code and error message, if any) and

the actual response, which contains the actual data formatted in the form key:value.

5.4.1 Analysis on the distributed layers

In order to evaluate the performance of the service layer, a prototype application were

realized. In particular the application provides some services, such as the acquisition of

traffic flows from devices and the model update, and executes the business logic. The

server interface collects packets and/or flows that were marked as suspicious by devices

because unclassifiable, and launches a further analysis based on the latest created traffic

model. If the suspicious flow or packet is recognized either malicious or non-malicious,

it is discarded by the server and the device is notified about the classification result and

is possibly updated with the latest model available. Otherwise, the involved traffic is

stored in a queue for further analysis, in order to establish its nature, i.e., in order to

establish whether it represents a real threat for mobile devices or not. This task can

be accomplished by an expert teamwork, or by semi-automatic procedures, that are not

discussed here because out of scope. New information about traffic behavior extends

the original dataset available on the server so that new knowledge can be extracted, by

means of a machine learning algorithm, and new updated models can be exploited for

traffic analysis. Knowledge extraction needs high computational resources, because the

involved dataset contains a huge amount of traffic data. Similarly, model updating on

mobile devices is an energy and time consuming task, and should not be too frequent.

Hence, the service layer needs a model update scheduling that has to take into account:

(i) the model aging, (ii) the global amount of unclassified traffic and (iii) the amount

of malicious packets and flows that are added to the initial dataset, i.e. which are not

yet exploited for the generation of new models. In the prototype, there were considered

three different model update policies to take into account such features.

The prototype application were realized using the Java language, as here the focus is not

strictly on the timing performance, but only on the application behavior under different

workload conditions. Hence, in order to simulate devices’ network traffic, varying the

Chapter 5 Network Traffic Analysis: a Case Study 115

Figure 5.10: Analysis of the traffic classification accuracy reached thanks to dynamic
reconfiguration and automatic generation of updated traffic models.

packets throughput, the devices population, the suspicious and malicious packets’ and

flows’ probabilistic distribution, a multithreading approach were exploited. This setup

exploited the same real network traffic dataset used in the previous experimental cam-

paign (Subsection 5.3.4), partitioned into a learning set, used to generate the first traffic

model, and a test set, that is used to feed the simulated mobile devices. In particular,

to carry out the simulation experiments, 50 threats were picked over the available 150

threats to build the learning set, and used the remainder to simulate a real workload

environment. As for the data traffic distribution, the threats arrival were modeled as a

bathtub curve distribution, which is quite close to a typical distribution of application

vulnerabilities: as indeed, after the first release the vulnerabilities reach the highest

peak, then they decrease with subsequent software upgrades and patches, and finally

they increase due to the application aging and to the increasing of attackers’ skills. The

distribution for the non malicious, but suspicious, traffic was uniform, since it includes

traffic generated by new applications or new released Internet protocols.

As anticipated, the traffic model processed by the service layer is updated according to

a scheduling policy that evaluates the first applicable condition among the following: (i)

the model aging threshold exceeds 4 days, (ii) the number of new traffic flows/packets

inserted in the analyzer queue exceeds 2000, (iii) the number of new detected threats ex-

ceeds 10. The simulations a time interval of about 1 month and let the device population

and threat distribution vary to measure accuracy. In particular, Figure 5.10 shows how

the traffic analysis accuracy varies over time for a large network of 6 million devices. As

116 Chapter 5 Network Traffic Analysis: a Case Study

shown, due to the chosen probability distribution, the accuracy (blue curve) presents a

generally decreasing trend. Moreover, accuracy peaks can be observed in correspondence

to update events, thanks to the acquisition of new knowledge about traffic. Note that

the time between two subsequent updates is not constant due to the different scheduling

policies that are activated by deployed application. Clearly, the accuracy does not reach

the maximum possible value at each update because of the delay experienced in the

update process: when one of the three policies is triggered, a learning task is scheduled

on the server, but since its execution takes a certain amount of time, in this interval

new traffic information is not taken in to account. Hence, when the new traffic model is

released, the evaluated accuracy does not achieve the original values. The peaks’ trend

(green curve) is exponentially decreasing to a stable value around 99.6%.

Chapter 6

Conclusion and Future Directions

Nowadays, an extremely wide spectrum of application domains adopts the FPGAs as

in-field device technology. Numerous advantages, mainly related to the low cost and to

the short time-to-market, have been characterizing the FPGA design methodology, such

that they are competitors of the ASIC devices, since modern FPGAs are practically

suitable to design just about anything. But, unlike the ASICs, FPGAs suffer from some

weaknesses due to the inherently in-field (re)configuration feature. As indeed, they are

much closer in nature to the software domain than to the mere hardware development,

since each FPGA device can be programmed directly by end users providing a bitstream

file, which is obtained by a design flow, similarly to the ASIC projects. Moreover, the

FPGA design methodology is characterized by an extensive adoption of components-of-

the-shelf, namely IP cores. Vulnerabilities of FPGAs jeopardize the IP core rights and

the application which are deployed on them.

In this doctoral thesis, I have proposed some techniques to manage the rights of IP

cores, protecting the bitstreams against known attacks. In particular, exploiting the

partial reconfiguration and encryption features of modern FPGAs, I have identified

parties involved in the IPs distribution process, the requirements for a secure distribution

infrastructure and some improvements which can be included in future FPGA designs.

