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Abstract 

This work provides a structural study on some successions of the Ligurian 

Accretionary Complex (LAC; southern Italy), Maghrebian Flysch Basin (MFB; 

Morocco) and External Dorsale Calcaire (Morocco). The LAC Units, cropping out in 

the southern Apennines include the sedimenary deep basin successions of Nord-

Calabrese, Parasicilide and Sicilide. Presently they are the highest tectonic units of 

the South Apennine fold and thrust belt. They are all characterized by a polyphasic and 

progressive deformation related to the Early Miocene inclusion in the tectonic 

accretionary wedge, by means of a frontal accretion mechanism, with a mean E/SE 

tectonic vergence. A subsequent deformation stage, associated to the eastward 

migration of the thrust front, affecting also the Middle-Upper Miocene unconformable 

wedge-top basin deposits, was characterized by a mean E/NE tectonic transport. In this 

orogenic phase the Apennine thrust sheet pile, formed by LAC and Apennine Platform 

Units, tectonically covered the successions located in the westernmost sector of the 

Lagonegro-Molise Basin. Finally a Pliocene-Middle Pleistocene regional fold set 

deformed the whole orogenic prism, comprised the LAC Units as consequence of a 

thick-skinned tectonics expressed by means of deeply rooted thrusts in the buried 

Apulian Platform carbonates. The metamorphic units of LAC, analyzed in this study, 

are the Frido and Diamante-Terranova Units, cropping out at Calabria-Basilicata 

boundary and northern Calabria, respectively. Both units are characterized by a HP/LT 

metamorphism reaching pressures of ca. 1.4/1.2 and 1.0 GPa and temperatures of 350-

360 and 380 °C, respectively. The HP/LT parageneses include the Fe-carpholite, 

chlorite and phengite for the Frido and glaucophane, lawsonite, epidote and chlorite 
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for the Diamante-Terranova Unit. The tectonic exhumation was recorded by Ca-

amphiboles. The P-T-paths, presented below, of both units indicate a cool and rapid 

exhumation. This is testified also by the preservation of HP/LT mineral parageneses 

and by non-isothermal exhumation such as marked in the P-T-paths of the Frido(this 

work) and Diamante-Terranova (Liberi and Piluso, 2009) Units. These units were 

subducted in the latest Oligocene and Early Eocene, respectively, with their complete 

exhumation in the middle Tortonian. The comparable geodynamic evolution of the 

LAC Units suggests an origin of all successions in a common oceanic domain 

(Ligurian Ocean) characterized by a western sector floored by oceanic crust 

(Diamante-Terranova domain), a central sector represented by an Ocean Continent 

Transition (Frido and Nord-Calabrese domain) and an eastern area formed by thinned 

continental crust (Parasicilide and Sicilide domain). 

A further aim of this study is the reconstruction of the tectonic evolution of some 

successions of the Maghrebian Flysch Basin (MFB) domain (Predorsalian and 

Massylian Units) and the External Dorsale Calcaire in a key area (Chefchaouen) of 

the Rif chain in the northern Morocco. Maghrebian Flysch Basin successions show a 

comparable stratigraphy with the sedimentary LAC successions, suggesting 

paleogeographic continuity between LAC, located to E/NE, and the MFB to the W. 

The Triassic-Lower Miocene External Dorsale Calcaire succession overthrust the 

Predorsalian Unit through a regional thrust fault well-exposed in Chefchaouen area. 

The kinematic analysis of this structure and all minor structures in the footwall, 

indicate a SW-tectonic vergence. The Predorsalian unit in turn overthrust the 

Massylian succession characterized by a similar progressive deformation. The whole 

tectonic pile was subsequentely deformed by thrust and folds verging to NW. Like the 
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sedimentary LAC units, the MFB Units were deformed by frontal accretion in the 

Burdigalian-Langhian time. The External Dorsale Calcaire provides a good example 

of Inversion Tectonics. The Liassic succession (cherty limestones and conglomerates) 

recorded the extension related to the Jurassic rifting of the Neotethys Domain as 

normal faulting and veining.The subsequent inclusion of these rocks in the orogenic 

wedge, which mainly occurred in the Miocene time, deformed the most of pre-

orogenic structures in a passive manner, with only few cases of reverse reactivation; 

whereas, frequently, pre-orogenic normal fault planes show only an indentation of 

hanging-wall and footwall (buttressing effect). The orogenic deformation includes two 

main stages; the first tectonic pulse, which occurred during the Burdigalian-Langhian 

interval, was characterized by a NE-SW shortening and recorded by folds, thrust and 

back-thrust faults. During this stage the carbonates of the External Dorsale Calcaire 

tectonically covered the Predorsalian succession, producing, in the thrust front, a SW-

verging regional fold. The second orogenic deformation, consisting of a NW-SE 

shortening, was expressed by thrust faults and related folds both verging to NW and 

SE, which probably occurred in the Late Miocene-Pliocene time. 
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Riassunto 

Questo lavoro fornisce uno studio strutturale sulle successioni del Complesso 

d'Accrezione Liguride (CAL; Italia meridionale), del Bacino dei Flysch Magrebidi 

(BFM; Marocco) e della Dorsale Calcaire Esterna (Marocco). Le unità del CAL, 

affioranti in Appennino meridionale, includono le successioni sedimentarie di bacino 

profondo (Nord-Calabrese, Parasicilide e Sicilide). Attualmente, esse rappresentano le 

unità più alte della catena appenninica. Queste successioni sono tutte caratterizzate da 

una deformazione polifasica e progressiva associata al loro inserimento, nel Miocene 

Inferiore, nel cuneo d'accrezione tettonico, attraverso il meccanismo d’accrezione 

frontale, con una vergenza tettonica media E/SE. Una fase tettonica successiva, 

associata alla migrazione verso Est del fronte della catena orogenica, che coinvolge 

anche i depositi discordanti di tipo wedge-top basin, di età Miocene Medio-Superiore, 

è stata caratterizzata da un trasporto tettonico medio verso E/NE. In questa fase 

orogenica, la pila di falde tettoniche appenniniche, formata dal CAL e dalle unità di 

Piattaforma Appenninica, ricopre tettonicamente le successioni poste nel settore più 

occidentale del Bacino Lagonegrese-Molisano. Infine, pieghe e sovrascorrimenti 

regionali, di età Pliocene Medio-Pleistocene, hanno deformato l'intero prisma 

orogenico, comprese le unità del CAL, come conseguenza di una tettonica thick-

skinned espressa per mezzo di faglie profonde nei carbonati sepolti della Piattaforma 

Apula. Le unità metamorfiche del CAL, analizzate in questo studio, sono le Unità del 

Frido e Diamante-Terranova, affioranti rispettivamente al confine calabro-lucano e in 

Calabria settentrionale. Entrambe sono caratterizzate da un metamorfismo di AP/BT 

che raggiunge, rispettivamente, pressioni di circa 1.4/1.2 e 1.0 GPa e temperature di 
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350-360 e 380 °C. Le paragenesi di AP/BT sono rappresentate dalle fasi Fe-carfolite, 

clorite e fengite per l'Unità del Frido e glaucofane, lawsonite, epidoto e clorite per 

l'Unità Diamante-Terranova. L'esumazione tettonica è stata registrata dall’anfibolo 

calcico. I P-T-path, presentati in seguito, di entrambe le unità indicano un'esumazione 

fredda e rapida. Questo è testimoniato anche dalla conservazione delle paragenesi 

mineralogiche e dall’esumazione non isotermica, evidenziata nei P-T-path. Le unità 

del Frido e Diamante-Terranova probabilmente sono state subdotte, rispettivamente, 

nel tardo Oligocene e nell'Eocene Inferiore, con la loro completa esumazione nel 

Tortoniano medio. L'evoluzione geodinamica simile delle unità del CAL, suggerisce 

un'origine in un dominio oceanico comune (oceano Liguride), caratterizzato da un 

settore occidentale di crosta oceanica (Ofioliti Calabresi), un settore centrale di 

transizione oceano-continente (Unità del Frido e Nord-Calabrese) e un dominio 

orientale formato da crosta continentale assottigliata (Unità Parasicilide e Sicilide). 

Altro scopo di questo studio è la ricostruzione dell'evoluzione tettonica di alcune 

successioni del BFM (Predorsalian e Massylian) e della Dorsale Calcaire Esterna in 

un'area chiave (Chefchaouen) della catena del Rif nel Marocco settentrionale. Le 

successioni del BFM mostrano una stratigrafia comparabile con le successioni 

sedimentarie del CAL, che suggerisce una continuità paleogeografica tra il CAL, 

collocato a E/NE, e il BFM a Ovest. La successione triassico-miocenica della Dorsale 

Calcaire Esterna ricopre l'Unità Predorsalian per mezzo di un sovrascorrimento 

regionale ben esposto nell'area di Chefchaouen. L'analisi cinematica di questa 

struttura, e di tutte quelle minori presenti nel letto, indica una vergenza tettonica verso 

SO. Quest'ultima unità, a sua volta, ricopre la successione Massylian caratterizzata da 
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una simile deformazione progressiva. Tutta la pila tettonica è stata, infine, deformata 

da pieghe e sovrascorrimenti vergenti a NO. Come le unità sedimentarie del CAL, le 

unità del BFM sono state impilate per mezzo di accrezione frontale nel Burdigaliano- 

Langhiano.  

La Dorsale Calcaire Esterna, appartenente al dominio interno, rappresenta un buon 

esempio d’inversione tettonica. La successione liassica (calcari e conglomerati con 

selce) ha registrato l'estensione relativa al rifting giurassico del dominio della 

Neotetide attraverso faglie normali e vene. La successiva inclusione di queste rocce 

nel cuneo orogenico, avvenuta principalmente nel Miocene, ha deformato la maggior 

parte delle strutture pre-orogeniche in modo passivo, con solo pochi casi di 

riattivazione in senso inverso; mentre, più frequentemente, i piani di faglia normale 

preorogenici mostrano solo un’indentazione del blocco di tetto e di letto. La 

deformazione orogenica include due stadi principali; il primo impulso tettonico, 

avvenuto durante l'intervallo Burdigaliano-Langhiano, fu caratterizzato da un 

raccorciamento NE-SO e registrato da pieghe, sovrascorrimenti e retro-scorrimenti. 

Durante questo stadio i carbonati della Dorsale Calcaire Esterna hanno ricoperto 

tettonicamente la successione Predorsalian, producendo, a fronte della catena 

orogenica, una piega regionale vergente a SO. La seconda deformazione orogenica, 

che consiste in un raccorciamento NO-SE, è stata registrata da sovrascorrimenti e 

relative pieghe vergenti sia a NO sia a SE, probabilmente avvenuta nel tardo Miocene-

Pliocene.  
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Chapter 1– Introduction and geological setting 
 

1.1. Introduction 

The western peri-Mediterranean Alpine chains form a poly-arcuate orogenic belt 

including Apennines, Calabrian Arc, Maghrebian chains and western Betic Cordillera 

(Fig. 1). As a whole, these orogens are formed by the superposition of several thrust 

sheets (amongst others Kornprobst, 1974; Chalouan, 1986; Bonardi et al., 2001; 

Michard et al., 2002; 2006; 2007; 2014; Guerrera et al., 2005; Handy et al., 2010; 

Mazzoli and Martin-Algarra 2011; Vitale and Ciarcia, 2013) grouped in three main 

tectonic complexes: (i) Internal Units; (ii) Maghrebian Flysch and Ligurian 

Accretionary Complex Units; and (iii) External Units.  

Internal Units consist of Paleozoic continental crust, high-grade metamorphic and 

mantle rocks, and Mesozoic covers characterized by different degrees of 

metamorphism (e.g. Kornprobst, 1974; Chalouan, 1986; Bonardi et al., 2001). From 

the first attempts to find a common origin for the Internal Units (e.g. Haccard et al., 

1972; Alvarez et al., 1974), now a days two different models are facing. The first 

model suggests that Internal Units were originated by a common microplate 

(AlKaPeCa or Mesomediterranean Terrain, Michard et al., 2002; Guerrera et al., 2005; 

Handy et al., 2010) separated, in the Jurassic-Cretaceous time, from the European plate 

to the West and the Apulia-African plate to the East by two oceanic branches (e.g. 

Michard et al., 2002; Handy et al., 2010): W-Ligurian/Betic and E-

Ligurian/Maghrebian Flysch Oceans, respectively. The second model was firstly 

introduced by Boullin (1984) and Knott (1987) and reprised in the last years (e.g. 

Faccenna et al., 2001; Rossetti et al., 2004; Schettino and Turco, 2011; Vignaroli et al., 
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2012). This paleogeography envisages the existence of a single ocean (Ligurian Ocean, 

Knott, 1987; Ligurian Tethys, Schettino and Turco, 2011), with the Internal Units 

forming the SE margin of the European plate. However in both models, since the (i) 

Eocene (Vignaroli et al., 2012 and reference therein) and (ii) Early Miocene (Chalouan 

et al., 2006; Ciarcia et al., 2012), the Ligurian Ocean and Maghrebian Flysch Basin 

(MFB) successions, respectively, were deformed and tectonically overthrusted by the 

Internal Units. The migration of different orogenic arcs was mainly driven by the roll-

back of the downgoing lithospheres (Malinverno and Ryan, 1986; Faccenna et al., 

1996) producing the dispersion of the early internal domain along the western 

Mediterranean margins (Alvarez et al., 1974). Presently (Fig. 1), Maghrebian Flysch 

Basin (MFB) and Ligurian Accretionary Complex (LAC) are sandwiched between 

Internal Units on the top and External Units on the bottom, the latter formed by 

sedimentary successions deposited onto the continental margins of Adria, Africa and 

Iberia plates (e.g. Chalouan et al., 2008; Mazzoli and Algarra, 2011; Vitale and 

Ciarcia, 2013). 

Despite of their wide spreading in the all Alpine belts, the MFB and LAC Units were 

poor-studied from the point of view of deformation, structural setting, kinematics and 

relationships with the overlaying and underling Internal and External Units, 

respectively. 

In relation to these issues, this work is aimed to provide: 

 A structural analysis of the LAC cropping out in the southern Apennines and 

northern Calabria (i.e. Frido, Nord Calabrese, Parasicilide, Sicilide and 

Diamante-Terranova Units). 
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 Petrographic and micro-structural analyses of metamorphic rocks of Frido and 

Diamante-Terranova Units. 

 Structural analyses of MFB Units (Massylian and Predorsalian Units) and 

External Dorsale Calcaire succession (Internal domain), cropping out in a key 

area of Moroccan Rif, located near Chefchaouen. 

 Kinematic analysis of the main thrust fault between External Dorsale Calcaire 

(Internal domain) and Predorsalian Units (MFB); 

Successively, all structural data will be analyzed and used to reconstruct: 

 The deformation evolution of the analyzed successions; 

 A geodynamic evolution well-fitting with the peri-Mediterrenean orogenic 

history. Finally a comparison between the results from the different units 

located in the southern Apennines, northern Calabria and Rif. 

In the following chapters, after a geological setting description of the southern 

Apennines\Calabrian Arc, a review of LAC stratigraphy is described, followed by the 

description of the petrographic, micro- and meso-structural analyses and the 

reconstruction of the deformation and geodynamic evolutions. In the second part of the 

work, Rif chain structure and stratigraphy of Massylian and Predorsalian Units (MFB) 

and External Dorsale Calcaire Unit (Internal Domain) are described, followed by the 

structural analysis. These results, added to information of the available literature, 

allowed to reconstruct, such as made before, the deformation and geodynamic 

evolutions. Finally, a comparison between the deformation evolutions of the analyzed 

successions is provided. 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

13 
 

 

Fig. 1- Schematic tectonic map of the circum-Mediterranean orogenic belts (modified after 

Mazzoli and Martin-Algarra, 2011).  



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

14 
 

1.2. Geological setting of the southern Apennines/northern Calabria 

Southern Apennines and Calabria-Peloritani Terrane (CPT; Figs. 2, 3) are segments of 

a long peri-Mediterranean orogen which comprises also Alps, Maghrebian chain 

(Sicily, Tunisia, Algeria and Morocco), Betic Cordillera (southern Spain), Balearic 

Island and part of Corsica Island (Fig. 1, 3c). These orogenic belts are all defined by 

the superposition of three tectonic units originated from: (i) internal domains, made of 

continental crust and sedimentary covers; (ii) oceanic and thinned continental crust 

and relative sedimentary covers, known as Maghrebian Flysch Basin, to S/SW, and 

Ligurian domain, to E/NE (e.g., Knott, 1987; Guerrera et al., 2005; Ciarcia et al., 

2012); and (iii) external domains represented by African and European margin 

successions. 

Taking into account the analyzed sector, going from northern Calabria until to the 

southern Apennines (Fig. 3a), the structural architecture is characterized by three main 

tectonic complex: (i) tectonic units formed by Paleozoic continental crust rocks and 

their Mesozoic covers with different grade and age of metamorphism (Sila, Castagna 

and Bagni Units; Fig. 2; Amodio-Morelli et al., 1976; Bonardi et al., 2001), referable 

to Internal Units in analogy with other peri-Mediterranean chains (Guerrera et al. 

