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INTRODUCTION 1
The aim of this work is to provide a methodological contribution and appli-
cation on both supervised and unsupervised classification.
This work consists of three papers written during my Ph.D. period. The the-
sis consists of five chapters. In chapter 2 the basic building blocks of our
works are introduced. In particular we briefly recall the concepts of classifi-
cation (supervised and unsupervised) and penalized spline.

In chapter 3 we present a paper whose idea was presented at Cladag 2013
Symposium. Within the framework of recursive partitioning algorithms by
tree-based methods (Breiman et al., 1984), this paper provides a contribution
on both the visual representation of the data partition in a geometrical space
and the selection of the decision tree. In our visual approach the identifica-
tion of both the best tree and of weakest links is immediately evaluable by
the graphical analysis of the tree structure without considering the pruning
sequence. The results in terms of error rate are really similar to the ones re-
turned by the Classification And Regression Trees procedure, showing how
this new way to select the best tree is a valid alternative to the well known
cost-complexity pruning

In chapter 4 we present a paper on parsimonious clustering of correlated
series whose idea was presented at ERCIM 2014 Symposium. Clustering of
time series has become an important topic, motivated by the increased inter-
est in these type of data. Most of the time, these procedures do not facilitate
the removal of noise from data, have difficulties handling time series with
unequal length and require a preprocessing step of the data considered, i.e.
by modeling each series with an appropriate model for time series. In this
work we propose a new clustering data (time) series studying, which can
be considered as model and feature based approach (Liao, 2005). The pro-
posal consists of model each series by penalized spline (P-spline) smoothers

1



2 Chapter 1. Introduction

(Eilers and Marx, 1996) and to perform a clustering directly on spline coeffi-
cients. The P-spline coefficients are close to the fitted curve and present the
skeleton of the fit (Eilers and Marx, 2010). Series with different length can
be handled by P-spline due to the extrapolation properties. Thus, summa-
rizing each series by coefficients reduces the dimensionality of the problem,
improving significantly computation time without reduction in performance
of clustering procedure. To select the smoothing parameter we adopt a V-
curve procedure proposed by Frasso and Eilers (2015). The performance of
our clustering approach is evaluated analyzing a simulated data set as de-
scribed in Coffey et al. (2014). An application of our proposal on financial
time series is also presented.

In Chapter 5 we present a paper that proposes a fuzzy clustering algo-
rithm that is independent from the choice of the fuzzifier. It comes from
two approaches, theoretically motivated for respectively unsupervised and
supervised classification cases. The first is the Probabilistic Distance (PD)
clustering procedure defined by Ben-Israel and Iyigun (2008). The second is
the well known Boosting philosophy. From the PD approach we took the
idea of determining the probabilities of each series to any of the k clusters.
As this probability is unequivocally related to the distance of each series from
the cluster centers, there are no degrees of freedom in determine the mem-
bership matrix. From the Boosting approach (Freund and Schapire, 1997) we
took the idea of weighting each series according to some measure of bad-
ness of fit in order to define an unsupervised learning process based on a
weighted re-sampling procedure. Our idea is to adapt the boosting philoso-
phy to unsupervised learning problems, specially to non hierarchical cluster
analysis. In such a case there not exists a target variable, but as the goal is
to assign each instance (i.e. a series) of a data set to a cluster, we have a tar-
get instance. The representative instance of a given cluster (i.e. the center
of a cluster) can be assumed as a target instance, a loss function to be min-
imized can be assumed as a synthetic index of the global performance, the
probability of each series to belong to a given cluster can be assumed as the
individual contribution of a given instance to the overall solution. In contrast
to the boosting approach, the higher is the probability of a given series to be
member of a given cluster, the higher is the weight of that instance in the re-
sampling process. As a learner we use a P-spline smoother (Eilers and Marx,
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1996). To define the probabilities of each series to belong to a given cluster we
use the PD clustering approach. This approach allows us to define a suitable
loss function and, at the same time, to propose a fuzzy clustering procedure
that does not depend on the definition of a fuzzifier parameter. The global
performance of the proposed method is investigated by three experiments
(one of them on simulated data and the remaining two on data sets known in
literature) evaluated by using a fuzzy variant of the Rand Index (Hullermeier
et al., 2012).
Chapter 6 concludes the thesis.





PRELIMINARY TOOLS AND CONCEPTS 2
This chapter introduces some preliminary concepts that was used in the fol-

lowing chapters. The concept of classification (supervised and unsupervised) and
Penalized Spline are presented.
Keywords: Classification and Regression Tree, Cluster analysis, Dissimilarity
measure, B-splines, P-splines

2.1 Supervised classification

Classification is a supervised learning problem of assigning an object to one
of several pre-defined categories based upon the attributes of the object. Re-
cursive partitioning tree procedures have been the subject of extensive re-
search in the past. Specially tree-based methods have been proposed for both
prediction and exploratory purposes.
Binary segmentation procedure consists of a recursive binary partition of a
set of objects described by some explanatory variables (either numerical or
and categorical) and a response variable. In the following, CART procedure
(Breiman et al., 1984) is followed.
The data are partitioned by choosing at each step a variable and a cut point
along it according to a goodness of split measure which allows to select that
variable and cut point that generates the most homogeneous subgroups re-
spect to the response variable. The procedure results in a nice and powerful
graphical representation known as decision tree which express the sequential
grouping process. Because of the evident analogy with the graph theory, a
subset of observations is called node and nodes that are not split are called
terminal nodes or leaves (see figure 2.1).
Each node has a number such that generic node t generates the left node 2t

and the right node (2t+ 1). This approach was proposed by authors of statis-

5



6 Chapter 2. Preliminary tools and concepts

Figure 2.1: Tree-based structure

tical software SPAD (Cisia Institute, France). In this way, it is always possible
to recognize the position of each node given its number deriving the path
from the node to the root node and vice versa. In example, in the above fig-
ure, the node 6 is the left node of its parent node 3 which is the right node of
its parent node 1 (the root node).
Once the tree is built, a response value or a class label is assigned to each ter-
minal node. According to its nature (categorical or numerical) a distinction is
made between Classification Tree (for the categorical response case) and Re-
gression Tree (for the numerical response case). In the former case, when the
response variable takes value in a set of previously defined classes, the node
is assigned to the class which presents the highest proportion of observations
(by voting). In the latter case, the value assigned to cases in a given terminal
node is the average of the response variable values associated with the cases
belonging to the given node. In both cases this assignment is probabilistic, in
the sense that a measure of error is associated to it.
The main aim of the procedure is to define a classification/prediction
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rule on the basis of a learning set (also called training set), for which
the values of a response variable Y , and of a set of K explanatory vari-
ables (X1, . . . , Xk, . . . , XK) (either numerical or/and categorical) have been
recorded.
The recursive partitioning, following a divide et impera procedure, continues
partitioning nodes until all leaves contain a single case or cases either be-
longing to the same class or presenting the same response value. This leads
to overlarge trees with many rules which are hard to understand and over-fit
the data.
In practice, when performing binary segmentation one has to look for a com-
promise that allow for the trade-off between the exploratory and the confir-
matory purposes of the tree structures methodology. A distinction is made
between the two problems involved in investigating the data sets: that is,
whether to explore dependency, or to predict and decide about future re-
sponses on the basis of the selected predictors.
Explanation can be obtained by performing a segmentation of the objects un-
til a given stopping rule defines the final partition of the objects to interpret.
Confirmation requires the definition of decision rules, usually obtained by
performing a pruning procedure immediately soon after a segmentation pro-
cedure. Therefore, a further step, tree pruning, is usually carried out to avoid
over-fitting and improve the understandability of the tree by retrospectively
pruning some of the branches.
Summarizing, tree based methods involve the following steps:

• the definition of a splitting criterion;

• the definition of a stopping rule;

• the definition of the response classes/values to the terminal nodes;

• tree pruning, aimed at simplifying the tree structure, and tree selection,
aimed at selecting the final decision tree for decisional purposes

2.1.1 Splitting criteria

Let (Y,X) be a multivariate random variable where X is a set of K cate-
gorical or numerical predictors (X1, . . . , Xk, . . . , XK) and Y is the response
variable. The first problem in tree building is how to determine the binary
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splits of the data into smaller and smaller subgroups. Since the partitioning
is just two branches, splitting variables need to be created from the original
explanatory variables. Accordingly, data partitioning is based on a set of Q
binary questions of the form:

is Xk ∈ A?

so that, if Xk is categorical, A includes subsets of levels, while if Xj is nu-
meric, Q includes all questions of the form:

is Xk ≤ c?

for all c ranging over the domain of Xk. For example, if K = 3, X1, X2 are
numerical and X3 ∈ a1, a2, a3, Q includes all questions of the form:

X1 ≤ 3.5?

X2 ≤ 5?

X3 ∈ a1, a3?

The set of possible splitting variables is finite and the number of splitting
variables that can be created from a given explanatory variable depends on
the type of variable, i.e., according to its measurement. Table 2.1 reports the
number of splitting variables that can be generated by any type of explana-
tory variable according to its scale of measurement.

Explanatory variable Categories Number of splitting variables
Numeric N N − 1

Binary 2 1
Ordered M M − 1

Unordered M 2M−1 − 1

Table 2.1: Origin of the splitting variables

The algorithm generates all the possible splitting variables and searches
through them one by one. Unordered variables are the most difficult to deal
with because they can generate a very large number of splitting variables
even for a small value of M . Once that the set of binary questions has been
created, some criterion which guides the search in order to choose the best
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one to split the node is needed. As said before, the key idea is to split each
node so that each descendant is more homogeneous than the data in the par-
ent node. To reach this aim, we need a measure of homogeneity to be evalu-
ated by means of a splitting criterion.
In the CART methodology the idea of finding splits which generate more ho-
mogeneous descendant nodes has been implemented for classification trees
by introducing the so-called impurity function.
Let p(j|t) ≥ 0 be the proportions of cases in node t belonging to class j with∑J

j=1 p(j|t) = 1.
An impurity function φ is a function of the set of all J-tuples of numbers
p(j|t) with the properties (Breiman et al., 1984, p. 24):

1. φ is maximum only at the point {1/J, 1/J, . . . , 1/J};

2. φ achieves its minimum only at the points
(1, 0, . . . , 0), (0, 1, . . . , 0), (0, 0, . . . , 1);

3. φ is a symmetric function of p(j|t).

There are several impurity functions satisfying these three properties. The
most common are:

1. the error rate, or the misclassification ratio:

i(t) = 1−maxjp(j|t)

2. the Gini diversity index

i(t) = 1− sumjp(j|t)2

3. the entropy measure

i(t) = −sumj(pj|t)log(j|t)

Talking about regression trees, the splitting criterion is based on the search
of that split that generates the most different descendant nodes in terms of
mean value of the response variable:

i (t) =
1

N

∑
xn∈t

(yn − ȳt)2 (2.1)
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(2.1) can be meant as the total sum of squares (TSS), divided byN whereN is
the sample size, ȳt = 1

Nt

∑
xn∈t

yn ,Nt is the total number of cases in within node

t where the sum is over all yn such that xn ∈ t. If s is a proposed split of a
generic node t into two offspring tl and tr , and pl and pr are the proportions
of objects in node t which the split s puts into nodes tl and tr respectively,
then a measure of the change in impurity which would be produced by split
s of node t is given by:

∆i(t, s) = i(t)− [i(tl)ptl + i(tr)ptr ] (2.2)

∆i, called decrease in impurity, can be used as splitting criterion: a high value
of (2.2) means that a proposed split is a good one. At a given node t, a split s∗

maximizing equation 2.2 is optimal and used for generate two descendants tl
and tr . Let T̃ be the set of all terminal nodes of the tree T: the total impurity
of any tree T is defined as

I (T ) =
∑
t∈T̃

i (t) p(t)

To proceed with tree growing, CART procedure must compute the decrease
in impurity associated to each possible split generated by each variable. For
example, suppose to have a binary response variable and a set of six pre-
dictors as defined in table 2.2. In the root node the number of decreases in

Variable Nature Categories Number of split
X1 Nominal 6 25 − 1 = 31
X2 Nominal 7 26 − 1 = 63
X3 Ordinal 3 3− 1 = 2
X4 Binary 2 1
X5 Ordinal 5 5− 1 = 4
X6 Ordinal 4 4− 1 = 3

Table 2.2: Example of generation of splits according to the nature of the predictors

impurity to be computed is 31 + 63 + 2 + 1 + 4 + 3 = 104. Therefore, compu-
tational cost of CART is really high, because this procedure must be repeated
until a stooping rule in tree-building occurs.

2.1.2 Two Stage splitting criterion

Mola and Siciliano (1992, 1994) have proposed a Two-Stage splitting criterion
to choose the best split. This approach relies on the assumption that a predic-
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torXk is not merely used as a generator of partitions but it plays also a global
role in the analysis. In the first stage, a variable selection criterion is applied
to find one or more predictors that are the most predictive for the response
variable. On the basis of the set of partitions generated by the selected pre-
dictor(s), a partitioning criterion is considered in the second stage in order
to find the best partition of the objects at a given node. The criteria to be
used in the two stages depends on the nature of the variables, the tool of in-
terpretation and the desired description in the final output. The partitioning
algorithm takes account of the computational cost induced by the recursive
nature of the procedure and the number of possible partitions at each node
of the tree. Further developments of the Two Stage procedure face the com-
putational efficiency problem. In fact, from a computational point of view,
the growing procedure is crucial when dealing with very large data sets or
when dealing with ensemble methods. At any node t the two stages can be
defined as:

• global selection; one or more predictors are chosen as the most pre-
dictive for the response variable according to a given criterion; the se-
lected predictors are used to generate the set of partitions or splits. In
this stage an index needs to be defined to evaluate the Global Impurity
Proportional Reduction (Global IPR) of the response variable Y at node
t, due to the predictor X ;

• local selection; the best partition is selected as the most predictive and
discriminatory for the subgroups according to a given rule. In this stage
one has to define an index as the Local Impurity Proportional Reduc-
tion (Local IPR) of the response Y due to the partition p generated by
the predictor X

For classification trees the Global IPR is defined as τ index of Goodman and
Kruskal

τt(Y |X) =

∑
i

∑
j p

2
t (j|i)pt(i)−

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

, (2.3)

where pt(i), for i = 1, . . . , I , is the proportion of cases in node t that have
category i of X , and Pt(j|i), for j = 1, . . . , J , is the proportion of cases in the
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node t belonging to class j of Y given the ith category of X . Note that the
denominator in equation (2.3) is the Gini diversity index.
For regression trees, Global IPR can be defined as the Pearson’s squared cor-
relation η2:

η2
Y |X(t) =

BSSY |X(t)

TSSY (t)
, (2.4)

where SST is the total sum of squares of the numerical response variable Y
and BSS is the between group sum of squares due to the predictor X .
In a similar way, the Local IPR for both classification and regression trees are
defined as in equation (2.3) and (2.4), with the difference that in these cases
indexes are computed between the response variable Y and the set of split s
generated by the global IPR functions.
More precisely, for classification trees, at each node t of the splitting proce-
dure, a split s of the I categories ofX into two sub-groups (e.g. i ∈ l or i ∈ r),
leads to the definition of a splitting variable Xs with two categories denoted
by l and r. Local IPR is defined as

τt(Y |s) =

∑
j p

2
l (j|tl)ptl +

∑
j p

2
tr(j|r)ptr −

∑
j p

2
t (j)

1−
∑

j p
2
t (j)

(2.5)

whereas for regression trees it is the following:

η2
Y |s(t) =

BSSY |s(t)

TSSY (t)
. (2.6)

Two stage splitting criterion works as follow:

1. select the best predictor X∗(t) at t node by maximizing equation (2.3)
or 2.4 for classification or regression problems respectively:

2. select the best split s∗(t) at node t by maximizing equation (2.5) or (2.6)
for all splits of X∗(t) for classification or regression trees respectively

2.1.3 FAST splitting criterion

Fast Splitting for Splitting Tree (FAST algorithm) proposed by Mola and Sicil-
iano (1998) provides a faster method to find the best split at each node when
using CART methodology. As discussed in above section, when applying the
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two-stage criterion the best predictor could be found minimizing the Global
Impurity Proportional Reduction factor due to any predictor X , then the Lo-
cal Impurity Proportional Reduction factor determines the split with respect
to all partitions derived from the best predictor.
Main issue of FAST is that the measure of Global IPR measure satisfies the
following property:

γ(Y |X) ≥ γ(Y |s), (2.7)

in which γ is the generic Global IPR measure, and s is the set of split gener-
ated by X variable.

FAST algorithm consists in two step:

• computing Global IPR measure as in equation (2.3) or (2.4) for all vari-
ables belonging to the predictor matrix X and sort in decreasing order
these measures;

• computing Local IPR measure as in equation (2.5) or (2.6) for the first
previously ordered variable with maximum Global IPR. If Local IPR of
this variable is higher than Global IPR of the second orderedX variable,
stop the procedure, otherwise continue until inequality is satisfied.

The computational cost of FAST algorithm is really lower than the one of
CART procedure, with the advantage that the final trees are exactly the same.
In the example showed at the end of section 1.2.1 in the table 2.2, there is a
set of six predictors, 2 nominal with 6 and 7 categories respectively, 3 ordinal
with respectively 3, 5 and 4 categories and one binary variable. It was shown
that CART procedure for each variable must examine each possible split to
decide which one is the best. Considering the root node, CART technique
has to compute (25− 1) + (26− 1) + 2 + 1 + 4 + 3 = 104 splits.
FAST algorithm computes at the beginning only six Global IPR measure (in
this case there are only six predictors) and then only the local impurity reduc-
tion factor until inequality of the second step of the procedure is satisfied. In
this small example, the number of computations made is 6 + (25− 1) = 30 (it
is assumed that Global IPR measure relative to the second-best predictor is
lower than the local impurity reduction factor obtained by the second one).
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The computational advantage of using FAST instead of CART is clear: one
obtains the same tree-based structure with a great gain in terms of computa-
tional cost.

2.1.4 Stopping rules and assignment of the response classes/values to
the terminal nodes

Once the rules for growing the tree has been defined, another set of rules to
stop the building of the structure are needed. There is no unique rule to de-
fine the stopping of the procedure, but there are several rules used according
the discretion of the researcher. Tree growing can be arrested considering a
suitable combination of the following conditions:

• Bound on the decrease in impurity.
A node is terminal if the reduction in impurity due to the further par-
tition of the node is lower than a fixed threshold; a node should be
splitted if their contribution to the total impurity reduction is signifi-
cant;

• Bound on the number of observations.
In general, can be useless to continue splitting nodes with a few number
of individuals: sample size within-node should be rational;

• Tree size.
A further condition could be based on either the total number of termi-
nal nodes or the number of levels of the tree to limit its expansion.

Once the tree has been built, terminal nodes must be associated with a re-
sponse.

In the case of classification trees the assignment of a response to each ter-
minal node is based on a simple majority rule. Specifically, node t is assigned
to class j∗ if the highest proportions of objects in node t belong to class j∗ so
that:

p(j∗|t) = max
j∈C

[p(j|t)]

In the case the response variable is numeric the response values for the ob-
ject falling into a given terminal node t can be summarized by means of a
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synthetic measure; in general this is simply given by the mean, so that Ȳt is
assigned to node t where:

ȳt =
1

n(t)

∑
xn∈t

yit

2.1.5 Pruning

Exploratory trees can be used to investigate the structure of data but they
cannot be used in a straightforward way for induction purposes. For induc-
tive purposes the aim is to establish how large should be the tree. A very
large tree might over-fit the data, while a small tree may not be able to cap-
ture the important structure. Tree size is a tuning parameter governing the
complexity of the model, and the optimal tree size should be adaptively cho-
sen from the data. To choose the honest tree in terms of its size, Breiman et al.
(1984) defined the minimal cost-complexity pruning. Before proceeding with
pruning description, the definition of an error measure of a tree structure is
necessary.

• For classification trees, the error at the generic node t is defined as

r(t) =
1

nt

nt∑
i=1

(Ŷt 6= Yi),

where nt is the size at tth node, Ŷt is the classification returned by the
tree in the same node. The error rate of the overall tree is defined as

R(T ) =
∑
h∈HT

r(t)p(t),

where HT is the set of all terminal nodes of the tree T , and p(t) is the
proportion of cases falling into the tth terminal node.

• For regression trees the error rate is defined exactly as in equation (2.1),
that is as the sum of TSS in the tth node divided by the total sample
size, whereas the prediction error of overall tree is defined as:

RR(T ) =
R(T )

R(t1)
,

where R(t1) is the error in the root node.
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Pruning procedure works as follow: Let Tmax be the maximum tree, let
∣∣∣T̃ ∣∣∣

denote the set of all terminal nodes of Tmax, that is its complexity. The cost-
complexity measure is defined as:

Rα(T ) = R(T ) + α|T̃ |,

where α is a non negative complexity parameter which governs the trade-off
between tree size and its goodness of fit to the data Hastie et al. (2009).

The idea is, for each α, find the subtree T ∗α ⊇ Tmax to minimize Rα(T ).
When α = 0 the solution is the full tree Tmax, and the more α increases the
more the size of the tree decreases.

The pruning procedure is the same for both classification and regression
cases, so the attention can be focused on the classification problem without
loss of generality. The cost complexity measure is defined for any internal
node t and the branch Tt rooted at t as:

Rα(t) = r(t)p(t) + α,

Rα(Tt) =
∑
h∈Ht

r(h)p(h) + α|T̃t|,

where R(t) is the re-substitution error at node t, p(t) = n(t)
N is the weight of

node t given by the proportion of training cases falling in it and Ht is the set
of terminal nodes of the branch having cardinality |T̃ |. The branch Tt will be
kept as long as:

Rα(t) > Rα(Tt).

It means that the branch Tt will be kept as the error complexity of node t
being higher than the error complexity of its branch. As α increases the two
measures tends to become equal, this occurs for a critical value of α that can
be found solving the above inequality:

α =
R(t)−R(Tt)

|T̃t| − 1
.