Moreover, even targeting old and low-end FPGAs, I have demonstrated that PUFs can

be adopted to guarantee a minimal security mechanism to bind a bitstream to a specific

device by exploiting two architectures: the Anderson PUF and an innovative approach,

called FS PUF. At the end, through an extensive case study, I have shown that the

117

118 Chapter 6 Conclusion and Future Directions

FPGA is suitable to perform algorithms that require a very high throughput and I have

envisioned a two-tier service-based infrastructure, which can automatically produce and

securely distribute hardware updates.

With respect to the questions raised in the Section 1.1, I have replied each question

giving the following contributions:

1. FPGA technology is characterized by several vulnerabilities, hence some attacks

can succeed on the programmable devices. This doctoral thesis has taken into ac-

count such weaknesses with respect to the technological evolution. In particular,

the readback attack exploits the readback feature of FPGAs to read the payload of

the original bitstream used to configure them. By rebuilding the original bitstream,

adding what is missing in the readback one, an attacker is able to clone the device.

The cloning attack can be also accomplished by eavesdropping the bitstream file

directly provided to the FPGA during the configuration process. Reverse engi-

neering attack is able to extract from the bitstream the original netlist used to

obtain it or some sensitive data, such as cryptography keys. SCA performed on

FPGAs is able to extract secret information by exploiting the external observable

phenomena of electronic devices, unintentionally produced by internal operations.

All these attacks are able to threaten the application mission, divulging sensitive

data that can compromise also third-parties IP cores. All the details have been

reported in the Chapter 1

2. One of the most interesting FPGA feature is the reprogrammability since it enables

the in-field device to receive hardware updates, pretty much like as the software

case. In such a scenario, adopting a well-known DRM scheme, I have identify the

roles which are crucial in the distribution process and, with the aim of protecting

(partial) bitstreams, their concerns. The first identifiable role is the owner of the

device, namely the End User. The End User requires the device to be secure and

the other parties want to protect themselves against the End User attack attempts.

The End User also is a part of the licensing process when it becomes the owner

of the system and wants to bill new HDCs. The manufacturer of the FPGA chip

within the device can be identified as FPGA Fabric Vendor and it guarantees

some basic secure mechanisms on the devices in order to provide integrity and

confidentiality. Its manufactured devices should not be equipped with backdoors.

Chapter 6 Conclusion and Future Directions 119

The design and the implementation of the intellectual property as HDC is done

by the IPCore Vendor, which distributes them as bitstreams. The IPCore Vendor

is aware of the requirements that it has to fulfill, such as the compliance with the

IP design specification and with the End User system. At the end, the TTP is

an organization that all parties rely on, which guarantees that all the transactions

between the parties are securely completed.

3. Since DRM mechanisms rely on cryptography primitives, which aim is to secure

the involved IPs and associated rights, the FPGA technology has to provide built-

in cryptography functions. In particular, a secure configuration mode should be

available, where the configuration bitstream is stored outside the FPGA device

in an encrypted form and it is only decrypted inside the FPGA within a secure

perimeter. Then, readback of the plain bitstream has to be inhibited. Recently,

the Xilinx has released some FPGA families which can be configured by means

of enciphered bitstreams, even with partial reconfiguration, exploiting inherently

AES decryption circuit and user-defined keys. The self-reconfiguration mechanism,

together with all the DRM related functions, has been integrated within the Google

Android Operating System by means of APIs. More details have been illustrated

in Section 3.3.

4. PUFs architecture can be an alternative of the cryptographic mechanisms, which

are not provided on old and low-end FPGA devices. In particular, it is possible

to bind a bitstream such that the user design is able to work only on a specific

FPGA device. Of course, without any protection on the content of the bitstream,

it is still susceptible to some attacks, such as the reverse engineer. Since not all

the devised PUFs architecture can be synthesized on such a kind of FPGA, I

have investigated two different architectures. The first one is the Anderson PUF,

which is scalable and a very reliable architecture. It was specifically designed

for Xilinx devices, originally developed for the Xilinx Virtex-5. This thesis has

illustrated an Anderson PUF implemented on the Spartan-3E technology, giving a

deep analysis of some quality parameters and comparing them with other available

Anderson PUF architectures. Then, I have explored the possibility to use the ring

oscillators (ROs) to define a PUF based on measured frequencies, since the RO is

an universal primitive, available on any silicon technology. Unlike the ROPUF, I

have illustrated the frequencies signature PUF (FS PUF), which is ideally immune

120 Chapter 6 Conclusion and Future Directions

to any disturbance effect provoked by uncontrolled working conditions. The FS

PUF obeys to a statistical model and, by exploiting Xilinx Spartan-6 devices, it

has been proved effective in discriminating a huge device population with few ROs.

5. FPGA is suitable for the execution of high throughput algorithms. To combine

such feature with the reconfigurability, I have illustrated a case study in which

the in-field application is a mobile end-user device equipped with an FPGA which

runs a traffic analysis. Exploiting the decision tree machine learning algorithm,

I have detailed a technique to automatically train and produce hardware traffic

models, formally demonstrating the scalability of the approach. Such models are

distributed to a devices population exploiting a two-tier service-based infrastruc-

ture, which is able to collect information about new traffic patterns and to auto-

matically disseminate new generated hardware analyzers as partial bitstreams.

Even if the discussion in this thesis has been extensive and has covered a significant

amount of aspects, there are still open issues that should be addressed. Indeed, as

part of future work, the research activity can be expanded adopting the PUFs to define

pay-per-use mechanism based on the inherently challenge-response mechanism. Indeed,

being hard to predict, model and clone, the CRPs set is able to support a stronger DRM

mechanism than the one illustrated in this doctoral thesis. As for the PUFs architectures,

the Anderson PUFs need to be analyzed also with other uncertainty sources, such as

the voltage and the aging, in order to better estimate the reliability which characterizes

this PUF architecture. The FSPUF, introduced the first time in this thesis, should

be tested by using more devices and, moreover, its efficacy has to be evaluated on the

ASIC technology. At the end, as for the case study, which has involved the decision

tree algorithm implemented on hardware, other predictors can be exploited to enhance

not only the accuracy of the analysis, but also to minimize the area of the synthesized

hardware accelerator. For instance, a multi-classification algorithm can be adopted to

augment the classification accuracy and to try to reduce the amount of resource needed

to synthesize the predictor in hardware.