2005); (ii) Calabrian ophiolites successions, (Fig. 2, 3; Diamante-Terranova, Malvito, 

Gimigliano and Frido Units; Amodio-Morelli et al., 1976; Bonardi et al., 2001; 

Rossetti et al., 2001, 2004; Liberi et al., 2006; Liberi and Piluso, 2009; Vitale et al., 

2013a and references therein) affected by an HP-LT/HP-VLT metamorphism, and 

sedimentary deep basin successions (Fig. 2, 3a, b; Nord Calabrese, Parasicilide and 

Sicilide Units; Selli, 1962; Ogniben, 1969; Bonardi et al., 1988a; Ciarcia et al., 2009; 
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Vitale et al., 2010, 2011, 2013b; Ciarcia et al., 2012), all together forming the Ligurian 

Accretionary Complex (LAC); and finally (iii) External Units (Fig. 1), formed by the 

superposition of covers of Apulian (African) block formed by successions, Mesozoic 

to Neogene in age (D'Argenio et al., 1973; Bonardi et al., 1988b, 2009; Patacca et al. 

1990; Bigi et al., 1992; Cosentino et al., 2003; Patacca and Scandone, 2007), partially 

detached from their pre-Triassic basement (e.g., Casero et al., 1988; Menardi Noguera 

and Rea, 2000; Shiner et al., 2004; Cippitelli, 2007).  

The building up of the southern Apennines\CPT system consists of two main 

geodynamic phases (Dewey et al., 1989; Faccenna et al., 2001): (i) Late Oligocene-

Middle Miocene trench migration, accompanied by opening of the Ligurian-Provençal 

back-arc basin and (ii) Tortonian-Pleistocene migration, with opening of the 

Tyrrhenian back-arc basin (e.g., Roure et al., 1991; Liotta et al., 1998; Carmignani et 

al., 2001; Mazzoli et al., 2008; Molli, 2008; Mantovani et al., 2009; Carminati et al., 

2012; Turco et al., 2012; Vitale and Ciarcia, 2013). The orogenic accretion of the 

Apennine prism, was characterized by a relatively fast migration of the thrust front-

foredeep system (Faccenna et al., 2001; Vitale and Ciarcia, 2013), mainly driven by 

the eastward retreat of a west-directed oceanic slab (roll-back mechanism; Malinverno 

and Ryan, 1986; Carminati et al., 2012, and references therein). The development of 

the Apennine mountain belt and the associated fast E-W opening of the Tyrrhenian Sea 

(with spreading values up to ~10 cm/yr, Faccenna et al., 2001), compared with the 

slow N-S convergence between the Eurasian and the African/Adria plates (of the order 

of ~1 cm/yr; e.g., Mazzoli and Helman, 1994), indicate that a complex pattern of 

forces controlled the evolution of the proto-Central-Western Mediterranean Sea (e.g., 

Lustrino et al., 2011). The closure of the oceanic domain (E-Ligurian Ocean; Handy et 
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al., 2010) interposed between the continental paleomargins and the still active 

subduction of the Ionian lithosphere (Minelli and Faccenna, 2010) allowed the 

overriding Calabria-Peloritani Terrane (CPT; Fig. 3) (Bonardi et al., 2001) to move 

E/SE-ward by at least 1000 km from ~30 Ma to the Present (Carminati et al., 2012; 

Vitale and Ciarcia, 2013) and produced widespread orogenic volcanism since the 

Eocene-Oligocene (Savelli, 2002) with the maximum development in Miocene time 

(Lustrino et al., 2009). 

The shallow crustal structure of the southern Apennines (Fig. 2) is marked by the 

superposition, by means of low-angle tectonic contacts, of the Apennine Platform 

carbonate platform\slope successions; in the hanging wall, and the pelagic successions 

of Lagonegro-Molise Units (Scandone, 1967, 1972; Mostardini and Merlini, 1986) in 

the footwall. At deepest levels, the Apennine structure is dominated by high-angle 

normal faults affecting both the buried Apulian Platform and allochtonous successions 

(Fig. 2). The highest tectonic position, presently, is occupied by the deep basin 

successions, locally including oceanic to continental lithospheric rocks, forming the 

LAC (Fig. 1). These units are detached from their pre-Cretaceous successions, (Nord-

Calabrese, Parasicilide and Sicilide Unit; Bonardi et al., 1988a; Monaco et al., 1991; 

Ciarcia et al., 2009, 2012 and references therein); whereas the HP/VLT Frido Unit is 

characterized by an OCT (Ocean Continent Transition) basement, characterized by the 

juxtaposition of oceanic crust and continental lithosphere materials and by scarcity of 

effusive rocks, and a meta-sedimentary basin succession (Knott, 1987, 1994; Vitale et 

al., 2013a). Finally, the LAC is unconformably covered by a Langhian-lowermost 

Tortonian succession named Cilento Group (Amore et al., 1988; Russo et al., 1995), 

including arenitic and marly deposits of Pollica and San Mauro Fms. (Ietto et al., 
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1965), and corresponding to the clastic undifferentiated succession of the Albidona 

Fm., in Lucania region (Selli, 1962; Bonardi et al., 1985). In Calabria-Lucania 

boundary area further wedge-top basin successions, unconformable on the previous 

units, and characterized by dominantly coarse-grained clastic deposits, include the 

Upper Miocene Perosa (sensu Vezzani,1966) and Oriolo Fms. (Selli, 1962; Fig. 2). 

In such a geodynamic setting, slices of oceanic and continental crust and related 

sedimentary cover were subducted, reaching relatively high pressure conditions, and 

then quickly exhumed, allowing to preserve high pressure-low temperature (HP/LT) 

metamorphic assemblages (e.g., Stöckhert et al., 1999; Oberhänsli et al., 2001; 

Rossetti et al., 2004; Iannace et al., 2007; Brun and Faccenna, 2008; Liberi and Piluso, 

2009; Vignaroli et al., 2009; Brogi and Giorgetti, 2012). A HP/LT event has been 

documented in the southern Apennines since the '70s (De Roever, 1972; Spadea, 

1976,1982; Lanzafame et al., 1979) within the ophiolitic succession of the Frido Unit 

(Knott, 1987, 1994) cropping out along the northern edge of Calabria (Fig. 2). More 

recently, Fe-Mg-carpholite-bearing metapelites have been found in Lower Miocene 

foredeep deposits (Vitale et al. 2013a) stratigraphically overlying carbonate 

successions of the distal part of the Adria continental paleomargin (Lungro-Verbicaro 

Unit; Iannace et al., 2005, 2007). By means of field structural, stratigraphical analysis 

and petrological investigations, integrated with micro-structural observations, this 

chapter aims to provide an interpretation of the tectonic and metamorphic evolution of 

the Ocean Continent Transition (OCT)-derived Frido Unit, of basinal sedimentary 

deposits of the Ligurian Accretionary Complex (LAC) and of the Diamante-Terranova 

Unit, within the general framework of the southern Apennine/CPT system. 
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Fig. 2- Tectonic schemefrom the Calabria-Lucania border to E-Sicily.  
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Fig. 3- (a) Geological sketch map of southern sector of the southern Apennines and northern 

Calabrian Arc (after Amodio-Morelli et al., 1976 and Bonardi et al., 1988b, modified). (b) 

Cross section (after Mazzoli et al., 2008, modified). (c) Outcrops of Ligurian and Maghrebian 

Flysch Basin Units in the western-central Mediterranean Alpine belts. 
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Chapter 2 - LAC: Stratigraphy, tectonic and structural setting 

2.1. Introduction 

The Ligurian Accretionary Complex (LAC), cropping out in the southern Apennines 

along the boundary between Campania, Lucania and Calabria regions, is a thrust 

sheet pile formed by deep basin successions, locally including oceanic to continental 

lithospheric rocks. It occupies the highest tectonic position (Figs. 2, 3) including Nord-

Calabrese, Parasicilide and Sicilide Units (Fig. 3), which were detached from their 

pre-Cretaceous successions (Bonardi et al., 1988a; Monaco et al., 1991; Ciarcia et al., 

2009, 2012 and references therein) and were piled up by means of frontal accretion 

mechanisms in the Burdigalian time (Ciarcia et al., 2012). The Frido Unit (Fig. 4) was 

affected by HP/VLT metamorphism showing the characters of an OCT (Ocean 

Continent Transition) basement, covered by a metasedimentary basin succession 

(Knott, 1987, 1994; Vitale et al., 2013a). It was subducted in the Late Oligocene and 

successively exhumed and intruded into the tectonic prism before the middle 

Tortonian. 

In the following paragraphs, stratigraphy and the structural analysis will be described 

for all the units forming the LAC (Frido, Nord Calabrese, Parasicilide and Sicilide 

Units). For the Frido Unit, a petrographic analysis will be provided. 
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Fig. 4- Schematic stratigraphic logs of LAC successions and Miocene wedge-top basin 

deposits (modified after Vitale et al., 2013a). 
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2.2. Stratigraphic setting of LAC in the southern Apennines 

The sedimentary rocks of the LAC are characterized by a broadly comparable 

stratigraphy. The Upper Cretaceous(?)-Middle Eocene successions show mainly 

argillitic sequences upward passing to calcareous, marly and clayey sequences. The 

sedimentary pile is topped by foredeep sandstones of Aquitanian-lowermost 

Burdigalian age for the Nord-Calabrese Unit and Burdigalian age for the Parasicilide 

and Sicilide Units. These successions were piled up by means of frontal accretion 

mechanisms in the Burdigalian time (Ciarcia et al., 2012). Presently, the Parasicilide 

Unit crops out mainly in the Campania region, whereas the Nord-Calabrese Unit is 

exposed in Cilento (southern Campania) and, extensively, along the Calabria-Lucania 

border, while the Sicilide Unit crops out only in the Lucania region (Fig. 5). In contrast 

to above mentioned units, the Frido Unit (Fig. 4) is characterized by a metamorphic 

and highly deformed succession (Vitale et al., 2013b) consisting of oceanic crustal and 

continental lithospheric rocks, covered by a deep basin meta-sedimentary succession 

and finally by Upper Oligocene calcschists (Bonardi et al., 1993; Vitale et al., 2013a). 

In the geological sketch map shown in Fig. 5, the Frido Unit tectonically covers the 

Nord-Calabrese Unit in the SE sector ("Timpa delle Murgie" area), whereas it is placed 

below the Nord-Calabrese and Parasicilide Units in the NW sector (Seluci area). In 

turn LAC overlays an orogenic wedge formed by Mesozoic-Tertiary successions, more 

or less detached from their Paleozoic substrate, encompassing both platform 

carbonates (Apulian and Apennine Platforms Units, Mostardini and Merlini, 1986; 

Vitale and Ciarcia, 2013) and basin successions (Lagonegro-Molise Basin Units, 

Mostardini and Merlini, 1986; Vitale and Ciarcia, 2013), here named External Units 
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(Fig. 1) in analogy with thetectonic units occupying the same structural position in 

other circum-Mediterranean chains (e.g. Guerrera et al., 2005). 

In the study area (Fig. 5), also the Lagonegro-Molise Basin successions extensively 

crop out, with the Triassic-Cretaceous lower part mainly exposed in the north-western 

sector (Mt. Sirino area), whereas the Paleogene-Miocene, upper part (Flysch Rosso, 

Numidian sandstones and post-Numidian marls), spread out especially in the south-

eastern sector (i.e. Ferro River Valley, Valsinni ridge and Rotondella area; Fig. 5). The 

LAC Units were studied by several authors (e.g. Selli, 1962; Vezzani, 1968; Ogniben 

1969; Bousquet, 1973; Spadea, 1982; Bonardi et al., 1988a; 1993; Knott, 1987, 1994; 

Monaco et al., 1991; Monaco and Tortorici, 1995; Mazzoli, 1998; Critelli, 1999); 

however, only in the last years complete studies approaching the stratigraphy and the 

tectono-metamorphic evolution of the Nord-Calabrese, Parasicilide, Sicilide and the 

Frido successions (Ciarcia et al., 2009; 2012; Vitale et al., 2010, 2011, 2013a, b) were 

carried out. 
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Fig. 5- Geological sketch map and cross-sections of Calabria-Lucania-Campania border 

(modified after Bonardi et al., 1988b; Iannace et al., 2007; ISPRA, 2009; Vitale et al., 2013a). 
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2.3.Frido Unit. 

The Frido Unit is the only succession of LAC affected by metamorphism. The latter, 

crops out along the northern edge of Calabria region and forms a NW-SE elongated 

tectonic unit overlying the Nord-Calabrese Unit (which is locally exposed in tectonic 

windows; Fig. 6) in the south-eastern sector of the study area. On the other hand, in the 

north-western sector (Seluci area; Fig. 6) the Frido Unit is overlain by the Nord-

Calabrese and Parasicilide Units. In this section stratigraphy, structural analysis and 

the main petrographic features of the Frido Unit rocks will be described. 

2.3.1. Stratigraphy 

The Frido Unit is characterized by four main formations and several sub-units. From 

bottom to the top it is formed by: (i) the Timpa della Guardia Fm., made of oceanic 

crustal rocks like metagabbros, metadolerites and metapillow lavas (Fig. 4); (ii) the 

Timpa Rotalupo Fm., characterized by continental crustal lithologies and upper mantle 

rocks, including metagranitoids, gneisses, amphibolites, granofelses and 

metacarbonates, often cut by basic dykes, plus serpentinized peridotites (Fig. 4). 

Crystalline rocks are covered by a deep basin sedimentary succession represented by 

(iii) San Severino Fm. (Fig. 4), formed by metaradiolarites, calcschists, phyllites, 

quartzites and metapelites and finally by (iv) Monte Caramola Fm. (Fig. 4), made of 

calcschists, whose age reaches the Upper Oligocene according to Bonardi et al. (1993).  

The occurrence of tightly juxtaposed oceanic and continental crust materials and upper 

mantle rocks, together with the scarcity of effusive rocks, is coherent with the 

interpretation of the Frido succession as originally forming part of an OCT domain, as 

suggested by Cello and Mazzoli (1998). As reported by several authors, the Frido Unit 
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show evidence of an HP/LT metamorphic assemblages, such as aragonite in calcschists 

(Spadea, 1976) and glaucophane, crossite, lawsonite and Na-pyroxene in the 

metabasites (including crosscutting dykes; De Roever, 1972; Lanzafame et al., 1979; 

Spadea, 1982; Monaco et al., 1991; Belviso et al., 2009). The presence of lawsonite 

and pumpellyite + aragonite or crossite-Mg-riebeckite-aegirine-augite overprints in 

continental crust rocks (Spadea, 1982) constrained the pressure peak around 0.8-1.0 

GPa and ~400-450 °C temperature, with a subsequent re-equilibration at greenschist 

facies conditions (P ~0.4 GPa and T ~300-350 °C). According to Monaco et al. (1991), 

a similar P-T evolution was experienced also by the calcschists and metapelites, 

whereas some metabasites were locally characterized by a very low metamorphic 

grade. 

According to Monaco et al. (1991) and Belviso et al. (2009), the Frido Unit is 

characterized also by several minor units: (i) the Cropani-Episcopia sub-unit, 

including most of the outcrops in the north-western sector (between Episcopia and 

Seluci; Fig. 6), is characterized by HP/LT metamorphism marked by the occurrence of 

Na-amphibole in the metabasites, with temperature estimates as low as 300°C and 

pressure values as high as 1.3 GPa. Recently, Cristi Sansone et al. (2011) emphasized 

the presence of dykes intruded in the serpentinized peridotites as an evidence of 

oceanic crust generated at slow/ultraslow-spreading ridges, well fitting with an OCT 

domain. Furthermore, the authors recognized a greenschist facies mineral assemblage 

related to an ocean-floor metamorphism predating the HP/LT tectonic event, rather 

than to a late overprint associated with decompression, as interpreted by previous 

authors (e.g. Monaco et al., 1991). Late Oligocene HP/LT metamorphism of the Frido 
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Unit was followed by rapid exhumation during Miocene times (Mazzoli, 1998; 

Corrado et al., 2010).  

 

Fig. 6- Geological sketch map and cross-sections of the Calabria-Lucania border (from 

Belviso et al., 2009, modified) and geological cross-sections. 
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2.3.2. Meso- and micro-scale structural analyses 

The rocks of the Frido Unit are characterized by a complex deformation pattern 

produced by the superposition of five deformation stages (Figs. 7-8-9) well-recorded in 

phyllites, metapelites and calcschists, whereas oceanic and continental basement rocks 

rarely show evidence of deformation. The latter rocks occur as boudins (up to several 

hundreds of meters sized) embedded within lesser competent rocks (such as 

phyllites/metapelites), bounded by extensional brittle-ductile shear zones (Knott, 

1994).  