Thus α represents for any internal node t the cost due to the removal of any
terminal node of the branch.
The pruning process produces a finite sequences of subtrees Ω = T1 ⊂ T2 ⊂
. . . ⊂ Tmax, where T1 is a tree constituted only by the root node. It can be
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proved (Breiman et al., 1984) that the minimal cost-complexity pruning pro-
cedure produces the subtrees with the minimum error rate given the number
of its terminal nodes. In other words, if Tα has five terminal nodes, there is
no other subtree Ts ⊆ Tmax having five terminal nodes with smaller error
(Breiman et al., 1984, p. 71).
To validate a tree-based structure one has to consider its accuracy: the mis-
classification ratio or the prediction error. In both classification and regres-
sion cases an estimation of the error rate is needed. There are three possible
ways to estimate it:

• Re-substitution estimate
Resubstitution estimate is computed by using the same dataset used to
build the tree. It is an optimistic estimate, therefore it is not used.

• Test set estimate
If the sample size is sufficiently large, data can be randomly splitted
into two sub-samples (training sample and test sample). Then training
sample is used to grow the tree-based structure and the test set is used
to validate it.

• Cross validation estimate
When sample size is not sufficiently large to be splitted into two sub-
samples, one can use the cross-validation estimate. Data set is splitted
into V sub-samples approximately of the same size, then V trees are
built using the V th sub-sample as test set and the other V − 1 as train-
ing set. By averaging over the V test set estimates, finally the cross-
validation estimate of the error rate is achieved.

A single final tree is then selected either as the one producing the smallest
error estimate on an independent test set (0−SErule) or the one which error
estimate is within one standard error of the minimum (1−SErule). Denoting
by Rts(T ) the test set error estimate associated with a generic tree T in the
sequence Ω, according to the 0− SE rule the tree T ∗ will be selected if:

Rts(T ∗)) = min
T∈S

Rts(T )

whereas, if 1− SE rule is employed tree T ∗∗ will be selected if:

Rts(T ∗∗) ≤ [Rts(T ∗ ± SE(Rts(T ∗)))
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2.2 Unsupervised classification

Cluster analysis has become an increasingly important topic in recent years,
caused by its application in several fields of science as engineering, computer
science, medical science, social science and economics.
Clustering is an unsupervised learning problem that groups objects based
upon a distance or a similarity. Each group is known as a cluster.
The goal is to separate a finite, unlabeled data set into a finite and discrete set
of natural hidden data structures, rather than to provide an accurate charac-
terization of unobserved samples generated from the same probability distri-
bution.
Many clustering algorithms have been introduced in the literature. Since
clusters can be formally seen as subsets of the data set, one possible classi-
fication of clustering methods can be done according to whether the subsets
are fuzzy (soft) or crisp (hard).
Let Z be a data matrix n-by-p to be clustered where n represents the objects
and p the variables. Let i be the subscript for objects. Let C be an integer,
with 2 ≤ c < C. Crisp clustering methods are based on classical set theory
and restrict that each object of data set belong to exactly one cluster. In other
words, this means partitioning the data Z into a specified number of mutu-
ally exclusive clusters A1,A2, . . . ,AC .
A hard partition of Z can be defined as a family of subsets Ac that satisfies
the following properties (Bezdek, 1981):

C⋃
c=1

Ac = Z,

Ac ∩ At = ∅, c 6= t

∅ ⊂ Ac ⊂ Z, 1 ≤ c ≤ C.

The first condition indicates that the union subsets Ac contains all the data.
The latter conditions indicate that the subset are disjoint and none of them
is empty nor contains data in Z. Let µic be the membership function and let
U = [µic] be the n × C partition matrix. The elements of U must satisfy the
following conditions:

µic ∈ {0, 1}, 1 ≤ c ≤ C, 1 ≤ i ≤ n;
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C∑
c=1

µic = 1;

0 <
n∑
i=1

µic < n.

The cth column of U contains the value of µic of the cth subset Ac of Z.
Following Bezdek (1981) the hard partionining space is thus defined by:

Mh = {U ∈ RC×n|µic ∈ {0, 1},∀c, i;
C∑
c=1

µic = 1,∀i, 0 <
n∑
i=1

µic < n,∀c}.

Mh is the space of all possible hard partition matrices for Z.
Generalizing the crisp partition, U is a fuzzy partition of Z with elements µic
of the partition matrix bearing real values in [0, 1] (Kaufman and Rousseeuw,
2009). The idea of fuzzy sets was conceived by Zadeh (1965). Fuzzy cluster-
ing methods allow the objects to belong to several clusters simultaneously,
with different degrees of membership. In contrast to hard clustering, each
object have a membership value in each cluster. The larger the value of the
membership value for a given object with respect to a cluster, the larger the
probability of that object to be assigned to that cluster.
Similarly to crisping conditions, the conditions for a fuzzy partitions (Rus-
pini, 1970) are:

µic ∈ [0, 1], 1 ≤ c ≤ C, 1 ≤ i ≤ n;

C∑
c=1

µic = 1,

0 <
n∑
i=1

µic < n.

Finally, the fuzzy partitioning space is the set:

Ms = {U ∈ RC×n|µic ∈ [0, 1], ∀c, i;
C∑
c=1

µic = 1,∀i, 0 <
n∑
i=1

µic < n,∀c}

According to the classification proposed by Han and Kamber (2001, chap-
ter 7), the major categories of clustering methods are partitioning meth-
ods, hierarchical methods, density-based methods, grid-based methods and
model-based methods.
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2.2.1 Partitioning methods

Let Z be a data set of n objects {z1, z2, . . . , zn}, and C, the number of clus-
ters to form, a partitioning algorithm organizes the objects into C partitions
(C ≤ n), where each partition represents a cluster. That is, it classifies the
data into C groups, which satisfy the following requirements: (1) each group
contain at least one object, and (2) each object belongs to exactly one group.
A partitioning method uses an iterative relocation technique that attempts to
improve the partitioning by moving objects from one group to another. The
clusters are formed by optimizing an objective partitioning criterion, such as
a dissimilarity function based on distance. Most of the well known partition-
ing clustering methods iteratively update the so-called centroids or cluster
centers, and for this reason they are often referred as center-based cluster-
ing methods. Achieving global optimality in partitioning-based clustering
would require the exhaustive enumeration of all of possible partitions. In-
stead, most applications adopt one of a few popular heuristic methods, such
as (1) the k-means algorithm, where each cluster is represented by the mean
value of the objects in the cluster, and (2) the k-medoids algorithm, where
each cluster is represented by one of the objects located near the center of the
cluster.

k-means algorithm

The k-means algorithm (MacQueen, 1967; Hartigan and Wong, 1979) takes
the input parameter, C, and partitions a set of n objects into C clusters in
such a way the resulting intra-cluster similarity is high but the inter-cluster
similarity is low. Cluster similarity is measured in regard to the mean value
of the objects in a cluster, which can be viewed as the centroid of cluster.
The k-means algorithm proceeds as follows. First, it randomly selects c of the
objects, each of which initially represents a center. For each of the remaining
objects, an object is assigned to the cluster to which it is the most similar,
based on the distance between the object and the cluster mean. It then com-
putes the new mean for each cluster. This process iterates until the criterion
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function converges. Typically, the square-error criterion is used, defined as:

EC =

C∑
c=1

n∑
i=1

|zi −mc|2, (2.8)

where EC is the sum of the square errors for all objects in the data set, zi rep-
resents a given object, and mc is the mean of cluster Ac. Thus, for each object
in each cluster, the distance from the object to its cluster center is squared,
and the distances are summed. This criterion tries to make the resulting c

clusters as compact and as separate as possible. The k-means algorithm has
the following steps:

1. arbitrarily choose c objects from Z as initial cluster centers;

2. assign each object to the cluster to which the object is the most similar,
based on the mean value of the objects in the cluster;

3. update the cluster means, i.e., calculate the mean value of the objects
for each cluster.

The procedure is stopped when the cluster centers do not move any more.
Otherwise, repeat Steps 2 and 3 until convergence.
The method often terminates at a local optimum and the necessity for users
to specify the number of clusters in advance can be seen as a disadvantage.
Moreover, it is sensitive to noise and outlier data points because a small num-
ber of such data can substantially influence the mean value. There are quite
a few variants of the k-means method. These can differ in the selection of
the initial means, the calculation of dissimilarity, and the strategies for cal-
culating cluster means. An interesting strategy that often yields good results
is to first apply a hierarchical agglomeration algorithm, which determines
the number of clusters and finds an initial partition, and then use iterative
relocation to improve the clustering.

Fuzzy c-means algorithm

The counterpart of k-means for fuzzy partitions is the fuzzy c-means algo-
rithm, proposed by Dunn (1973) and developed by Bezdek (1981).
Fuzzy c-means considers each data point as a possible member of multiple
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clusters with a membership value. This algorithm is based on minimization
of the following objective function:

n∑
i=1

C∑
c=1

(µic)
m‖zi −mc‖2 (2.9)

s.t.

µic ∈ [0, 1], ∀i, c;
C∑
c=1

µic = 1, ;

0 <
n∑
i=1

µic < n.

In the equation (2.9) , m is any real number greater than 1, µic is the degree
of membership of zi in the cluster c, ‖·‖ is any norm expressing the similarity
between any measured data point and the center. The parameter m is called
fuzzifier or weighting coefficient. To perform fuzzy partitioning the number of
cluster and the weighting coefficient have to be chosen. The procedure is
carried out through an iterative optimization of the objective function shown
above, with the update of membership value and the cluster centers.

Probabilistic Distance clustering

Ben-Israel and Iyigun (2008) proposed a new iterative approach for prob-
abilistic clustering of data. It is a generalization, to several centers, of the
Weizsfeld method (Weiszfeld, 1937) for solving the Fermat-Weber location
problem (Kuhn, 1973). Given a vector of data points {z1, . . . , zi, . . . , zn} ∈ Rn,
the assignment of points to clusters is ”soft”, in the sense that the member-
ship of a data point in a cluster is given as a probability. The basis of the
probabilistic distance algorithm is explained for any point and all clusters by
the following relationship between the distance and the probabilities:

Pc ∗ dc = constant ∀c,

where Pc is the probability that zi is a member of the cluster Ac and dc is a
distance function of the data point from the given cluster center c. The dis-
tance functions are, in general, different from one cluster to another.
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According to the working principle proposed by Ben-Israel and Iyigun, given
clusters, their centers and the distances of data points from these centers,
the probability of cluster membership at any point is assumed inversely pro-
portional to the distance from the cluster center. At each iteration, the dis-
tances (Euclidean or elliptic) from the cluster centers are computed for all
data points, and the centers are updated as convex combinations of these
points, with weights determined by the above principle. Computations stop
when the centers stop moving. The progress of the algorithm is monitored
by the Joint Distance Function (JDF), a distance function that captures the
data in its low contours. It is equal to zero if and only if zi coincides with
one of the cluster centers, in such a case zi belongs to that cluster with prob-
ability 1. If all the distances are equal, say equal to d, then the JDF is equal
to d/c and all Pc = 1/C showing indifference between the clusters. As the
distances increase, so the JDF does, indicating greater uncertainty about the
cluster where a data point belongs. The centers updated by the algorithm are
stationary points of the JDF. The algorithm requires a small number of cheap
iterations and it is insensitive to outliers

k-medoids algorithm

k-medoids method (Kaufman and Rousseeuw, 2009) overcomes the limit of
k-means algorithm with respect to its sensitive to outliers. Instead of taking
the mean value of the objects in a cluster as a reference point, the algorithm
uses one representative object per cluster. Each remaining object is clustered
with the representative object to which it is the most similar. The partitioning
method is then performed by minimizing the sum of the dissimilarities be-
tween each object and its corresponding reference point. To group n objects
into c clusters, an absolute-error criterion is used, defined as:

AEC =

C∑
c=1

n∑
i=1

|zi − oc|2, (2.10)

which,AEC, is the sum of the absolute error for all objects in the data set and
oc is the representative object of Ac.
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2.2.2 Hierarchical methods

A hierarchical method creates a hierarchical decomposition of the given set
of data objects by grouping them into a tree of clusters. Generally, there are
two types of hierarchical clustering methods: the agglomerative and the di-
visive, depending on whether the hierarchical decomposition is formed in a
bottom-up (merging) or top-down (splitting) fashion.
Agglomerative methods start by placing each object in its own cluster and
then merging clusters into larger and larger clusters, until all objects are in
a single cluster or until certain termination conditions, such as the desired
number of clusters, are satisfied. Most hierarchical clustering methods be-
long to this category. They differ only in their definition of inter-cluster simi-
larity.
Divisive methods, following a top-down strategy, do the reverse of agglom-
erative hierarchical clustering by starting with all objects in one cluster. They
subdivide the cluster into smaller and smaller pieces, until each object forms
a cluster on its own or until it satisfies certain termination conditions, such
as a desired number of clusters is obtained or the diameter of each cluster is
within a certain threshold.
In either agglomerative or divisive hierarchical clustering, the user can spec-
ify the desired number of clusters as a termination condition. A tree structure
called dendrogram is commonly used to represent the process of hierarchical
clustering. It shows how objects are grouped together step by step.
Different measures for distance between clusters can be used. The single
(complete) linkage clustering measures the distance between two clusters as
the shortest (largest) distance from any member of one cluster to any member
of the other cluster. The average linkage clustering measures the distance be-
tween two cluster as the average distance from any member of one cluster to
any member of the other cluster. The minimum variance criterion proposed
by Ward Jr (1963) minimizes the total within-cluster variance. At each step,
the pair of clusters with the smallest increase in the value of sum of squares
variance are merged. The algorithm at each step finds the pair of clusters that
leads to minimum increase in the total within-cluster variance after merging.
The quality of a pure hierarchical clustering method suffers from its inability
to perform any adjustment once a merge or split decision has been executed.
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That is, if a particular merge or split decision later turns out to be a poor
choice, the method cannot backtrack and correct it.

2.2.3 Density-based methods

To discover clusters with arbitrary shape, density-based clustering methods
have been developed. These methods typically regard clusters as dense re-
gions of objects in the data space that are separated by regions of low density
(representing noise). Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) (Ester et al., 1996) grows clusters according to a density-
based connectivity analysis. To produce a cluster ordering obtained from a
wide range of parameter settings, Ankerst et al. (1999) proposed Ordering
Points To Identify The Clustering Structure (OPTICS).

DBSCAN

The general idea of DBSCAN algorithm is to grow regions with sufficiently
high density into clusters and to discover clusters of arbitrary shape in spa-
tial databases with noise. It defines a cluster as a maximal set of density-
connected points. The basic ideas of density-based clustering involve a num-
ber of new definitions.

• The neighborhood within a radius ε of a given object is called the ε −
neighborhood of the object.

• If the ε-neighborhood of an object contains at least a minimum number,
MinPts, of objects, then the object is called a core object.

• Given a set of objects, Z, an object z is directly density-reachable from
object q if z is within the ε-neighborhood of q, and q is a core object.

• An object z is density-reachable from object q with respect to ε and
MinPts in a set of objects, Z, if there is a chain of objects, p1, . . . ,pn,
where p1 = q and pn = p such that pi+1 is directly density-reachable
from pi with respect to ε and MinPts, for 1 ≤ i ≤ n,pi ∈ Z.

• An object p is density-connected to object q with respect to ε and
MinPts in a set of objects,Z, if there is an object o ∈ Z such that both
p and q are density-reachable from o with respect to ε and MinPts.
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Density reachability is the transitive closure of direct density reachability and
this relationship is asymmetric. Only core objects are mutually density reach-
able. Density connectivity, however, is a symmetric relation. A density-based
cluster is a set of density-connected objects that is maximal with respect to
density-reachability. Every object not contained in any cluster is considered
to be noise. DBSCAN searches for clusters by checking the ε-neighborhood
of each point in the database. If the ε-neighborhood of a point p contains
more than MinPts, a new cluster with p as a core object is created. DBSCAN
iteratively collects directly density-reachable objects from these core objects,
which may involve the merge of a few density-reachable clusters. The pro-
cess terminates when no new point can be added to any cluster.

OPTICS

Although DBSCAN can cluster objects given input parameters such as ε and
MinPts , it still leaves the user with the responsibility of selecting the param-
eter values that lead to the discovery of acceptable clusters. To overcome this
difficulty, a cluster analysis method called OPTICS was proposed by Ankerst
et al. (1999). Rather than producing a data set clustering explicitly, OPTICS
computes an augmented cluster ordering for automatic and interactive clus-
ter analysis. This ordering represents the density-based clustering structure
of the data. It contains information that is equivalent to density-based clus-
tering obtained from a wide range of parameter settings. The cluster ordering
can be used to extract basic clustering information (such as cluster centers or
arbitrary-shaped clusters) as well as provide the intrinsic clustering struc-
ture. This order selects an object that is density-reachable with respect to the
lowest ε value so that clusters with higher density (lower ε) will be finished
first. Based on this idea, two values need to be stored for each object, the
core-distance and the reachability-distance:

• The core-distance of an object p is the smallest ε
′

value that makes p a
core object. If p is not a core object, the core-distance of p is undefined.

• The reachability-distance of an object q with respect to another object p

is the greater value of the core-distance of p and the Euclidean distance
between p and q. If p is not a core object, the reachability-distance
between p and q is undefined
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The OPTICS algorithm creates an ordering of the objects in a database, ad-
ditionally storing the core-distance and a suitable reachability distance for
each object. To extract clusters based on the ordering information produced
by OPTICS an algorithm was proposed. Such information is sufficient for the
extraction of all density-based clusterings with respect to any distance ε

′
that

is smaller than the distance ε used in generating the order.

2.2.4 Grid-based methods

The grid-based clustering approach uses a multi-resolution grid data struc-
ture. It quantizes the object space into a finite number of cells that form a
grid structure on which all of the operations for clustering are performed.
The main advantage of the approach is its fast processing time, which is typ-
ically independent of the number of data objects, yet dependent on only the
number of cells in each dimension in the quantized space. Some typical ex-
amples of the grid-based approach include STING, proposed by Wang et al.
(1997), which explores statistical information stored in the grid cells.

STING

STING is a grid-based multi-resolution clustering technique in which the
spatial area is divided into rectangular cells. There are usually several levels
of such rectangular cells corresponding to different levels of resolution, and
these cells form a hierarchical structure: each cell at a high level is partitioned
to form a number of cells at the next lower level. Statistical information re-
garding the attributes in each grid cell (such as the mean, is precomputed
and stored. Statistical parameters of higher-level cells can easily be computed
from the parameters of the lower-level cells. These parameters are useful for
query processing and they include the following: the attribute-independent
parameter (count); the attribute-dependent parameters (mean, standard de-
viation, minimum, maximum); and the type of distribution that the attribute
value in the cell follows (normal, uniform, exponential, or none -if the distri-
bution is unknown). When the data are loaded into the database, the param-
eters count, mean, standard deviation, minimum, maximum of the bottom-
level cells are calculated directly from the data. The value of distribution may
either be assigned by the user if the distribution type is known beforehand
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or obtained by hypothesis tests such as the χ2 test. The type of distribution
of a higher-level cell can be computed based on the majority of distribution
types of its corresponding lower-level cells in conjunction with a threshold
filtering process. If the distributions of the lower level cells disagree with
each other and fail the threshold test, the distribution type of the high-level
cell is set to none. The statistical parameters can be used in a top-down, grid-
based method as follows. First, a layer within the hierarchical structure is
determined from which the query-answering process is to start. This layer
typically contains a small number of cells. For each cell in the current layer, it
computes the confidence interval (or estimated range of probability) reflect-
ing the cell’s relevancy to the given query. The irrelevant cells are removed
from further consideration. Processing of the next lower level examines only
the remaining relevant cells. This process is repeated until the bottom layer is
reached. At this time, if the query specification is met, the regions of relevant
cells that satisfy the query are returned. Otherwise, the data that fall into
the relevant cells are retrieved and further processed until they meet the re-
quirements of the query. STING offers several advantages: (1) the grid-based
computation is query-independent, because the statistical information stored
in each cell represents the summary information of the data in the grid cell,
independent of the query; (2) the grid structure facilitates parallel processing
and incremental updating; (3) the method’s efficiency, because after gener-
ating hierarchical structure, the query processing time depends on the total
number of grid cells at the lowest level, which is usually much smaller than
the total number of objects. Because STING uses a multi-resolution approach
to cluster analysis, the quality of STING clustering depends on the granular-
ity of the lowest level of the grid structure. If the granularity is very fine, the
cost of processing will increase substantially; however, if the bottom level of
the grid structure is too coarse, it may reduce the quality of cluster analy-
sis. Moreover, STING does not consider the spatial relationship between the
children and their neighboring cells for construction of a parent cell. As a
result, all of the cluster boundaries are either horizontal and vertical and no
diagonal boundary is detected. This may lower the quality and accuracy of
the cluster despite the fast processing time of technique.
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2.2.5 Model-based methods

Model-based clustering methods attempt to optimize the fit between the
given data and some mathematical model. Such methods are often based on
the assumption that the data are generated by a mixture of underlying prob-
ability distributions. In practice, each cluster can be represented mathemati-
cally by a parametric probability distribution. The entire data is a mixture of
these distributions, where each individual distribution is typically referred
to as a component distribution. We can therefore cluster the data using a
finite mixture density model of c probability distributions, where each distri-
bution represents a cluster. The problem is to estimate the parameters of the
probability distributions so as to best fit the data.

Expectation-Maximization

The Expectation-Maximization (EM) algorithm is a popular iterative refine-
ment algorithm that can be used for finding the parameter estimates. It can
be viewed as an extension of the k-means paradigm, discussed in section
2.2.1. Instead of assigning each object to a dedicated cluster, EM assigns
each object to a cluster according to a weight representing the probability of
membership. In other words, there are no strict boundaries between clusters.
Therefore, new means are computed based on weighted measures. EM starts
with an initial estimate the parameters of the mixture model (collectively re-
ferred to as the parameter vector). It iteratively re-scores the objects against
the mixture density produced by the parameter vector. The re-scored objects
are then used to update the parameter estimates. Each object is assigned a
probability that it would possess a certain set of attribute values given that it
was a member of a given cluster. The algorithm is described as follows:

1. Make an initial guess of the parameter vector: This involves randomly
selecting c objects to represent the cluster means or centers (as in k-
means partitioning), as well as making guesses for the additional pa-
rameters.