Bibliography

[1] Ieee standard test access port and boundary scan architecture. IEEE Std 1149.1-

2001, pages 1–212, July 2001. doi: 10.1109/IEEESTD.2001.92950.

[2] Widevine home page, 2014. URL http://www.widevine.com/wv_drm.html.

[3] Yousra Alkabani and Farinaz Koushanfar. Active hardware metering for intel-

lectual property protection and security. In USENIX Security, pages 291–306,

2007.

[4] Open Mobile Alliance. Drm specification v2. 0. Open Mobile Alliance Ltd, 2004.

[5] Flora Amato, Mario Barbareschi, Valentina Casola, Antonino Mazzeo, and Sara

Romano. Towards automatic generation of hardware classifiers. In Algorithms and

Architectures for Parallel Processing, pages 125–132. Springer, 2013.

[6] Flora Amato, Mario Barbareschi, Valentina Casola, and Antonino Mazzeo. An

fpga-based smart classifier for decision support systems. In Intelligent Distributed

Computing VII, pages 289–299. Springer International Publishing, 2014.

[7] A. Amouri, F. Bruguier, S. Kiamehr, P. Benoit, L. Torres, and M. Tahoori. Aging

effects in fpgas: an experimental analysis. In Field Programmable Logic and Ap-

plications (FPL), 2014 24th International Conference on, pages 1–4, Sept 2014.

doi: 10.1109/FPL.2014.6927390.

[8] Jason H Anderson. A puf design for secure fpga-based embedded systems. In

Proceedings of the 2010 Asia and South Pacific Design Automation Conference,

pages 1–6. IEEE Press, 2010.

[9] James M Apland, David D Eaton, and Andrew K Chan. Security antifuse that

prevents readout of some but not other information from a programmed field

programmable gate array, April 27 1999. US Patent 5,898,776.

121

http://www.widevine.com/wv_drm.html

122 Bibliography

[10] Anshul Arora, Shree Garg, and Sateesh K. Peddoju. Malware detection using net-

work traffic analysis in android based mobile devices. In Next Generation Mobile

Apps, Services and Technologies (NGMAST), 2014 Eighth International Confer-

ence on, pages 66–71, Sept 2014. doi: 10.1109/NGMAST.2014.57.

[11] Khalil Arshak, E. Jafer, and C. Ibala. Testing fpga based digital system using

xilinx chipscope logic analyzer. In Electronics Technology, 2006. ISSE ’06. 29th

International Spring Seminar on, pages 355–360, May 2006. doi: 10.1109/ISSE.

2006.365129.

[12] M. Barbareschi, A. Mazzeo, and A. Vespoli. Un laboratorio elettronico su smart-

phone per dispositivi a microcontrollore. Mondo Digitale, 13(51):207–215, 2014.

[13] Mario Barbareschi, Ermanno Battista, Valentina Casola, and Nicola Mazzocca. On

the adoption of fpga for protecting cyber physical infrastructures. In P2P, Par-

allel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International

Conference on, pages 430–435. IEEE, 2013.

[14] Mario Barbareschi, Antonino Mazzeo, and Antonino Vespoli. Network traffic anal-

ysis using android on a hybrid computing architecture. In Algorithms and Archi-

tectures for Parallel Processing, pages 141–148. Springer International Publishing,

2013.

[15] Mario Barbareschi, Ermanno Battista, Antonino Mazzeo, and Sridhar Venkatesan.

Advancing wsn physical security adopting tpm-based architectures. In Information

Reuse and Integration (IRI), 2014 IEEE 15th International Conference on, pages

394–399. IEEE, 2014.

[16] Mario Barbareschi, Ermanno Battista, Nicola Mazzocca, and Sridhar Venkatesan.

A hardware accelerator for data classification within the sensing infrastructure. In

Information Reuse and Integration (IRI), 2014 IEEE 15th International Confer-

ence on, pages 400–405. IEEE, 2014.

[17] Mario Barbareschi, Alessandra De Benedictis, Antonino Mazzeo, and Antonino

Vespoli. Mobile traffic analysis exploiting a cloud infrastructure and hardware

accelerators. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

2014 Ninth International Conference on, pages 414–419. IEEE, 2014.

Bibliography 123

[18] Mario Barbareschi, Pierpaolo Bagnasco, and Antonino Mazzeo. Quality trends

analysis for the anderson puf varying the supplied voltage. In Design & Technology

of Integrated Systems In Nanoscale Era (DTIS), 2015 10th IEEE International

Conference On. IEEE, 2015.

[19] Mario Barbareschi, Ermanno Battista, Antonino Mazzeo, and Nicola Mazzocca.

Testing 90nm microcontroller sram puf quality. In Design & Technology of Inte-

grated Systems In Nanoscale Era (DTIS), 2015 10th IEEE International Confer-

ence On. IEEE, 2015.

[20] Mario Barbareschi, Alessandra De Benedictis, Antonino Mazzeo, and Antonino

Vespoli. Providing mobile traffic analysis as-a-service: design of a service-based

infrastructure to offer high-accuracy traffic classifiers based on hardware accelera-

tors. (In press) Journal of Digital Information Management (JDIM), 2015.