The first deformation stage (D1) produces a foliation (S1) marked, in phyllites and 

metapelites, by the isorientation of metamorphic white mica and chlorite in 

microlithons (Fig. 8a, b), whereas in the calcschists the main foliation (S1) is defined 

by recrystallized calcite and thin films of metamorphic white mica with rare relicts of 

bedding planes (S0) in the microlithons (Fig. 8e). In the calcschists, the S1 foliation is 

enhanced by pressure-solution (Fig. 8c). In this deformation stage no micro- and meso-

scale folds were recognized in association with the S1 foliation. At least two vein sets 

are hosted in the calcschists, both parallel and oblique to S1 surfaces (Fig. 8c). Both S1 

and early veins are folded by isoclinal to tight folds (D2 stage; Fig. 8c, d f). F2 folds 

occur mainly in the form of kink bands, observed also in the metabasites (Fig. 7a). In 

the calcschists, F2 isoclinal folds are associated with an S2 foliation parallel to the axial 

planes, often marked by pressure-solution seams (Fig. 8c), whereas in metapelites and 

phyllites F2 folds frequently appear as intrafolial folds with associated a S2 crenulation 

cleavage and a CL2 crenulation lineation. This latter foliation is so intensely developed 

in these lithotypes that it appears as the main foliation (Figs. 8a, b; 9c, d). A well-

developed boudinage affects the metacalcareous and metarenitic layers embedded in 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

29 
 

the less competent rocks, as well as veins, especially in the stretched limbs of isoclinal 

F2 folds (Fig. 8c). Rare pre-buckle thrusts affect competent layers embedded in a 

pelitic matrix (Fig. 7g). A mineral/stretching lineation (SL2) is well developed, 

generally parallel to the F2 fold axes. Calcite-quartz veins, generally parallel to the S2 

foliation, display at least two generations of fibrous centimeter-sized carpholite 

crystals generally orthogonal to the host walls (Fig. 7b-f), observed also in quartz 

veins hosted in massive metalimestones (Fig. 7c). Carpholite crystals appear also with 

a prismatic habitus (Fig. 7d) or as very thin needles (Fig. 7e). D3 extensional shear 

surfaces (ESS) are hosted in metapelites and phyllites (Fig. 9a, b), generally indicating 

extension both orthogonal and parallel to SL2. In the Seluci area, metasandstones are 

characterized by the growth of stilpnomelane and Na-amphibole along the S2 

schistosity (Fig. 7h) and D3 extensional shear surfaces (Fig. 9a). A fourth deformation 

stage (D4) is characterized by late, open to tight F4 folds with a kink geometry (Fig. 9c-

f), locally associated with thrust faults with centimetric to metric displacements. A 

crenulation cleavage (S4; Fig. 9c-e) and a crenulation lineation (CL4) occur in 

metapelites and phyllites. The S4 cleavage is enhanced by pressure-solution structures 

and marked by thin films of opaque and residual minerals (Fig. 9c, d). F2 and F4 folds 

generally show similar axial trends and form a type 3 interference pattern according to 

Ramsay's classification (Ramsay, 1967). The fifth deformation stage (D5) produced 

rare thrust faults (Fig. 9g), generally with displacements of a few centimeters, and 

associated open to tight F5 folds, a crenulation lineation (CL5) and an additional, 

discontinuously developed, crenulation cleavage (S5).  

The structural survey carried out for Frido unit, in the study area (Fig. 6), reveal a 

main NW-SE and subordinately NE-SW trends for F2 fold axes (A2) and crenulation 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

30 
 

lineation (CL2) (Fig. 10b). Poles to F2 fold axial planes (AP2) show a scattered 

distribution (Fig. 10c), whereas poles to S1 and S2 foliation planes are broadly 

distributed along a mean NNE-SSW great circle (Fig. 10a). The stretching lineation 

SL2 (Fig. 10d) is dominantly characterized by a NW-SE trend. D3 extensional shear 

surfaces (ESS) cut previous structures, indicating extension both orthogonal and 

parallel to SL2 stretching lineation (Fig. 10e). F4 fold axes (A4) and the crenulation 

lineation CL4 are generally slightly plunging with a mean WNW-ESE orientation (Fig. 

10f). Poles to AP4 (Fig. 10g) and to the crenulation foliation S4 are scattered along a 

NE-SW mean great circle (Fig. 10h). F5 fold axes (A5) and crenulation lineation CL5 

show a mean NE-SW direction (Fig. 10i). Finally, poles to AP5 are dipping mainly to 

the NW and secondarily to the SE (Fig. 10j). 
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Fig. 7- Examples of micro- and meso-structures of the Frido Unit: (a) F2 kink folds in 

metabasites (site 12, Sorgente Catusa). (b) Centimeter-sized carpholite fibers within calcite-

quartz veins (site 7, Frido River). (c) Carpholite-quartz vein lets hosted in massive 

metalimestone. (d) Thin section microphotograph (plane polarized light) showing fibers and 

aggregates of carpholite (Car) within a quartz (Qtz) –calcite (Cal) vein. (e-f) Thin section 

microphotographs (plane polarized light and crossed polars, respectively) showing two 

generations of carpholite fibers (Car1 and Car2; site 7, Frido River). (f) Pre-buckle thrust in 

arenitic layer embedded in pelitic levels (site 11, Mezzana). (h) Thin section microphotograph 

(plane polarized light) showing growth of Na-amphibole on the S2 foliation in a 

metaradiolarite sample (site 27, Seluci). 
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Fig. 8- Examples of micro- and meso-structures of the Frido Unit: (a) Thin section 

microphotograph (crossed polars) showing crenulation cleavage S2 and the relict of foliation 

S1 in microlithons within phyllite (site 22, Tempone). (b) Thin section microphotograph 

(crossed polars) showing crenulation cleavage S2 and the relict offoliation S1 in microlithons 

within metapelite (site 12, Sorgente Catusa). (c) F2 isoclinal folds in calcschist sample (site 

22, Tempone). (d) F2 isoclinal folds in calcschists (site 22, Tempone).(e) Thin section 

microphotograph of calcschist (site 22, Tempone) showing the relict of bedding (S0) within a 

microlithon. (f) Boudinated calcareous layer and F2 intrafolial folds (site 7, Frido River). 
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Fig. 9- Examples of micro- and meso-structures of the Frido Unit: (a) Thin section 

microphotograph (plane polarized light) of Na-amphibole grown along D3 extensional shear 

surfaces in metarenite (site 27, Seluci). (b) D3 extensional shear surfaces in metapelites (site 

12, Sorgente Catusa). (c-d) Thin section microphotographs (plane polarized light) showing F4 

fold with associated S4 crenulation cleavage in phyllite (site 22, Tempone) and metapelite (site 

12, Sorgente Catusa) samples, respectively. (e-f) F4 chevron folds (respectively: site 22, 

calcschists, Tempone and site 7, phyllites, Frido River). (g) F4 fold associated with a thrust 

fault (site 7, phyllites, Frido River). 
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Fig. 10- Stereographic projections and contour plots (equal area net, lower hemisphere) of the 

analyzed structures. 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

38 
 

2.3.3. Petrography of the Frido Unit 

In order to provide new data about metamorphic evolution of the Frido Unit, a 

petrological analysis on the metasedimentary pelitic succession is presented. For this 

purpose, representative phyllites, metapelites, calcschists, and meta-sandstone samples 

were collected from the Frido River (site 7), Sorgente Catusa (site 12), Casa del Conte 

(site 9), Tempone (site 22) and Seluci (site 27) localities (Fig. 6). To obtain also 

information about micro-structures, thin sections were oriented parallel to the main 

planes of the finite strain ellipsoid, i.e. parallel to the S2 foliation (plane XY), 

orthogonal to the foliation and parallel to the available stretching lineation (plane XZ) 

and orthogonal to the previous planes (plane YZ). 

The Frido Unit consists of metabasites occurring as dark-green, metric, generally well-

foliated blocks, although massive isotropic bodies are also observed. The original 

igneous (pillow?) structure, however, is commonly completely obliterated as a result 

of intense weathering. Mineral parageneses include mainly the relicts of the original 

igneous phases, namely plagioclase, clinopyroxene and olivine. The latter two are 

commonly replaced by serpentine-group minerals and chlorite. The groundmass is 

made up of similar mineral phases, plus oxides mica and quartz. Phyllites and 

metapelites, object of the petrological investigation, can be distinguished mainly on 

the basis of their crystal size, with the former characterized by coarser grained 

minerals, whereas the latter show a distinctively lower crystallinity. The two lithotypes 

show strongly anisotropic structures and are very similar both in their mineral 

assemblages (millimetric to centimetric mica and chlorite cleavage domains and 

microlithons of quartz and albite) and in their intensely foliated fabric with recurrent 

crenulation lineation and ptygmatic folds. Phyllites typically occur in the north-
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western (Tempone, site 22) and central (Frido River, site 7) sectors of the investigated 

area, whereas the metapelites are commonly found in the south-eastern outcrops (e.g., 

Sorgente Catusa and Casa del Conte localities; sites 12 and 9, respectively; Fig. 5). 

Metapelites are basically characterized by millimetric mica and chlorite (plus clay 

minerals) cleavage domains and microlithons of quartz (plus feldspars). Phyllites are 

quite similar -though coarser- in terms of texture and parageneses, although some from 

the Frido River locality (Fig. 6), are occasionally cut by large quartz and calcite veins 

containing abundant carpholite crystals, occurring both as monomineralic fibrous 

clusters and as hair-like tiny inclusions in quartz crystals (Fig. 7b-e). Metacarbonates 

and calcschists display strongly anisotropic and deformed textures basically consisting 

of carbonate minerals (plus oxides and clay mineral inclusions in the metacarbonates 

and quartz, feldspars and phyllosilicates in the calcschists). Stylolites and late, 

undeformed veins of white spatic calcite are also common. Meta-sandstones are 

commonly intercalated within the phyllite/metapelite and metacarbonate levels (e.g., 

Mt. Tumbarino and Mezzana localities; Fig. 6) and are almost entirely made of quartz 

grains. At the Seluci locality (site 27; Fig. 6), sheaf-like aggregates of strongly zoned 

fibrous sodic amphibole (greenish in the core, blue to violet in the more peripheral 

zones), titanite and stilpnomelane also occur. 

Mineral chemistry analyses were performed on the thin sections by Energy Dispersive 

Spectrometry at the C.I.S.A.G. (Centro Inter-dipartimentale di Servizi per Analisi 

Geomineralogiche) of the University of Napoli Federico II. The employed apparatus is 

an Oxford Instruments Micro analysis Unit equipped with an INCA X-act detector and 

a JEOLJSM-5310 microscope operating at 15 kV primary beam voltage, 50-100 mA 

filament current, variable spot size and 50s net acquisition time. Measurements were 
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performed with an INCA X-stream pulse processor. The following standards were used 

for calibration: diopside (Mg), wollastonite (Ca), anorthoclase (Al, Si), albite (Na), 

rutile (Ti), almandine (Fe), Cr2O3 (Cr), rhodonite (Mn), orthoclase (K), apatite (P), 

fluorite (F), barite (Ba), strontianite (Sr), zircon (Zr, Hf), synthetic Smithsonian 

orthophosphates (La, Ce, Nd, Sm, Y), pure vanadium (V), corning glass (Th and U), 

sphalerite (S, Zn), sodium chloride (Cl), and pollucite (Cs). See Melluso et al. (2010) 

for full analytical details. 

Mineral chemistry analyses of the main occurring phases were performed on selected 

representative samples of phyllites, metapelites, and metasandstones. The results are 

briefly summarized here.  

The analyzed chlorite crystals are generally Fe-rich (FeOTOT= 26.1-35.0 wt.%; Mg = 

8.06-12.6 wt.%) and plot between the amesite and (clinochlore) daphnite end-members 

(Fig. 11a), although some chemical variability is recorded in both the investigated 

lithotypes. Metapelites show a slightly narrower range in compositions, with XMg 

values between 0.33 and 0.44, coupled with slightly lower Fe (2.27-2.99 a.p.f.u.) and 

Al
IV 

(1.05-1.36 a.p.f.u.) with respect to phyllites (i.e., XMg = 0.29-0.44, Fe = 2.46-3.35 

a.p.f.u., Al
IV

 = 1.14-1.48 a.p.f.u.). The metapelites from Casa del Conte have chlorites 

with generally lower XMg (0.33-0.36) and Fe (2.66-2.84 a.p.f.u.) with respect to those 

from Sorgente Catusa (XMg = 0.33-0.44, Fe basically between 2.60 and 2.99 a.p.f.u.). 

Chlorite from phyllites displays a more marked compositional variation, with the 

Tempone ones being the Mg-richest (i.e., XMg up to 0.43). 

Analyzed mica crystals record a wide compositional variability. Metapelites generally 

show large Tschermack (i.e., XMus = 0.51-0.85 and XCel = 0.09-0.40) and moderate 

pyrophillitic substitutions (XPrl = 0.03-0.17), with the Casa del Conte samples being 
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more homogeneous (i.e. XMus = 0.51-0.59, XCel = 0.30-0.32 and XPrl = 0.11-0.17) with 

respect to those from Sorgente Catusa. Phyllites display an even wider spectrum of 

mica compositions, with XMus ranging from 0.38 to 0.85, XCel from 0.10 to 0.46 and 

XPrl from 0.01 to 0.17. The three analyzed localities are characterized by a pronounced 

variability, which is more evident for the mica from the Tempone locality, whereas 

mica crystals analyzed in the Frido River locality generally show higher muscovite 

contents, coupled with smaller substitutions (Fig. 11b).  

The analyzed carpholite (Fig. 12a, b) crystals are found in Frido River phyllites (site 7; 

Fig. 6) and show a quite homogeneous, relatively Fe-rich and Mn-poor composition 

(XFe = 0.57-0.69, XMg = 0.29-0.41, XMn ~0.03). Amphibole crystals found in the meta-

sandstones from the Seluci area. The structural formulae were calculated on the basis 

of 23 oxygens. According to the classification scheme proposed by Leake et al. (1997), 

compositions range from sodic to sodic-calcic amphibole (Fe-richterite, riebeckite and 

Mg-riebeckite). Sheaf-like aggregates show a marked chemical zonation, with a core-

to-rim increase in MgO and decrease in CaO, Na2O and Al2O3. Matrix amphiboles are 

basically sodic, overlapping the composition of the larger sheaf-like aggregate rims 

(i.e., MgO = 6.22-8.82 wt. %, CaO = 0.58-1.94 wt.%, Na2O = 6.13-6.97 wt.%, Al2O3 

= 1.50-2.32wt.%). 

  



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

42 
 

 

  



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

43 
 

Fig. 11- (a) Amesite-(clinochlore + daphnite)-sudoite ternary diagram and (b) celadonite-

muscovite-pyrophillite ternary diagram for chlorite and mica from the Frido Unit. The insets 

in the upper left and upper right corners indicate the position of the magnified portion of the 

diagram where analyzed individuals plot (black area) and the effects of the Tschermack (TK), 

di/trioctahedral (DT) and pyrophyllitic (P) substitutions.  
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Fig. 12- (a) Composition of Fe-Mg carpholite from the Frido Unit. The inset in the upper left 

corner indicates the position of the magnified portion of the diagram where analyzed 

individuals plot (black area). (b) Composition of amphiboles from the Frido Unit according to 

the scheme proposed by Leake et al. (1997). inn = inner portions of the sheaf-like aggregates 

green cores; out = outer portions of the sheaf-like aggregates blue rims; matrix = 

microcrystals of the surrounding matrix.  
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2.4. Nord Calabrese Unit 

2.4.1. Stratigraphic setting 

The Nord-Calabrese Unit is formed by Crete Nere and Saraceno Formations (Fig. 4; 

Bonardi et al., 1988a). The Crete Nere succession, in the lower part, is made of 

oceanic (ophiolites) and continental crust masses (Spadea, 1982), the former preserved 

in a coherent succession in the Timpa delle Murgie locality (Fig. 5; Bonardi et al., 

1988a), including gabbros, dolerites, pillow lavas, pillow breccias, and a deep basin 

cover (Fig. 13a, b) formed by argillites, quartz-arenites, jaspers and allodapic 

limestones, known in literature as "Calcari di Mezzana" (Bousquet, 1973). The latter 

correspond to “scaglia-type” deposits, directly covering pillow lavas and pillow 

breccias (Fig. 13c). Continental crust-derived bodies consist of gneisses and 

amphibolites cropping out only in the "Timpa di Pietrasasso" locality (Fig. 5). The age 

of this part could reach the Upper Cretaceous as suggested by Bonardi et al. (1988a). 