2. Iteratively refine the parameters (or clusters) based on the following
two steps:
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a) Expectation Step: Assign each object zi to clusterAc with the prob-
ability

P (zi ∈ Ac) = P (Ac|zi) =
P (Cc)P (zi|Ac)

P (zi)
(2.11)

where P (zi|Ac) ∼ N (mc, Ec(zi)). In other words, this step calcu-
lates the probability of cluster membership of object zi, for each of
the clusters. These probabilities are the expected cluster member-
ships for object zi.

b) Maximization Step: Use the probability estimates from above to
re-estimate the model parameters.

mc =
1

n

n∑
i=1

ziP (zi ∈ Ac)∑
t P (zi ∈ At)

(2.12)

This step is the maximization of the likelihood of the distributions
given the data.

The EM algorithm is simple and easy to implement. In practice, it converges
fast but may not reach the global optima. Convergence is guaranteed for
certain forms of optimization functions. The computational complexity is
linear in the number of input features, in the number of objects and in the
number of iterations. Bayesian clustering methods focus on the computation
of class-conditional probability density.

Self Organizing feature Maps

A neural network is a set of connected input/output units, where each con-
nection has a weight associated with it. Neural networks have several prop-
erties that make them popular for clustering. First, neural networks are in-
herently parallel and distributed processing architectures. Second, neural
networks learn by adjusting their interconnection weights so as to best fit the
data. Third, neural networks process numerical vectors and require object
patterns to be represented by quantitative features only. The neural network
approach to clustering tends to represent each cluster as an exemplar. An
exemplar acts as a prototype of the cluster and does not necessarily have to
correspond to a particular data example or object. New objects can be dis-
tributed to the cluster whose exemplar is the most similar, based on some
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distance measure. The attributes of an object assigned to a cluster can be pre-
dicted from the attributes of the cluster’s exemplar.
Self-organizing feature maps (SOM) developed by Kohonen (1990) are one
of the most popular neural network methods for cluster analysis. The aim
is to represent all points in a high-dimensional source space by points in a
low-dimensional (usually 2-D or 3-D) target space, such that the distance
and proximity relationships (hence the topology) are preserved as much as
possible. The method is particularly useful when a nonlinear mapping is
inherent in the problem itself. SOMs can also be viewed as a constrained ver-
sion of k-means clustering, in which the cluster centers tend to lie in a low-
dimensional manifold in the feature or attribute space. With SOM, clustering
is performed by having several units competing for the current object. The
unit whose weight vector is closest to the current object becomes the winning
or active unit. So as to move even closer to the input object, the weights of
the winning unit are adjusted, as well as those of its nearest neighbors. SOMs
assume that there is some topology or ordering among the input objects and
that the units will eventually take on this structure in space. The organization
of units is said to form a feature map.

2.2.6 Dissimilarity measure

An important problem in the application of cluster analysis is the decision
regarding the determination of a suitable metric.
In the specific context of time series clustering, the concept of dissimilarity
is particularly complex due to the dynamic character of the series. Thus, the
choice of a suitable metric becomes fundamental. Dissimilarities usually con-
sidered in conventional clustering could not work well with time dependent
data because they ignore the interdependence relationship between values.
The choice of an adequate distance measure depends largely on the nature
of the clustering. Different approaches to define dissimilarity between time
series have been proposed in the literature.

Following Montero and Vilar (2014) a short survey is reported. The different
distance measures between time series have been grouped into four cate-
gories: non parametric measures, model-based measures, complexity-based
measures and prediction-based measures.
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Non parametric approaches

Let yt and y
′
t be two time series with the same length T .

A simple model-free approach to measure the proximity between two time
series is to consider conventional metrics based on the closeness of their
values at specific points of time.

The Minkowski distance of order q, where q is a positive integer, is defined
by:

d =

[
T∑
t=1

(yt − y
′
t)
q

](1/q)

(2.13)

The Lq-norm distance is typically used with q being 2 (Euclidean distance)
or 1 (Manhattan distance).
The proximity notion relies on the closeness of the values observed at cor-
responding points of time so that the observations are treated as if they
were independent. Thus, if the objective is to compare profiles of series, the
Euclidean or Manhattan distances between raw data evaluating a one-to-one
mapping of each pair of sequences, can produce satisfactory results. How-
ever this metric is sensitive to signal transformations or time scaling and it is
invariant to permutations over time.

The distance introduced by Fréchet (1906) to measure the proximity between
continuous curves has been extensively used on the discrete case by Eiter and
Mannila (1994) and in the time series framework. A formal definition for the
discrete case is the following. Let M be the set of all possible sequences of m
pairs preserving the observations order in the form:

r =
(

(ya1 , y
′
b1), . . . , (yam , y

′
bm)
)

where ai, bj ∈ {1, . . . T} such that a1 = b1,= 1, am = bm = T , and ai+1 = ai

or ai + 1 and bi+1 = bi or bi + 1, for i ∈ {1, . . . ,m − 1}. The Fréchet distance
is defined by:

d = min
r∈M

(
max
i=1,...m

|yai − y
′
bi
|
)
, (2.14)
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Unlike the Minkowski distance, this distance does not just treat the series as
two points sets, but it takes into account the ordering of the observations.
Moreover, it can be computed on series of different length.

The dynamic time warping (DTW) distance was studied in depth by Sankoff
and Kruskal (1983) and proposed to find patterns in time series by Berndt
and Clifford (1994). As Fréchet distance, DTW distance is aimed to find a
mapping r between the series so that a specific distance measure between
the coupled observations is minimized. The definition of the DTW distance
is given by:

d = min
r∈M

 ∑
i=1,...m

|yai − y
′
bi
|

 . (2.15)

Fréchet distance and DTW distance allow to recognize similar shapes, even
in the presence of signal transformations such as shifting and/or scaling.
However, as in the case of Lq-norm distance, both distances ignore the tem-
poral structure of the values since the proximity is based on the differences
|yai − y

′
bi
| regardless of the behavior around these values.

To cover both conventional measures for the proximity on observations and
temporal correlation for the behavior proximity estimation, Chouakria and
Nagabhushan (2007) introduced a dissimilarity measure. The proximity be-
tween the dynamic behaviors of the series is evaluated by means of the first
order temporal correlation coefficient ρ

yt,y
′
t
(t). The dissimilarity index pro-

posed modulates the proximity between the raw-values of two series yt and
y
′
t by ρ

yt,y
′
t
(t). Specifically, the dissimilarity index proposed by Chouakria

and Nagabhushan is defined as:

d = φq

[
ρ
yt,y
′
t
(t)
]
d, (2.16)

where φq(· ) is an adaptive tuning function and d is a distance measure be-
tween y and y

′
. φq(· ) automatically modulate a conventional raw data dis-

tance d(· ) (e.g. Lq-norm, Fréchet and DTW distances) according to the tem-
poral correlation. The modulating function should work increasing (decreas-
ing) the weight of the dissimilarity between observations as the temporal
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correlation decreases from 0 to −1 (increases from 0 to +1). In addition, this
distance should approach the raw-data discrepancy as the temporal correla-
tion is zero. Instead of, for instance, a linear tuning function, Chouakria and
Nagabhushan (2007) proposed to use an exponential adaptive function given
by

φq(u) =
2

1 + exp(qu)
q ≥ 0. (2.17)

The following distance measures are all model-free dissimilarity mea-
sures but based on particular features of the time series. The aim of these
distances is to replace the raw data by a reduced number of features char-
acterizing the time series, which allows us to take into account the temporal
structure of the series.

A first and simple dissimilarity criterion is to consider the Pearson’s corre-
lation factor between two time series ρ

(yt,y
′
t)

. Golay et al. (1998) constructed
a fuzzy k-means algorithm using the following two cross-correlation-based
distances:

d =
√

2(1− ρ(yt,yit)
), (2.18)

d =

√√√√(1− ρ
(yt,y

′
t)

1 + ρ
(yt,y

′
t)

)β
, β ≥ 0, (2.19)

where the parameter β allows regulation of the fast decreasing of the dis-
tance.

Several authors have considered measures based on the estimated autocorre-
lation functions. Galeano and Peña (2000) define a distance between yt and
y
′
t as follows:

d =

√(
ˆACFyt − ˆACF

y
′
t

)>
Ω
(

ˆACFyt − ˆACF
y
′
t

)
, (2.20)

where ˆACFyt and ˆACF
y
′
t

are the estimated autocorrelation vectors of yt
and y

′
t respectively and Ω is a matrix of weights. When Ω = I, the
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autocorrelation-based distance becomes the Euclidean distance between
the estimated autocorrelation functions. When Ω is the inverse covariance
matrix of the autocorrelations, the Mahalanobis distance between the auto-
correlations is returned. It is also common to use weights that decrease with
the autocorrelation lag.
Analogous distances can be constructed by considering the partial autocor-
relation functions.

So far all metrics work in the time domain, but the frequency domain
approach also offers an interesting alternative to measure the dissimilarity
between time series. The frequency domain approach assesses the dissimilar-
ity between the corresponding spectral representations of the series. Power
spectrum analysis is concerned with the distribution of the signal power in
the frequency domain.

Signal processing methods provide a variety of tools for modeling, anal-
ysis, coding, synthesis and recognition of signals. The purpose of a trans-
formation is to express a signal or a system in terms of a combination of a
set of elementary simple signals (such as sinusoidal signals, eigenvectors or
wavelets) that lend themselves to relatively easy analysis, interpretation and
manipulation. Transform-based signal processing methods include Fourier
transform, Laplace transform, z-transform and wavelet transforms. The most
widely applied signal transform is the Fourier transform. Its strength in sig-
nal analysis and pattern recognition is its ability to reveal spectral structures
that may be used to describe a signal. The Fourier transform of the correla-
tion function is the power spectrum. The power spectrum of a signal gives
the distribution of the signal power among various frequencies and reveals
the existence, or the absence, of repetitive patterns and correlation structures
in a signal process. Correlation is a measure of self-similarity of a signal with
its delayed version. Like power spectrum, correlation function reveals infor-
mation on the periodic or random structure of the signal. In general, the more
correlated or predictable a signal, the more concentrated its power spectrum,
and conversely the more random or unpredictable a signal, the more spread
its power spectrum. Therefore the power spectrum of a signal can be used
to deduce the existence of repetitive structures or correlated patterns in the
signal process (Vaseghi, 2008).
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Let fj = 2πj/T , j = 1, . . . , T/2 in the range 0 to π be the frequencies of the
series.
For stochastic signals, the power-spectral density is defined as the Fourier
transform of the autocorrelation function. The classic method for estimation
of the power spectral density of a sample record is the periodogram intro-
duced by Schuster (1897).
The periodogram of series yt is defined as:

PSDy(fj) =
1

T

T∑
t=1

|yt(fj) exp(−ιtfj)|2 (2.21)

The power-spectral density function defined in (2.21) is the basis of non-
parametric methods of spectral estimation. Owing to the finite length and
the random nature of most signals, the spectra obtained from different
records of a signal vary randomly about an average spectrum.
Let PSDy′ (fj) = 1

T

∑T
t=1 |y

′
t(fj) exp (−ιtfj)|2 be the periodogram of series y

′
t.

Caiado et al. (2006) introduced the following three dissimilarity measure
based on the periodograms. A distance between y and y

′
is thus defined by

the Euclidean distance between :

• the periodogram ordinates:

d =

√√√√√(n/2)∑
j=1

[PSDy(fj)− PSDy′ (fj)]
2; (2.22)

• the normalized periodogram (or rescaled periodogram) ordinates:

d =

√√√√√(n/2)∑
j=1

[NPSDy(fj)−NPSDy′ (fj)]
2; (2.23)

by replacing PSD(fj) in (2.22) by NPSD(fj) = PSD(fj)/γ̂0 where γ̂0

is the sample variance of the time series. It is useful when the interest
is about the correlation structure.

• the logarithm of the normalized periodogram ordinates:

d =

√√√√√(n/2)∑
j=1

[logNPSDy(fj)− logNPSDy′ (fj)]
2. (2.24)
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Model-based approaches

Model-based dissimilarity measures assume that the underlying models are
generated from specific parametric structures.
Let Yt = (y1t, . . . , ynt)

′
be a vector of time series with components represented

by autoregressive integrated moving average ARIMA(p, d, q) models:

ϕi(B)(1−B)dyit = θi(B)εit, i = 1, . . . , n. (2.25)

where ϕ(B) is the autoregressive operator of order p and θi(B) is the moving
average operator of order q; B is the back-shift operator and (1 − B)d is the
differencing operator of order d. The autoregressive and moving average
polynomials in (2.25) are assumed to have all roots outside the unit circle, so
that each process Yit = (1−B)dyit, is causal and invertible.
The main approach in the literature is to assume that the generating pro-
cesses of time series follow invertible ARIMA(p, d, q) models. In such a
case, the idea is fitting an ARIMA model to each series and then measuring
the dissimilarity between the fitted models. First step requires estimating
the structure and the parameters of ARIMA models. The structure is ei-
ther assumed to be given or automatically estimated using, for example,
the Akaike’s information criterion (AIC) or the Schawartz’s Bayesian in-
formation criterion (BIC). The parameter values are commonly fitted using
generalized least squares estimators.
Some of the most relevant dissimilarity measures derived in the literature
under the assumption of underlying ARIMA models are surveyed in the
following.
Piccolo (1990) defines a dissimilarity measure in the class of invertible
ARIMA processes as the Euclidean distance between the AR(∞) operators
approximating the corresponding ARIMA structures. Piccolo argues that
the autoregressive expansions convey all the useful information about the
stochastic structure of this kind of processes (except for initial values). If the
series are non-stationary, differencing is carried out to make them stationary,
and if the series possess seasonality, then it should be removed before further
analysis.
Let yt be a zero mean stochastic process following an invertible
ARIMA(p, 0, q) model: ϕ(B)yt = θ(B)ε . Then it can be represented by
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the AR(∞) operator δ(B) = θ–1(B)ϕ(B) = 1 − δ1(B) − δ2(B2) − . . ., and
the δ coefficients contain all the information about the stochastic dependence
structure of a time series. Then, the distance proposed by Piccolo is a metric
by comparing the respective δ sequences, defined as:

d =

√√√√ ∞∑
t=1

(
δt,y − δt,y′

)2
. (2.26)

For the class of invertible and stationary ARMA processes, Maharaj (1996,
2000) introduced two discrepancy measures based on hypotheses testing to
determine whether, or not, two time series have significantly different gener-
ating processes. The first of these metrics is given by the test statistic:

d =
√
T (∆̂yt − ∆̂

y
′
t
)>V̂–1(∆̂yt − ∆̂

y
′
t
), (2.27)

where ∆̂yt and ∆̂
y
′
t

are AR(p) parameter estimations of two time series yt
and y

′
t, respectively, with p selected as in Piccolo (1990), V̂ is an estimator of

V = σ2
ytS

–1
yt (p) + σ2

yt
′S–1
yt
′ (p) with σ2

yt and σ2
yt
′ denoting the variances of the

white noise processes associated with yt and yt
′
, and Syt and Syt′ the sample

covariance matrices of both series. Maharaj (1996) demonstrated that the dis-
tance is asymptotically χ2 distributed under the null hypothesis of equality
of generating processes. Therefore, the dissimilarity between AR(p) parame-
ter estimations of yt and yt

′
, can also be measured through the associated p

value. Both the test statistic and the associated p-value satisfy the properties
of non-negativity and symmetry so that any of them can be used as dissimi-
larity measure between yt and yt

′
.

Although Maharaj (1996) and Piccolo (1990) evaluate the dissimilarity be-
tween two series by comparing their autoregressive approximations, there
is a substantial difference between them. The distance proposed by Piccolo
does not take into account the variance of the white noise processes asso-
ciated with the observed series, while the statistic proposed by Maharaj in-
volves these variances in its definition. The measures proposed by Maharaj
(1996) come from a hypothesis testing procedure designed to compare two
independent time series. To overcome this limitation, Maharaj (2000) intro-
duced a new testing procedure that can be applied to time series that are
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not necessarily independent. In this case, a pooled model including collec-
tively the models fitted to yt and yt

′
is considered, and the combined vector

of 2p AR parameters ∆ =
(

∆yt ,∆yt
′

)
is estimated by using generalized least

squares. Assuming that the two models are correlated at the same points in
time but uncorrelated across observations, the proposed test statistic is also
asymptotically distributed as χ2 with p degrees of freedom. As before, a dis-
similarity measure based on the p-values associated with this new test can be
constructed.

Complexity-based approaches

Dissimilarity measures based on comparing levels of complexity of time se-
ries are presented in the following.
Here, similarity of two time series does not rely on specific serial features or
the knowledge of underlying models, but on measuring the level of shared
information by both time series. The mutual information between two se-
ries can be formally established using the Kolmogorov complexity concept,
although this measure cannot be computed in practice and must be approxi-
mated.
The Kolmogorov complexity K(y) of an object y is the length of the short-
est program capable to produce y on a universal computer, such as a Turing
machine (Li and Vitányi, 2009). Intuitively, K(y) is the minimal quantity of
information required to generate y by an algorithm, and therefore, the level
of complexity of y is related to K(y). Analogously, given two objects y and
y
′
, the conditional Kolmogorov complexityK(y|y′) of y given y

′
is defined as

the length of the shortest program producing y when y
′

is given as an auxil-
iary input on the program. Therefore, K(y) −K(y|y′) measures the amount
of information that y

′
produces about y.

Based on these concepts, Li et al. (2004) proposed a normalized information
distance between two objects y and y

′
given by:

d =
max

{
K(y|y′),K(y

′ |y)
}

max {K(y),K(y′)}
(2.28)

Li et al. show that (2.28) is a metric and it is universal in the following sense:
it leads to the smallest values (up to constant precision) among a broad class
of normalized distances. (2.28) can be applied to different collections of
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objects such as time series, images, texts, etc.
We now assume that y and y

′
represent times series.

A approach to measure complexity differences between two time series is
shortly described below.
As Kolmogorov complexity is non computable, (2.28) is approximated by
replacing the quantities K(·) by the length of the compressed objects ob-
tained from data compressors (such as gzip, bzip2). Consider a specific
data compression algorithm and denote by C(y) the compressed size of y .
The denominator of (2.28) is easy to approximate by max

{
C(y), C(y

′
)
}

, but
the numerator involves conditional Kolmogorov complexities making more
difficult to obtain the approximation. To overcome this drawback Li et al.
taking into account that K(y|y′) is roughly equal to K(yy

′
) − K(y), where

K(yy
′
) is the length of the shortest program to compute the concatenation of

y and y
′
. The resulting approximation by following this approach is called

”normalized compression distance” and takes the form:

d =
C(y, y

′
)−min

{
C(y), C(y

′
)
}

max {C(y), C(y′)}
(2.29)

The (2.29) takes nonnegative values ranging from 0 to 1 + ε, where ε is due to
flaws in the compression techniques. The smaller the (2.29) , the more closely
related y and y

′
are.

Prediction-based approaches

Now we focus on a new dissimilarity notion governed by the performance of
future forecasts, i.e., two time series are similar if their forecasts at a specific
future time are close. Obviously, a clustering procedure based on this dis-
similarity concept may produce results very different to the ones generated
from model-based or feature-based clustering methods. For instance, two
time series coming from the same generating process can produce different
forecasts at a pre-specified horizon, and hence these series might not be
clustered together by using this new dissimilarity criterion. Alonso et al.
(2006) proposed a dissimilarity measure based on comparing the forecast
densities for each series at a future horizon of interest. They argue that using
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full forecast densities permits to take into account the variability of the pre-
dictions, which is completely ignored when comparisons are based on point
wise forecasts. In practice, the forecast densities are unknown and must be
approximated from the data. The authors construct this approximation using
a smoothed sieve bootstrap procedure combined with kernel density estima-
tion techniques. This procedure requires assuming that the time series admit
an AR(1) representation because the sieve bootstrap is based on re-sampling
residuals from autoregressive approximations. Vilar et al. (2010) extend this
methodology to cover the case of nonparametric models of arbitrary au-
toregressions. In this new scenario, the sieve bootstrap is not valid, and the
forecast densities are approximated considering a bootstrap procedure that
mimics the generating processes without assuming any parametric model
for the true autoregressive structure of the series.

Specifically, let yt and yt
′

be realizations of stationary processes that admit
a general autoregressive representation of the form Rt = ϕ(Rt−1) + εt, with
{ε} an i.i.d. sequence and ε(·) a smooth function not restricted to any pre-
specified parametric model. Given a particular future time T + h, Vilar et al.
introduce the following distance between y and y

′
:

d =

∫
|f̂yT+h

(u)− f̂
y
′
T+h

(u)|du (2.30)

where f̂yT+h
and f̂

y
′
T+h

denote estimates of the forecast densities at horizon

T +h for yt and yt
′

respectively. By construction, (2.30) measures the distance
between yt and yt

′
in terms of the disparity between the behaviors of their

predicted values at horizon T +h. The true forecast densities are replaced by
kernel-type estimators based on bootstrap predictions. It takes advantage of
being free of the linearity requirement, and hence, it can be applied to a wider
class of nonparametric models. A more detailed description can be seen in
Vilar et al. (2010).

2.3 Penalized Spline

Penalized splines (P-splines) have been introduced by Eilers and Marx (1996)
as flexible smoothing procedures combining basis splines (B-spline) and dif-
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ference penalties. We recall some essential background.

2.3.1 B-Spline

A B-spline is a piecewise polynomial function defined in a domain spanned
by a set of points called ”knots”. The degree of the polynomial pieces defin-
ing the basis function determines its order. A B-spline of degree q is a piece-
wise polynomial function built using q + 1 polynomial pieces of degree q
joined at q inner knots. The knots can be equally spaced or not. In this work
we always deal with B-splines defined on a set of equidistant knots. Taking
equidistant knots does not affect our further results and, in our opinion, is
convenient in many applications, as shown by Eilers and Marx (2010). At
joining points, the derivatives up to the degree q − 1 of each polynomial
piece are continuous. Each basis function takes nonzero values in the do-
main spanned by q + 2 internal knots and overlaps to 2q polynomial pieces
of adjacent bases (except at the boundaries of the domain). At a given knot
point q+ 1 B-splines assume nonzero values. In the upper side of figure 2.2 a
B-spline of degree 2 is shown. It consists of three quadratic pieces, joined at
two knots. In the bottom side of figure 2.2 several over-lappings of a B-spline
of degree 3 is shown. Collecting these piecewise polynomial functions it is
possible to define a basis matrix B: each column of this matrix contains a B-
spline. The localness of the polynomials defining the bases makes the B ma-
trix really sparse so that each of its row contains only few nonzero elements.
This sparseness is an important feature making B-splines computationally
convenient for function interpolation and approximation.