[21] Mario Barbareschi, Salvatore Del Prete, Francesco Gargiulo, Antonino Mazzeo,

and Carlo Sansone. Decision tree-based multiple classifier systems: an fpga per-

spective. In Multiple Classifier Systems. Springer, 2015.

[22] Mario Barbareschi, Antonino Mazzeo, and Pierpaolo Bagnasco. Implement-

ing reliable mechanisms for ip protection on low-end fpga devices, March 2015.

URL http://www.date-conference.com/conference/workshop-w10. DATE

W10 TRUDEVICE 2015, online publication.

[23] Mario Barbareschi, Antonino Mazzeo, and Antonino Vespoli. Malicious traffic

analysis on mobile devices: a hardware solution. (In press) International Journal

of Big Data Intelligence, 2(2), 2015.

[24] Mario Barbareschi, Lionel Torres, and Giorgio Di Natale. Ring oscillators analy-

sis for fpga security purposes, March 2015. URL http://www.date-conference.

com/conference/workshop-w10. DATE W10 TRUDEVICE 2015, online publi-

cation.

[25] Florian Benz, André Seffrin, and Sorin A Huss. Bil: A tool-chain for bitstream

reverse-engineering. In Field Programmable Logic and Applications (FPL), 2012

22nd International Conference on, pages 735–738. IEEE, 2012.

http://www.date-conference.com/conference/workshop-w10
http://www.date-conference.com/conference/workshop-w10
http://www.date-conference.com/conference/workshop-w10

124 Bibliography

[26] Andrey Bogdanov, Amir Moradi, and Tolga Yalcin. Efficient and side-channel

resistant authenticated encryption of fpga bitstreams. In ReConFig, pages 1–6,

2012.

[27] Vincent Carlier, Hervé Chabanne, Emmanuelle Dottax, and Hervé Pelletier. Elec-

tromagnetic side channels of an fpga implementation of aes. In CRYPTOLOGY

EPRINT ARCHIVE, REPORT 2004/145. Citeseer, 2004.

[28] Hakima Chaouchi. The internet of things: connecting objects. John Wiley & Sons,

2013.

[29] Alessandro Cilardo, Mario Barbareschi, and Antonino Mazzeo. Secure distribution

infrastructure for hardware digital contents. IET Computers & Digital Techniques,

8(6):300–310, 2014.

[30] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of

systems and software. ACM Computing Surveys (csuR), 34(2):171–210, 2002.

[31] Nathaniel Couture and Kenneth B Kent. Periodic licensing of fpga based in-

tellectual property. In Field Programmable Technology, 2006. FPT 2006. IEEE

International Conference on, pages 357–360. IEEE, 2006.

[32] Glenn Crow. Advanced security schemes for spartan-3a/3an/3a dsp fpgas. Xilinx

Corp. White Paper, ref, 267, 2007.

[33] Jayita Das, Kevin Scott, Drew Burgett, Srinath Rajaram, and Sanjukta Bhanja.

A novel geometry based mram puf. In Nanotechnology (IEEE-NANO), 2014 IEEE

14th International Conference on, pages 859–863. IEEE, 2014.

[34] Elke De Mulder, Pieter Buysschaert, SB Ors, Peter Delmotte, Bart Preneel, Guy

Vandenbosch, and Ingrid Verbauwhede. Electromagnetic analysis attack on an

fpga implementation of an elliptic curve cryptosystem. In Computer as a Tool,

2005. EUROCON 2005. The International Conference on, volume 2, pages 1879–

1882. IEEE, 2005.

[35] Android Developers. What is android, 2011.

Bibliography 125

[36] Florian Devic, Lionel Torres, Jérémie Crenne, Benoit Badrignans, and Pascal

Benoit. Secure dpr: Secure update preventing replay attacks for dynamic par-

tial reconfiguration. In Field Programmable Logic and Applications (FPL), 2012

22nd International Conference on, pages 57–62. IEEE, 2012.

[37] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-

tors: How to generate strong keys from biometrics and other noisy data. SIAM

journal on computing, 38(1):97–139, 2008.

[38] Saar Drimer, Tim Güneysu, Markus G Kuhn, and Christof Paar. Protecting

multiple cores in a single fpga design. Draft available at http://www. cl. cam. ac.

uk/sd410/, written May, 2008.

[39] Ahmet M Eskicioglu, John Town, and Edward J Delp III. Security of digital

entertainment content from creation to consumption. In International Symposium

on Optical Science and Technology, pages 187–211. International Society for Optics

and Photonics, 2001.

[40] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula, and

Deborah Estrin. A first look at traffic on smartphones. In Proceedings of the

10th ACM SIGCOMM conference on Internet measurement, pages 281–287. ACM,

2010.

[41] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.

[42] V Fischer and F Bernard. True random number generators in fpgas. In Security

Trends for FPGAS, pages 101–135. Springer, 2011.

[43] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In

Proceedings of the 16th ACM SIGKDD International Conference on Knowledge

discovery and data mining, pages 493–502, New York, NY, USA, 2010. ACM.

[44] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Silicon

physical random functions. In Proceedings of the 9th ACM conference on Computer

and communications security, pages 148–160. ACM, 2002.

126 Bibliography

[45] Sezer Gören, Ozgur Ozkurt, Abdullah Yildiz, H Fatih Ugurdag, Rajat S

Chakraborty, and Debdeep Mukhopadhyay. Partial bitstream protection for low-

cost fpgas with physical unclonable function, obfuscation, and dynamic partial self

reconfiguration. Computers & Electrical Engineering, 39(2):386–397, 2013.