The middle-upper part of Crete Nere succession, Middle Eocene in age, is formed by 

dark-brownish argillites alternated to gray-greenish quartz-arenites, followed by a 

thick succession of black shales (Fig. 13d) with intercalations, in the upper part, of 

arenites and calcareous beds. The Crete Nere Fm. gradually passes to the upper 

Saraceno Fm., which is made of four members (Ciarcia et al., 2012): (i) Punta 

Telegrafo member (Fig. 13e), made of calciclastic, locally silicified, arenitic turbidites 

with dark chert lenses and rare lithic sandstones; (ii) Terranova di Pollino member 

(Fig. 13f), characterized by thin layers of calciclastic, pelitic and arenitic turbidites 

with lenses and nodules of dark chert and subordinately arkosic-lithic sandstones; (iii) 

Carpineta member, consisting of an alternance of marly, silty and arenitic beds, 
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occasionally with dark chert nodules and layers of microbreccia at the top; and finally 

by (iv) Sovereto Member (Fig. 4; Bonardi et al., 2009), comprising thinly layered 

immature sandstones. The age of the Saraceno Fm. is Upper Eocene-lowermost 

Burdigalian (?) (Di Staso and Giardino, 2002; Bonardi et al., 2009). The thickness of 

the whole succession is more than 1200 meters (Bonardi et al., 1988a).  
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Fig. 13- Examples of stratigraphic features. Nord-Calabrese Unit: (a) Timpa delle Murgie hill 

view showing the stratigraphic boundary between pillow lavas and breccias, and deep basin 

sedimentary cover; (b) pillow lavas of Timpa delle Murgie; (c) slumping in the scaglia-type 

deposits (“Calcari di Mezzana”, Mezzana); (d) black shales in Crete Nere Fm. (road between 

Terranova di Pollino and S. Lorenzo Bellizzi); (e) Punta Telegrafo Member of SaracenoFm. 

(Sarmento River Valley); (f) Terranova Member of Saraceno Fm. (Sarmento River Valley). 

Sicilide Unit: (g) Silicified marly clays and slates of Argille Scagliose Fm. (Roseto Capo 

Spulico); (h) Argille Varicolori Fm. (RosetoCapoSpulico). (i) Argille Varicolori Fm. (Oriolo). 
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2.4.2. Structural analysis 

The deformation of Nord Calabrese Unit was studied since the early 70’s by several 

author (e.g. Guzzetta and Ietto, 1971; Mauro and Schiattarella, 1988; Zuppetta and 

Mazzoli, 1997; Mazzoli, 1998), which recognized that this succession was affected by 

a poly-phased deformation evolution highlighted by the superposition of structures of 

different generations. In order to provide a coherent structural analysis, the Crete Nere 

and Saraceno Fms. will be analyzed separately. 

The overprinting relationships suggest that all observed structures are associated to 

three main folding stages (D1-D2-D3). A further folding event (D4) is related to deeply 

rooted thrusts and back thrusts involving the buried Apulian Platform carbonates and 

deforming the whole thrust sheet pile, especially in the outer sector of the Apennine 

Chain (e.g. Piedilato and Prosser, 2005; Ciarcia and Vitale, 2013). The first three 

stages are characterized by different grades of coaxiality in every analyzed part and the 

third deformation phase is normally recorded as macro-scale folds. Early tectonic 

structures (D1), hosted in Crete Nere Fm., are tight to isoclinal and intrafolial F1
CN 

folds (Fig. 14a, b). In the argillitic layers an axial plane slaty cleavage (S1
CN

) occurs, 

whereas in the arenitic and calcareous beds a spaced disjunctive convergent fan 

cleavage is observed. The D2 folding stage produces close to tight folds (F2
CN

), usually 

showing a kink shape, verging to SE and NW (Fig. 14c, d), and locally associated with 

meso-scale thrust fault (Fig. 14d). In the argillitic levels this deformation stage is 

associated with a well developed crenulation cleavage (S2
CN

) and a crenulation 

lineation (CL2
CN

). The interference pattern produced by F1
CN

 and F2
CN

 fold sets (Fig. 

14c) ranges between the types 2 and types 3 of the Ramsay's classification (Ramsay, 
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1967). The overprinting between these two tectonic foliations generates a 

characteristic pencil cleavage especially in the argillitic layers (Fig. 14e). 

Poles to bedding (S0
CN

) are scattered (Fig. 15a); F1
CN 

fold hinges (A1
CN

) and 

crenulation lineations (CL1
CN

) show a NW-SE main direction (Fig. 15b), whereas 

related axial plane poles (AP1
CN

) spread out around a NE-SW directed roughly vertical 

cyclograph (Fig. 15c). S1
CN

 cleavage poles indicate NW-SE about vertical planes (Fig. 

15d). F2
CN

fold hinges (A2
CN

) and crenulation lineations (CL2
CN

) are scattered, though a 

mean NE-SW trend results (Fig. 15e). Related axial plane poles (AP2
CN

) indicate a 

mean SW gently dipping plane (Fig. 15f). 

The calcareous turbidites of Punta Telegrafo member (lower part of Saraceno Fm.) 

host early structures as tight to isoclinal folds (Fig. 14f). To D1 deformation stage is 

associated also a boudinage affecting the long limbs of F1
SA

 folds, with stretching 

direction orthogonal to fold axes, where competent layers may locally form 

asymmetric boudins (Fig. 14g). Often a further synchronous extension, orthogonal to 

the previous, forms a chocolate tablet boudinage. Meso-scale thrust faults occasionally 

developed duplex structures in pelitic inter-layers (Fig. 14h), whereas the calcareous 

beds, embedded in pelitic layers, locally host pre-buckle thrusts. D1 structures are 

deformed by the second folding phase, producing open to tight folds, normally verging 

to SE (F2
SA

). In argillitic layers, crenulation cleavage (S2
SA

) and crenulation lineation 

(CL2
SA

) are well developed. As described previously for Crete Nere Fm., the 

interference pattern between the two fold-sets ranges between types 2 and 3. Rare 

meso-scale folds associated to the third deformation stage (D3) superpose onto the 

previous tectonic structures. The middle-upper part of the Saraceno Fm. (Terranova, 

Carpineta and Sovereto members) is less deformed with respect to the lower part. The 
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first deformation stage (D1) is recorded by chevron to rounded, tight to isoclinal folds 

F1
SA

 (Fig. 16a-d), with an associated slaty cleavage S1
SA

 which is particularly well-

developed in the pelitic inter-layers. The previous structures are deformed by open to 

tight folds showing a kink geometry (F2
SA

), often overturned both to SE and NW (Fig. 

16c, d), with the development of crenulation cleavage and crenulation lineation. Pre-

buckle thrusts are normally hosted in arenitic layers embedded in pelitic interlayers. 

Fold axes of the two superposed deformation stages vary between almost orthogonal, 

generating an interference pattern of type 2 (Fig. 16d), to parallel, with patterns of type 

3 (Fig. 16c). The third deformation is recorded only as macro-scale folds, often 

overturned, affecting also the wedge-top basin deposits of the Albidona Fm. Poles to 

bedding (S0
SA

) for the whole Saraceno Fm. are scattered, although they lie around an 

almost vertical N10 striking great circle (Fig. 15g). F1
SA

 fold hinges are random (Fig. 

15h), whereas poles to axial planes spread out around a sub-vertical NNE-SSW great 

circle with a maximum frequency peak given by southeast dipping planes (Fig. 15i). 

Also F2
SA 

fold hinges (A2
SA

) are dispersed; however showing main W/SW-trending 

sub-horizontal clusters (Fig. 15j). Poles to axial planes (AP2
SA

) lie along an ENE 

moderately dipping cyclograph (Fig. 15k). Rare F3
SA

fold hinges (A3
SA

) show a mean 

NNW-SSE trend (Fig. 15l), whereas related axial plane poles (AP3
SA

) spread out 

around a NNE-SSW great circle (Fig. 15m). 
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Fig. 14- Examples of tectonic structures in the Nord-Calabrese Unit.Crete Nere Fm.: (a) F1 

recumbent isoclinal fold (Destra delle Donne, Terranova di Pollino); (b) F1 tight fold 

(Terranova di Pollino); (c) interference pattern of type 2 between F1 isoclinal and F2 close 

folds (Terranova di Pollino); (d) meso-scale thrust fault (San Lorenzo Bellizzi); (e) pencil 

cleavage (Terranova di Pollino). Punta Telegrafo member (Saraceno Fm.): (f) F1 tight 

chevron folds (Sarmento River); (g) asymmetric boudin (Sarmento River); (h) duplex 

structure in argillitic layers embedded in calcareous strata (Sarmento River).  
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Fig. 15- Stereographic projections and contour plot of analyzed structures in Nord-Calabrese 

Unit (lower hemisphere, Schmidt net). CN: Crete Nere Fm.; SA: Saraceno Fm. 
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Fig. 16- Examples of tectonic features. Terranova Mb. (Saraceno Fm.): (a) F1 isoclinal fold 

(Ferro River Valley). (b) F1 chevron fold (Ferro River Valley). (c) Interference pattern of type 

3 between F1 tight and F2 open folds (San Lorenzo Bellizzi). Carpineta Mb. (d) Interference 

pattern of type 2 (Sapri). Parasicilide and Sicilide Units: (e) Interference pattern of type 2 

between F1 isoclinal and F2 open folds (Torraca). (f) Interference pattern of type 3 (Farneta); 

(g-h) F3 meso-scale folds associated to thrust faults (Farneta). 
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2.5. Parasicilide-Sicilide Units. 

2.5.1. Stratigraphic setting 

The Parasicilide and Sicilide Units (Fig. 4) are characterized by two analogous 

sedimentary successions, often disrupted and showing the typical features of a broken 

formation (Mattioni et. al 2006). The former is characterized by four formations 

(Ciarcia et al., 2009). At the bottom, the Postiglione Fm. is made of clays and slates, 

followed by Monte Sant’Arcangelo Fm. made of marls and limestones. The succession 

continues with the Contursi Fm., characterized by whitish marls and marly limestones, 

and closes with the foredeep deposits of the Arenarie di Albanella Fm. (Donzelli and 

Crescenti, 1962). The thickness of the whole succession exceeds 800 meters and the 

age ranges from Middle Eocene to Burdigalian, although it is not excluded that the 

lower undated deposits could reach the Upper Cretaceous, in analogy to the Crete Nere 

Fm. (Bonardi et al., 1988a; Guerrera et al., 2005).  

The Sicilide Unit (Fig. 4) is similarly divided into four formations (Guerrera et al., 

2005), from bottom to top: (i) clays and slates of Argille Scagliose Fm. (Fig. 13g); (ii) 

marls and limestones of Monte Sant’Arcangelo Fm.; (iii) clays and marls (locally 

including calcarenites rich in foraminifera), of Argille Varicolori Fm. (Fig. 13h, i); and 

(iv) foredeep deposits of the Arenarie di Corleto or Tufiti di Tusa Fms. (Fig. 3). The 

thickness is about 1000 meters (APAT, 2005). The age of these deposits ranges 

between the Upper Cretaceous(?) and Burdigalian. 

2.5.2. Structural analysis 

The Parasicilide Unit shows a heterogeneous deformation especially localized in the 

argillitic layers, where more competent beds are completely dismembered giving to the 
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rocks an appearance of a broken formation (e.g. Mattioni et al., 2006). As well as the 

Nord Calabrese Unit, the Parasicilide succession is affected by three main folding 

stages. The first fold set (F1
PS

) shows different shapes, from chevron to rounded and 

from tight to isoclinal folds (Fig. 16e), locally related to meso-scale thrust faults. In 

argillitic layers an axial plane cleavage occurs, whereas in the more competent rocks it 

is disjunctive convergent fan cleavage. Previous structures are deformed by open to 

tight folds (F2
PS

; Fig. 16e), usually with a kink conjugate geometry. The interference 

pattern is intermediate between 2 and 3 types of the Ramsay's classification (Fig. 16e). 

F1
PS

 fold hinges are very scattered (Fig. 17a) such as the poles to axial planes (Fig. 

17b). F2
PS

 fold hinges (Fig. 17c) indicate a large dispersion with two main clusters, E-

W and N-S directed. Poles to axial planes (Fig. 17d) indicate a main gently N dipping 

plane. F3
PS

 fold hinges (Fig. 17e) show a mean NNE-SSW trend with axial planes 

mainly dipping to N (Fig. 17f). 

Like the previous units, the Sicilide succession is characterized by the superposition of 

three meso-scale fold sets. The rare early generally isoclinal folds F1
SI

 (Fig. 16f) are 

deformed by a more frequent second fold set (F2
SI

) characterized by open to close 

geometries (Fig. 16f). The third fold set (F3
SI

) consists of open to close folds often 

associated with thrust faults both verging to NE and SW (Fig. 16g, h). Poles to 

bedding (S0
SI

) spread out around an almost vertical NNE-SSW cyclograph (Fig. 17g). 

F1
SI

 fold hinges are scattered (Fig. 17h), whereas the poles to axial planes lie along a 

NNE-SSW almost vertical great circle (Fig. 17i). F2
SI

 fold hinges show a mean E-W 

trend (Fig. 17j), whereas the poles to axial planes are scattered (Fig. 17k). Finally, F3
SI

 

fold hinges (Fig. 17l) indicate a mean NW-SE trend and the poles to axial planes (Fig. 

17m) are located around a NE-SW vertical cyclograph. 
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Fig. 17- Stereographic projections and contour plot of analyzed structures of Parasicilide and 

Sicilide Units (lower hemisphere, Schmidt net). PA: ParasicilideU.; SI: Sicilide U. 
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Chapter 3-LAC in northern Calabria 

3.1. Introduction 

The LAC Units cropping out in the northern Calabria (Fig. 18) are all characterized by 

HP/LT metamorphic ophiolitic sequences (e.g. Liberi and Piluso, 2009), ranging in age 

from Jurassic to Early Cretaceous age (Lanzafame and Zuffa, 1976). These include 

Diamante-Terranova, Malvito and Gimigliano Units, commonly interpreted as slices 

of oceanic lithosphere belonging to the Jurassic Tethys realm, consisting of 

metabasites and metasedimentary covers. These tectonic units are located between the 

overlying Paleozoic rocks and relative cover of Calabrides and the underlying 

carbonatic Apennine Units. In this work, as explained in the successive paragraphs, the 

study focused on the Diamante-Terranova Unit and shed lights on the complex 

metamorphic and deformative pattern affecting both metabasites and metasedimentary 

cover of this ophiolitic unit. By means of a geological and structural survey were 

collected a good number of data, and several samples in the different localities where 

this unit crop out. The results of the petrological and micro- and meso-scale structural 

analysis, together with the discussion of the tectono-metamorphic evolution, are 

explained below. 
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Fig. 18- Geological sketch map of Calabria (modified after Amodio-Morelli et al., 1976; 

Spadea 1976; Iannace et al., 2007). 
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3.2. Geological setting of LAC in northern Calabria 

In northern Calabria (Fig. 18), several ophiolitic successions, known in literature as 

Diamante-Terranova, Malvito and Gimigliano Units (Ofioliti Calabresi; De Roever, 

1972; Dietrich and Scandone, 1972; Spadea, 1976; Lanzafame et al. 1979, Beccaluva 

et al. 1982; Guerrera et al., 1993; Cello et al., 1996; Rossetti et al., 2001, 2004; Liberi 

et al. 2006; Liberi and Piluso, 2009) crop out. These tectonic elements are interposed 

between: (i) Apennine Units, in the lower part of thrust sheet pile, characterized by 

Middle Triassic-Lower Miocene carbonate and siliciclastic deposits (Ietto e Barillaro, 

1993; Iannace et al. 1995; Iannace et al., 2007; Vitale et al., 2007; Vitale and Mazzoli, 

2008); and (ii) the Calabride Complex on the top (Ogniben, 1960; Amodio-Morelli et 

al., 1976; Bonardi et al., 2001), formed by crystalline basement rocks of continental 

crust comprising three major units: (i) the Bagni Unit, made of Paleozoic phyllites 

with Triassic-Lower Cretaceous cover showing a green schist facies metamorphism; 

(ii) the Castagna Unit characterized by Paleozoic micashists, gneiss and granites, 

which locally shows an HP\LT metamorphysm and a metamorphic overprinting in 

greenschist facies (Rossetti et al., 2001, 2004). (iii) Finally, the Sila Unit includes 

biotite and garnet gneisses, diorites, tonalites, metabasites and, subordinately, 

peridotites showing a retrograde metamorphism in greenschist facies (Rossetti et al., 

2001). 

The whole ophiolitic suite (Diamante-Terranova, Malvito and Gimigliano Units) 

includes (Liberi and Piluso, 2009): (i) serpentinized ultramaphic mantle rocks, 

cropping out only in Gimigliano-Reventino Mt. area, associated with the upper 

metabasites; (ii) massive and foliated metabasaltic pillows, both porphyric and 

aphyric, and subordinately metaradiolarites; (iii) a metasedimentary cover, including 
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pelagic sediments and Calpionella limestones, Titonian-Neocomian in age (Lanzafame 

and Zuffa, 1976; Spadea, 1976), and an alternance of metapelites, metalimestones and 

metarenites.  