B =


B1(x1) B2(x1) B3(x1) ... Bn(x1)

B1(x2) B2(x2) B3(x2) ... Bn(x2)
...

...
...

...
...

B1(xn) B2(xn) B3(xn) ... Bn(xn)

 .
Readers interested in a deeper and more detailed reference about B-spline

may refer to de Boor and Swartz (1973) and Dierckx (1995).
Several algorithms can be adopted to compute the basis spline functions

forming the B matrix. A not convenient way is to evaluate the polynomial
segments forming the basis functions analytically. A more practical approach
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Figure 2.2: The first panel shows one 2th order B-spline with its polynomial
components. In the second panel more B-splines of 3th order are shown.
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is represented by the algorithm proposed by de Boor (1978). The last alterna-
tive that can be mentioned consists in computing the spline functions using
differences between truncated power functions (Schumaker, 1981; Eilers and
Marx, 2010).

The B-spline matrix B can be used to interpolate or approximate any un-
known function. Suppose that we want to approximate the values y assumed
by an unknown function f(x) for some values of x. If we denote withBj(x, q)
the value of the jth B-spline at point x we can represent y using a linear com-
bination of B-splines ŷ(x) =

∑
j ĉjBj(x, q) where ĉj is the jth B-spline coeffi-

cient.
As shown by de Boor (1978), there is a convenient relationship between

the dth derivative of a B-spline of order p and a B-spline of reduced order
p − d. Indeed, if h is the distance between two adjacent knots, the following
relation holds:

ŷ(d) =
∑
j

cjB
(d)
j (x, q) =

∑
j ∆(d)cjBj(x, q − d)

hd
, (2.31)

where ∆(d)cj is a dth order difference operator applied to the B-spline coeffi-
cients. So, if we define the dth order difference matrix D(d), the dth derivative
basis matrix can be defined as:

B(d)(x, q) =
B(x, q − d) D(d)

hd
.

2.3.2 Penalized regression

Penalized regression has a prominent place in modern smoothing. It com-
bines a rich set of basis functions with a roughness penalty, to tune smooth-
ness of the estimated curve. The penalty can be derived from classical rough-
ness measures, like the integrated squared second derivative (O’Sullivan,
1986), or it can be discrete, working directly on the regression coefficients.
An extensive discussion is presented by Eilers and Marx (2010).
Consider that a set of data {x, y}nj=1, where the vector x represents the in-
dependent (explanatory) variable and the vector y the dependent variable,
has been observed. We want to describe y through an appropriate smooth
function. Denote Bj(x; q) the value of the jth B-spline of degree q defined on
a domain spanned by equidistant knots (in case of not equally spaced knots
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our reasoning can be generalized using divided differences). A curve that
fits the data is given by ŷ(x) =

∑n
j=1 cjBj(x; q) where cj (with j = 1, ..., n)

are the estimated B-splines coefficients. Unfortunately this curve, obtained
minimizing ‖y − Bc‖2 w.r.t. c, shows more variation than is justified by the
data if the number of spline functions is too large. To avoid this over-fitting
tendency it is possible to estimate c using a generous number of bases in a
penalized regression framework:

ĉ = argmin
c
‖y− Bc‖2 + λ‖Dc‖2, (2.32)

where D is a dth order difference penalty matrix and λ is a smoothing param-
eter. Second or third order difference penalties are suitable in many applica-
tions. A second order difference matrix appears as follows:

D2 =

 1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

 .
The optimal spline coefficients follow from (2.32) as:

ĉ = (B>B + λD>D)−1B>y. (2.33)

The smoothing parameter λ controls the trade-off between smoothness and
goodness of fit. For λ → ∞ the final estimates tend to be constant while
for λ → 0 the smoother tends to interpolate the observations. Figure 2.3
shows how different values of the smoothing parameter influence the esti-
mated smoother (for brevity only four λ values are shown). The data were
simulated by adding a Gaussian noise to a sine wave trend (200 observa-
tions). The B-spline matrix has 30 equidistant knots. Cubic B-splines and
second order difference penalties have been used to estimate the smoothing
functions. A P-spline smoother has some desirable properties. One of them
is the conservation of moments. If we define vip = xpi with integer p, the in-
ner product y>vp defines the pth moment of y. A nice property of penalized
splines built using a mth order difference penalty is that, for 0 < p < m, it is
true that y>vp = ŷ>vp for each value of λ.

Eilers and Marx (1996) combine a B-spline matrix with a penalty on
(higher order) differences of their coefficients. If we have data on equally
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Figure 2.3: Influence of the smoothing parameter on the P-spline smoother.

spaced positions and go to the limit, we will have a basis function for each
observation and the regression basis will be the identity matrix. This brings
us back to the Whittaker’s smoother (Whittaker, 1922; Eilers, 2003), which
became popular in the econometric literature as the Hodrick-Prescott filter
Hodrick and Prescott (1997). It is an attractive smoother, because effectively
the basis functions disappear and with just one smoothing parameter one can
move all the way from a straight line fit to essentially reproducing the data
themselves. On the other hand sparse matrix algorithms allow fast compu-
tations.
The Whittaker smoother (Whittaker, 1922) can be viewed as a special case
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of the P-spline smoother. It arises when the observations are located on an
equally-spaced grid, a knot is placed at each abscissa point, and B = I, the
identity matrix. It was proposed by Hodrick and Prescott as a tool to sepa-
rate the cyclical component of a time series from raw data in order to obtain a
smoothed version of the series. The smoothed time series has the advantage
to be less influenced by short term fluctuations than by long term ones.
In their paper Hodrick and Prescott suggest a λ = 1600 as a good choice.
Eilers (2003) uses a leave-one-out cross-validation. Kauermann et al. (2011),
work in the other direction, replacing the H-P filter with a penalized spline
smoother.

2.3.3 Smoothing parameter selection

It is desirable to have an automatic procedure for selecting a value for the
smoothing parameter. In principle many choices are available.
Popular methods for smoothing parameter selection are: the Akaike Informa-
tion Criterion, Cross Validation. AIC estimates the predictive log likelihood,
by correcting the log likelihood of the fitted model (Λ) by its effective dimen-
sion (ED): AIC = 2ED − 2Λ.
Following Hastie and Tibshirani (1990) we can compute the effective dimen-
sion as ED = tr[(B>B + λD>D)−1B>B] for the P-spline smoother while
ED = tr[(I +λD>D)−1] is the effective dimension of the Whittaker smoother,
and

2` = −2n ln σ̂2
n∑
j=1

(yj − ŷj)2

σ̂2
0

,

where σ̂ is the maximum likelihood estimate of σ. But σ̂2 =
∑

j(yj − ŷ2
j )

2/n,
so the second term of ` is a constant. Hence the AIC can be written as:

AIC(λ) = 2ED + 2n ln σ̂. (2.34)

The optimal parameter is the one that minimizes the value of AIC(λ).
LOO-CV chooses the value of λ that minimizes:

CV (λ) =

n∑
j=1

[
yj − ŷj
1− hjj

]2

, (2.35)

where hjj is the jth diagonal entry of H = B(B>B+λDTD)−1B> for P-splines
or H = (I + λD>D)−1 in case of the Whittaker smoother.
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Analogous to CV is the generalized cross validation measure Wahba (1990):

GCV (λ) =

n∑
j=1

[
yj − ŷj
n− ED

]2

, (2.36)

where ED = tr(H). In analogy with cross validation we select the smoothing
parameter that minimizes GCV (λ).

Related to this last method is the Generalize Correlated Cross Validation
procedure proposed by Carmack et al. (2012). This method exploits the pos-
sibility to modify the definition of the degrees of freedom to be taken into
account in computing the GCV including the (estimated or a priori known)
correlation structure in the noise component. If we denote with C this corre-
lation matrix and with S the smoothing matrix this modified GCV approach
can be computed as follows:

GCCV (λ) =
n∑
j=1

1

n

[
yj − ŷj

1− tr[2SC− SCS>]

]2

. (2.37)

The established method for selection of the smoothing parameter have two
things in common: 1) they require the computation of the effective model
dimension, and 2) they are sensitive to serial correlation in the noise around
the trend. The effective dimension is equal to the trace of the smoother ma-
trix, and so inversion of a large matrix is required; for long data series this
is prohibitive. Serial correlation generally leads to under-smoothing. At first
sight this is surprising, but it is not hard to see why it happens. Indeed cross
validation methods assume data with independent noise. If f̂(xe) is the esti-
mated value taking into account the leave-out procedure ye is an observation:

E
[
(f̂(xe)− ye)2

]
= E

[
(f̂(xe)− f(xe))

2
]

+ σ2 − 2Cov[f̂(xe), ye],

which shows that the expected squared error for a cross validation term is
equal to the true expected squared error plus the noise variance σ2 minus
two times the covariance between the observed data and the estimates. Even
if this last term is not zero (as in the case of serial dependence in the noise
component) the cross validation mis-specifies it to be equal to zero (see Car-
mack et al., 2012). This leads to a smoothing function that tends to consider
the correlated errors as a part of the wanted signal.
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To overcome these drawbacks, an alternative approach proposed by
Frasso and Eilers (2015) can be considered. It based on the L-curve method
for ill-posed inverse problems (Hansen, 1992; Hansen and O’Leary, 1993;
Hansen, 2000).

The L-curve is a parameterized curve showing the two ingredients of
every regularization or smoothing procedure: the goodness of fit and the
roughness of the final estimate.

This approach was originally proposed by Hansen (1992) for the selection
of the regularization parameter in ill-posed inverse problems. Regularization
arises both in statistics and inverse problems applications even if the aim of
the latter is slightly different. Indeed, in statistical modeling one posits a true
data generating model and aims to estimate it. In inverse problems one sim-
ply look for a good approximate solution of a given equation without taking
into account any data generating process. Also the errors are considered dif-
ferently. An important parameter for the solution of inverse problems is the
error upper bound level while in statistical applications the error it treated as
an exogenous component (see Vogel, 1996).

We start considering ridge regression.
Ridge regression is a common regularization tool in statistics. It adds a

penalty term to the standard regression problem to shrink the coefficients:

argmin
β

‖y− Xβ‖2 + λ‖β‖2,

β̂ = (X>X + λI)−1X>y.

The strength of the shrinkage depends on λ. Define:

{ω(λ); θ(λ)} = {‖y− Xβ‖2; ‖β‖2} and {ψ(λ);φ(λ)} = {log(ω); log(θ)}.

The L-curve is a plot of φ(λ) vs. ψ(λ), parameterized by λ. Figure 2.4 shows
a toy example. A sample of 200 realizations of 50 explanatory variables was
drawn from a multivariate normal distribution with mean vector µi = 1 with
high correlation (ρ ∈ {0.7, 0.8, 0.9, 0.99}).
The dependent variable was obtained as a linear combination of the 50 in-
dependent variables plus a random noise yi = cX + N(0, 0.2) (where cj is
the regression parameter associated to each independent variable randomly
drawn from a uniform distribution). The name of the curve is due to its
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Figure 2.4: Four L-curves obtained for simulated ridge regression examples
with different degrees of correlation between the explanatory variables. The
corner point represents the point of maximum curvature while the other
points represent the points used to draw the curve. For some points the as-
sociated logarithmic value of the parameter is shown (log10(λ) ∈ [0, 5]).
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shape. It shows a corner in a region characterized by intermediate values of
ψ, φ and λ. Hansen suggested to select the regularization parameter that cor-
responds to the corner, the point of maximum curvature. The curvature can
be computed using:

k(λ) =
ψ
′
φ
′′ − ψ′′φ′

[(ψ′)2 + (φ′)2]3/2
. (2.38)

The maximization of k(λ) requires the computation of the first and second
derivatives but the computations can be simplified in some cases as will be
shown in what follows. It is important to notice that that while methods such
as cross validation optimize the smoothing parameter minimizing a measure
of the prevision accuracy, the L-curve suggests to look for the λ parameter
that guarantees an optimal compromise between the residual sum of squares
and the amount of penalty.
The L-curve is usually characterized by two components: a vertical and an
horizontal part (consider the fourth panel of figure 2.4). The vertical part
is drawn for small values of the regularization parameter. In this region
the residual sum of squares is small while the amount of penalty tends to
be high. The second component is the horizontal one: it is drawn for in-
creasing values of the smoothing parameter leading to higher residual sum
of squares. This flat part of the curve is characterized by a rather constant
amount of penalty. If we think about an ideal L plot we can say that for a
constant amount of penalty we could tune the residual sum of squares along
the horizontal part of the plot. It is an ideal situation but it holds till we reach
the corner of the L. At the corner we obtain the best goodness of fit for the
smallest possible price (smallest penalty).

Now consider a P-spline smoother. Taking z = Bα, the following quanti-
ties can be defined:

{ω(λ); θ(λ)} = {‖y− Bz‖2; ‖Dz‖2},

and the L-curve is given by:

L = {ψ(λ);φ(λ)} = {log(ω); log(θ)}. (2.39)

The L-curve for a simple smoothing problem is depicted in figure 2.5. These



52 Chapter 2. Preliminary tools and concepts

0 1 2 3 4 5 6

−
6

−
4

−
2

0
2

4
6

x

y

−2 0 2 4 6
−

6
−

4
−

2
0

ψ = log(∑(yi − z1)2)

φ
=

lo
g(

∑
(D

z i
)2 )

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●
●

● ● ● ● ●

0 2 4 6

0
1

2
3

4
5

6

log(λ)

C
ur

va
tu

re

* log(λ̂) = 4

● ● ● ●
●

●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

0 2 4 6 8

0
1

2
3

4

log(λ)

S
te

p 
si

ze

log(λ̂)finer_grid = 4

● log(λ̂)normal_grid = 3.9

Figure 2.5: P-spline smoothing of simulated data using an L-curve approach.
The first panel shows the obtained smoothing function (line) and the second
the associated L-curve. The lower panels show the curvature function and
Euclidean distance between adjacent points of L-curve. The values of these
functions are plotted against different values of log10(λ).
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results were obtained from 200 observations simulated using the following
scheme: y = 5 sin(x) +N(0, 0.5) where x ∈ [0, 2π].

The lower panel of figure 2.5 shows the point-wise curvature function and
the Euclidean distance between adjacent points of the L-curve of the upper
panel. As can be noted that the smoothing parameters selected maximiz-
ing the curvature and minimizing the Euclidean distance between adjacent
points are the same. The density of the points defining the curve tends to
increase moving from the tail to the corner of the L.
Frasso and Eilers (2015) exploited this characteristic to simplify the selection
procedure.
The curvature function can be computed using (2.38) per each λ parameter
on a given grid. By setting ` = log(λ), the rate of change of the arc length
distance between each point on the curve w.r.t. ` is given by:

ds

d`
=

√(
dψ

d`

)2

+

(
dφ

d`

)2

. (2.40)

Minimizing it a good approximation of max{k(λ)} is obtained, when the L-
curve shows a clear convex area (i.e. when there is a corner). Thus the se-
lection procedure was simplified. The corner, if it exists, coincides (at least
approximately) with the point satisfying:

min
{√

(∆ψ)2 + (∆φ)2
}
. (2.41)

The criterion in (2.41) suggests that the best smoothing parameter can be se-
lected minimizing the Euclidean distance between adjacent points on the L-
curve. The Euclidean distance between these points describes a U-shaped as
shown in the last panel of figure 2.5. This procedure proposed by Frasso and
Eilers (2015) to select the smoothing parameter is named ”V-curve”.





VISUAL PRUNING FOR DECISION TREES 3
The most common approach to build a decision tree is based on a two step

procedure: growing a full tree and then prune it back. The goal is to identify the
tree with the lowest error rate. Alternative pruning criteria have been proposed
in literature. Within the framework of recursive partitioning algorithms by tree-
based methods, this paper provides a contribution on both the visual representation
of the data partition in a geometrical space and the selection of the decision tree.
In our visual approach the identification of the best tree and of the weakest links
is immediately evaluable by the graphical analysis of the tree structure without
considering the pruning sequence. The results in terms of error rate are really
similar to the ones returned by the Classification And Regression Trees procedure,
showing how this new way to select the best tree is a valid alternative to the well
known cost-complexity pruning. a

Keywords: Classification and Regression trees, Model Selection, Pruning, Visual
Representations.

aThis chapter has been accepted for publication as: Iorio, C., Aria, M., D’Ambrosio,
A. (2014). A new proposal for tree model selection and visualization.

3.1 Tree based recursive partitioning method and tree model
selection: an overview

Recursive partitioning tree procedures have been the subject of extensive re-
search in the past. Specially tree-based methods have been proposed for both
prediction and exploratory purposes. Hierarchical segmentation obtained by
decision trees can be seen as a stepwise procedures performed according to
some optimization criteria, that provides a progressive sequence of partitions
of an initial set of objects, described by some explanatory variables (either nu-
merical or/and categorical) and a response variable (Hastie et al., 2009), via
a top down criteria. Several methods have been proposed over the years.
The oldest tree based method was Automatic Interaction Detector (AID) pro-

55
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posed by Morgan and Sonquist (1963). Goal of AID is to grow regression
trees through binary splitting rules that provide recursive reduction in unex-
plained sum of squares.
Messenger and Mandell (1972) and Morgan and Messenger (1973) extended
AID for categorical outcome according to the so-called theta criterion (THAID,
THeta Automatic Interaction Detector).
A descendant of AID and THAID is CHAID (CHi-square Automatic Interac-
tion Detector), introduced by Kass (1980). CHAID uses Chi-square splitting
criterion to classify a categorical response variable.
Quinlan (1979; 1987) developed an iterative algorithm, known as ID3. The
input is a table of objects and each object induces a decision tree. Leaves of
decision tree indicate the class to which the objects belong. ID3 uses the en-
tropy criteria for splitting nodes.
An extension of ID3 is C4.5. It utilizes a normalized entropy measure, known
as Gain Ratio, which expresses the proportion of information induced by any
split (Apté and Weiss, 1997).
One of the most popular tree-based techniques is Classification And Regres-
sion Trees (CART) developed by Breiman et al. (1984). Induction of decision
trees is typically performed in two steps.
In the first step, a training set (used to grow the tree) is recursively divided
into subgroups according to splitting criteria expressed in terms of decrease
in impurity. Often, the criterion used to split is the Gini diversity index. The
tree-growing step continues until some stopping rule is reached, such as all
samples for a node belong to the same class. In literature there are several
proposal for tree growing step (Mola and Siciliano, 1997; Aria and Siciliano,
2003; Siciliano et al., 2008). In the second step, called pruning, the tree is
reduced to prevent “overfitting”. Pruning generates a decision tree by sim-
plifying the tree structure by removing some of the branches of the fully ex-
panded tree with the goal of improving the classification accuracy.
A generic internal node of a tree can be seen as a starting point for a sub-tree
that will end with several leaves or terminal nodes. The data falling down
in the leaves are evaluated via misclassification rate or expected value ac-
cording to the nature of the response. As a consequence global badness of
fit indices can be either the misclassification ratio or the mean squared error
(Breiman et al., 1984).
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Alternative pruning criteria have been proposed in the literature (Esposito
et al., 1997).
The CART pruning procedure considers both the accuracy (evaluated by
some error measure not necessarily coincident with the one used for the
growing step) and the complexity (given by the number of terminal nodes)
of the tree, introducing the so-called cost-complexity measure (Breiman et al.,
1984). The algorithm works either by using a separate independent set of
samples or by cross-validation. The goal is to produce the best sequence of
pruned subtrees of the fully expanded tree. A complexity parameter needs to
be defined. It represents both a penalty for any additional node and the cost
associated to the removal of any terminal node belonging to a given branch.
The optimal decision tree is based on the definition of a trade-off measure
between the accuracy (cost) and the size (complexity) of the tree.
Quinlan suggested two methods of pruning. The first one (Quinlan, 1987)
is known as reduced error pruning and it prunes the nodes according to a
bottom-up approach. It generates a sequence of subtrees and uses the test
set to evaluate the performance of the tree. Since the misclassification rate
on the training set is optimistically biased, Quinlan introduced a continuity
correction for the binomial distribution, that might provide a more realistic
error rate. This pruning method is known as pessimistic error pruning. The
second pruning method is implemented in C4.5 (Quinlan, 1993). It is known
as error based pruning and produces a simplified tree-structure.
Cappelli et al. (1998) proposed an alternative pruning method based on a so
called impurity-complexity measure which evaluates the accuracy of the classi-
fication directly through the impurity measure.
Siciliano et al. (2008) proposed a model-based tree growing that implicitly
prunes the tree within the tree-growing step. This phase is based on the con-
cept of retrospective split as well as on the recursive estimation of GLM.

3.2 Decision tree visualization

Fayyad et al. (2002) stated that without proper visualization techniques, data
mining models may not give the desired insight to help humans to under-
stand the phenomena.
Different visual representations of decision tree have been proposed. Hier-
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archical and radial views are the two most popular graphs for decision tree
(Liu and Salvendy, 2007).
Hierarchical view is the most natural way to display a decision tree.
A decision tree is defined as a directed connected acyclic graph. A graph is
a set of nodes. Scheduling information is placed in the nodes. In the inter-
nal node, the information represents the splitting rule; in the terminal node,
it consists on prediction. Radial view is applied manly in displaying object
structures, such as organizations.
Node-link diagrams are the most familiar tree structures. This representation
is poor in revealing the overall structure of a tree, such as its depth levels. In
addition, it does not demonstrate node sizes.
A tree map (Shneiderman, 1992) is another way to display all the partitions
using area based plot, in which each terminal node is represented by a rect-
angle. The rectangular area of tree-map corresponds to the full data set. This
area is partitioned recursively with an alternating horizontal and vertical par-
titioning directions until the terminal node are reached. The size of each sub-
rectangle is proportional to the number of cases in the corresponding node.
Tree map does not allow a relative comparison of groups within nodes.
A tree ring maps the hierarchies into circles and it displays both tree topol-
ogy and node size. The most inner circle represents the root node.
Tree maps and tree rings are space-filling visualization methods, since they
make full use of the available space.
The icicle plot represents a tree node as a rectangle whose length is pro-
portional to the number of records associated with it. This visualization is
more space-efficient than node-link diagrams, since there are no links be-
tween nodes (Barlow and Neville, 2001).
The basic idea of circle segment visualization technique (Ankerst et al., 1996)
is to display the data dimension as a segment of a circle. If the data consists
on n dimension, the circle is partitioned into n segments, each segment rep-
resents one different attribute; each pixel inside a segment is a single value of
the attribute. Values of each attribute are sorted independently and assigned
to a different color based upon its class.
Another similar approach proposed by Ankerst et al. (2000) uses a stacked
bar representation instead of circle segments. In other words, bars represent-
ing an attribute are displayed horizontally and are displayed stacked upon
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each other. This technique is easily expandable to support many attributes.
The circle segments method appears to start loosing display granularity as
the number of segments increase.
Circle segments and similar techniques provide great visibility into multi-
variate classification techniques. They are a great aid in identifying obvious
relationships between data values and classes and for identifying potentially
weak relationships as well.