[46] Paul Graham, Brent Nelson, and Brad Hutchings. Instrumenting bitstreams for

debugging fpga circuits. In Field-Programmable Custom Computing Machines,

2001. FCCM’01. The 9th Annual IEEE Symposium on, pages 41–50. IEEE, 2001.

[47] TC Group et al. TCG specification architecture overview revision 1.2, 2004.

[48] Jorge Guajardo, Sandeep S Kumar, G-J Schrijen, and Pim Tuyls. Physical unclon-

able functions and public-key crypto for fpga ip protection. In Field Programmable

Logic and Applications, 2007. FPL 2007. International Conference on, pages 189–

195. IEEE, 2007.

[49] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. FPGA

intrinsic PUFs and their use for IP protection. Springer, 2007.

[50] T Guneysu, Bodo Moller, and Christof Paar. Dynamic intellectual property protec-

tion for reconfigurable devices. In Field-Programmable Technology, 2007. ICFPT

2007. International Conference on, pages 169–176. IEEE, 2007.

[51] Scott Hauck and Andre DeHon. Reconfigurable computing: the theory and practice

of FPGA-based computation. Morgan Kaufmann, 2010.

[52] Yohei Hori, Akashi Satoh, Hirofumi Sakane, and Kenji Toda. Bitstream encryption

and authentication with aes-gcm in dynamically reconfigurable systems. In Field

Programmable Logic and Applications, 2008. FPL 2008. International Conference

on, pages 23–28. IEEE, 2008.

[53] Yohei Hori, Takahiro Yoshida, Toshihiro Katashita, and Akashi Satoh. Quantita-

tive and statistical performance evaluation of arbiter physical unclonable functions

on fpgas. In Reconfigurable Computing and FPGAs (ReConFig), 2010 Interna-

tional Conference on, pages 298–303. IEEE, 2010.

[54] Miaoqing Huang and Shiming Li. A delay-based puf design using multiplexers on

fpga. In Field-Programmable Custom Computing Machines (FCCM), 2013 IEEE

21st Annual International Symposium on, pages 226–226. IEEE, 2013.

Bibliography 127

[55] G Joy Persial, M Prabhu, and R Shanmugalakshmi. Side channel attack-survey.

Int J Adva Sci Res Rev, 1(4):54–57, 2011.

[56] Heiko Kalte, Dominik Langen, Erik Vonnahme, André Brinkmann, and U Ruckert.

Dynamically reconfigurable system-on-programmable-chip. In Parallel, Distributed

and Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on,

pages 235–242. IEEE, 2002.

[57] Deniz Karakoyunlu and Berk Sunar. Differential template attacks on puf enabled

cryptographic devices. In Information Forensics and Security (WIFS), 2010 IEEE

International Workshop on, pages 1–6. IEEE, 2010.

[58] Tom Kean. Secure configuration of field programmable gate arrays. In Field-

Programmable Logic and Applications, pages 142–151. Springer, 2001.

[59] Krzysztof Kepa, Fearghal Morgan, Krzysztof Kosciuszkiewicz, and Tomasz Sur-

macz. Serecon: A secure dynamic partial reconfiguration controller. In Symposium

on VLSI, 2008. ISVLSI’08. IEEE Computer Society Annual, pages 292–297. IEEE,

2008.

[60] HyunHo Kim, Ndibanje Bruce, Hoon-Jae Lee, YongJe Choi, and Dooho Choi. Side

channel attacks on cryptographic module: Em and pa attacks accuracy analysis.

In Information Science and Applications, pages 509–516. Springer, 2015.

[61] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems. In Advances in Cryptology—CRYPTO’96, pages 104–113. Springer,

1996.

[62] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimm-

ler. Breaking ciphers with copacobana–a cost-optimized parallel code breaker.

In Cryptographic Hardware and Embedded Systems-CHES 2006, pages 101–118.

Springer, 2006.

[63] Sandeep S Kumar, Jorge Guajardo, Roel Maes, G-J Schrijen, and Pim Tuyls.

The butterfly puf protecting ip on every fpga. In Hardware-Oriented Security and

Trust, 2008. HOST 2008. IEEE International Workshop on, pages 67–70. IEEE,

2008.

128 Bibliography

[64] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk, and

Srinivas Devadas. A technique to build a secret key in integrated circuits for

identification and authentication applications. In VLSI Circuits, 2004. Digest of

Technical Papers. 2004 Symposium on, pages 176–179. IEEE, 2004.

[65] A Lesea. jbits & reverse engineering (usenet comp. arch. fpga), september 2005.

[66] Daihyun Lim, Jae W Lee, Blaise Gassend, G Edward Suh, Marten Van Dijk, and

Srinivas Devadas. Extracting secret keys from integrated circuits. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 13(10):1200–1205, 2005.

[67] Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong, Chong-kwon Kim, Ted Taekyoung

Kwon, and Yanghee Choi. Internet traffic classification demystified: on the sources

of the discriminative power. In Proceedings of the 6th International COnference,

page 9. ACM, 2010.

[68] Dominik Lorenz, Georg Georgakos, and Ulf Schlichtmann. Aging analysis of circuit

timing considering nbti and hci. In On-Line Testing Symposium, 2009. IOLTS

2009. 15th IEEE International, pages 3–8. IEEE, 2009.

[69] Hongwei Luo, Guili He, Xiaodong Lin, and Xuemin Shen. Towards hierarchical se-

curity framework for smartphones. In Communications in China (ICCC), 2012 1st

IEEE International Conference on, pages 214–219, 2012. doi: 10.1109/ICCChina.