The Diamante-Terranova Unit is characterized by foliated metabasites with fine-

grained blue and greenish bands, blue glaucophanites and subordinately medium to 

coarse grained rocks. The metasedimentary cover includes a ten meters-thick 

succession of phyllites and calcshists (Spadea, 1976; Rossetti et al., 2001; Liberi et al., 

2006; Liberi and Piluso, 2009). In the Terranova di Sibari town (Fig. 18), the outcrops 

are made of massive mafic rocks, occurring as pillow lavas and pillow breccias, which 

rarely display a weak foliation. The Calabrian ophiolites were the object of a detailed 

study focused on the stratigraphy, petrography, tectonic and structural evolution 

(Amodio-Morelli et al., 1976; Spadea, 1976; Spadea et al., 1980; Cello et al., 1996;  

Rossetti et al., 2001, 2004; Liberi et al. 2006; Liberi and Piluso, 2009). The tectonic 

evolution of the Diamante-Terranova Unit was generally interpreted as a poli-phased 

deformation consisting of three deformative events (Cello et al., 1996; Rossetti et al., 

2001, 2004; Liberi et al. 2006; Liberi and Piluso, 2009). The first stage, associated 

with a metamorphic recrystallization in the blueschist facies, comprises structures such 

as intrafolial tight to isoclinal folds, a pervasive foliation and a stretching lineation 

dipping to SE, the latter recorded only in metabasites (Cello et al., 1996; Liberi et al. 

2006; Liberi and Piluso, 2009). The structures of the second deformative stage are 

centimeter- to meter-sized open to tight folds, verging mainly to NW, and a crenulation 

foliation developed under greenshist facies conditions (Cello et., al. 1991; 1996). The 

last deformative stage is recorded only from normal faults, cataclastic zone and veins. 

In conclusion the metamorphic evolution of the Diamante-Terranova Unit consists of a 
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first step in blueschist facies and a successive re-equilibration in greenschist facies 

(Cello et al., 1996; Liberi et., al., 2006; Liberi and Piluso, 2009; Rossetti et al., 2001, 

2004). 
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3.3. Structural analysis 

The micro- and meso-structural analysis carried out in this work for the Diamante-

Terranova Unit sheds light on a complex deformative pattern recorded in the whole 

succession by means of a lot of structures (Figs. 19-21-22-23). In order to better 

analyze the whole tectono-metamorphic evolution, micro- and meso-scale structures 

are separately analyzed and the results illustrated in the following paragraphs. 

3.3.1. Meso-scale structures 

At meso-scale the glaucophanites, cropping out close to the Diamante town, show a 

foliation marked by bluish (glaucophane + lawsonite) and greenish (chlorite + epidote 

+ lawsonite) bands (Fig. 19a). The S1 appears as the main foliation also in metapelites, 

and rare relicts of bedding planes (S0) are preserved only in the metarenites of 

Diamante-Terranova metasedimentary corver (Fig. 21a). This deformation stage does 

not produce micro- and meso-scale folds in metabasites, whereas rare F1 tight to 

isoclinal folds are preserved in the cover rocks (Fig. 21a). In the metabasaltic rocks, 

several veins occur, at places forming orthogonal sets, producing a table-chocolate 

boudinage (Fig. 19d). Also a severe boudinage of lawsonite-epidote-chlorite-rich layer 

in Na-amphibol-rich matrix occur (Fig. 20a). S1 foliation and early veins are deformed 

by isoclinal to tight folds (F2) both in basement and cover rocks (Figs. 19c, f; 21b), 

often with kink geometry in metapelites. Both in metabasites and meta-sedimentary 

cover, a crenulation cleavage (S2) (Fig. 19g) with associated crenulation lineation 

(CL2) (Fig. 19e) developed, related to F2 folds (Fig. 19b). A mineral/stretching 

lineation (SL1), in epidote, is well evident, especially in metabasites (Fig. 19b) along 

the S1 foliation, generally orthogonal to the F2 fold axes. D3 deformation stage 
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produces, in glaucophanites, close to open folds (F3) (Fig. 19 f, h), locally associated 

with thrust faults with centimetric to metric displacements; whereas in 

metasedimentary cover rocks F3 folds occur with kink geometry (Fig. 21d). A 

crenulation cleavage (S3) and a crenulation lineation (CL3), occur both in metabasites 

(Fig. 19a) and in metapelites. F2 and F3 folds, in metabasites generally show an axial 

trend ranging from parallel to orthogonal and forming interference pattern from type 2 

to type 3 (Fig. 19h) according to Ramsay's classification (Ramsay, 1967). As well as in 

the metabasites, also in metasedimentary cover rocks an interference pattern, formed 

by F2 and F3 folds and ranging between type 2 and 3, occur (Fig. 21c). A fourth 

deformation stage (D4) is recorded mainly in metabasites by high-angle normal faults, 

sometimes characterized by cataclasites and fault breccias rich in chlorite and epidote 

(Fig. 20b, c). Finally a D5 stage includes normal (Fig. 20d) and strike-slip faults (Fig. 

20e). 

Poles to S1 show a cluster distribution both in basement (Fig. 22a) and cover (Fig. 23d) 

rocks with mean values of 333/64 and 339/57, respectively. The S0 poles preserved 

only in metasedimentary cover, show a cluster distribution with 280/59 mean value 

(Fig. 23a). As well as stratification, also rare early isoclinal to tight folds (F1), 

occurring only in the cover rocks, are characterized by a scattered distribution of A1 

(Fig. 23b), whereas poles to axial planes (Fig. 23c) show a broad cluster distribution 

with 277/69 mean value. The stretching lineation (SL1), measured both in metabasites 

and in cover rocks, are characterized by an orientation ranging from E/W to NE/SW 

(Figs. 22b; 23e). F2 fold axes (A2) and crenulation lineation (CL2), of metabasites (Fig. 

22c, e), show scattered distribution but, a main NNW-SSE trend can be observed; also 

poles to axial planes (AP2) of these folds show a scattered distribution but a main 
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cluster to NE can be detected (Fig. 22d). F2 fold axes (A2), recognized in the cover 

rocks, are characterized by a NE/SW main trend (Fig. 23f), whereas poles to axial 

planes are scattered (Fig. 23g). Poles to S2 foliation show a cluster distribution both in 

metabasites and cover rocks, furnishing a mean value of 332/51 and 048/62, 

respectively (Figs. 22f; 23h). F3 fold axes (A3) and crenulation lineation (CL3) show a 

NW/SE direction, both in the metabasites (Fig. 22g, i) and in metasedimentary cover 

rocks (Fig. 23i, k) whereas poles to AP3 show a scattered distribution (Figs. 22h; 23j). 
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Fig. 19- Examples meso-structures of Diamante-Terranova Unit: (a) S1 metamorphic foliation 

well-marked by bluish (Na-amphibole + lawsonite) and greenish (epidote-chlorite-lawsonite) 

bands deformed by F2 isoclinal folds and D3 crenulation. (b) Stretching lineation (SL1) 

marked by isoriented epidote minerals along the S1 foliation. (c) F2 meso-scale tight to open 

folds. (d) Two orthogonal vein sets forming a tablet-chocolate boudinage. (e) Crenulation 

lineation (CL2) related to S2 crenulation cleavage. (f) F3 tight to open meso-scale folds 

overprinting F2 isoclinal folds. (g) Overprinting between S1 and S2 foliations. (h) Type-3 

interference pattern between F2 and F3 folds. 
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Fig. 20- Examples meso-structures of Diamante-Terranova Unit: (a) Boudinated lawsonite-

epidote-chlorite-rich layer in Na-amphibol-rich matrix. (b) D4 normal fault producing 

cataclasites rich in epidote and chlorite. (c) D4 normal faultwith a aplitic dyke. (d) D5 high-

angle normal fault (e) D5 left-lateral strike-slip fault. 
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Fig. 21- Examples of micro- and meso-structures of the Diamante-Terranova Unit 

metasedimentary cover: (a) S0 relicts deformed by F1 isoclinal fold in metarenites. (b) F2 tight 

to isoclinal folds. (c) 3-type interference pattern between F1 and F2 folds. (d) Kink shape F3 

fold. (e) Thin section microphotographs showing a 3-type interference pattern between F1 and 

F2 folds (DIA-6). (f) Thin section microphotographs showing a D2 crenulation cleavage (DIA-

6). 
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Fig. 22- Stereographic projections and contour plot of analyzed structures of metabasites of 

Diamante-Terranova Unit (lower hemisphere, Schmidt net). 
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Fig. 23- Stereographic projections and contour plot of analyzed structures of metasedimentary 

cover rocks of Diamante-Terranova Unit (lower hemisphere, Schmidt net). 
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3.3.2. Micro-scale structures 

The thin section analysis carried out on metabasites of the Diamante-Terranova Unit 

revealed the occurrence of several metamorphic features. An early deformation was 

recorded by means of a metamorphic foliation (S1) highlighted by bluish and greenish 

band alternations (Fig. 24a), characterized by isorientation of lawsonite and white 

mica. To this deformation stage is associated the growth of syn- (Fig. 24b), inter- and 

post-D1 lawsonite (Fig. 25) together with Na-amphibole, epidote and chlorite (Fig. 25). 

D2 deformation stage is characterized by folds (Fig.24c) and related foliation (S2) (Fig. 

24d), deforming the previous structures. Also late D2 veins (Fig. 24d, e), hosting Na-

amphibole, epidote and chlorite, occur. The growth of lawsonite happens in the late 

stages of this deformation stage (Fig. 24e). However, although syn- and inter-D2 

lawsonite are not found in the analyzed samples, the recurrence of this mineral in the 

whole deformation allow us to assume a continued growth (Fig. 25). Late D2 S-C' 

structures (Fig. 24h) are recorded in thin section. These latter, the only clear kinematic 

indicators, are orthogonal to the stretching lineation and indicate a S/SSE tectonic 

vergence. The structural constraint, giving the relative timing of these structures, is the 

D3 crenulation cleavage, which deforms the S-C' structures. 

The third deformation step (D3) produces folds and a crenulation cleavage (S3) (Fig. 

24f). In this case the relationship between foliation (S3) and lawsonite suggest a 

growth post D3 (Fig. 24f). Even though there aren’t clear evideces to link the 

occurrence of the Ca-amphibole to a precise deformative stage, its presence on the rim 

of Na-amphibole (Figs. 24g, 25), suggest a growth during the latest deformation 

stages, probably during the D4. 
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Fig. 24- Thin sectionsmicrophotographs of some samples of Diamante-Terranova Unit: (a) S1 

metamorphic foliation in metabasites (DIA-1). (b) Syn-D1 lawsonite (DIA-1). (c) F2 fold with 

associated S2 axial plane cleavage well-marked by a green layer formed by lawsonite and 

epidote (DIA-7). (d) Thin section microphotographs showing S1 (disjuntive foliation relict in 

microlithons) and S2 (crenulation foliation) in metabasites (FT-3). (e) Late-D2 vein formed by 

Na-amphibole, epidote, chlorite and lawsonite, crosscutting a host rock formed by S1-S2 

foliation and late-D2 static lawsonite (DIA-5). (f) D3 crenulation cleavage and post-D3 static 

lawsonite including the crenulated S2. (g) Zoned amphibole, in late-D2 quarz/calcite vein, with 

Na-richcore (glaucophane) and Ca-rich rim (actinolite) (DIA-1). (h) Late D2 S-C' structures 

deformed by D3 crenulation cleavage (DIA-5). 

 

 

Fig. 25- Blastesis-deformation diagram. 
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3.4. Petrography of Diamante-Terranova Unit 

The analyzed successions are made of metabasites covered by phyllites, metarenites 

and calcshists. Metabasites of Diamante occur as bluish-greenish, pervasively foliated 

blocks (Fig. 24a) in which the original layering was completely deleted and the 

original igneous structures obliterated. Metabasalt samples were recovered in two 

different localities, namely Diamante and Terranova di Sibari (Fig. 18). Mineral 

parageneses include mainly lawsonite, blue amphibole (glaucophane), chlorite epidote 

and green amphibole (tremolite), plus accessory quartz, albite, titanite and oxides. No 

significant differences have been observed between metabasaltic samples from 

different outcrop localities, although the Terranova di Sibari samples generally display 

a finer grain size. Lawsonite occurs as abundant, relatively well-developed and coarse-

grained bladed crystals showing a wide range of textural relations with the surrounding 

matrix, suggesting a continuous growth (from pre- to inter- post-tectonic stages; Fig. 

24b, e, f). Blue amphibole crystals (Fig. 24e, g) are represented by extremely abundant 

small, needle-like isoriented crystals outlining the main foliation of the rocks (Fig. 

24a). Worth of note is the evident zonation shown by some individuals which display a 

clearly more Ca-rich greenish rim developed on the Na-rich blue core (Fig. 24g). The 

metabasites frequently host quartz and calcite veins (Fig. 24g), within which zoned 

amphibole aggregates are often observed, as well as epidote veins. The former 

structures are commonly folded (ptygmatic folds). Also the main foliation is 

sometimes deformed by F2 micro-folds (Fig. 24c).  

The thin-section analysis performed for the metapelites reveal a low crystallinity and a 

mineral assemblage characterized mainly by mica (in cleavage domains) and quartz 
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microlithons. These rocks are affected by intrafolial folds (Fig. 21e), crenulation 

cleavage (Fig. 21f), and occasionally are cutted by large quartz veins.  
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Chapter 4-Disussion 

4.1. Frido Unit 

The structural and petrographic analysis on the Frido Unit sheds light on the complex 

evolution of this metamorphic succession. The Frido Unit recorded a single coherent 

tectonic evolution of both oceanic and continental crust rocks and experienced an 

HP/LT metamorphism for the various lithologies. 

The whole succession recorded five deformation stages: (i) the first two deformative 

pulses (D1-D2) are characterized by a consistent orientation and metamorphic grade, 

suggesting a common genesis within a progressive deformation and producing main 

structures as foliations, folds, veins and faults. (ii) Extensional brittle-ductile shear 

zones (D3), related to the tectonic exhumation of the Unit and deforming the previous 

structures, occur in all lithologies. (iii) The last two stages (D4 and D5), which affect 

the whole LAC, developed at shallower crustal conditions, are probably related to the 

post-Middle Miocene tectonic evolution of the Apennines fold and thrust belt. F2 folds 

generally show fold hinges roughly parallel to the stretching lineation. These features 

may be interpreted as a result of intense, non-coaxial plastic strain that allowed the 

rotation of the early fold hinges towards the maximum lengthening axis (i.e. in the 

direction of the orogenic transport; e.g. Alsop and Holdsworth, 2004). 

The geological map of Fig. 5 shows the tectonic vergence/transport direction 

associated with the D2, D4 and D5 deformation events. For D2, the direction of the 

tectonic transport was interpreted as being parallel to the mineral/stretching lineation 

(SL2), which shows a mean NW-SE trend. 
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In analogy with those recorded in the Lungro-Verbicaro Unit, in northern Calabria 

(Vitale and Mazzoli, 2008) and in the Nord Calabrese and Parasicilide units in the 

Cilento area (Ciarcia et al., 2012; Vitale et al., 2011) a dominant top-to-the-SE 

kinematics may be envisaged for this deformation stage. 

For D4 and D5, the structures vergence was established by means of asymmetric folds 

and meso-scale thrust faults. The former stage tectonic transport ranges from NE to E, 

whereas for D5 it ranges between NW and NNE. 

Stratigraphic and structural observations, illustrated in this work, allow to constraint 

the age of progressive deformation (D1, D2 and D3 stages) from the Late Oligocene 

(age of the upper part of the Frido succession) to the middle Tortonian (age of the first 

unconformable deposits on top of the exhumed Frido Unit). The D4 structures are very 

similar to the Tortonian features hosted in the Langhian-lowermost Tortonian wedge-

top-deposits of Albidona Fm., indeed show similar deformative style, geometry and 

are also characterized by a main NE vergences (e.g. Cesarano et al., 2002; Ciarcia et 

al., 2012). 

According to Mattei et al. (2007), a ~60° counterclockwise rotation was experienced 

for the pre-Upper Miocene successions of the Apennine wedge; this means that for the 

observed NE to E vergences, a general SE-directed original tectonic transport may be 

inferred. Finally, D5 is likely to postdate the deposition of the younger wedge-top basin 

deposits of the Perosa Fm. (middle-upper Tortonian).  

The petrographic analyses carried out on selected metapelite and phyllite samples 

allowed rough estimates of the geothermobarometric conditions experienced during 

metamorphism, as thoroughly discussed in Vitale et al. (2013). The most interesting 

petrographic feature is surely the occurrence of carpholite, a typical HP/LT phase in 
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Alpine-Himalayan metapelitic complexes. Textural and chemical evidences suggest its 

formation at P > 0.6 GPa and T < 350 °C. This is consistent with the relatively Fe-rich 

character of the Frido carpholite when compared with the carpholite crystals from 

other units of the Western Alps and Apennines.  

Another important petrographic feature of the Frido Unit parageneses is the presence 

of strongly zoned Na-Ca to Na-amphibole, which shows a decrease of Al2O3 from core 

to rim, interpreted as an indicator of switching conditions, from high to low pressures. 

Finally, geothermobarometric indications resulting from the composition of chlorite 

and white mica indicate T values of ~350-360 °C for the phyllites and of ~330-340 °C 

for the metapelites, coupled with P values of ~1.4 GPa and ~1.2 GPa, respectively.The 

reconstructed P-T-t path of Frido Unit (Fig. 26) provides some points for reflection. 