3.3 Visual tree model selection

In the following we introduce a visual tree model selection method. This
is based on the definition of a new way to represent the tree structure by a
node-link diagram where the edges of the tree have different length depend-
ing on the decrease in impurity of the response variable when passing from
any node to its child. Two are the main advantages of this representation,
namely adding meaningful statistical measures of the tree quality to the in-
terpretation of the exploratory tree as well as providing a visual selection
criterion to choose the best decision tree for prediction of new cases.
First, we introduce some definitions of the tree structure and then we define
the proper measures to be used for the visual tree model selection.
A path of an oriented tree is a sequence of nodes and edges connecting a node
with a descendant. A depth of path is the number of edges from the node to
the tree’s root node. A branch of a tree is any sub-tree hold by any node of
the tree.
Let Pt,z be the path from the starting node t to any descendant z of the branch
Tt hold by the node t. We define the depth path P̃t,z as the number of edges
from the descendant z to the node t of the path Pt,z . Let rPt,z = [rk] be the
path index vector where the entries rk are the numbers denoting the nodes of
the path Pt,z in the ordered list from node t to node z, for k = 1, . . . ,K with
K = P̃t,z + 1. For any path Pt,z we define the path decrease in impurity from
the node t to the its descendant z within the branch Tt as:

Vz(Tt) = i(t)p(t)− i(z)p(z), (3.1)

where i(t) and i(z) are the impurity measures of the response variable in the
nodes t and z with the proportions of cases equal to p(t) and p(z) respectively.
It is worth noting that the path decrease of impurity from the node t can be
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evaluated considering any node z belonging to the branch Tt, either internal
or terminal node.
It can be shown that

Vz(Tt) =
∑
k

[i(k)p(k)− i(k + 1)p(k + 1)]. (3.2)

Let t be the parent node with children nodes 2t and (2t + 1). The paths Pt,2t
and Pt,2t+1 have depth path equal to one by definition. These are called one-
step paths. The edges connecting the parent node and its children nodes can
be visualized with a length which can be proportional to the one-step path
decrease in impurity as follows:

V2t(Tt) = i(t)p(t)− i(2t)p(2t), (3.3)

V2t+1(Tt) = i(t)p(t)− i(2t+ 1)p(2t+ 1). (3.4)

As it is known, in CART methodology the best split is selecting by maximiz-
ing the decrease in impurity when passing from node t to its children nodes.
It can be shown that this choice is equivalent to maximizing the one-step
paths decrease in impurity.
The proposed tree structure representation with edges of different lengths
appears so asymmetric that it is possible to visualize levels of the tree cor-
responding to the distinct internal nodes. Specifically, for any node t of the
tree T it is possible to define a measure of quality of the partitioning proce-
dure until node t by considering the relative measure of the path decrease in
impurity from the root node to its descendant t as follows:

Vt(T ) =
i(1)− i(t)

i(1)
, (3.5)

where 0 ≤ Vt(T ) ≤ 1 by definition. This can be called node impurity propor-
tional reduction. An indexing measure can be associated to the tree structure
describing the gain in the partitioning level by level.
Furthermore, an overall improvement of the tree structure with respect the
root node can be evaluated by a weighted sum of the node impurity reduc-
tions in the terminal nodes of the tree T :

V (T ) =
∑
h∈HT

Vh(T )p(h), (3.6)
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where HT is the set of terminal nodes of the tree T .
In terms of prediction of new cases, we can evaluate the node impurity pro-
portional reduction of any internal node of the tree on the basis of a test sam-
ple. In this way it is possible to associate another indexing measure such to
identify the best cutting line to find the decision tree. It is also possible to
evaluate the same measure considering a cross-validation approach.

3.4 An application of visual tree

In the framework of CART methodology we want to show how it is possible
to use a visual model instead of the classic pruning procedure.
The main interpretative advantages of the visual tree are shown in an appli-
cation on a real data set. We have developed the analysis of Credit data set
(Decisia SPAD Repository). According to the numbering system developed
by CISIA Software Informer, let k be the generic tth node, it generates de-
scendant nodes numbered as 2k (on the left) and 2k + 1 (on the right). By
convention, node number 1 indicates the root node.
Figure 3.1 displays the graphical representation of the CART approach. Both
the maximum expanded tree and the decision tree are provided respectively
on the left and the right side.
Decision tree was selected via test-set procedure, the size of test sample is
about 30% of the entire data set.
As can be noted, no information is contained in length of paths and in levels
of tree (Figure 3.1, left side). In the classical visualization there is a lack of in-
formation about the goodness of split, the purity of nodes and the goodness
of the tree (Figure 3.1, right side).
Figure 3.2 shows the visualization of the tree structure using our approach
on the Credit data set. The sub-figures provide respectively the maximum
expanded tree (left side) and the decision tree (right side). In the sub-figure
of the right side ϕ·t indicates the impurity proportional reduction related to
node t as defined in equation 3.5. The pruned tree was obtained by using the
same test-set used before.
In the sub-figure on the left side, the left axis measures the node impurity
proportional reduction and the right axis measures the misclassification er-
ror linked to each cutting point calculated respectively on the training sample
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Visual Cart
Dataset Continue Categorical Response Error Size Error Size

Credit 2 11 Binary 0,2489 4,516 0,2467 4,676

Table 3.1: Tree model comparison: Visual Pruning vs Classical Pruning (1000 Bootstrap
replications)

(right) and test sample (left). At first sight, this plot points out the relative im-
portance of splits and the best cut level to find an optimal decision tree.
By looking at the graph, as in a dendrogram of the hierarchical cluster anal-
ysis, we can decide an automatic cutting of the tree as a function of impurity
proportional reduction. As can be noted in the right side of Figure 3.2, the
tree structure highlights that the relative measure of the path decrease of im-
purity of terminal nodes 3, 4, 11 is close to 0, while it is higher for node 10.
Note that overall improvement of tree structure VT , as defined in equation
3.6, is proportional to the misclassification error on the training sampleR(T ).
The visual decision tree shows the contribution of the nodes with a lower
node impurity proportional reduction to the tree badness of fit. The shorter
is the length path, the lower is the gain in the partitioning level by level. By
visual tree model selection we can see that at the first split there is a signif-
icant decrease of impurity especially for node 3 that become immediately a
terminal node (Figure 3.2, right side). The splits are the same for both trees
obtained with the CART approach and the Visual Pruning for decision tree
but in the visual tree model selection method the depth path explains the pre-
dictive strength of a split to decrease of impurity. This visual approach can
be used to build trees both in supervised classification and in nonparametric
regression.
We carried out a comparison by bootstrap and empirical evidence suggests
how both procedures return similar outcomes. The results, reported in Ta-
ble 3.1, show that the misclassification rate and the tree size are very similar.
Both measures are referred to trees validated via test-set procedure.
Moreover in visual approach the identification of the best tree and the weak-
est links is immediately evaluable by the graphical analysis of the tree struc-
ture without considering the pruning sequence.
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Figure 3.1: CART approach: Exploratory classification tree (on the left) and
decision tree (on the right).

Figure 3.2: Visual tree model selection: Fully expanded tree and cutting se-
quence (on the left) and decision tree (on the right).
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3.5 Concluding remarks

The proposed visual tree model selection seems to be a valid alternative to
the cost-complexity strategy to select decision trees. We propose a new tree
structure visualization that allows to identify more discriminant splits, weak-
est links and help the user to catch the optimal sub-structure as decision tree.



P-SPLINE BASED CLUSTERING OF CORRE-
LATED SERIES 4

Time series arise in many scientific areas. Several clustering algorithms have
been proposed. In many cases data must be preprocessed, i.e. by modeling each
series with an appropriate model. In this paper, we propose a new approach ex-
ploiting a P-Spline framework. The basic idea is to perform the classification task
on the reduced space spanned by optimal spline coefficients. This ensures a number
of advantages, including excellent performance of resulting clustering procedure
and a reduced computational time. a

Keywords: Clustering, P-splines, Time series.

aThis chapter has been submitted for publication as: Iorio, C., Frasso, G.,
D’Ambrosio, A., Siciliano, R. (2015). P-Spline based Clustering of Correlated Series.

4.1 Introduction

Time series can be found in different domains such as finance, economics,
engineering, medicine and operations management. Most of the research on
time series has been devoted to the reach of similarity measures which arises
in many tasks as clustering and classification. In this paper, we focus on the
clustering task. Clustering methods are popular tools in data analysis.
The goal of clustering is to identify a structure in unlabeled dataset by orga-
nizing data into homogeneous groups. Each group consists of observations
that are similar among themselves and dissimilar with respect to objects of
other groups. Cluster analysis has been performed mainly on static data.
Due to recent interests in time series, clustering of this type of data has be-
come an active research area with useful applications in several fields. For
this reason, in the last years clustering techniques dealing with time series
have been proposed. The data characteristics suggest the appropriate clus-
tering procedure and the dissimilarity measure.
Time series can be distinguished according to their nature (real or discrete

65
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valued, univariate or multivariate). Moreover, time series can be of equal
length or unequal length due to different time domains and/or missing val-
ues.
Košmelj and Batagelj (1990) proposed a cross sectional approach to clus-
ter multivariate time varying data, using the modified relocation clustering
procedure. They used a modified relocation procedure consisting in two
steps, involving first a cross-sectional approach to incorporate time dimen-
sion and then developing a specific model to determine time dependent lin-
ear weights.
Maharaj (2000) proposed an agglomerative hierarchical procedure based on
the p-value of hypothesis testing applied to every pair of a given stationary
time series. Maharaj assumed that each stationary time series can be fitted
by a linear autoregressive model denoted by a vector of parameters. Then
a chi-square distributed test statistic was derived to test the null hypothesis
that there is no difference between the generating processes of two station-
ary time series. Two series belong to same group if the associated p-value is
greater than a pre-specified significance level.
Baragona (2001) proposed some meta-heuristic methods to partition the set
of time series into clusters in such a way that (i) the cross-correlation maxi-
mum absolute value between each pair of time series that belong to the same
cluster is greater than some given threshold, and (ii) the k-min cluster crite-
rion is minimized. The cross-correlation matrix function is computed from
the residual of the original time series.
Fu et al. (2001) introduced an algorithm called perceptually important point
(PIP) to reduce the dimensionality of the problem. Their clustering proposal
belong to the framework of self-organizing map (SOM) methods.
Kumar et al. (2002) took data error into account. They presented a new scale-
invariant distance function based on a Gaussian distribution of errors in data.
The distance function is used in hierarchical clustering to discover meaning-
ful clusters. In their model, time series sampled at T points are represented
by a sequence of T distributions, assuming that each of these T samples are
independent of each other and are distributed according to one-dimensional
Gaussian distributions.
Ramoni et al. (2002) presented a Bayesian algorithm for clustering by dynam-
ics (BCD). The method recasts the task of clustering time series as a Bayesian
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model selection problem and searches for the most probable set of clusters
given the observed time series. Given a set of time series, the algorithm trans-
forms each series into a Markov chains (MC) and then clusters similar MCs
to discover the most probable set of generating processes. The method ap-
plies an agglomerative clustering procedure to discover the most probable
set of clusters capturing different dynamics, using an entropy-based heuris-
tic search strategy. The task of their clustering algorithm is two-fold: finding
the set of clusters that gives the best partition according to some measure,
assigning each MC to one cluster. Current limitations of the BCD are that it
is univariate and it can cluster discrete time series.
Möller-Levet et al. (2003) considered unevenly sampled data. Motivated by
several experiments in molecular biology, the authors proposed a short time
series (STS) distance to measure the similarity in shape formed by the relative
change of amplitude and the corresponding temporal information of uneven
sampling intervals.
Liao (2005) distinguishes among raw data based approaches, feature and
models based approach. The former category works directly with raw time
series replacing the distance measure for cross-sectional data with an ap-
propriate one for time series. To compare the series, the raw data based
approach consider two time series normally sampled at the same interval.
However, clustering based on raw data deal with high dimensional space
and very noise data. The feature and model based approach are similar. Both
work with two steps. The difference between them is in the first step. The
feature-based approach converts a raw time series into a feature vector of
lower dimension. The model-based approach converts a raw time series into
a number of model parameters. Then both apply a conventional clustering
algorithm. In the framework of model-based clustering, time series are con-
sidered similar when the models characterizing individual series, or the re-
maining residuals after fitting the model, are similar.
In order to perform clustering of time-course gene expression data, Coffey
et al. (2014) propose a new approach based on the linear mixed effects model
representation of penalized spline (Ruppert, 2003). Their method exploits the
connection between the linear mixed effects model and P-spline smoothing
to simultaneously smooth the gene expression data to remove any measure-
ment error/noise and cluster the expression profiles using finite mixtures of
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Normal distribution, which variance depends on the estimated random ef-
fect variance.
Besides the similarity problem in time series, another issue concerns the high
dimensionality that characterizes time series data in many application do-
mains. When a large number of measurements (time points) are considered,
the algorithms leads to computational problems. In the presence of data er-
ror, clustering method can be employed after that data used have been pre-
processed.
Many of the algorithms mentioned above do not facilitate the removal of
noise from data, have difficulties handling time series with unequal length,
require operation of preprocessing of the series and do not consider series
with correlated noise.
We propose to model time series by penalized spline (P-spline) smoother and
to perform clustering on the estimated P-spline coefficients. The considered
series can be of both equal and unequal length, unregardless the distance
measure used to cluster. Our strategy can be combined with many clustering
approaches.
This paper is organized as follows. Section 4.2 introduces the notation and
definitions. In Section 4.3 we present our proposal. In Section 4.4 the per-
formance of our clustering approach is evaluated through a large simulation
study. In Section 4.5 an application on financial time series is presented. Sec-
tion 4.6 concludes a paper with a discussion.

4.2 Time series clustering

Clustering approaches require two choice: the definition of a clustering algo-
rithm and the selection of a suitable distance measures. In what follows, we
introduce the notations, some clustering algorithms and the distance mea-
sure suitable for a P-Spline based clustering of time series.

4.2.1 Notations and definitions

Let yi be the ith series where i = 1, . . . , N is the number of series.
Let ni be the length of ithseries. To avoid confusion we will use ni = n ∀i,
instead of ni, when the series have the same length.
Let ck be the kth cluster center, where k = 1, . . . ,K is the number of centers,
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1 < K < N .
Let xj , j = 1, . . . , ni, be the support of time points of the ith series.

4.2.2 Clustering algorithms

Clustering techniques are traditionally divided in hierarchical and partition-
ing. The formers perform a hierarchical decomposition of the data set using
some criterion. The latters construct various partitions of the data, then eval-
uate them by a clustering criterion.
A relocation clustering procedure (Košmelj and Batagelj, 1990) on time series
has the following three steps:

1. Start with an initial partition, denoted by C, having the prescribed k

number of clusters.

2. For each time point compute the dissimilarity matrix and store all re-
sultant matrices for the calculation of trajectory similarity.

3. Find a partition C
′

such that C
′

is better than C in terms of the general-
ized Ward criterion.

The partition C
′

is obtained from C by relocating one member for Cp to Cq
or by swapping two members between Cp and Cq , where Cp, Cq ∈ C and
p, q = 1, 2, ..., l, p 6= q. If a such partition does not exists, stop; else replace C
by C

′
and repeat Step 3.

This procedure works only with time series with equal length because the
distance between two time series at some cross sections (time points where
one series does not have value) is ill defined (Liao, 2005).
k-means algorithm (MacQueen, 1967; Hartigan and Wong, 1979) is the most
popular clustering method. It relies on iterative scheme that starts with ar-
bitrarily chosen initial cluster centers. The procedure follows a simple way
to classify a given data set through a certain number of k clusters fixed a pri-
ori. The main idea is to define k centroids, one for each cluster. As a result
of this iterative procedure, the centroids change their location step by step
until no more changes are done. The centroids should be placed in a running
way. Since different location causes different result, the better choice is to
place them as much as possible far away from each other. The next step is
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to take each point belonging to a given data set and associate it to the near-
est centroid. When no point is pending, the first step is completed and an
early grouped is done. At this point we need to re-calculate k new centroids
as centers of the clusters resulting from the previous step. After we have
these k new centroids, a new binding has to be done between the same data
set points and the nearest new centroid. The k-means method aims at mini-
mizing an objective function. Given N patterns (yi|i = 1, ..., N), the k-means
algorithms defines k centroid (ck|k = 1, ...,K) minimizing the following ob-
jective function:

J =
N∑
i=1

K∑
k=1

‖yi − ck‖2 (4.1)

where ‖·‖ is the Euclidean distance measure between a data point and the
cluster center. However, it is possible to choose other distance measures. The
algorithm has the following steps:

1. Initialize K points into the space represented by the objects that are
being clustered, (2 ≤ K < N),. These points represent initial group
centroids.

2. Assign each pattern yi to the cluster whose distance from the cluster
center is minimum of all the cluster centers.

3. When all objects have been assigned, update the positions of the K
cluster centers.

The procedure is stopped when the cluster centers do not move any more.
Otherwise, repeat Steps 2 and 3 until convergence.
Among the model-based methods, self-organizing map (SOM) developed by
Kohonen (1990) is a very popular unsupervised neural-network model. The
principal goal of a SOM is to transform an incoming signal pattern of arbi-
trary dimension into a low dimensional discrete structure . During the self-
organization process, the cluster unit whose weight matches most closely the
input data is chosen as the winner. Euclidean distance is used. The weights
are computed for all neurons in the network. The weights of the winning
node t and its neighbors will then be updated proportionally. The formation
of a clustering/map occurs in the following phases:
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1. Assign random values to the initial weights w of the neuron in the net-
work.

2. Choose input vector randomly from the input space.

3. Evaluate the network.

4. Update the weight vectors.

Depending on whether a neuron i is within a certain spatial neighborhood
Nt(l) around the neuron with the smallest distance, its weight is updated
according to the following updating rule:

wi(l + 1) =

wi(l) + α(l)[x(l)wi(l)] if i ∈ Nt(l),

wi(l) if i /∈ Nt(l).
(4.2)

Both the size of the neighborhood and the step size of weight adaptation α

shrink monotonically with the iteration.
k−means and SOM are algorithms that work better with time series of equal
length. In the first algorithm the concept of centroid becomes unclear when
the same cluster contains series of unequal length; in the latter one difficul-
ties arise to define the dimension of weight vectors (Liao, 2005).
Hierarchical algorithms build clusters gradually by grouping time series into
a dendrogram. Hierarchical method further subdivided into agglomerative
and divisive, depending upon whether it merges (bottom-up strategy) or
split (top-down strategy) clusters iteratively. Most of hierarchical methods
belong to agglomerative procedure. Given a set of N series to be clustered
and an (N × N ) distance matrix, the basic process of an agglomerative hier-
archical clustering is summarized in four steps (Johnson, 1967):

1. Start by assigning each object to a cluster.

2. Find the most similar pair of clusters and merge them into a single clus-
ter.

3. Compute distances between the new cluster and each of the old clus-
ters.

4. Repeat Steps 2 and 3 until all items are clustered into a single cluster.



72 Chapter 4. P-Spline based Clustering of Correlated Series

Step 3 can be done in different ways according the choice of the linkage pro-
cess.
The single (complete) linkage clustering measures the distance between two
clusters as the shortest (largest) distance from any member of one cluster to
any member of the other cluster. The average linkage clustering measures
the distance between two cluster as the average distance from any member
of one cluster to any member of the other cluster. The minimum variance
criterion proposed by Ward Jr (1963) minimizes the total within-cluster vari-
ance. At each step, the pair of clusters with the smallest increase in the value
of sum of squares variance are merged. The algorithm at each step finds the
pair of clusters that leads to minimum increase in total within-cluster vari-
ance after merging.
Hierarchical clustering is not restricted to cluster time series with equal
length when appropriate distance measure (such as dynamic time warping)
is used to compute the distance (Liao, 2005).
For a more detail about time series clustering one can refer Liao (2005).