2012.6356880.

[70] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A study on

the state of the art and future research directions. In Towards Hardware-Intrinsic

Security, pages 3–37. Springer, 2010.

[71] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic pufs from flip-flops

on reconfigurable devices. In 3rd Benelux workshop on information and system

security (WISSec 2008), volume 17, 2008.

[72] Roel Maes, Dries Schellekens, and Ingrid Verbauwhede. A pay-per-use licensing

scheme for hardware ip cores in recent sram-based fpgas. Information Forensics

and Security, IEEE Transactions on, 7(1):98–108, 2012.

Bibliography 129

[73] Ahmed Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, and Farinaz Koushanfar.

Combined modeling and side channel attacks on strong pufs. IACR Cryptology

ePrint Archive, 2013:632, 2013.

[74] Abhranil Maiti and Patrick Schaumont. Improved ring oscillator puf: An fpga-

friendly secure primitive. Journal of cryptology, 24(2):375–397, 2011.

[75] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. A large scale

characterization of ro-puf. In Hardware-Oriented Security and Trust (HOST), 2010

IEEE International Symposium on, pages 94–99. IEEE, 2010.

[76] Andrei Marghescu, George Teseleanu, Diana-Stefania Maimut, Traian Neacsa, and

Paul Svasta. Adapting a ring oscillator-based true random number generator for

zynq system on chip embedded platform. In Design and Technology in Electronic

Packaging (SIITME), 2014 IEEE 20th International Symposium for, pages 197–

202. IEEE, 2014.

[77] Dominik Merli, Frederic Stumpf, and Claudia Eckert. Improving the quality of

ring oscillator pufs on fpgas. In Proceedings of the 5th Workshop on Embedded

Systems Security, page 9. ACM, 2010.

[78] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl. Semi-invasive

em attack on fpga ro pufs and countermeasures. In Proceedings of the Workshop

on Embedded Systems Security, page 2. ACM, 2011.

[79] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl. Side-channel

analysis of pufs and fuzzy extractors. In Trust and Trustworthy Computing, pages

33–47. Springer, 2011.

[80] Dominik Merli, Johann Heyszl, Benedikt Heinz, Dieter Schuster, Frederic Stumpf,

and Georg Sigl. Localized electromagnetic analysis of ro pufs. In Hardware-

Oriented Security and Trust (HOST), 2013 IEEE International Symposium on,

pages 19–24. IEEE, 2013.

[81] Noman Mohammed, Rui Chen, Benjamin C.M. Fung, and Philip S. Yu. Dif-

ferentially private data release for data mining. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

493–501, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0813-7.

130 Bibliography

[82] Alireza Monemi, Roozbeh Zarei, and Muhammad N Marsono. Online NetFPGA

Decision Tree Statistical Traffic Classifier. Computer Communications, 2013.

[83] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the vul-

nerability of fpga bitstream encryption against power analysis attacks: extracting

keys from xilinx virtex-ii fpgas. In Proceedings of the 18th ACM conference on

Computer and communications security, pages 111–124. ACM, 2011.

[84] Amir Moradi, Markus Kasper, and Christof Paar. On the portability of side-

channel attacks–an analysis of the xilinx virtex 4, virtex 5, and spartan 6 bitstream

encryption mechanism–. 2011.

[85] Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. Side-channel

attacks on the bitstream encryption mechanism of altera stratix ii: facilitat-

ing black-box analysis using software reverse-engineering. In Proceedings of the

ACM/SIGDA international symposium on Field programmable gate arrays, pages

91–100. ACM, 2013.

[86] S Mühlbach and Andreas Koch. A novel network platform for secure and efficient

malware collection based on reconfigurable hardware logic. In Internet Security

(WorldCIS), 2011 World Congress on, pages 9–14. IEEE, 2011.

[87] David Naccache and Patrice Fremanteau. Unforgeable identification device, iden-

tification device reader and method of identification, July 18 1995. US Patent

5,434,917.

[88] Cisco Visual Networking. Cisco visual networking index: Global mobile data traffic

forecast update, 2014–2019. Cisco white paper, 2015.

[89] Jean-Baptiste Note and Éric Rannaud. From the bitstream to the netlist. In

FPGA, volume 8, pages 264–264, 2008.

[90] Sıddıka Berna Örs, Elisabeth Oswald, and Bart Preneel. Power-analysis attacks

on an fpga–first experimental results. In Cryptographic Hardware and Embedded

Systems-CHES 2003, pages 35–50. Springer, 2003.

[91] Eric Peeters, François-Xavier Standaert, Nicolas Donckers, and Jean-Jacques

Quisquater. Improved higher-order side-channel attacks with fpga experiments.

Bibliography 131

In Cryptographic Hardware and Embedded Systems–CHES 2005, pages 309–323.

Springer, 2005.

[92] Gang Qu and Chi-En Yin. Temperature-aware cooperative ring oscillator puf.

In Hardware-Oriented Security and Trust, 2009. HOST’09. IEEE International

Workshop on, pages 36–42. IEEE, 2009.

[93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0.

[94] Pappu Srinivasa Ravikanth. Physical one-way functions. PhD thesis, Mas-

sachusetts Institute of Technology, 2001.

[95] William Rosenblatt, Stephen Mooney, and William Trippe. Digital rights man-

agement: business and technology. M&T Books, 2003.

[96] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and

Jürgen Schmidhuber. Modeling attacks on physical unclonable functions. In Pro-

ceedings of the 17th ACM conference on Computer and communications security,

pages 237–249. ACM, 2010.