It’s worth noting that respect to those carried out for Lungro-Verbicaro Unit (Iannace 

et al., 2007) and for Calabrian ophiolite Units (Liberi and Piluso, 2009; Rossetti et al., 

2002), the Frido Unit experienced lower temperatures during burial and subsequent 

exhumation. However it must be underlined that only for the Frido, the Lungro-

Verbicaro (Iannace et al., 2007) and the Gimigliano (Rossetti et al., 2002) Units, the P-

T metamorphic peak conditions were calculated by means of carpholite-chlorite-mica 

assemblages (Fig. 26). The lack of evidences of greenschist facies re-equilibration for 

all the ophiolite-bearing units can be taken as indicative of a fast exhumation, possibly 

occurring within the subduction channel and associated with the development of an 

extrusion wedge similarly to the exhumation process envisaged for relatively high 

pressure (HP) and ultra-high pressure (UHP) units in various mountain belts of the 

Alpine-Mediterranean area (e.g. Searle et al., 2004). Such extruded wedges are 

bounded by a reverse shear zone at their base and by a ‘normal-sense’ shear zone at the 
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top, the latter representing a geometric requirement for extrusion rather than a true 

extensional structure (e.g., Mazzoli and Martín-Algarra, 2011; Ring and Glodny, 

2010). When the P-T-t paths reconstructed for the Tuscan Archipelago and Alpine 

Corsica (e.g., Brogi and Giorgetti, 2012; Jolivet et al., 1998) are compared with those 

estimated in the southern Apennines and northern Calabria (Iannace et al., 2007; 

Liberiand Piluso, 2009; Rossetti et al., 2002), including the results of this study (Fig. 

27), it appears that the P-T-t evolution of the Frido Unit is similar to that recorded by 

the rocks of the Schistes Lustrés and Ligurian ophiolites cropping out in Gorgona and 

Giglio Islands, respectively (Jolivet et al., 1998). Summarizing, subduction of the 

Frido succession to depths of ~40 km can be envisaged, accompanied by high 

pressure/very low temperature (HP/VLT) metamorphism (T ~330-360 °C; P ~1.2-1.4 

GPa) and the development of two generations of superposed structures (D1 and D2 

stages described in this study). Subsequently, fast exhumation occurred, testified by the 

lack of higher temperature metamorphic overprints and by the growth of lower 

pressure minerals along extensional shear planes (D3). Finally, the last two 

deformation phases (D4 and D5) postdate substantial exhumation of the Frido Unit. 

 

4.2. Nord Calabrese, Parasicilide and Sicilide Units 

The structural analyses, carried out for sedimentary succession of LAC (Nord 

Calabrese, Parasicilide and Sicilide), reveal a poly-phased tectonic evolution 

characterized by the superposition of three main folding stages. The Nord Calabrese 

Unit show intense deformation principally focused in the upper part of Crete Nere Fm. 

and in the lower part of Saraceno Fm. (i.e. Punta Telegrafo Mb.). The middle-upper 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

84 
 

part of Saraceno Fm. and the lower part of Crete Nere Fm. host, respectively, sporadic 

folds and thrust faults and a pervasive cleavage in the black shales and argillites. As 

these latter portions of Nord Calabrese Unit, also the Parasicilide and Sicilide Units 

are less deformed, however locally the deformation, localized in argillitic levels, 

produced a complete bedding disruption, giving to this unit the aspect of a broken 

formation (Mattioni et al. 2006). The analyzed successions on the Calabria-Lucania 

boundary, in analogy with remnants of LAC cropping out in the Cilento and Sele river 

valley (Ciarcia et al., 2009, 2012; Vitale et al., 2010, 2011), show a tectonic evolution 

consisting of: (i) two progressive folding stages, D1 showing E-W, NW-SE and D2 

characterized by N-S, NE-SW fold trends (Fig. 4). These latter are related to the 

building of thrust sheet pile in the Burdigalian time, i.e. following the foredeep 

deposition (Tufiti di Tusa Fm.) and before the Langhian sedimentation of the wedge-

top basin deposits (Albidona Fm.). A third folding and thrusting stage (D3) show a 

dominant NW-SE fold trend (Fig. 4) and affect also the wedge-top basin deposits of 

the Albidona Fm. and the underlying carbonates of the Pollino-Ciagola Unit. The 

successive folding phase (D4) probably occurred before the deposition of the 

unconformable upper Tortonian-lower Messinian wedge-top basin deposits of Oriolo 

Fm., and synchronous with the Lagonegro Units early deformation, as consequence of 

the accretion of these units within the Apennine thrust sheet pile (Vitale and Ciarcia, 

2013). In the Monte Alpi, Ferro River Valley, Farneta, Valsinni Ridge and Rotondella 

areas (Fig. 4), the whole thrust sheet pile and the Miocene wedge-top deposits are 

deformed by deeply rooted thrusts and back-thrusts characterized by a constant NE-

SW shortening (e.g. Piedilato and Prosser, 2005). A further deformation stage is 

described by several authors (e.g. Catalano et al., 1993; Bonini and Sani, 2000; 
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Ferranti et al., 2009) at the Lucania-Calabria border and the external sector of the 

Lucanian Apennines. Such a Pleistocene deformation is expressed as a strike-slip 

faulting with a mean NW-SE compression that may locally have distorted the 

orientation of pre-existing folds and to be the cause of the dispersion of fold hinges as 

shown in the map of Fig. 4. Though distinct also in this work, as suggested by Bonardi 

et al. (1988), Parasicilide and Sicilide Units show more similarities than differences, 

hence taking into account (i) the stratigraphic and deformation evolution described in 

this work and in Ciarcia et al. (2009, 2012) and Vitale et al. (2013b); (ii) the structural 

position both below the Nord Calabrese Unit and (iii) the lacking of a clear tectonic 

feature between them, these deposits can be considered as a single succession although 

characterized by significant lateral facies heteropies. Another most important aspect 

consist also in the similarities existing between Sicilide Unit and the Paleogene-Lower 

Miocene succession of Lagonegro-Molise Basin Units (Flysch Rosso; Scandone, 

1967), which led notable ambiguity in the literature comprising also the new Italian 

geological cartography (CARG project). The comparable deposition of Parasicilide 

and Sicilide successions could be interpreted as the consequence of the connection 

between the W-located MFB and the Lagonegro-Molise and Imerese Basins to the E 

(Fig. 28) which divided Apennine and Apulian Platform, located to north and the 

African margin located to south. As concerning the meaning of oceanic and continental 

crust bodies at base of the Nord Calabrese succession, recently Shimabukuro et al. 

(2012) provided a 
40

Ar-
39

Ar dating of 193±2 Ma for the lower continental crust rocks 

(amphibolites) sampled in the Timpa di Pietrasasso (Fig. 5). The authors suggest that 

this post-Hercinian age is related to the exhumation of the lower continental crust 
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during a Jurassic early rifting stage, as previously proposed by Piccardo (2009) for the 

corresponding Ligurian Units cropping out in the northern Apennines. 

 

4.3. Diamante-Terranova Unit 

The structural survey on the Diamante-Terranova Unit (Fig. 29) revealed a complex 

deformation pattern coherently recorded both in the metabasites and in the cover 

rocks; furthermore the thin section analysis allowed several considerations on the 

microstructures and on the main mineral parageneses occurring in metabasites of this 

tectonic unit. 

The whole succession recorded five deformation stages including several structures 

such as foliations, folds and veins related to three main steps (D1, D2 and D3) 

suggesting a common tectonic evolution within a progressive deformation; extensional 

brittle-ductile shear zones and normal faults (D4), the latter characterized by epidote 

and chlorite bearing cataclasites, related to the tectonic exhumation and finally (D5) 

normal and strike-slip faults crosscutting all previous structures. Stretching lineations 

hosted in the metabasites show a main cluster distribution indicating a main E-W 

direction (Fig. 22b), whereas those located in the metasedimentary cover (Fig. 23e) 

show an about orthogonal direction. It worth to note that the only clear kinematic 

indicators in the metabasites are S-C' structures orthogonal to the SL indicating a 

S/SSE tectonic vergence for the Diamante-Terranova Unit, then completely different 

from those suggested for the metamorphic deformation stage by Rossetti et al. (2004) 

(NE/E), Liberi and Piluso (2006) (WNW) and Cello and Mazzoli (1998) (NW). It 

follows that the E-W directed SL in the metabasites indicate an extension related to a 

pure shear component orthogonal to the shear sense (e.g. lateral extrusion; Jones et al., 
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1997) such as the Lungro-Verbicaro Unit (Vitale and Mazzoli, 2009), whereas the 

SSW-trending main cluster of the SL in the cover is about parallel to the tectonic 

transport. F2 fold hinges range from parallel to orthogonal to the SL both in 

metabasites and in the cover rocks. This variability may be interpreted as result of 

different grades of rotation towards the maximum lengthening axis (e.g. Alsop and 

Holdsworth, 2004). On the contrary, the F3 fold axes are always orthogonal to the 

sense of shear, indicating a SW vergence. 

The P-T-t path of the Diamante-Terranova Unit (Liberi and Piluso, 2009), (Fig. 26-27) 

provides, for the metamorphic peak, pressure value from 0.9 to 1.1 GPa and 

temperature of 380 °C. Comparing these values with that calculated for the Frido Unit, 

higher temperature of pressure peak is evident. The microstructure analysis on thin 

section  provides at least two foods for thought: (i) the occurrence of pre- to inter- and 

post-tectonic lawsonite during the D1-D3 deformation, indicates HP/LT metamorphic 

conditions for these stages; (ii) the zoning shown by some amphiboles displaying Ca-

rich greenish rim developed on the Na-rich blue core (Fig. 24g) suggests that the D4 

deformation stage occurred at lower pressure conditions. Finally, the D5 deformation 

stage, recorded by normal and strike-slip faults, occurred at very shallow crustal level. 

 

4.4. Geodynamic implications 

The results of this work, together with available geological evidences (Handy et 

al.,2010;Carminati et al., 2012; Turco et al., 2012; Vitale and Ciarcia, 2013), suggest 

that the Calabrian and Frido ophiolites were originated from a single oceanic domain, 

starting subduction from the Eocene (Vignaroli et al., 2012) and Late Oligocene 
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(Bonardi et al., 1988a), respectively, and record a similar geodynamic evolution. The 

best evidences are: 

1) LAC and Calabrian ophiolites are located between the Calabrian Complex (CPT), 

on the top, and the Apennine Platform carbonates, at the bottom. In other words, 

they form an oceanic suture between the overriding and downgoing plates.  

2) The timing of subduction and closure of the eastern branch of the Ligurian Ocean 

ranges between the Eocene and Upper Oligocene. These ages result from: 

a) stratigraphic ages of the uppermost meta-sedimentary cover of the Calabrian 

and Frido ophiolites, respectively (Bouillin, 1984; Bonardi et al., 1988a); 

b) the ~30/33 Ma (Rupelian) and 46.7±0-4 Ma (Lutetian) on HP phengites 

40
Ar/

39
Ar ages for HP/LT metamorphism of the Calabrian ophiolites (Rossetti et 

al., 2004; Shimabukuro et al., 2012);  

c) the Late Oligocene-early Tortonian syn-convergence exhumation recorded by 

apatite fission track cooling ages (Thomson, 1998) for the CPT (Bagni Unit, 11-

15 Ma; Castagna Unit, 12-17 Ma; Sila Unit, 21-15 Ma; and Aspromonte Unit, 

18-33 Ma), presently located in the hanging wall to the Calabrian ophiolites 

(Amodio-Morelli et al., 1976);  

d) the Eocene (Lutetian-Bartonian) age of the first subduction-related volcanism in 

the present-day Genoa Gulf (Réhault et al., 2012) and northern Sardinia 

(Lustrino et al., 2009).  

3) The P-T-t paths (Fig. 26) reconstructed for the Frido Unit and for the Calabrian 

ophiolites are comparable and suggest a similar tectonic evolution characterized by 

HP/LT metamorphism and subsequent fast exhumation (possibly occurring, for the 

Frido Unit, along a cooler path).  



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

89 
 

Following recent studies (e.g. Carminati et al., 2012; Handy et al., 2010; Turco et al., 

2012; Vitale and Ciarcia, 2013), we envisage a Eocene paleogeography for the proto-

Central-Western Mediterranean area (Fig. 28) involving the CPT overriding a NW-

ward downgoing lithosphere formed by the Calabrian ophiolites and an OCT hosting 

the Frido and the Nord Calabrese successions, and a large sector of thinned 

continental crust hosting the Parasicilide and Sicilide successions. A thinned 

continental crust was probably also the substratum to the Lungro-Verbicaro 

succession, which was cut by basaltic dykes in Jurassic times (Iannace et al., 2007).  

Therefore, here it is proposed a geodynamic evolution since the Eocene when the 

subduction had not yet begun (Fig. 30a). Calabrian ophiolites, actually forming part of 

a strip of oceanic crust, were subducted in the Eocene (Rossetti et al., 2004). During 

the Late Oligocene the Frido succession subsided in the foredeep (Fig. 30b) and was 

subsequently subducted. In the late Aquitanian (Fig. 30c) the Nord Calabrese 

succession subsided in the foredeep, where deposition of the Sovereto sandstones 

occurred (Bonardi et al., 2009). Subsequently (Fig. 30d) the succession was detached 

from its substratum and frontally accreted in the embryonic LAC with a mean SE-

vergence as a consequence of the coeval counter-clockwise rotation of the Sardinia-

Corsica block (Gattacceca et al., 2007). The Parasicilide and Sicilide successions 

entered the foredeep during Burdigalian time, as recorded by the sandstones of the 

Arenarie di Albanella Fm. (Donzelli and Crescenti, 1962) on top of the Parasicilide 

Unit, and by the Corleto sandstones (Lentini, 1979) and the Tufiti di Tusa (Zuppetta et 

al., 1984) volcaniclastic deposits on top of the Sicilide Unit. The latter deposits testify 

the coeval andesitic volcanism recorded in the Sardinia Island (e.g., Lustrino et al., 

2009, 2011) associated with the NW-directed subduction of the Ligurian lithosphere. 
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These units were then frontally accreted in the tectonic wedge, as the ocean-ward 

margin of the Apennine Platform (Lungro-Verbicaro Unit) reached the foredeep (as 

recorded by the deposition of the terrigenous deposits of the Scisti del Fiume Lao Fm.; 

Iannace et al., 2007). The Lungro-Verbicaro Unit was then subducted to depths of ~45 

km, experienced HP/LT metamorphism (P = 1.2-1.4 GPa; T = ~380 °C) and was 

eventually exhumed as an extrusion wedge (Iannace et al., 2007). In the latest 

Burdigalian-Langhian (Fig. 30e), the Apennine Platform carbonates of the Pollino-

Ciagola Unit were uncorformably covered by the foredeep deposits of the Bifurto Fm. 

(Selli, 1957). The Burdigalian-Langhian tectonic accretion, one of the most significant 

Apennine orogenic pulses, corresponds to the fastest rotation stage of the Sardinia-

Corsica block (Gattacceca et al., 2007) and consequently to the fastest phase of thrust 

front migration (e.g., Vitale and Ciarcia, 2013). Overthickening of the LAC resulting 

from buttressing against the crustal ramp of the Adria continental margin was followed 

by subsequent extensional collapse, leading to the formation of wedge-top basins filled 

by the Langhian to lower Tortonian Albidona Fm. deposits (Ciarcia et al., 2012; Fig. 

30e-g). This period of apparent stasis in the subduction process was interpreted by 

Faccenna et al. (2001) as a consequence of the subducted oceanic slab reaching the 

mantle transition zone (660 km depth), stopping its further sinking. Alternatively, the 

Langhian stasis in Apennine subduction was associated with the arrival at the trench of 

the hardly subductable Apennine carbonate platforms. This period correlates also with 

the end of the Sardinia-Corsica block rotation and the end of back-arc opening in the 

Ligurian-Provençal Basin (Carminati et al., 2012; Faccenna et al., 2001; Gattacceca et 

al., 2007; Lustrino et al., 2009). Subsequently, in the early Tortonian (Fig. 30g), when 

the Tyrrhenian Sea started to open, a new tectonic pulse allowed overthrusting of the 
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Lungro-Verbicaro and Frido Units onto the Pollino-Ciagola succession. The whole 

tectonic prism, then, overthrust the Lagonegro-Molise Basin succession, where the 

Serra Palazzo Fm. (Selli, 1962) was deposited during the foredeep stage. Finally, in 

the late Tortonian (Fig. 30h) syn-tectonic exhumation produced a new emersion and 

erosion of the CPT and part of the LAC, and the deposition of the Perosa (Vezzani, 

1966) and Oriolo (Selli, 1962) wedge-top basin deposits onto the Frido, Nord 

Calabrese, Parasicilide and Sicilide successions. At the same time, several extensional 

basins formed in the overriding plate (e.g., Belvedere and Amantea Basins, Mattei et 

al., 1999; Cifelli et al., 2007). The late exhumation stages of the Lungro-Verbicaro 

Unit are recorded by ~11-9 Ma apatite fission track cooling ages (Iannace et al., 2007), 

whereas final arrival at surface of the Lungro-Verbicaro and Frido Units is attested by 

unconformable middle-upper Tortonian deposits (Cifelli et al., 2007; Perrone et al., 

1973) fed by the Calabrian continental crust of the overriding plate (Critelli, 1999). 