4.2.3 Distance measure

Every cluster analysis require to choose a suitable distance measure In time
series clustering, the concept of dissimilarity is particularly complex due to
the dynamic character of the data. Dissimilarities usually considered in con-
ventional clustering could not work well with time dependent data because
they ignore the interdependence of the observations. The choice of an ade-
quate distance measure depends largely on the nature of the clustering. Dif-
ferent dissimilarity measures for time series have been proposed.
Let D be a dataset consisting of N series {y1, y2, ..., yN} ⊂ Rn and let K be
an integer with 1 < K < N , to partition D into cluster C1, C2, ...CK , data se-
ries are assigned to clusters using a metric. At each cluster CK is associated
a center ck. Each data series is assigned to the cluster to whose center is the
nearest.
The Euclidean distance between the ith time series and the centroid time se-
ries of the kth cluster is computed as:

d =

 ni∑
j=1

(yij − ckj)2

1/2

. (4.3)
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Mikowski distance is a generalization of Euclidean distance, which is defined
as:

d = q

√√√√ ni∑
j=1

(yij − ckj)q, (4.4)

where q is a positive integer.
Pearson’s correlation distance between yi and ck is defined as:

d = 1− ρ(yi,ck), (4.5)

where ρ(yi,ck) is the Pearson’s correlation factor between yi and ck.
A common way to compare two time series is warping the time to achieve
an alignment between the data points of the series. Unlike the Euclidean dis-
tance, the Dynamic Time Warping (DTW) (Berndt and Clifford, 1994) allows
elastic shifting of a series to provide a better match with another series, thus
it can handle time series with local time shifting and different lengths. Given
any two time series {yj}ni

j=1 and {ys}ns
s=1, with ni 6= ns, DTW performs a non

linear mapping of one sequence to the other one by minimizing the total dis-
tance between them. For doing this, a ni × ns matrix storing the distance
d(yj , ys) between the two point yj and ys is used to find an optimal warping
path via a dynamic programming algorithm. Typically Euclidean distances
is used. Each matrix element (j, s) corresponds to the alignment between the
points yj and ys. A warping path,W = w1, w2, wp, ..., wP is a sequence of ma-
trix elements that defines a mapping between yj and ys. The pth element ofW
is defined as wp = (j, s)p where max(ni, ns) ≤ P < ni + ns − 1. The warping
path is typically subject to several constraints. The monotonicity forces the
points in W to be monotonically spaced in time. The continuity restricts the
allowable steps in W to adjacent cells (including diagonally adjacent cells).
The boundary conditions requires the warping path to start and finish in di-
agonally opposite corner cells of the matrix. There are many warping paths
that satisfy the above conditions. The interested warping path is the one
which minimizes the distance between series:

d = min

(∑P
p=1wp

P

)
, (4.6)
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where P is used to compensate for the fact that warping paths may have dif-
ferent lengths. The dynamic programming formulation is based on the fol-
lowing recurrence relation which defines the cumulative distance dcum(i, j),
for each point:

dcum(j, s) = d(yj , ys) + min(dcum(j − 1, s− 1), (4.7)

dcum(j − 1, s), dcum(j, s− 1)).

A weakness of DTW is that it aligns a single point of a series with multiple
points of another series. To reduce the singularity phenomenon, Keogh and
Pazzani (2001) proposed a variant of variant of DTW, named Derivative Dy-
namic Time Warping (DDTW). DDTW estimates the local derivatives of the
data points to capture information on the trends in the sequences and to find
a warping more robust to singularities.
The mentioned metrics work in the time domain, but the frequency domain
approach also offers an interesting alternative to measure the dissimilarity
between time series.
For a more detail about distance measures used in time series clustering one
can refer Vilar et al. (2010).

4.3 The key idea

A series y can be thought as arising from a smooth underlying function g(x).
Time series are usually measured at a discrete number of time points xi, i =

1, ..., n and are subject to large amounts of noise. Thus it is assumed that the
observed data can be modeled as:

yi = g(xi) + εi, i = 1, ..., n (4.8)

where g(xi) is the value of smooth series evaluated of time point xi and εi is
the measurement error. P-spline smoothers provide a flexible way to remove
noisy measurement from the raw data and estimate the underlying smooth
interesting part, that is the signal of a series.

4.3.1 Series parametrization

P-splines have been introduced by Eilers and Marx (1996) as flexible smooth-
ing procedures combining B-splines (see e.g. de Boor, 1978) and difference
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penalties.
Suppose to observe a set of data {x, y}ni

j=1, where the vector x indicates the
independent variable (e.g. time) and the vector y the dependent one.
We want to describe the available measurements through an appropriate
smooth function. Denote as Bh(x; q) the value of the hth B-spline of degree
q defined on a domain spanned by equidistant knots (in case of not equally
spaced knots our reasoning can be generalized using divided differences).
Moreover different knots selection procedure has been proposed. A conve-
nient rule is the one suggested by Ruppert (2002). A curve that fits the data
is given by ŷ(x) =

∑
h ahBh(x; q) where ah (with h = 1, ..., # of basis) are the

estimated B-splines coefficients. Unfortunately the curve obtained by mini-
mizing ‖y− Ba‖2 w.r.t. a shows more variation than is justified by the data
if a dense set of spline functions is used. To avoid this over-fitting tendency
it is possible to estimate a using a generous number of bases in a penalized
regression framework

â = argmin
a
‖y− Ba‖2 + λ‖Da‖2, (4.9)

where D is a dth order difference penalty matrix and λ is a smoothing param-
eter. Second or third order difference penalties are suitable in many applica-
tions. A second order difference matrix appears as follows:

D2 =


1 −2 1 · · · 0 0

0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · 1 −2 1

 .

The optimal spline coefficients follow from (4.9) as:

â = (B>B + λD>D)−1B>y. (4.10)

The smoothing parameter λ controls the trade-off between smoothness and
goodness of fit. For λ → ∞ the final estimates tend to be constant while for
λ→ 0 the smoother tends to interpolate the observations.

The penalty approach relaxes the importance of the number and location
of the knots. An extensive discussion of P-spline is presented by Eilers and
Marx (2010).
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Figure 4.1 shows how different values of the smoothing parameter influence
the estimated smoother (for brevity only four λ values are shown). The data
were simulated by adding a Gaussian noise to an exponential signal (50 ob-
servations). The B-spline matrix has 20 equidistant internal knots. Cubic B-
splines and second order difference penalties have been used to estimate the
smoothing functions. As noticed by Eilers and Marx (2010) the estimated P-
spline coefficients in (4.10) have the desirable property to be close to the curve
representing the final fit. As it appears from Figure 4.1 (encircled points) they
represent the skeleton of the fitted smoother. This property plays a crucial
rule in the methods described in this paper allowing for a convenient reduc-
tion of the dimensionality of our clustering task.

4.3.2 Smoothing parameter selection

Popular methods for smoothing parameter selection are: the Akaike Informa-
tion Criterion, Cross Validation. AIC estimates the predictive log likelihood,
by correcting the log likelihood of the fitted model (Λ) by its effective dimen-
sion (ED): AIC = 2ED − 2Λ. Following Hastie and Tibshirani (1990) we can
compute the effective dimension as ED = tr[(B>B + λD>D)−1B> B] for the
P-spline smoother and

2` = −2n ln σ̂2
ni∑
j=1

(yj − ŷj)2

σ̂2
0

,

where σ̂ is the maximum likelihood estimate of σ. But σ̂2 =
∑

j(yj − ŷ2
j )

2/ni,
so the second term of ` is a constant. Hence the AIC can be written as

AIC(λ) = 2ED + 2n ln σ̂. (4.11)

The optimal parameter is the one that minimizes the value of AIC(λ).
LOO-CV chooses the value of λ that minimizes

CV(λ) =

ni∑
j=1

[
yj − ŷj
1− hjj

]2

, (4.12)

where hjj is the jth diagonal entry of H = B(B>B + λD>D)−1B>.
Analogous to CV is the generalized cross validation measure (Wahba, 1990)

GCV(λ) =

ni∑
j=1

[
yj − ŷj
n− ED

]2

, (4.13)
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Figure 4.1: Influence of the smoothing parameter on the P-spline smoother and related
spline coefficients.
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where ED = tr(H). In analogy with cross validation we select the smoothing
parameter that minimizes GCV(λ).
All these selection procedures suffer of two drawbacks: 1) they require the
computation of the effective model dimension which can become time con-
suming for long data series, and 2) they are sensitive to serial correlation in
the noise around the trend. The L-curve (Hansen, 1992) and the derived V-
curve criteria (Frasso and Eilers, 2015) overcome these hitches. The L-curve
is a parameterized curve comparing the two ingredients of every regulariza-
tion or smoothing procedure: badness of the fit and roughness of the final
estimate. For a P-spline smoother, the following quantities can be defined

{ω(λ); θ(λ)} = {‖y− Bâ‖2; ‖Dâ‖2}.

The L-curve is obtained by plotting ψ(λ) = log(ω) against φ(λ) = log(θ). This
plot typically shows a L-shaped curve and the optimal amount of smoothing
is located in the corner of the “L” by maximizing the local curvature measure

κ(λ) =
ψ
′
(λ)φ

′′
(λ)− ψ′′(λ)φ

′
(λ)

[ψ′(λ)2 + φ′(λ)2]3/2
. (4.14)

The V-curve criterion offers a valuable simplification of the searching crite-
rion by requiring the minimization of the Euclidean distance between the
adjacent points on the L-curve.

4.3.3 Clustering procedure

We propose to model time series by penalized spline smoothers and per-
forming clustering directly on the spline coefficients. As discussed in Eilers
and Marx (2010), the P-spline coefficients are close to the fitted curve and
present the skeleton of the fit. We suggest the following clustering steps. We
fit each series by a P-splines. We obtain the matrix A = [âi,h], whose ele-
ments represent the optimal P-spline coefficients. It is worth noting that the
dimensionality of the problem reduces from Rn to Rq+o, where q is the num-
ber of internal knots and o is the order of B-spline. From the matrix A we
construct a suitable partition with homogeneous groups and center represen-
tative ck = {ck}Kk=1, where each ck belong to Rq+o. Any clustering algorithms
and distance measure can be used to cluster the coefficients of P-spline. Series
with different lengths (e.g. with missing values) can be handled by P-splines
due to the extrapolation properties.
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4.4 Simulation study

To examine the performance of our proposal two simulation studies were
carried out. The first one consider series with equal length. The second one
deal with series of different length.
We generated K = 6 clusters of numerical series at n = 500 equally spaced
time points in [0, 1] as described in Coffey et al. (2014). Distinct cluster specific
models were used:

y
(1)
i(j)

= αi + sin(βi ∗ π ∗ xj(i)) + γi + εij

y
(2)
i(j)

= xj(i) + (δi)
−3 + ιi + γi + εij

y
(3)
i(j)

= νi + γi + εij

y
(4)
i(j)

= ζi + cos(ζi ∗ π ∗ xj(i)) + γi + εij

y
(5)
i(j)

= ξi − ηi ∗ exp(−θi ∗ xj(i)) + γi + εij

y
(6)
i(j)

= −3(xj(i) − 0.5) + γi + εij

where:
αi ∼ N(

√
2;σ2

e) with σ2
e = 0.08, βi ∼ N(4 ∗ π;σ2

e), δi ∼ N(0.75;σ2
e),

ιi ∼ N(1;σ2
e), νi ∼ N(0;σ2

e), ζi ∼ N(2;σ2
e), ξi ∼ N(2;σ2

v) with σ2
v = 0.85,

ηi ∼ N(4;σ2
v), θi ∼ N(6;σ2

e), γi ∼ N(0;σ2
u) with σ2

u ranging from 0.3 to 1 and
εij is an autoregressive model of order 1.
Cluster means were chosen to reflect the situation where there are series that
show little variation in value over time (as given by cluster 3) and series
which have distinct signal over time. Cluster sizes were equal to 90, 50,
100, 25, 60 and 35, for cluster 1, 2, 3, 4, 5, 6 respectively, giving a total num-
ber of 360 simulated series. One hundred data set were generated using
the above scheme. An example of data set is plotted in Fig.4.2. Our pro-
posal was implemented in R. To perform a cluster we use K-means algo-
rithm. For this example we chose to use Pearson’s correlation distance. We
set a configuration with 50 random starting point and 50 replicates. For each
cluster analysis the adjusted Rand Index (ARI) by Hubert and Arabie (1985)
was computed in order to evaluate the degree of similarity between the es-
timated clusters and the known (true) cluster labels for each of the 100 data
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Figure 4.2: Example data set (one of 100) generated for simulation study.

set. In addition, the computation time was recorded. To check the sensitiv-
ity of our procedure with respect to a different number of basis spline, we
performed four analyses for each simulated data set. We considered respec-
tively 10%, 20%, 30%, 40% of the length of the simulated series. The degree of
B-spline is the same for each analysis. Table 4.1 shows the result of our sim-
ulation study. We can notice that the clustering performance are not dramat-
ically influenced by the choice of the number of internal knots. The average
ARI remains above 90% even with a limited number of bases. As expected
an increasing number of knots requires a large computational effort. The
proposed method is compared with that of Coffey et al. (2014) which is im-
plemented in R (package MFDA). The effect of our proposal were investigated.
Figure 4.3 displays boxplots of computational time required by the cluster-
ing procedure to fit the true number of clusters K = 6, the corresponding
ARI for the MFDA package and for our approach based on using k-means and
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Mean ARI Sd ARI Average Time
10% 0.9499769 0.07696571 5.3083
20% 0.9568504 0.07282104 12.4815
30% 0.9634295 0.06863666 16.2428
40% 0.9815861 0.05073459 25.7644

Table 4.1: Mean value and standard deviation of ARI and mean computational times re-
lated to clustering procedure used for simulated data set. The values are reported for each
procedure using a number of inner knots equal to 10%, 20%, 30%, 40% of length of series.
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Figure 4.3: Boxplots of computational time required by the clustering procedure to fitK = 6
clusters (left side) and corresponding ARI values (right side).

considering a number of internal knots equal to 10%, 20%, 30%, 40% of the
length of the simulated series. It can be seen that our proposed method has
significantly lower computation time. There is also no evidence of any loss of
performance associated with the decrease of computing burden since the av-
erage ARI values increases with time. These results show that the proposed
method has significantly a time saving and a good performance compared
to the proposal of Coffey et al. (2014). To examine the performance of our
method to deal with series with different length we use the same class of
function of previous simulation study. The number of simulated series and
the number of simulated data set are also the same. In each dataset 15% of
missing data were randomly taken from a Normal distribution with mean
equal to 75 and variance equal to 5. Again, to perform a cluster we use
K-means algorithm and Pearson’s correlation distance. The configuration
setting is equal to the one of the previous study. For each cluster analysis
the adjusted Rand Index (ARI) by Hubert and Arabie (1985) was computed
in order to evaluate the degree of similarity between the estimated clusters
and the known (true) cluster. In addition, the computation time was also
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Mean ARI Sd ARI Average Time
10% 0.9315027 0.06047894 2.2199
20% 0.900624 0.04707609 4.7399
30% 0.9045141 0.05734862 7.0961
40% 0.9107914 0.072089451 7.2088

Table 4.2: Mean value and standard deviation of ARI and mean computational times related
to clustering procedure used for simulated data set with different length. The values are
reported for each procedure using a number of inner knots equal to 10%, 20%, 30%, 40% of
length of series.
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Figure 4.4: Boxplots of computational time required by the clustering procedure to fitK = 6
clusters (left side) and corresponding ARI values (right side) for series with different length.

recorded.
Table 4.2 shows the results of the simulation study. The average ARI index is
lower than the one obtained in previous simulation study with equal length.
However, the proposed method shows a good performance even in presence
of series with different length.
Figure 4.4 displays the boxplots of the computation time taken and
the corresponding ARI values using a number of basis spline equal to
10%, 20%, 30%, 40% of the length of the simulated series. As it can be noted as
the number of basis increase, the computational time increases. Surprisingly,
the maximum average ARI was recorded in the setting with 10% of interior
knot. In his case, there is also the maximum variability. Nevertheless, the
average ARI remains above 90% even with dealing with series of different
length.

4.5 Clustering of financial time series

The proposed technique was then applied to a financial time series with the
aim to build a portfolio. The data are provided by yahoo.finance.com and were
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Figure 4.5: Financial time series containing closing price of 86 stocks belonging to FTSE
Italia All-Share Index listed on Borsa Italiana during the period 01/01/2013 to 10/30/2014(left
side) and their estimated P-spline coefficients (right side).

collected daily from 01/01/2013 to 10/30/2014. The financial time series
contain the closing price of the FTSE Italia All-Share Index that consist of
stocks listed on the MTA and MIV markets of Borsa Italiana (BIt) that meet
minimum size and liquidity criteria. The index measures the performance of
the major capital and industry segments of the Italian market. The FTSE Italia
All-Share Index comprises all the constituents from the FTSE MIB, FTSE Italia
Mid Cap and FTSE Italia Small Cap, and captures approximately 95% of the
domestic market capitalization. The FTSE MIB Index is capped at 15% and
the FTSE Italia Mid Cap and Small Cap Indices are capped at 10%. The FTSE
Italia All-Share and All-Share Sector Indices are not capped. The indices use
a transparent, rules-based construction process. Index Rules are freely avail-
able on the FTSE website. Index constituents are categorized in accordance
with the Industry Classification Benchmark (ICB), the global standard for
industry sector analysis. In our analysis we choose 86 financial time series
belonging to 10 different industry sectors.
We model each financial time series by P-spline and the computed fit is de-
scribed by its coefficients. The number of basis spline, with cubic degree, was
chosen according to Ruppert (2002) and it is equal to 40.
The Figure 4.5 illustrates the financial time series used for the application and
the estimated P-spline coefficients for each series of closing prices. For this
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application we used the Euclidean distance. To select the number of clus-
ters a Silhouette index validation method (Kaufman and Rousseeuw, 2009)
is adopted. According to this validity index, the optimal number of clusters
chosen for k-means algorithm on P-spline coefficient of each closing prices
series is 3. The 3 groups classify the series according to the price dynamics.
The cluster 1 contains the stocks with higher price than the other groups. In
this cluster the minimum price is equal to 10.85 and the maximum price is
equal to 34.75. The cluster 2 contains the stocks with smaller price than the
other groups. In this cluster the minimum price is equal to 0.17 and the maxi-
mum price is equal to 12.93. The cluster 3 contains the stock with ”moderate”
price respect to the other groups. After the classification, the assets can be se-
lected from these cluster to build a portfolio. To reach this aim, we computed
the return for financial time series and chose the cluster containing the stocks
minimizing risk for a given level of expected return. One of the most refer-
enced risk/return measures, the Sharpe ratio 1966, is then computed. It is a
risk-adjusted measure of the portfolio return performance. Figure 4.6 shows
it for the 13 stocks belonging to cluster 1, Figure 4.7 for the 52 stocks belong-
ing to cluster 2 and Figure 4.9 for 21 stocks belonging to cluster 3. The cluster
1 and 2 contains the stocks with smaller and higher expected return and risk
compared to other clusters, respectively. The cluster 3 presents a risk-return
trade-off of the stocks in between two other cluster. Moreover, cluster 3 con-
tains 6 stocks (IF, BSS, REC, AVE, VAS, CAI) with Sharpe index higher.
Modern portfolio theory suggests to consider assets in a diversified portfolio
that have correlations of returns less than one with each other because in or-
der to decrease portfolio risk without sacrificing return. Such diversification
produce an increase in the Sharpe ratio. The correlation coefficient is negative
only for the for stocks of cluster 3. This suggest to select the assets belonging
to cluster 3 for portfolio. Thus, to start with to perform a cluster analysis on
P-spline coefficients of closing prices series is an efficient strategy to build a
portfolio.

Within the stocks belonging to cluster 3 we choose the following. The selec-
tion was based on a higher Sharpe ratio (IF, BSS, REC, ACE, VAS, CAI) and
lower correlation criteria (SOL, AGL, MARR, PCP). The 10 selected stocks
also belong to different industrial sectors improving the risk exposure of our
portfolio.
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Figure 4.6: Scatter chart of annualized returns versus annualized risk (standard deviation)
for comparing performance of stocks belonging to Cluster 1
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Figure 4.7: Scatter chart of annualized returns versus annualized risk (standard deviation)
for comparing performance of stocks belonging to Cluster 2
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Figure 4.8: Scatter chart of annualized returns versus annualized risk (standard deviation)
for comparing performance of stocks belonging to Cluster 3

The process of efficiently allocating wealth among stocks, has a longstanding
history in the academic literature.
Markowitz (1952, 1956) formalized the problem in a mean-variance frame-
work where one assumes that the rational investor seeks to maximize the
expected return for a given volatility level. This solution has drawbacks in
its practical implementation (Maillard et al., 2008). First, optimal portfolios
tend to be excessively concentrated in a limited subset of the full set of assets
or securities. Second, the mean-variance solution is overly sensitive to the in-
put parameters. Small changes in those parameters, most notably in expected
returns (Merton, 1980), can lead to significant variations in the composition
of the portfolio.
Alternative methods to deal with these issues have been suggested in the lit-
erature.
The minimum variance portfolio selects a specific portfolio on the mean-
variance efficient frontier. This portfolio is easy to compute since the solution
is unique. As the only mean-variance effcient portfolio not incorporating in-
formation on the expected returns as a criterion, it is also recognized as ro-
bust.
Benartzi and Thaler (2001) attribute the same weight to all the assets con-
sidered for inclusion in the portfolio. If all assets have the same correlation
coefficient as well as identical means and variances, the equally-weighted
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Asset MV EW ERC
IF 0.066696 0.1 0.090712

BSS 0 0.1 0.065481
REC 0.180253 0.1 0.123514
ACE 0.098225 0.1 0.097693
VAS 0.114629 0.1 0.107322
CAI 0.024891 0.1 0.081550
SOL 0.165993 0.1 0.123447
AGL 0.014189 0.1 0.078979

MARR 0.171747 0.1 0.117327
PCO 0.163379 0.1 0.113975

Table 4.3: Weights of our portfolio according to Mean-Variance (MV), Equally Weighted
(EW) and Equally Weighted Risk Contributions (ERC) methods.

MV EW ERC
E(Rpf ) 0.38 0.44 0.42
σ(Rpf ) 0.13 0.15 0.14

Table 4.4: Return and Volatility of our portfolio

portfolio is the unique portfolio on the efficient frontier.
Maillard et al. (2008) proposed another heuristic approach, which consti-
tutes a middle-ground stemming between minimum variance and equally-
weighted portfolios. The authors equalize risk contributions from the dif-
ferent stocks. The risk contribution of a asset is the share of total portfolio
risk attributable to it. It is computed as the product of the allocation in com-
ponent with its marginal risk contribution, the latter one being given by the
change in the total risk of the portfolio induced by an infinitesimal increase
in holdings of component.
Dealing with risk contributions has become standard practice for institu-
tional investors, under the label of ”risk budgeting”: the analysis of portfolio
in terms of risk contribution than asset weights. In Table 4.3 and in Table
4.4 are displayed the weights and the expected return and volatility for our
portfolio, respectively. As one can notice the Equally Weighted Risk Contri-
butions (ERC) method represents an interesting alternative compared to the
other two allocation strategies. Unlike the Minimum Variance (MV) portfo-
lio, the ERC portfolio is includes all the assets. To evaluate the performance
of these asset allocation strategy during the considered period we compute
the cumulative returns of the portfolios in according to the three methods.
Table 4.5 reports for each portfolio its performance indicators. One differ-
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Figure 4.9: Cumulative Performance of our portfolio built according to Mean-Variance
(MV), Equally Weighted (EW) and Equally Weighted Risk Contributions (ERC) allocation
strategy to compare the performance of 10 selected stocks of Cluster 3 chosen for our portfolio.