[97] Saber Salah, Sami Abduljalil Abdulhak, Hyontai Sug, Dae-Ki Kang, and HoonJae

Lee. Performance analysis of intrusion detection systems for smartphone security

enhancements. In Mobile IT Convergence (ICMIC), 2011 International Conference

on, pages 15–19. IEEE, 2011.

[98] Lester Sanders. Secure boot of zynq-7000 all programmable soc. Application note

XAPP1175 (v1. 0), Xilinx, 2013.

[99] Eric E Schadt, Michael D Linderman, Jon Sorenson, Lawrence Lee, and Garry P

Nolan. Computational solutions to large-scale data management and analysis.

Nature Reviews Genetics, 11(9):647–657, 2010.

[100] Pete Sedcole and Peter YK Cheung. Within-die delay variability in 90nm fpgas and

beyond. In Field Programmable Technology, 2006. FPT 2006. IEEE International

Conference on, pages 97–104. IEEE, 2006.

[101] P Skoda, B Medved Rogina, and V Sruk. FPGA implementations of data mining

algorithms. In MIPRO, 2012 Proceedings of the 35th International Convention,

pages 362–367. IEEE, 2012.

132 Bibliography

[102] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scanning dis-

covers backdoor in military chip. Springer, 2012.

[103] Sergei Petrovich Skorobogatov. Semi-invasive attacks: a new approach to hardware

security analysis. PhD thesis, University of Cambridge Ph. D. dissertation, 2005.

[104] Maureen Smerdon. Security solutions using spartan-3 generation fpgas. In Xilinx

Inc. Citeseer, 2008.

[105] F-X Standaert, François Macé, Eric Peeters, and J-J Quisquater. Updates on the

security of fpgas against power analysis attacks. In Reconfigurable Computing:

Architectures and Applications, pages 335–346. Springer, 2006.

[106] François-Xavier Standaert, Löıc van Oldeneel tot Oldenzeel, David Samyde, and

Jean-Jacques Quisquater. Power analysis of fpgas: How practical is the attack?

In Field Programmable Logic and Application, pages 701–710. Springer, 2003.

[107] François-Xavier Standaert, Sıddıka Berna Örs, Jean-Jacques Quisquater, and Bart

Preneel. Power analysis attacks against fpga implementations of the des. In Field

Programmable Logic and Application, pages 84–94. Springer, 2004.

[108] O-X Standaert, Éric Peeters, Gaël Rouvroy, and J-J Quisquater. An overview of

power analysis attacks against field programmable gate arrays. Proceedings of the

IEEE, 94(2):383–394, 2006.

[109] G Edward Suh and Srinivas Devadas. Physical unclonable functions for device

authentication and secret key generation. In Proceedings of the 44th annual Design

Automation Conference, pages 9–14. ACM, 2007.

[110] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan

taxonomy and detection. 2010.

[111] Anil Telikepalli and I Xilinx. Is your fpga design secure. XCell Journal, XILINX,

Fall, 2003.

[112] Tran Thanh, Vu Huu Tiep, Tran Hoang Vu, Pham Ngoc Nam, and Nguyen

Van Cuong. Secure remote updating of bitstream in partial reconfigurable embed-

ded systems based on fpga. In Computing, Management and Telecommunications

(ComManTel), 2013 International Conference on, pages 152–156, Jan 2013. doi:

10.1109/ComManTel.2013.6482382.

Bibliography 133

[113] Kris Tiri and Ingrid Verbauwhede. Synthesis of secure fpga implementations.

IACR Cryptology ePrint Archive, 2004:68, 2004.

[114] Da Tong, Lu Sun, Kiran Matam, and Viktor Prasanna. High throughput and pro-

grammable online traffic classifier on FPGA. In Proceedings of the ACM/SIGDA

international symposium on Field programmable gate arrays, pages 255–264. ACM,

2013.

[115] Altera Verification Tool. Signaltap ii embedded logic analyzer, 2006.

[116] Steve Trimberger. Trusted design in fpgas. In Proceedings of the 44th annual

Design Automation Conference, pages 5–8. ACM, 2007.

[117] Smith Tsang, Ben Kao, Kevin Y Yip, Wai-Shing Ho, and Sau Dan Lee. Decision

trees for uncertain data. Knowledge and Data Engineering, IEEE Transactions

on, 23(1):64–78, 2011.

[118] Elena Ioana Vatajelu, Giorgio Di Natale, Marco Indaco, and Paolo Ernesto

Prinetto. Stt mram-based pufs. In Proceedings of Design, Automation and Test

in Europe 2015. IEEE, 2015.

[119] Florian Wilde, Matthias Hiller, and Michael Pehl. Statistic-based security analy-

sis of ring oscillator pufs. In Integrated Circuits (ISIC), 2014 14th International

Symposium on, pages 148–151. IEEE, 2014.

[120] Spartan-6 FPGA Configurable Logic Block. Xilinx. Available at http://www.

xilinx.com/support/documentation/user_guides/ug384.pdf.

[121] Xilinx. Zynq-7000 ap soc redirecting ethernet packet to pl for hardware packet

inspection tech tip, September 2013. URL http://www.wiki.xilinx.com/

Zynq-7000+AP+SoC+Redirecting+Ethernet+Packet+to+PL+for+Hardware+

Packet+Inspection+Tech+Tip.