Grouping all tectonic vergences, such as result from the kinematic analysis of brittle 

and ductile structures related to tectonic wedge accretion, for (i) LAC Units (from 

Ciarcia et al., 2012; Vitale et al., 2013a, b); (ii) Lungro-Verbicaro Unit (Iannace et al., 

2007; Vitale and Mazzoli, 2009) and (iii) Lagonegro-Molise Basin Units in three 

temporal stages (Early-Middle Miocene, Late Miocene and Plio-Quaternary) from the 

Sele River Valley and Cilento up to study area (Fig. 31), a complex kinematic pattern 

appears: (i) Early-Middle Miocene vergences indicate a mean SE tectonic transport; 

(ii) Late Miocene vergences are scattered between NW to NE forming an arcuate belt; 

(iii) Plio-Quaternary vergences indicate a constant NE tectonic transport. 

According to the reconstructed P-T-paths for the Calabrian ophiolites, Frido and 

Lungro-Verbicaro Units (Fig.26), with a metamorphic grade decreasing from Lungro-



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

92 
 

Verbicaro to Malvito Units, and taking into account their presently tectonic setting 

(Fig. 2), i.e. from the bottom to the top: Lungro-Verbicaro, Diamante, Gimigliano,  

Frido and Malvito Units, all sandwiched between the two non-(Alpine) metamorphic 

successions of Sila Unit in the top and Pollino-Ciagola Unit to the bottom, we infer 

that the presently tectonic contacts between these units are of extensional type unless 

the basal contact between Lungro-Verbicaro and Pollino-Ciagola Units that is a thrust 

(Vitale and Mazzoli, 2009). 

The tectonic exhumation of these HP/LT units occurred in a subduction channel as 

suggested by several authors (Chemenda et al., 1996; Searle et al., 2004; Iannace et al., 

2007; Brun and Faccenna, 2008). 
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Fig. 26- P-T-t paths for the Frido, Lungro-Verbicaro and Calabrian ophiolite Units. 
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Fig. 27- P-T-t paths for some metamorphic units cropping out in Alpine Corsica (1: Schistes 

Lustrés; 2: eclogites); Tuscan archipelago (3: Gorgona Island; 4: Giglio Island; 5: Mt. 

Argentario); northern Apennines (6: Apuan Unit; 7: Massa Unit; 8: Mt. Leone; 9: 

Monticiano); southern Apennines (Lungro-Verbicaro Unit, 10: upper part; 11: lower part); 

Calabria (12-15: Gimigliano Unit; 13: Malvito Unit; 14: Diamante-Terranova Unit). See text 

for references. 
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Fig. 28- Late Oligocene paleogeography (modified after Vitale and Ciarcia, 2013). 
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Fig. 29- (a) Satellite image of the Diamante outcrop (northern Calabria) (from Bing map). (b) 

Structural map of the analyzed area. 
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Fig. 30- Cartoons showing the reconstructed geodynamic evolution of the studied segment of 

the Apennine orogen between Early Eocene and late Tortonian (after Carminati et al., 2012 

and Vitale and Ciarcia, 2013, modified). Note exhumation process dominated by the 

development of extrusion wedges within the subduction channel. Alb: Arenarie di Albanella 

Fm.; SFL: Scisti del Fiume Lao Fm. 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

98 
 

 

Fig. 31- Tectonic scheme of the area comprised between Sele River Valley, Cilento and 

Calabria-Lucania boundary showing tectonic transport vectors (the NW sector modified after 

Vitale et al., 2011). 
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Chapter 5 - Rif Chain: Stratigraphy, tectonic and structural setting 

5.1. Introduction 

The Rif chain and Betic Cordillera (Fig. 1), form an arcuate belt surrounding the 

Alboran Sea. These chains are characterized, as the other circum-Mediterranean belt, 

by the superposition of three main tectonic domains: (i) Internal Units (the so-called 

“Alboran Domain”; García-Dueñas et al., 1992); (ii) Maghrebian Flysch Basin Units 

(Bouillin, 1986; Guerrera et al., 1993; 2005) and (iii) External Units. The former 

domain includes the Sebtide, Ghomaride and Dorsale Calcaire Complexes (e.g. 

Michard and Chalouan, 1991; Michard et al., 1997; Chalouan and Michard, 2004; 

Chalouan et al., 2008; Fig. 32); the Sebtide Complex consists of sub-continentalmantle 

peridotites (Beni Bousera Unit; Kornprobst, 1974; Saddiqi et al., 1995; Afiri et al. 

2011); granulites, gneisses and micaschists affected by HP/HT to MP/HT 

metamorphism (Lower Sebtide; Durand-Delga and Kornprobst, 1963; Kornprobst, 

1974; Saddiqi et al., 1995); and from blue-schist to eclogitic facies re-equilibrated 

under lower pressure (Upper Sebtides Units or Federico Units, Permo-Triassic in age; 

Michard et al.,1997, 2006; Zaghloul, 1994). 

These latter successions are covered by Ghomaride Complex, which encompasses 

Paleozoic rocks as slates, phyllites, metarenites and metalimestones, Ordovician-Late 

Carboniferous in age (Durand-Delga and Kornprobst 1963; Kornprobst 1974; 

Chalouan, 1986), affected by low-grade Eo-Variscan and Variscan metamorphism 

(Chalouan and Michard, 1990). These rocks are sealed by an unconformable Middle 

Triassic-Eocene sedimentary cover (Chalouan et al., 2008 and references therein). 
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The Dorsale Calcaire Complex (Fallot, 1937; Mattauer, 1960; Wildi et al., 1977; 

Kadiri et al., 1992; El Kadiri and Faouzi, 1996; Lallam et al., 1997; El Hlila, 2005; 

Zaghloul et al., 2005; Chalouan et al., 2008) is formed by Triassic to the Early 

Miocene successions, deposited on a Paleozoic basement, probably corresponding to 

the Sebtide or Ghomaride Complexes (Wildi 1983; Balanyá and García-Dueñas, 1988; 

Chalouan and Michard, 2004). The Dorsale Calcaire complex, which forms the 

backbone of the Rif internal sector, is classically subdivided in (i) Internal, (ii) 

Intermediate and (iii) External. Generally, these carbonates overthrust the Maghrebian 

Flysch Basin Units and in turn are covered by Sebtide and Ghomaride Units, however, 

in some sectors; back-thrust led the Dorsale Calcaire onto the Internal Units (Hlila and 

Sanz de Galdeano, 1995; Hlila, 2005). 

The Maghrebian Flysch Basin domain includes Predorsalian Unit (Olivier, 1984) in 

turn tectonically covering the Mauritanian and Massylian Units (Guerrera et al., 1993, 

2005). These three latter units were deposited in a basin floored by oceanic or thinned 

continental crust, the Maghrebian Flysch Basin Domain, which passes eastward to 

Ligurian Domain (Bouillin 1986; Durand Delga et al. 2000; Guerrera et al., 2005; 

Vitale et al., 2013a, b; 2014a, b). The age of these sedimentary successions, span in 

time from Early Cretaceous to Early Miocene. 

Finally the External Rif Units (Prerif, Mesorif and Intrarif) consist of some Mesozoic-

Miocene basin successions (e.g. Durand-Delga et al. 1960-1962; Suter, 1965, 1980; 

Andrieux, 1971; Didon et al. 1973) covered by upper Tortonian-Messinian wedge-top 

basin conglomerates and sandy marls (Di Staso et al., 2010 and references therein). 

Presently the Rif chain is segmented by some transfer regional structures, probably 

acting during the migration of the thrust-front allowing different displacements 
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between different segments of the orogenic chain. Amongst them the left-lateral Jebha-

Chrafate Fault cutting through Internal and External Units in the Central Rif belt 

(Benmakhlouf et al., 2012) and the left-lateral Nekor Fault in the eastern Rif belt 

(Leblanc, 1980; Frizon de Lamotte, 1985). 

The work area, located near Chefchaouen city (Fig. 32), represent a good field to study 

the superposition of Internal onto the Maghrebian Flysch Basin Units due to the 

excellent outcrop expositions. Here, the carbonates of External Dorsale Calcaire, 

tectonically cover the Predorsalian Unit by means of a gently E-dipping thrust plane, 

forming a regional anticline NW verging. The latter succession in turn overlies the 

Massylian Unit (Fig. 32). The whole thrust sheet pile was cut by high-angle normal 

and strike-slip faults. 
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Fig. 32- Schematic geological map of northern Rif (from Chalouan et al., 2008, modified). 
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5.2. Stratigraphy of Predorsalian and Massylian Units 

The Predorsalian Unit, corresponding to the Jbel Moussa Group (El Kadiri et al., 1990; 

and references therein), consists of a siliciclastic slope to basin sedimentary sequence 

characterized by carbonate debris, macro-breccias and olistoliths indicating an inner 

paleogeographic location in the Maghrebian Flysch Basin close to the Dorsale 

Calcaire domain (Olivier, 1984; Guerrera et al., 1993). The sedimentary succession, 

characterizing Predorsalian Unit (Fig. 33), span in age from Upper Cretaceous to 

Burdigalian time. From bottom to the top, it begins with green and black shales, 

hemipelagic mudstones, Maastrichtian in age; followed by Paleocene shales and 

calciturbidites; Eocene-lowermost Oligocene shales, calciturbidites and clayey 

limestones. The succession passes to Lower/Upper Oligocene boundary marls and 

hemipelagites, uppermost Oligocene-Aquitanian Numidian-like sandstones (an African 

sourced deposit, widespread in the most of circum-Mediterranean chains, e.g. Thomas 

et al., 2010). Finally, Burdigalian varicolored marls, jaspers, cherty limestones and 

calcareous conglomerates cap the succession. The whole sedimentary pile is strongly 

disrupted, containing a lot of olistostromes (Chalouan et al., 2008) and slumping, 

showing in some place the characters of broken formation (Mattioni et al., 2006).  

The Massylian sequence (Fig. 33), corresponding to the Melloussa-Chouamat 

succession (Andrieux and Mattauer, 1963; Durand-Delga, 1965), is a sedimentary 

succession deposited in a basin floored by thinned continental or oceanic crust 

eastward passing to the Ligurian Domain (Maghrebian Flysch Basin Domain; Bouillin, 

1986; Durand-Delga et al., 2000; Guerrera et al., 2005; Vitale and Ciarcia, 2013; Vitale 

et al., 2013a; 2013b; 2014a). 
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The whole succession, span in age from Lower Cretaceous to lower Burdigalian time 

and it consists, at the base, of some olistoliths of Malm dolerites and pillow-lavas, 

Dogger limestones embedded within a Cretaceous pelitic matrix (Andrieux and 

Mattauer, 1963; Durand-Delga et al., 2000); the succession continues with Aptian-

Upper Cretaceous marls with phtanite beds, sandstones, pelites and marly limestones, 

followed by Paleocene-Oligocene marls, breccias and nummulitic-bearing limestones. 

The sequence is topped by Aquitanian-Burdigalian Numidian-like sandstones. 

 

 

Fig. 33- Simplified stratigraphic logs of Predorsalian and Massylian Units. 
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5.3. Stratigraphy of External Dorsale Calcaire 

The Dorsale Calcaire Complex (Fallot, 1937; Mattauer, 1960; Wildi et al., 1977; El 

Kadiri et al., 1992; El Kadiri and Faouzi, 1996; Lallam et al., 1997; Hlila, 2005; 

Zaghloul et al., 2005; Chalouan et al., 2008) is formed by ca. 30 tectonic thrust sheet 

and presently forms the backbone of the Rif internal sector. It was classically 

subdivided, according to Mesozoic paleogeography, in Internal and External sectors, 

both successions ranging in age from the Triassic to Lower Miocene. It was probably 

deposited on a basement corresponding to the Sebtide or Ghomaride Units. The 

Dorsale Calcaire generally, tectonically covers the Maghrebian Flysch Basin Units 

and in turn is overthrusted by Sebtide and Ghomaride Complexes, however in some 

sectors it back-thrust onto Ghomaride Units (Hlila and Sanz de Galdeano, 1995; Hlila, 

2005). 

The External Dorsale Calcaire cropping out in the study area is a succession with 

important heteropic relationship, characterized by some stratigraphic gaps and 

condensed series (after Wildi et al., 1977; El Kadiri et al., 1992; El Kadiri and Faouzi, 

1996; Lallam et al., 1997; Hlila, 2005; Zaghloul et al., 2005; Chalouan et al., 2008). In 

order to provide a complete reconstruction, an overall stratigraphic log is shown in 

Fig. 34a. The stratigraphic succession begins with shallow water deposits consisting of 

Upper Triassic laminated stromatolitic dolomites with marly-calcareous interbeds, 

followed by Rhaetian marl-dolomite-limestone alternations and black shales; 

Hettangian dolomites and massive limestones. The succession passes from slope to 

basin Sinemurian deposits including cherty limestones, cherty conglomerates, 
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Ammonitico rosso facies and Pleinsbachian-Toarcian cherty, marly and nodular 

limestones.  

The sedimentary pile (Fig. 34a) upward passes to Middle and Upper Jurassic green and 

red radiolarites, Titonian-Berriasian aptychus limestones, late Upper Cretaceous 

Globotruncana marls, condensed deposits made of Paleocene yellow marls, black 

shales and dark limestones, Lower-Middle Eocene variegated marls and calcarenites 

and finally to Upper Eocene-Upper Oligocene chaotic deposits of calcareous 

conglomerates. The succession is capped by Aquitanian-lower Burdigalian alternance 

of marls and calcareous sandstones.  

The curve of sediment thickness versus time (Fig. 34b), calculated with no 

decompaction, palaeo-water-depths, eustatic corrections nor back-stripping, show a 

dramatic change in the sediment thickness in the Rhaetian-Liassic interval with respect 

the previous Triassic and successive Jurassic deposits. The Rhaetian-Liassic lithofacies 

testify a paleoenvironment evolution from (i) inner shelf (massive limestones) to (ii) 

slope (cherty limestones, organized breccias and slumped limestones); (iii) base of 

slope (disorganized and thick megabreccias, breccias and conglomerates, and 

associated debrite-turbidite deposits), and (iv) basin (micrite limestones and fine-

bedded cherty limestones; Lallam et al., 1997). From (ii) to (iv) rocks, accumulated 

along carbonate slopes and in small basins on tilted blocks bounded by normal faults, 

are interpreted as syntectonic deposits related to the Liassic extension as consequence 

of the Neotethys rifting (Mouhssine et al., 1990; Blidi and Hervouet, 1991; El Hatimi 

et al., 1991; El Kadiri et al., 1992; Blidi, 1993; Lallam et al., 1997; El Kadiri, 2002; 

Schettino and Turco, 2011). 
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. 

Fig. 34- (a) Schematic stratigraphic log of External Dorsale Calcaire. (b) Sediment thickness 

versus time diagram. LM: Lower Miocene. 
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5.4. Structural analysis 

The analyzed area is located around the Chefchaouen city (Fig. 35). Here, a detailed 

geological survey has gathered several orientation data of main structures, and 

provided a geological map with two cross sections (Fig. 35). As shown in the 

geological map and related cross sections of Fig. 35, the whole area is characterized by 

the tectonic superposition of the External Dorsale Calcaire onto Predorsalian Unit, by 

means of low-angle thrust fault producing a hanging-wall anticline verging to SW and 

a strongly deformed zone in footwall. In turn the Predorsalian succession overlies, by 

means of a main flat-lying thrust fault, the Massylian Unit. The latter is characterized 

by several minor thrust faults causing the repetition of some succession portions. 

Finally, the whole structure was cut by late high-angle normal and strike-slip faults. 

The structural analysis, provided in the following paragraphs, was carried out 

separately on every tectonic unit. Analyzed structures, according to crosscutting 

relationships, were associated to different deformation stages (D1,2...), as well as within 

each phase, progressive deformation stages ((D1)1,2...) were discriminated. Furthermore 

all stages and all structures were labeled with the unit acronyms (DC: Dorsale 

Calcaire; PD: Predorsalian; MA: Massylian).  
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Fig. 35- Geological map and cross sections of the Kalaa-Chefchaouen area. 
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5.4.1. Massylian Unit 

Tectonic structures and crosscutting relationships recorded in the Massylian Unit 

suggest a complex poly-phased deformation pattern showing a strain gradient from the 

base to the top, approaching to the tectonic contact with the overlying Predorsalian 

Unit. Early structures ((D1)1), includes isoclinal to tight folds ((F1)1
MA

, Fig. 36a, b), 

which in pelitic intervals are rootless. Associated to the first folding stage, a pervasive 

axial plane cleavage ((S1)1
MA

) occurs in pelitic levels and a spaced convergent foliation 

in more competent layers. Reverse faults and pre-buckle thrusts are hosted in 

sandstones and calcareous layers embedded in pelitic interstrata, hosting boudinated 

competent layers (Fig. 36c). Where pelitic layers are dominant, the rocks are most 

highly deformed, often causes the succession to appear as a broken formation (Fig. 