MV EW ERC
CAGR 33.28 41.41 39.14

Sharpe Index 2.07 2.43 2.40
Volatility 13.85 14.16 13.63
Max DD -18.09 -17.88 -17.39

VaR -1.41 -1.39 -1.35
Exposure 86.64 86.64 86.64

Table 4.5: Performance indicators of the three strategy for our portfolio (01/01/13 -
10/30/14).

ence among the strategies is in Compound Annual Growth Rate (CAGR). It
is a pro forma investment yield on an annually compounded basis. However,
the CAGR does not take the volatility into account. Indeed, we notice that
the portfolio built by MV and ERC strategies have smaller volatility than the
EW portfolio. ERC portfolio has more stable returns during the considered
period. Its Maximum DrawDown (MaxDD), that measures the largest peak-
to-trough decline in the value of a portfolio (before a new peak is achieved),
is lower than the other strategies. The performance of the ERC portfolio are
very similar to that obtained from its competitor EW. However the Value at
Risk (VaR), that measures the potential loss in value of the portfolio over the
defined period for a 99% confidence level, is lower for ERC portfolio.
According to Maillard et al. (2008) we can chose the ERC portfolio. In sum-

mary, this result suggested that the our proposed method can not only iden-
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tify clusters of stock prices with different profiles over time, but can be also
useful to build a financial portfolio.

4.6 Concluding remarks

This paper presented a new approach to cluster analysis of data (time) series.
We model each series by penalized spline (P-spline) smoothers (Eilers and
Marx, 1996) and we perform a cluster analysis on the estimated coefficients.
When series are observed in different time domain as they are of different
length, we perform cluster analysis on fitted values of a reduced time do-
main common to all series.
P-spline smoothers separate the signal of series from the noise, capturing
the different shapes. P-spline coefficients are close to the fitted curve and
present the skeleton of the fit (Eilers and Marx, 2010). Thus, summarizing
each series by spline coefficients reduces the dimensionality of the problem,
saving computational time without reduction in performance of clustering
procedure. To select the smoothing parameter we adopt a V-curve procedure
(Frasso and Eilers, 2015). This criterion does not require the computation of
the effective model dimension and it is insensitive to serial correlation in the
noise around the trend. Our propoal can be adopted within several cluster-
ing frameworks.
To evaluate the performance of our approach we conducted two analysis con-
sidering series with equal and unequal length, respectively. We simulated se-
ries as in Coffey et al. (2014). The results of both analysis evaluated in terms
of adjusted Rand Index (ARI) (Hubert and Arabie, 1985) show excellent per-
formance even with a limited number of bases. The average ARI remains
above 90% even with 15% of the missing data. Furthermore, the proposed
method ensures a decrease of the computational effort. Finally our method
was applied to a financial time series with the aim to build a portfolio that
can help financial practitioners to support their investment decisions.





BOOSTED-ORIENTED PROBABILISTIC CLUS-
TERING OF SERIES 5

Fuzzy clustering methods allow the objects to belong to several clus-
ters simultaneously, with different degrees of membership. However, a
factor that influences the performance of fuzzy algorithms is the value of
fuzzifier parameter. In this paper, we propose a fuzzy clustering procedure
for data (time) series that does not depend on the definition of a fuzzifier
parameter. It comes from two approaches, theoretically motivated for un-
supervised and supervised classification cases, respectively. The first is the
Probabilistic Distance (PD) clustering procedure. The second is the well
known Boosting philosophy. Our idea is to adapt the boosting approach
to unsupervised learning problems, specially to non hierarchical cluster
analysis. The aim is to assign each instance (i.e. a series) of a data set to a
cluster. The representative instance of a given cluster (i.e. the cluster cen-
ter) can be assumed as a target instance, a loss function can be assumed as
a synthetic index of the global performance, the probability of each instance
to belong to a given cluster can be assumed as the individual contribution
of a given instance to the overall solution. The global performance of the
proposed method is investigated by various experiments evaluated by us-
ing a fuzzy variant of the Rand Index. a

Keywords: Boosting, Cluster validity, Dissimilarity measure, Fuzzy
Clustering, P-Spline, Time series.

aThis chapter has been submitted for publication as: Iorio, C., Frasso, G.,
D’Ambrosio, A., Siciliano, R. (2015). Boosted-Oriented Probabilistic Clustering of Series.

5.1 Introduction

Our aim is to define a clustering technique for data (time) series belonging
to the category of fuzzy (probabilistic) clustering. The goal of clustering is to
discover groups so that objects within a cluster have high similarity among
them, and at the same time they are dissimilar to objects in other clusters.

91
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Many clustering algorithms for time series have been introduced in the lit-
erature. Since clusters can formally be seen as subsets of the data set, one
possible classification of clustering methods can be according to whether the
subsets are fuzzy (soft) or crisp (hard). Let D be a data set consisting of N
series {y1, y2, ..., yN} ⊂ Rn and let K be an integer, with 2 ≤ K < N , the goal
is to partition D into CK groups. Crisp clustering methods are based on clas-
sical set theory, and restrict that each object of data set belongs to exactly one
cluster. It means partitioning the data D into a specified number of mutually
exclusive clusters C1, C2, ...CK .
A hard partition of D can be defined as a family of subsets Ck that satisfies
the following properties (Bezdek, 1981):

K⋃
k=1

Ck = D,

Ck ∩ Ch = ∅, k 6= h

∅ ⊂ Ck ⊂ D, 1 ≤ k ≤ K.

Let µik be the membership function and let U = [µik] be the N ×K partition
matrix. The elements of U must satisfy the following conditions:

µik ∈ {0, 1}, 1 ≤ k ≤ K, 1 ≤ i ≤ N ;

K∑
k=1

µik = 1;

0 <

N∑
i=1

µik < N.

The kth column of U contains value of µik of the kth subset Ck of D.
In a hard partition, µk(yi) is the indicator function:

µk(yi) =

{
1, if yi ∈ Ck;
0, otherwise.

Following Bezdek (1981) the hard partitioning space is thus defined by:

Mc = {U ∈ RK×n|µik ∈ {0, 1},∀i, k;

K∑
k=1

µik = 1,∀i, 0 <
N∑
i=1

µik < N, ∀k},
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Mc being the space of all possible hard partition matrices for D.
Generalizing the crisp partition, U is a fuzzy partitions of D with ele-
ments µik of the partition matrix bearing real values in [0, 1] Kaufman and
Rousseeuw (2009).
The idea of fuzzy set was conceived by Zadeh (1965). Fuzzy clustering meth-
ods allow the objects to belong to several clusters simultaneously, with dif-
ferent degrees of membership. In contrast to hard clustering, each object will
have a membership value in every cluster. The larger is the value of the
membership value for a given object with respect to a cluster, the larger is the
probability of that object to be assigned to that cluster.
Similarly to crisping conditions, the conditions for a fuzzy partitions are
given by Ruspini (1970):

µik ∈ [0, 1], 1 ≤ k ≤ K, 1 ≤ i ≤ N ;

K∑
k=1

µik = 1;

0 <
N∑
i=1

µik < N.

Finally, the fuzzy partitioning space is the set:

Mf = {U ∈ RK×n|µik ∈ [0, 1],∀i, k;
K∑
k=1

µik = 1,∀i, 0 <
N∑
i=1

µik < N, ∀k.}

Several clustering criteria have been proposed to identify fuzzy partition in
D. Among these proposals, the most popular method is fuzzy c-means.
Proposed by Dunn (1973) and developed by Bezdek (1981), fuzzy c-means
considers each data point as a possible member of multiple clusters with a
membership value. This algorithm is based on minimization of the following
objective function:

Jm =

N∑
i=1

K∑
k=1

(µik)
m‖yi − ck‖2 (5.1)

s.t.
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µik ∈ [0, 1], ∀i, k;∑K
k=1 µik = 1;

0 <
∑N

i=1 µik < N.

In the equation (5.1), m is any real number greater than 1, µik is the degree of
membership of yi in the cluster k. and ‖·‖ is any norm expressing the simi-
larity between any measured data and the center. The parameter m is called
fuzzifier or weighting coefficient. To perform fuzzy partitioning, the number of
clusters and the weighting coefficient have to be chosen. The procedure is
carried out through an iterative optimization of the objective function shown
above, with the update of membership value µik and the cluster centers ck by
solving:

ck =

∑N
i=1(µik)

myi∑N
i=1(µik)m

, k = 1, . . . ,K. (5.2)

µik =

(
K∑
h=1

(
(m−1)
√
‖yi − ck‖2

(m−1)
√
‖yi − ch‖2

))−1

i = 1, . . . , N ; k = 1, . . . ,K. (5.3)

The algorithm is synthesized in box 1.
One of limitations of fuzzy c-means clustering is the value of fuzzifier m. A
large fuzzifier value suppresses outliers in data sets, i.e. the larger m, the
more clusters share their objects and vice-versa. For m → ∞ all data objects
have identical membership to each cluster, for m = 1, the method becomes
equivalent to k-means. The role of the weighting exponent has been well
investigated in literature.
Pal and Bezdek (1995) suggested taking m ∈ [1.5, 2.5].
Dembélé and Kastner (2003) obtain the fuzzifier with an empirical method
calculating the coefficient of variation of a function of the distances between
all objects of the entire data set.
Yu et al. (2004) proposed a theoretical upper bound form that can prevent the
sample mean from being the unique optimizer of a fuzzy c-means objective
functions.
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Box 1 Fuzzy c-means algorithm

Initialize: K = number of centers, m, (1 < m < ∞), ε = a small threshold.
Set the counter l = 1 and initialize the matrix of the fuzzy c-partitions
U = [µ

(l)
ik ].

while |U(l+1) −U(l)| > ε do
- Calculate the cluster center, c(l)

k by using equation (5.2).
- Update the membership matrix U = [µik] by using equation (5.3), if

yi 6= c
(l)
k ,

otherwise set µik = 1 if l = i or set µik = 0 if l 6= i.
- Compute |U(l+1) −U(l)|.
if |U(l+1) −U(l)| > ε then

- Set l = l + 1

end if
end while
output: estimated centers ĉk, membership matrix U.

Futschik and Carlisle (2005) search for a minimal fuzzifier value for which the
cluster analysis of the randomized data set produces no meaningful results,
by comparing a modified partitions coefficient for different values of both
parameters.

Schwämmle and Jensen (2010) showed that the optimal fuzzfier takes values
far from the its frequently used value equal to 2. The authors introduced
a method to determine the value of the fuzzifier without using the current
working data set. Then for high dimensional ones, the fuzzifier value de-
pends directly on the dimension of data set and its number of objects. For
low dimensional data set with small number of objects, the authors reduce
the search space to find the optimal value of the fuzzifier. According to the
authors, this improvement helps choosing the right parameter and saving
computational time when processing large data set.

On the basis of a robust selection analysis of the algorithm, Wu (2012) founds
that a large value of m will make fuzzy c-means algorithm more robust to
noise and outliers. The author suggested to use value of fuzzifier ranging
between 1.5 and 4.

Since the weighting coefficient determines the fuzziness of the resulting
classification, we propose a method that is independent from the choice of
the fuzzifier. It comes from two approaches, theoretically motivated for un-
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supervised and supervised classification cases respectively. The first is the
Probabilistic Distance (PD) clustering procedure defined by Ben-Israel and
Iyigun (2008). The second is the well known Boosting philosophy. From the
PD approach we took the idea of determining the probabilities of each se-
ries to any of the k clusters. As this probability is unequivocally related to
the distance of each series from the centers, there are no degrees of freedom
in determine the membership matrix. From the Boosting approach (Freund
and Schapire, 1997) we took the idea of weighting each series according some
measure of badness of fit in order to define an unsupervised learning process
based on a weighted re-sampling procedure. This paper is organized as fol-
lows: Section 5.2 contains our proposal, in Section 5.3 the results of some ex-
perimental evaluation studies are carried out and some concluding remarks
are presented in Section 5.4.

5.2 Boosted-oriented probabilistic clustering of time series

5.2.1 The key idea

The boosting approach is based on the idea that a supervised learning algo-
rithm (weak learner) improves its performance by learning from its errors
(Freund and Schapire, 1997). It consists of an ensemble method that work
with a re-sampling procedure (Dietterich, 2000). The general idea consists
in running several times the supervised learning algorithm and assigning a
weight to each instance of a data set that governs the re-sampling (with re-
placement) process during the iterations. The weights are set in such a way
that the misclassified instances gets a weight larger than the weight assigned
to well classified instances. In this way, the probability to be included in the
sample during the iterations is higher for those instances for which the su-
pervised learning algorithm returns a wrong classification. There exist boost-
ing algorithms for both classification and regression problems (Freund and
Schapire, 1997; Dietterich, 2000; Eibl and Pfeiffer, 2002; Gey and Poggi, 2006).
In both cases the weighting system combine a synthetic index of the perfor-
mance of the supervised learning algorithm with some index that represents
the individual contribution of a given instance to the overall solution. Our
idea is to adapt the boosting philosophy to unsupervised learning problems,
specially to non hierarchical cluster analysis. In such a case there not exists
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a target variable, but as the goal is to assign each instance (i.e. a series) to
a cluster, we have a target instance. The representative instance of a given
cluster (i.e. the cluster center) can be assumed as a target instance, a loss
function to be minimized can be assumed as a synthetic index of the global
performance, the probability of each instance to belong to a given cluster can
be assumed as the individual contribution of a given instance to the overall
solution. In contrast to the boosting approach, the larger is the probability of
a given series to be member of a given cluster, the larger is the weight of that
series in the re-sampling process. As a learner we use a P-spline smoother. To
define the probabilities of each series to belong to a given cluster we use the
PD clustering approach (Ben-Israel and Iyigun, 2008). This approach allows
us to define a suitable loss function and, at the same time, to propose a fuzzy
clustering procedure that does not depend on the definition of a fuzzifier pa-
rameter.

5.2.2 A brief introduction to P-splines

P-splines have been introduced by Eilers and Marx (1996) as flexible smooth-
ing procedures combining B-splines (de Boor, 1978) and difference penalties.
Suppose to observe a set of data {x, y}nj=1, where the vector x indicates the
independent variable (e.g. time) and y the dependent one. We want to de-
scribe the available measurements through an appropriate smooth function.
DenoteBh(x; p) the value of the hth B-spline of degree p defined on a domain
spanned by equidistant knots (in case of not equally spaced knots our reason-
ing can be generalized using divided differences). A curve that fits the data is
given by ŷ(x) =

∑
h ahBh(x; p) where ah ()with h = 1, ...,# of basis) are the

estimated B-splines coefficients. Unfortunately the curve obtained by mini-
mizing ‖y − Ba‖2 w.r.t. a shows more variation than is justified by the data
if a dense set of spline functions is used. To avoid this over-fitting tendency
it is possible to estimate a using a generous number of bases in a penalized
regression framework:

â = argmin
a
‖y− Ba‖2 + λ‖Da‖2, (5.4)

where D is a dth order difference penalty matrix and λ is a smoothing param-
eter. Second or third order difference penalties are suitable in many applica-
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tions.
The optimal spline coefficients follow from (5.4) as:

â = (B>B + λD> D)−1 B> y. (5.5)

The smoothing parameter λ controls the trade-off between smoothness and
goodness of fit. For λ → ∞ the final estimates tend to be constant while for
λ→ 0 the smoother tends to interpolate the observations.
Popular methods for smoothing parameter selection are: the Akaike Informa-
tion Criterion, Cross Validation. AIC estimates the predictive log likelihood,
by correcting the log likelihood of the fitted model (Λ) by its effective dimen-
sion (ED): AIC = 2ED − 2Λ. Following Hastie and Tibshirani (1990) we can
compute the effective dimension as ED = tr[(B>B + λD> D)−1 B> B] for the
P-spline smoother and

2` = −2n ln σ̂2
n∑
j=1

(yj − ŷj)2

σ̂2
0

,

where σ̂ is the maximum likelihood estimate of σ. But σ̂2 =
∑

j(yj − ŷ2
j )

2/n,
so the second term of ` is a constant. Hence the AIC can be written as

AIC(λ) = 2ED + 2n ln σ̂.

The optimal parameter is the one that minimizes the value of AIC(λ).
LOO-CV chooses the value of λ that minimizes

CV(λ) =
n∑
i=j

[
yj − ŷj
1− hjj

]2

,

where hjj is the jth diagonal entry of H = B(B>B + λD> D)−1 B>.
Analogous to CV is the generalized cross validation measure Wahba

(1990)

GCV(λ) =
n∑
j=1

[
yj − ŷj
n− ED

]2

, (5.6)

where ED = tr( H). In analogy with cross validation we select the smoothing
parameter that minimizes GCV(λ).

All these selection procedures suffer of two drawbacks: 1) they require
the computation of the effective model dimension which can become time
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consuming for long data series, and 2) they are sensitive to serial correlation
in the noise around the trend. The L-curve (Hansen, 1992) and the derived V-
curve criteria (Frasso and Eilers, 2015) overcome these hitches. The L-curve
is a parameterized curve comparing the two ingredients of every regulariza-
tion or smoothing procedure: badness of the fit and roughness of the final
estimate. For a P-spline smoother, the following quantities can be defined

{ω(λ); θ(λ)} = {‖y− Bâ‖2; ‖Dâ‖2}.

The L-curve is obtained by plotting ψ(λ) = log(ω) against φ(λ) = log(θ). This
plot typically shows a L-shaped curve and the optimal amount of smoothing
is located in the corner of the “L” by maximizing the local curvature measure

κ(λ) =
ψ
′
(λ)φ

′′
(λ)− ψ′′(λ)φ

′
(λ)

[ψ′(λ)2 + φ′(λ)2]3/2
. (5.7)

The V-curve criterion offers a valuable simplification of the searching cri-
terion by requiring the minimization of the Euclidean distance between the
adjacent points on the L-curve.

5.2.3 PD clustering approach

Let D be a dataset consisting of N series {y1, y2, ..., yN} ⊂ Rn and let Ck be
kth cluster, with k ∈ (1,K), partitioning D. We suppose that each series has
the same domain of length n.

At each cluster Ck is associated a cluster center ck, with k = 1, ...,K.
Let di,k = d(yi, ck) be a distance function of the ith series from the kth cluster
center.
Let Pi,k = P (yi, Ck) be the probability of the ith series belonging to the kth

cluster.
For each series y ∈ D and each cluster Ck, we assume the following relation
between probabilities and distances (Ben-Israel and Iyigun, 2008):

Pi,kdi,k = constant. (5.8)

The constant in (5.8) only depends on series y and it is independent of the
cluster k. Equation (5.8) allows to to define the membership probabilities as
(Heiser, 2004; Ben-Israel and Iyigun, 2008) as:



100 Chapter 5. Boosted-Oriented Probabilistic Clustering of Series

Pi,k =

∏
i 6=j dj,k∑K

k=1

∏
i 6=j di,k

. (5.9)

In contrast to the proposal of Ben-Israel and Iyigun, any suitable distance
measure can be used.

5.2.4 The algorithm

Since the probabilities as defined in equation (5.9) sum up to one among the
clusters, we used the quantity

∏K
k=1 Pi,k as a measure of badness represen-

tation of the ith series with respect to the overall solution of the clustering
procedure. It is easy to note that

∏K
k=1 Pi,k = 0 if the ith series coincides with

the kth cluster center, as well as
∏K
k=1 Pi,k = K−1 if there is maximum uncer-

tainty in assigning the ith series to any cluster center. For this reason we use
as measure of badness of cluster solution the quantity:

BC =
1

N

N∑
i=1

(
K∏
k=1

Pi,k)K
K . (5.10)

Equation (5.10) is a synthetic measure of badness of clustering procedure:
the lower is its value, the better is the solution. It equals zero when there
is a perfect solution (i.e., each series has probability equal to one to belong
to some cluster center). The maximum possible value of equation (5.10) is
1, when each series has probability equal to K−1 to belong to each of the
K cluster. The BC index allows to compare the overall clustering solution
when the number K of the clusters differs.

We define the loss function to be minimized during the iterative process as:

β =
N∑
i=1

(
K∏
k=1

Pi,k)K
K . (5.11)

Let γi,k = di,k/max
K
k=1di,k be the contribution of the ith series to generate th

kth cluster.
Let Γ be a N × K indicator matrix whose entries are 1 if Pi,k > Pi,h (k, h =
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1, . . . ,K, k 6= h) and −1 otherwise.
We define the weight of the ith series for the kth cluster as

wi,k = βγi,kΓi,k .

For each cluster k, the weights are first normalized in this way:

w•i,k =
wi,k∑K
h=1wi,h

,

then within each cluster we set

Wi,k =
w•i,k∑N
i=1w

•
i,k

. (5.12)

For each cluster k, a sample L(k) is extracted with replacement from D, tak-
ing in account the weights as defined in equation (5.12). Then the cluster
centers ĉk = Bâk, k = 1, . . . ,K are estimated by using a P-spline smoother.
These centers are then used to compute the membership probabilities as in
equation (5.9) for the next iteration. The cluster centers are re-estimated and
adaptively updated with an optimal spline smoother.
The choice of the metric depends on the nature of the series, the optimal
P-spline smoothing procedure frames our approach in the framework of
model-based clustering but it frees the user from the choice of the optimal
model to be chosen for each series. Box 2 shows the pseudo-code of our the
Boosted-Oriented P-Spline Probabilistic Clustering algorithm.

The procedure described in box 2 is repeated a certain number of times due
to the sensitivity of final solution to the random choice of cluster center.