[122] Jiliang Zhang, Yaping Lin, Yongqiang Lyu, Ray CC Cheung, Wenjie Che, Qiang

Zhou, and Jinian Bian. Binding hardware ips to specific fpga device via inter-

twining the puf response with the fsm of sequential circuits. In Field-Programmable

Custom Computing Machines (FCCM), 2013 IEEE 21st Annual International

Symposium on, pages 227–227. IEEE, 2013.

http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Redirecting+Ethernet+Packet+to+PL+for+Hardware+Packet+Inspection+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Redirecting+Ethernet+Packet+to+PL+for+Hardware+Packet+Inspection+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Redirecting+Ethernet+Packet+to+PL+for+Hardware+Packet+Inspection+Tech+Tip

134 Bibliography

[123] Jiliang Zhang, Yaping Lin, Yongqiang Lyu, Gang Qu, Ray CC Cheung, Wenjie

Che, Qiang Zhou, and Jinian Bian. Fpga ip protection by binding finite state

machine to physical unclonable function. In Field Programmable Logic and Appli-

cations (FPL), 2013 23rd International Conference on, pages 1–4. IEEE, 2013.

[124] Jiliang Zhang, Qiang Wu, Yongqiang Lyu, Qiang Zhou, Yici Cai, Yaping Lin, and

Gang Qu. Design and implementation of a delay-based puf for fpga ip protec-

tion. In Computer-Aided Design and Computer Graphics (CAD/Graphics), 2013

International Conference on, pages 107–114. IEEE, 2013.

[125] Jiliang Zhang, Yaping Lin, Yongqiang Lyu, and Gang Qu. A puf-fsm binding

scheme for fpga ip protection and pay-per-device licensing. 2015.

[126] Daniel Ziener, Stefan Aßmus, and Jürgen Teich. Identifying fpga ip-cores based

on lookup table content analysis. In Field Programmable Logic and Applications,

2006. FPL’06. International Conference on, pages 1–6. IEEE, 2006.

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Thesis Contribution
	1.2 Manuscript Reminder

	2 Attacks and Countermeasures Overview of SRAM FPGA Technology
	2.1 FPGA Vulnerabilities
	2.1.1 Readback Attack
	2.1.2 Cloning SRAM FPGA configuration attack
	2.1.3 Bitstream reverse engineering attack
	2.1.4 Side-channels attacks
	2.1.5 Physical attacks

	2.2 Security Countermeasures
	2.2.1 Bitstream encryption
	2.2.1.1 Known attacks against bitstream encryption

	2.2.2 Physically Unclonable Functions
	2.2.2.1 PUFs properties
	Unclonability
	Uniqueness
	Unpredictability
	One-way property
	Evaluability
	Tamper-evident

	2.2.3 Known attacks against PUFs
	Model-based attack
	SCA

	3 Secure Infrastructure for Hardware Digital Content Distribution
	3.1 Existing Research Proposals
	3.2 Digital Right Management
	3.2.1 Roles in hardware-level DRM
	3.2.2 Attacks scenario
	Malicious bitstreams
	IP theft and reverse engineering of bitstreams
	Digital right tampering
	Software tampering

	3.2.3 DRM hardware functions
	HDC validation
	HDC distribution and billing
	HDC digital rights

	3.3 Hardware Architecture
	3.4 Infrastructure Architecture
	3.5 Security Evaluation
	3.5.1 Malicious bitstreams
	Genuine host environment
	Hacked host environment

	3.5.2 IP theft and reverse engineering
	Network sniffing
	Device hacking

	3.5.3 Right Object tampering
	RO tampering based on cryptanalysis
	RO tampering by device hacking

	3.5.4 Software hacking

	3.6 Prototypical Implementation and Results
	3.6.1 Software environment: Zedroid
	3.6.2 HDC lifecycle managing framework
	3.6.3 Integrating dynamic hardware components
	3.6.4 Configuration time overhead
	3.6.5 Case-study and experimental results

	3.7 Considerations on the Approach Improvement

	4 Enable Security Through Physically Unclonable Functions
	4.1 The Anderson PUF
	4.1.1 Anderson PUF implemented on Virtex-5
	4.1.1.1 Anderson PUF implemented on Spartan-3E

	4.1.2 Enhanced Anderson PUF
	4.1.2.1 Enhanced Anderson PUF implemented on Spartan-3E

	4.1.3 Experimental validation
	4.1.3.1 Global uniqueness
	4.1.3.2 Reliability
	4.1.3.3 Uniformity

	4.2 Ring Oscillator as Secrecy Source for PUFs
	4.2.1 Research work on RO characterization
	4.2.2 RO frequencies characterization
	4.2.3 RO structure and measurement architecture
	4.2.4 Result and validation
	4.2.4.1 Analysis of the logic which surrounds the RO
	4.2.4.2 Analysis of the stages number and routing
	4.2.4.3 Temperature analysis
	4.2.4.4 Aging analysis

	4.3 Frequencies Signature PUF
	4.3.1 A model of read frequencies
	4.3.2 Frequencies as a signature
	4.3.2.1 S"0365Sm,d in hardware

	4.3.3 FS PUF: signatures comparison
	4.3.3.1 Distance metrics
	4.3.3.2 Score test
	Statistical model of the score test

	4.3.3.3 Statistical model parameters
	4.3.3.4 Consideration about tm

	4.3.4 Experimental result

	5 Network Traffic Analysis: a Case Study
	5.1 Traffic Analysis for Security Purposes
	5.2 Related Research Efforts
	5.3 Decision Tree Hardware Implementation
	5.3.1 Programmable decision trees
	5.3.2 Implementing static Decision Trees
	Boolean net details
	FPGA implementation

	5.3.3 Automatic hardware core generation
	5.3.4 Integration within real device
	5.3.5 Time performance
	Loop-back measurement

	5.3.6 Energy performance

	5.4 Distribution Infrastructure
	5.4.1 Analysis on the distributed layers

	6 Conclusion and Future Directions
	Bibliography