5.3 Experimental evaluation

To evaluate the performance of the proposed algorithm, we conducted three
experiments. In estimating the optimal P-splines smoother, we always used
the L-curve criterion as in equation (5.7) to select the optimal λ parameter,
and we used a number of interior knots equal to min(n4 ; 40), in which n is the
length of time domain, as suggested by Ruppert (2002). Moreover we need
a measure of goodness of fuzzy partitions. To reach this aim, we decided to
use a fuzzy variant of the Rand Index proposed by Hullermeier et al. (2012).
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Box 2 Boosted-oriented P-spline probabilistic clustering of time series

input D
initialize: maxiter = maximum number of iterations; K = the number of
clusters; d = a suitable distance measure; ck, k = 1 : . . . ,K random cluster
centers.
for iter=1:maxiter do

- compute the N ×K distance matrix D = [di,k] ∀i, k;
- compute the membership probabilities P = [Pi,k] ∀i, k as in equation
(5.9);
- compute β[iter] as in equation (5.11);
- assign the weights to each series for each cluster and compute the
N ×K matrix W as in equation (5.12);
for k = 1 : K do

- extract the sample Lk from D
- compute center ĉ

[iter]
k = Bâk

end for
if iter = 1 then

- ĉ∗k = Bâk
else

for k = 1 : K do
- update cluster centers ĉ∗k = Bâ∗k,
with â∗k = (B>B + λD>D)−1B>ĉ

[1:iter]
k

end for
end if

end for
output: estimated cluster centers ĉ∗k, membership probabilities matrix P.

This index is defined by the complement to 1 of the normalized sum of de-
gree of discordance. The Rand index developed by Rand (1971) is a external
evaluation measure to compare the clustering partitions on a set of data. The
problem of evaluating the solution of a fuzzy clustering algorithm with the
Rand index is that it requires converting the soft partition into a hard one,
losing information.
As shown in Campello (2007), different fuzzy partitions describing different
structures in the data may lead to the same crisp partition and then in the
same Rand index value. For this reason the Rand index is not appropriate for
fuzzy clustering assessment.
To overcome this problem Hullermeier et al. (2012) proposed a generalization
of the Rand index for fuzzy partitions. We recall some essential background.
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Let P = {P1, . . . ,PK} be a fuzzy partition of the data set D, each element
yi ∈ D is characterized by its membership vector:

Pi = (P1(yi),P2(yi), . . . ,Pk(yi), . . . ,PK(yi)) ∈ [0, 1]K (5.13)

where Pk(yi) is the degree membership of the ith series to the kth cluster
Pk. Given any pair (yi, y

′
i) ∈ D, Hullermeier et al. (2012) defined a fuzzy

equivalence relation on D in terms of similarity measure on the associated
membership vectors (5.13). Generally, this relation is of the form:

EP = 1− ‖Pi − Pi′‖

where ‖·‖ represents theL1norm divided by 2 that constitutes a proper metric
on [0, 1]K and yields value on [0, 1]. EP is equal to 1 if and only if yi and y

′
i

have the same membership pattern and is equal to 0 otherwise. The basic
idea of the authors to reach the fuzzy extension of the Rand index was to
generalize the concept of concordance in the following way.
Given 2 fuzzy partition, P and Q and considering a pair (yi, y

′
i) as being

concordant as P and Q agree on its degree of equivalence, they defined the
degree of concordance as

conc(yi, y
′
i) = 1− ‖ EP(yi, y

′
i)− EQ(yi, yi

′) ‖ ∈ [0, 1],

and degree of discordance as:

disc(yi, y
′
i) =‖ EP(yi, y

′
i)− EQ(yi, y

′
i) ‖ ∈ [0, 1].

Finally, the distance measure proposed by Hullermeier et al. (2012) is defined
as the normalized sum of degrees of discordance:

d(P,Q) =

∑
(yi,y

′
i)∈D
‖EP(yi, y

′
i)− EQ(yi, y

′
i)‖

N(N − 1)/2

The direct generalization of the Rand index corresponds to the normalized
degree of concordance and it is equal to:

RE(P,Q) = 1− d(P,Q)

and it reduces to the original Rand index when partitions P and Q are non-
fuzzy.
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As true fuzzy partition, we always computed the true cluster centers with an
optimal P-spline smoother, and then we computed the true probabilities by
applying equation (5.9).

5.3.1 Simulated data

As a first experiment, we generated K = 6 clusters of numerical series at
n = 10 equally spaced time points in [0, 1] as described in Coffey et al. (2014).
Distinct cluster specific models were used (subscript i refers to the series,
subscriptj refers to the time domain):

y
(1)
ij = αi + sin(βi ∗ π ∗ xij) + γi + εij

y
(2)
ij = xij + (δi)

−3 + ιi + γi + εij

y
(3)
ij = νi + γi + εij

y
(4)
ij = ζi + cos(ζi ∗ π ∗ xij) + γi + εij

y
(5)
ij = ξi − ηi ∗ exp(−θi ∗ xi) + γi + εij

y
(6)
ij = −3(xij − 0.5) + γi + εij

where:
αi ∼ N(

√
2;σ2

e) with σ2
e = 0.08, βi ∼ N(4 ∗ π;σ2

e), δi ∼ N(0.75;σ2
e),

ιi ∼ N(1;σ2
e), νi ∼ N(0;σ2

e), ζi ∼ N(2;σ2
e), ξi ∼ N(2;σ2

v) with σ2
v = 0.85,

ηi ∼ N(4;σ2
v), θi ∼ N(6;σ2

e), γi ∼ N(0;σ2
u) with σ2

u ranging from 0.3 to 1 and
εij is an autoregressive model of order 1.
Cluster means were chosen to reflect the situation where there are series that
show little variation in value over time (as given by cluster 3) and series
which have distinct signal over time. Cluster sizes were equal to 90, 50, 100,
25, 60 and 35, for cluster 1, 2, 3, 4, 5, 6 respectively, giving a total number of
360 simulated series. Data set is plotted in Fig.5.1.

Given the nature of the simulated series, we are interested in the simi-
larity of the shape of the series. For this reason the chosen metric was the
Penrose shape distance (Penrose, 1952), defined as:

di,j =

√
ni

ni − 1
(d2
i,j − q2

ij), (5.14)
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Figure 5.1: Data set generated for simulation study.

where d2
i,j is the squared average Euclidean distance coefficient and q2

ij =

1
n2
i

(∑ni
j=i yji −

∑ni
j=1 cjk

)2
.

We performed five analyses with 100, 500, 1000, 5000 and 10000 boosting
iterations. In all cases we set 10 random starting points. Figure 5.2 shows the
behavior of the BC function as defined in equation (5.10) during the boost-
ing iterations. In this case the BC values appear to be non-increasing as the
number of iterations increases. The values of the BC function are equal to
0.3615, 0.2783, 0.2643, 0.2584, 0.2583 for 100, 500, 1000, 5000 and 10000 boost-
ing iterations respectively.

All the solutions return in fact the same results in terms of estimated centers:
in example, figure 5.3 shows the estimated cluster centers for each cluster as
returned by the first analysis.

For this data set, by using the Penrose shape distance, the Fuzzy Rand In-
dex is equal to 0.8599, 0.8954, 0.9059, 0.9178 and 0.9194 for the solutions with
respectively 100, 500, 1000, 5000 and 10000 boosting iterations. Even if the so-
lutions in terms of ”hard” clustering are the same, the difference in terms of
Fuzzy Rand Index indicates that the partitions returned by the algorithm are
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Figure 5.2: BC function progress through 100 boosting iterations: (a) = 100
boosting iterations; (b) = 500 boosting iterations; (c) = 1000 boosting itera-
tions; (d) = 5000 boosting iterations; (e) = 10000 boosting iterations

really close to the true one. The true value of the BC index is 0.1977.

5.3.2 Synthetic data set

Synthetic.tseries data set is freely available from the TSclust R-package
(Montero and Vilar, 2014). Synthetic.tseries data consist of three partial re-
alizations of length n = 200 of six first order autoregressive models. Figure
5.4 shows separately the six groups of series. Subplot (a) shows an AR(1)
process with moderate autocorrelation. Subplot (b) contains series from a bi-
linear process with approximately quadratic conditional mean. Subplot (c) is
formed by an exponential autoregressive model with a more complex non-
linear structure. Subplot (d) shows a self-exciting threshold autoregressive
model with a relatively strong non-linearity. Subplot (e) contains series gen-
erated by a general non-linear autoregressive model and subplot (f) shows a
smooth transition autoregressive model presenting a weak non-linear struc-
ture. As we did not generate these series we do not show completely the
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Figure 5.3: Estimated cluster centers

simulation setting. For more details about the generating models we refer to
Montero and Vilar, 2014, p. 24.
Assuming that the aim of cluster analysis is to discover the similarity be-
tween underlying models, the ”true” cluster solution is given by the six clus-
ters involving the three series from the same generating model. Given the
nature of the data set considered, we use a periodogram-based distance mea-
sure proposed by Caiado et al. (2006). It assesses the dissimilarity between
the corresponding spectral representation of time series.

By following also the suggestion of to Montero and Vilar (2014), an interest-
ing alternative to measure the dissimilarity between time series is the fre-
quency domain approach. Power spectrum analysis is concerned with the
distribution of the signal power in the frequency domain. The power-spectral
density is defined as the Fourier transform of the autocorrelation function of
ith series. It is a measure of self-similarity of a signal with its delayed ver-
sion. The classic method for estimation of the power spectral density of an
n-sample record is the periodogram introduced by Schuster (1897). Let y and
y
′

be two time series of length n.
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Figure 5.4: Synthetic.tseries data set

Let fj = 2πj/n, j = 1, . . . , n/2 in the range 0 to π, be the frequencies of the
series.
Let PSDy(fj) = 1

n

∑n
t=1 |yt(fj) exp (−ιtfj)|2.

Let PSDy′ (fj) = 1
n

∑n
t=1 |y

′
t(fj) exp (−ιtfj)|2 be the periodograms of series y

and y
′
, respectively.

Finally, the dissimilarity measure between y and y
′

proposed by Caiado et al.
(2006) is defined as the Euclidean distance between periodogram ordinates :

dy,y′ =

√√√√√(n/2)∑
j=1

[PSDy(fj)− PSDy′ (fj)]
2. (5.15)

We performed our analysis by setting 800 boosting iterations and 10 random
starting points.
Table 5.1 shows the results of applying our algorithm to the Synthetic.tseries
data set. Each series is assigned to the estimated cluster according to the
value of the membership probability matrix. In order to obtain the Fuzzy
Rand Index, we computed the true cluster centers with a periodogram mod-
eled by P-spline , and then we computed the true probabilities by applying
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Estimated Clusters
C1 C2 C3 C4 C5 C6

True Clusters

a 0 0 0 0 0 3
b 0 1 0 2 0 0
c 3 0 0 0 0 0
d 0 3 0 0 0 0
e 0 0 3 0 0 0
f 0 0 0 0 3 0

Table 5.1: Confusion matrix from clustering on Synthetic.tseries data set

equation (5.9) by using the periodogram-based distance as in equation (5.15).
The Fuzzy Rand Index is equal to 0.9698. Even if the solutions in terms of
”hard” clustering seems to be excellent (since only series is misclassified), the
difference in terms of Fuzzy Rand index indicates that the partitions returned
by the algorithm are really close to the true one.

5.4 A real data example

The ”‘growth”’ data set is freely available from the internal repository of the
R-package fda (Ramsay et al., 2012). This data set comes from the Berkeley
Growth Study (Tuddenham and Snyder, 1954). Left hand side of figure 5.5
shows the growth curves of 93 children, 39 boys and 54 girls, starting by the
age of one year till the age of 18. The right hand side of the same figure
displays the corresponding growth velocities.

Figure 5.5: Growth curves (left hand side) and growth velocity curves (right
hand side) of 93 children from Berkeley Growth Study data
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In the framework of cluster analysis this data set was mainly used for
problems of clustering of misaligned data (Sangalli et al., 2010a,b). We per-
formed two analyses with 800 boosting iterations and with 10 random start-
ing point withK = 2. In the first partitioning analysis we used the Euclidean
distance. The estimated centers of both the growth curves and the growth
velocity curves are displayed respectively in the left and right hand side of
figure 5.6. As it can be noted, Euclidean distance discriminates between chil-
dren growing more and children growing less. This can be appreciated by
looking at left hand side of the same figure. On average, as expected, boys
grow more than girls.

Figure 5.6: Estimated centers of growth curves (left hand side) and growth
velocities (right hand side): Euclidean distance

Nevertheless, Euclidean distance does not seem the right measure to be used
in such a case. Probably researchers are interested in the shape of both
growth and growth velocity curves during the years. For this reason, we
repeated the analysis by using the Penrose shape distance as defined in equa-
tion (5.14). Figure 5.7 shows the estimated centers for both the growth and
the growth velocity curves. The recognized centers are really similar to the
ones obtained by Sangalli et al. (2010a; 2010b): firstly, as confirmed by looking
at tables 5.4 and 5.5 with respect to tables 5.2 and 5.3, there is a neat separa-
tion of boys and girls. Secondly, by looking at right hand side of figure 5.7,
boys start to grow later but they seem to have a more pronounced growth, as
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it can be noticed by looking at the higher peak in correspondence of 15 year.

Figure 5.7: Estimated centers of growth curves (left hand side) and growth
velocities (right hand side): Penrose shape distance.

Cluster 1 Cluster 2
Boys 23 16
Girls 16 38

Table 5.2: Confusion matrix of growth curves with the Euclidean distance.
Series have been assigned to the clusters according the values of membership
probabilities computed as in equation (5.9).

Cluster 1 Cluster 2
Boys 31 8
Girls 9 45

Table 5.3: Confusion matrix of growth velocity curves with the Euclidean
distance. Series have been assigned to the clusters according the values of
membership probabilities computed as in equation (5.9).

The Fuzzy Rand Index is equal to 0.8884 and 0.8240 by using the Euclidean
distance for the partitions of growth and growth velocity curves respectively.
The Fuzzy Rand Index is equal to 1.000 and 0.9246 by using the Penrose
shape distance for the partitions of growth and growth velocity curves re-
spectively.
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Cluster 1 Cluster 2
Boys 0 39
Girls 52 2

Table 5.4: Confusion matrix of growth curves with the Penrose shape dis-
tance. Series have been assigned to the clusters according the values of mem-
bership probabilities computed as in equation (5.9).

Cluster 1 Cluster 2
Boys 36 3
Girls 4 50

Table 5.5: Confusion matrix of growth velocity curves with the Penrose shape
distance. Series have been assigned to the clusters according the values of
membership probabilities computed as in equation (5.9).

5.5 Concluding remarks

In this paper we merged two approaches, theoretically motivated for respec-
tively unsupervised and supervised classification cases, to introduce a new
non-hierarchical fuzzy clustering algorithm.
From the Probabilistic Distance (PD) clustering (Ben-Israel and Iyigun, 2008)
approach we took the idea of determining the probabilities of each series to
any of the k clusters. As this probability is unequivocally related to the dis-
tance of each series from the cluster centers, there are no degrees of freedom
in determine the membership matrix. From the Boosting approach (Freund
and Schapire, 1997) we took the idea of weighting each series according
some measure of badness of fit in order to define an unsupervised learning
process based on a weighted re-sampling procedure.
In contrast to the boosting approach, the higher is the probability of a given
instance to be member of a given cluster, the higher is the weight of that in-
stance in the re-sampling process. As a learner we used a P-spline smoother
(Eilers and Marx, 1996). In this way we defined a suitable loss function and,
at the same time, we proposed a fuzzy clustering procedure that does not de-
pend on the definition of a fuzzifier parameter. To evaluate the performance
of our proposal, we conducted three experiments, one of them on simulated
data and the remaining two on data sets known in literature. The results
show that our Boosted-oriented procedure help users to obtain good results
in terms of data partitioning. Even if the final fuzzy partition is sensitive
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to the choice of a distance measure, it is independent on any other input
parameters. This consideration allows to define a suitable true fuzzy par-
tition with which evaluate the final solution in terms of Fuzzy Rand Index
(Hullermeier et al., 2012). The weighted re sampling process allows each
series to contribute to the composition of each cluster as well as the adaptive
estimation of cluster centers allow the algorithm to learn by its progresses.





CONCLUSIONS AND PERSPECTIVE 6
The framework of this thesis is supervised and unsupervised classification.
The general framework has been presented in chapter 2. Three methodolog-
ical contributions have been provided and widely discussed in chapters 3, 4

and 5. In the following we give a chapter-wise summary of the main results.

Chapter 3 introduced Visual Pruning for Decision Trees. Within the frame-
work of Classification And Regression Trees (CART) methodology (Breiman
et al., 1984), we proposed a strategy to select decision trees, which is alter-
native to the classical cost-complexity pruning. The contribution is on both
the visual representation of the data partition in a geometrical space and the
selection of the decision tree. Main idea is to define a new way to represent
the tree structure by a node-link diagram. The tree structure appears with
edges of different length depending on the impurity decrease when passing
from one node to another. The lower is the impurity in the descendant node,
the longest is the length of path. Indeed, the edges connecting the parent
node and its child node can be visualized with a length proportional to the
decrease of impurity. In this way we have two advantages from the pro-
posed graphical representation. The first one is to add meaningful statistical
measures to the interpretation of the exploratory tree. The second one is to
provide a visual selection criterion to choose the best decision tree for pre-
dicting new cases. As a consequence, it is possible to define for any branch of
the oriented tree the path decrease in impurity from the starting node to its
descendants. In this way we show the best splits and the purest nodes of the
tree. The proposed method points out the relative importance of each split,
identifying which of them are the most discriminant and the best cut level
to obtain an optimal decision tree. The advantage of the proposed visual ap-
proach is to identify the weakest link for pruning as well as the best tree by
a graphical analysis. With respect to CART methodology there is not need to
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identify the sequence of nested trees by a pruning procedure on which basis
selecting the best decision tree. Since the badness of fit of a tree is measured
by misclassification rate, the pruning is immediately apparent in accordance
with it. The main interpretative advantages of the proposed visual tree are
shown in an application on a real data set. The results in terms of error rate
were really similar to the ones returned by the CART procedure, showing
how this new way to select the best tree is a valid alternative to the well
known cost-complexity pruning.

Chapter 4 introduced P-spline based Clustering of Correlated series. Within
the framework of cluster analysis of time series we proposed a new way to
partition the data based on Penalized spline (P-spline) proposed by Eilers
and Marx (1996). Time series arise in many scientific areas. Several clustering
algorithms have been proposed. Most of the time, these procedures do not fa-
cilitate the removal of noise from data, have difficulties handling time series
with unequal length and require a preprocessing step of the considered data,
i.e. by modeling each series with an appropriate model for time series. We
tried to overcome these hitches. In this work we proposed a new approach
exploiting a P-spline framework. We model each series by penalized spline
(P-spline) smoothers (Eilers and Marx, 1996) and we perform a cluster anal-
ysis on the estimated coefficients. P-spline smoothers separate the signal of
series from the noise, capturing the different shapes. P-spline coefficients are
close to the fitted curve and present the skeleton of the fit (Eilers and Marx,
2010). Thus, summarizing each series by spline coefficients reduces the di-
mensionality of the problem, saving computational time without reduction
in performance of clustering procedure. To select the smoothing parameter in
a P-spline framework, we adopted the V-curve criterion proposed by Frasso
and Eilers (2015). This choice was due to its advantage to be insensitive to
serial correlation in the noise around the trend of series. P-Spline smooth-
ing requires a relatively large number of basis function, but still less than the
number of observations. The basic idea was to perform the classification task
on the reduced space spanned by optimal spline coefficients. Thus to parti-
tion the data (time) series into k cluster, we need to partition their estimated
spline coefficients. Any clustering algorithms and distance measure can be
used to cluster the coefficients of P-spline. Series with different lengths (e.g.
with missing values) can be handled by P-spline due to extrapolation prop-
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erties (Eilers and Marx, 2010). When series are observed in different time
domain as they are of different length, we perform cluster analysis on fit-
ted values of a reduced time domain common to all series. To evaluate the
performance of our proposal we conducted two analysis considering series
with equal and unequal length, respectively. We simulated series as in Cof-
fey et al. (2014). We compared our result with their proposal. We showed
that the proposed approach is significantly faster than other proposal while
still retaining good performance in terms of ARI (Hubert and Arabie, 1985)
values. We also applied our proposal on financial time series showing as it
can help financial practitioners to support their investment decision.

Chapter 5 introduced Boosted-Oriented Probabilistic Clustering of Series.
Within the framework of fuzzy (probabilistic) clustering, we proposed a
fuzzy clustering procedure for data (time) series that is independent from the
choice of a fuzzifier parameter. Main idea is to adapt the boosting approach
to unsupervised learning problems, specially to non hierarchical cluster anal-
ysis. The aim is to assign each series of a data set to a cluster. Our proposal
comes from two approaches, theoretically motivated for unsupervised and
supervised classification cases, respectively. From the Probabilistic Distance
(PD) clustering approach (Ben-Israel and Iyigun, 2008) we took the idea of
determining the probabilities of each series to belong to any clusters. As this
probability is unequivocally related to the distance of each series from the
cluster centers, there are no degrees of freedom in determine the member-
ship matrix. From the Boosting approach (Freund and Schapire, 1997) we
took the idea of weighting each series according some measure of badness of
fit in order to define an unsupervised learning process based on a weighted
re-sampling procedure. In contrast to the boosting approach, the higher is
the probability of a given series to be member of a given cluster, the higher
is the weight of that series in the re-sampling process. In this way we also
defined a suitable loss function. As a learner we used a P-spline smoother
(Eilers and Marx, 1996). The weighted re-sampling process allows each se-
ries to contribute to the composition of each cluster as well as the adaptive
estimation of cluster centers allow the algorithm to learn by its progresses.
The global performance of the proposed method was investigated by three
experiments (one of them on simulated data and the remaining two on data
sets known in literature) evaluated by using a fuzzy variant of the Rand In-
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dex (Hullermeier et al., 2012). The results showed that our Boosted-oriented
procedure can help users to obtain good results in terms of data partition-
ing. The final fuzzy partition is independent on any other input parameters.
However, it is worth nothing that the choice of the distance measure influ-
ences the goodness of partition.
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Li, M., Chen, X., Li, X., Ma, B., and Vitányi, P. M. (2004). The similarity metric.
Information Theory, IEEE Transactions on, 50(12):3250–3264.
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oppurtunitá che mi ha concesso, per tutto quello che mi ha insegnato nella
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