36h). Rare C-type shear bands, associated to the main SW tectonic transport, are 

present, whereas more frequent conjugate extensional shear bands and normal faults, 

mainly dipping to NW and SE (Fig. 36f and g) and secondarily to NE and SW, affect 

the argillitic layers. Rare boudins are shortened by the (D1)2
MA

 deformation (Fig. 36e), 

which produced open to close folds (Fig. 36i and j). The interference pattern between 

the (F1)1
MA

 and (F1)2
MA

 fold sets (Fig. 36i and j) is of type 3 (Ramsay, 1967). 

Associated to the (F1)2
MA

 fold set, crenulation cleavage, crenulation lineation and 

reverse faults occur. A late shortening deformation (D2
MA

) is marked by pre-buckle 

thrusts (Fig. 36k), thrust and reverse faults (Fig. 36k) and related folds also to macro-

scale (Fig. 36d). In places a spaced cleavage (S2
MA

) is associated to F2
MA

 folds. This 

shortening is well recorded in the Massylian succession by the imbrication of several 

thrust sheets such as observed in the Zirehane-Amoudine area (Fig. 35). Finally strike-

slip faults (D3
MA

) and normal faults (D4
MA

) cut this succession. Poles to bedding (Fig. 
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37a) are scattered, however the most of points lie along a NE-SW cyclograph 

indicating a theoretical fold axis of 148/13, consistent with the 120/44 attitude of the 

main cluster of meso-scale (F1)1
MA

 fold hinges (Fig. 37b). Axial planes and related 

cleavage (Fig. 37c and d) are spread out, whereas (D1)1
MA

 pre-buckle thrusts (Fig. 38a) 

indicate a compression (R=0.64) characterized by a sub-vertical σ3 (283/77) and two 

sub-horizontal σ2 (169/05) and σ1 (078/12), providing an ENE-WSW shortening. Fold 

hinges (A1)2
MA

 (Fig. 37e) and crenulation lineation (CL1)2
MA

 (Fig. 37g) show a 

prevalence of data on the NW and SE sectors, whereas poles to axial planes (AP1)2
MA 

and related cleavage (S1)2
MA

 (Fig. 37f and h), show scattered attitudes with clusters 

indicating a main SE gently dipping plane. C-type shear bands (Fig. 37i) provide a 

WSW sense of shear. Normal faults and extensional shear zones, related to the (D1)2
MA

 

deformation, indicate a radial extensional regime (R=0) with a sub-vertical σ1 (047/85) 

and two sub-horizontal σ2 (208/04) and σ3 (298/01) and NW-SE and NE-SW 

extensions (Fig. 38b). A2
MA

 fold hinges show a mean NE-SW direction (Fig. 37j), 

whereas poles to AP2
MA 

axial planes (Fig. 37k) and S2
MA 

tectonic foliations (Fig. 37l) 

are spread out along mean 036/77 and 043/72 cyclographs, respectively. Thrust faults, 

related to the second phase D2
MA

, indicate a compression (R=0.61) characterized by a 

sub-vertical σ3 (221/84) and two sub-horizontal σ2 (056/06) and σ1 (325/01), 

furnishing a NW-SE shortening (Fig. 38c). D3
MA

 strike-slip faults indicate a wrench 

regime (R=0.5) (Fig. 38d) with a sub-vertical σ2 (211/82) and two sub-horizontal σ1 

(108/02), σ3 (018/08), and a WNW-ESE shortening. Finally late D4
MA

 normal faults 

indicate a main W-E extension (Fig. 38e) and a secondary N-S extension (R=0.31), 

characterized by a vertical σ1 (005/90) and two horizontal σ2 (178/00) and σ1 (268/00). 
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Fig. 36- Massylian Unit. (a and b) Tight to isoclinal (F1)1
MA

 folds. (c) Asymmetric boudins. 

(d) Decimetric overturned F2
MA

 fold. (e) Shortened boudins. (f and g) Extensional shear 

planes. (h) Boudinated competent layers in an argillite matrix. (i and j) 3 type fold 

interference pattern between (F1)1
MA

 isoclinal fold and (F1)2
MA

 close folds. (k) Pre-buckle 

thrust, thrust and reverse faults, and related F2
MA

 drag folds. 
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Fig. 37- Stereographic projections and contour plot of analyzed structures of Massylian Unit 

(lower hemisphere, Schmidt net). 
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Fig. 38- Paleostress analysis plots (P–B–T method). (a) (D1)1
MA

 pre-buckle thrusts. (b) 

(D1)2
MA

 normal faults and extensional shear zones. (c) D2
MA

 thrust faults. (d) D3
MA

 strike-slip 

faults. (e) D4
MA

 normal faults. 

 

5.4.2. Predorsalian Unit 

Predorsalian succession, located in the footwall of the Dorsale Calcaire Unit, is 

characterized by a highly deformed zone, 200 m thick, close to the overlying tectonic 

contact (Fig. 39a). As well as the previous described succession, early (D1)1
PD

 

structures are very rare isoclinal folds ((F1)1
PD

; Fig. 39b). The latter are deformed by 

more frequent tight to close, (F1)2
PD

 folds (Fig. 39b and c) with associated a 

crenulation cleavage ((S1)2
PD

; Fig. 39b, c) and a crenulation lineation ((CL1)2
PD

). Rare 

interference pattern between (F1)1
PD

 and (F1)2
PD 

folds (Fig. 39b) are of 3 type of 

Ramsay’s classification (Ramsay, 1967). C-type shear bands (Passchier and Trouw, 

2005) affect cherty limestones (Fig. 39d), marls and pelites (Fig. 39e) and calcareous 

conglomerates (Fig. 39f). This kind of structures occurs also in the thrust fault zone 
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crosscutting both hanging wall carbonates (DorsaleCalcaire) and footwall argillites 

(Fig. 39a). Somewhere, these structures show WSW-ENE striations parallel to the 

tectonic transport. Conjugate extensional shear bands ((ESB1)1-2
PD

) mainly dipping to 

NW and SE (Fig. 39g), indicate an extension both parallel and orthogonal to the mean 

WSW tectonic transport. Meso-scale (D1)1-2
PD

, low and high-angle normal faults show 

a main E-W direction. Extension parallel to the tectonic transport produced also a 

strong boudinage, causing, in several zones, the total bedding disruption (Fig. 39h) and 

giving to these sectors the character of a broken formation (e.g. Mattioni et al., 2006). 

(D1)3
PD

 reverse faults, verging between S and SW, occur. A subsequent mean NW-SE 

shortening is recorded by D2
PD

 reverse and thrust faults with associated rare S-C 

structures. Finally, D3
PD

 strike-slip faults and D4
PD

 normal faults crosscut the whole 

succession. Poles to bedding (Fig. 40a) form an E-W girdle with a π-axis of 177/14. 

Fold hinges (Fig. 40b) are weakly scattered with a main cluster around the value of 

177/17, whereas axial planes (Fig. 40c) are from sub-vertical to sub-horizontal mainly 

dipping to WSW, ENE and S. The crenulation lineations (Fig. 40b) are parallel to fold 

axes showing a mean N-S direction. (D1)1-2
PD

 C-type shear bands (Fig. 40d) indicate a 

main W vergence. (D1)1-2
PD

 conjugate extensional shear bands (Fig. 40e) and normal 

faults (Fig. 40f) indicate both a weakly radial extensional tectonic regime (R=0.37), 

characterized by an about vertical σ1 (002/83 and 341/81, respectively) and two sub-

horizontal σ2 (215/06 and 088/03) and σ3 (125/04 and 178/09), providing NW-SE and 

N-S extensions, respectively (D1)3
PD

 moderately NE-dipping reverse faults (Fig. 40g) 

indicate a compression (R=0.5), providing a mean NNE-SSW shortening, 

characterized by a sub-vertical σ3 (295/83) and two sub-horizontal σ2 (118/07) and σ1 

(028/00). D2
PD

 reverse faults, mainly dipping both to SE and WNW (Fig. 40h), furnish 
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a compression (R=0.55) with a sub-vertical σ3 (112/77) and two sub-horizontal σ2 

(213/02) and σ1 (304/13), and a mean NW-SE shortening. D3
PD

 strike-slip faults 

indicate a wrench regime (R=0.5; Fig. 40i) characterized bya sub-vertical σ2 (289/73) 

and two sub-horizontal σ1 (116/17) and σ3 (025/02), and an ESE-WNW shortening. 

Finally, D4
PD

 normal faults indicate a radial extension (R=0.27; Fig. 40j) with a sub-

vertical σ1 (311/72) and two sub-horizontal σ2 (165/15) and σ3 (072/10), and an ENE-

WSW extension. 
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Fig. 39- Predorsalian Unit. (a) Tectonic contact between Triassic dolomites of Dorsale 

Calcaire Unit (in the hanging wall) and argillites of the Predorsalian Unit (in the footwall) 

both cut by S-C' structures indicating a W/SW tectonic transport. (b) Isoclinal (F1)1
PD

 fold 

deformed by SW-verging (F1)2
PD

 fold with associated a (S1)1
PD

 crenulation cleavage. (c) F2
PD

 

folds in argillites with related crenulation cleavage (S1)2
PD

. (d) Extensional shear bands in 

cherty limestones. (e) Highly deformed argillites and (f) conglomerates hosting S–C' 

structures indicating a W/SW tectonic transport. (g) Conjugate extensional shear planes 

indicating a NW-SE extension orthogonal to the SW-verging tectonic transport. (h) Disrupted 

competent layers in an argillitic matrix. 
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Fig. 40- Orientation data (lower hemisphere, equal-area projections), results of paleostress 

analysis (P-B-T method) for the analyzed structures. (e) (D1)1-2
PD 

conjugate extensional shear 

bands. (f) (D1)1-2
PD

 normal faults. (g) (D1)3
PD

 thrust faults. (h) D2
PD 

reverse faults. (i) D3
PD

 

strike-slip faults. (j) D4
PD 

normal faults. 
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5.4.3. External Dorsale Calcaire 

The Rhaetian-Liassic interval of External Dorsale Calcaire, cropping out in the study 

area, recorded the Liassic extension as consequence of the Neotethys rifting 

(Mouhssine et al., 1990; Blidi and Hervouet, 1991; El Hatimi et al., 1991; El Kadiri et 

al., 1992; Blidi, 1993; Lallam et al., 1997; El Kadiri, 2002; Schettino and Turco, 

2011). Successively in Miocene time the latter structures were deformed by NE-SW 

shortening related to the tectonic stacking of Dorsale Calcaire onto Predorsalian Unit. 

In this section pre-orogenic and orogenic structures have been distinguished and 

separately analyzed. 

3.4.3.1 Pre-orogenic structures 

The Liassic limestones of External Dorsale Calcaire host widespread normal faults, 

generally occurring in conjugate sets, with rarely associated en-echelon veins (Figs. 

41-42). 

Due to successive shortening stage, these structures were deformed and presently are 

tilted showing a reverse kinematic, being located in the steep limb of the regional 

anticline (Vitale et al., 2014b).  

Calcareous layers and cherty beds are deformed by synthetic normal faults often 

forming bookshelf structures (Fig. 41e, f) and sometimes showing deflections without 

a discrete plane of shear (Fig. 41a), or a brittle-ductile deformation (Figs. 41b, 42e, f, 

g) including en-echelon veins (Fig. 41g). Dip-separations are variable and usually 

centimeter-sized (Fig. 41c, d), expiring along short distances (Fig. 41c). The original 

dominant dip-slip kinematic is testified by slickenside structures, such as calcite fibers, 

occurring on the fault surfaces; inferred also by drag folds and deflexed layers (Fig. 
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41a, b). Diagenetic stylolites and veins are present, pre- and post-dating early 

extensional structures (Fig. 42b). 

Meso-scale pre-orogenic normal faults, with metric displacements, commonly separate 

cherty limestones from overlying conglomerates (Fig. 42a). The latter sediments host, 

veins and stylolites and occasionally extensional structures such as conjugate normal 

faults with minor displacements (Fig. 42c) and associated drag folds. Conglomerates 

(Fig. 43a-c) are generally clast-supported with rounded to sub-rounded centimeter-

sized calcareous and cherty clasts (Fig. 43a, b), commonly disorganized and only 

rarely showing coarsening or fining upward trends. Matrix-supported conglomerates 

usually occur with a calcareous-cherty matrix embedding the calcareous clasts (Fig. 

43c). Being some of pre-orogenic structures, analyzed in this study, hosted in the steep 

limb of the regional fold (Fig. 43d), each datum was unfolded by rotating the 

corresponding bedding back to horizontal. Pre-orogenic normal faults (Fig. 44a), when 

restored (Fig. 44b), indicate a mean NW-SE direction (Fig. 44c). Normal fault planes 

usually form conjugate sets (Figs. 41c, d and 42c, e) providing restored sub-horizontal 

intersection lines and normal dip-slip kinematics (Anderson, 1951). Restored pre-

orogenic veins show steeply dipping to vertical planes, with main NW-SE and 

subordinate NE-SW directions (Fig. 44d, e). Finally, restored pre-orogenic stylolites 

show gently dipping to sub-horizontal planes (Fig. 44f, g).  
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Fig. 41- Examples of pre-orogenic extensional structures. (a-b) Normal faults marked by 

plastically deflexed or faulted cherty layers presently with a reverse kinematics. (c-d) 

Conjugate normal faults with associated veins. Bookshelf structures presently with a reverse 

kinematics in (e) cherty layer and (f) cherty limestones. (g) Veins showing an en-echelon 

geometry.  
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Fig. 42- (a) Pre-orogenic normal fault, presently with a reverse kinematics, sealed by cherty 

conglomerates. (b) Calcareous bed hosting diagenetic veins and stylolites and a pre-orogenic 

normal fault. (c)Pre-orogenic conjugate normal faults in conglomerates. (d) LPS stylolites and 

outer arc veins. (e) Pre-orogenic conjugate normal faults in flat-lying cherty limestones and 

orogenic pre-buckle thrust. (f) Pre-orogenic normal fault with associated a brittle-ductile 

deformation. (g) Pre-orogenic normal faults crosscutting cherty layers. (h) Indentation of 

hanging wall and footwall blocks of a pre-orogenic normal fault. 
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Fig. 43- (a-b) Indented clasts in cherty conglomerates. (c) Conglomerate with cherty matrix. 

(d) Panoramic view of the SW-verging anticline of Chefchaouen. 
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Fig. 44- Stereographic projections (equal-areal net, lower hemisphere), rose diagrams and 

contour plots of the analyzed pre-orogenic structures. 

 

5.4.3.2. Orogenic structures  

Some of pre-orogenic structures are deformed by meso- and macro-scales folds and 

thrust faults (Figs. 43, 45 and 46). The regional thrust, leading the carbonates of the 

External Dorsale Calcaire Unit onto argillites, marls and conglomerates of the 

Predorsalian Unit (Wildi et al., 1977; Olivier, 1984; Vitale et al., 2014a), forms a SW-

verging anticline (Fig. 43d) characterized by several meso-scale structures such as 
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minor folds, thrust and back-thrust faults indicating a main NE-SW shortening (Vitale 

et al., 2014a). 

Early structures, related to layer parallel shortening (LPS) include stylolites orthogonal 

to the bedding, crosscutting the pre-orogenic veins (Fig. 42d), pre-buckle thrusts (Figs. 

45e and 46b-d) characterized by minor displacement and hosted in cherty beds (Figs. 

45e and 46c) or packages of cherty layers (Fig. 46b, d). 

Parasitic F1 folds, often located in the hinge zone of the regional fold (Fig. 41a), show 

open to isoclinal geometries (Fig. 45a, b, f) and are characterized by slickensides 

related to the flexural-slip mechanism on the bedding surfaces and also by veins 

hosted in the outer arc (Fig. 42d). Frequently meso-scale folds are accommodated, in 

the hinge zone, by fractures (Fig. 46e, f) or minor thrust faults, well-evidenced by 

dislocated cherty layers (Fig. 46e, g). A spaced cleavage convergent fan (S1) is present 

in the inner arc of folded calcareous beds typically marked by pressure-solution 

surfaces. Late northeastward verging back-thrusts are regularly in association with S-C 

structures localized in the footwall (e.g. Vitale et al., 2014a). Another folding stage D2 

produce open to tight folds often related to thrust faults (Fig. 45c), which form an 

interference pattern of 3-type Ramsay's classification (Ramsay, 1967) such as shown in 

the Fig. 45f, and S-C structures (Fig. 45d). 

The early layer parallel shortening causes the indentation of footwall and hanging wall 

of pre-orogenic normal faults, sometimes enhanced by pressure-solution mechanisms 

(Figs. 42f and 45e). This indentation is well evident also in conglomerates where 

pressure solution mechanism acts along calcareous clast boundary (Fig. 43a, b). 

Only in a few cases it was possible to recognize pre-orogenic meso-scale normal faults 

reactivated as minor thrusts (Fig. 46a) or with the same kinematics in response to a 
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push-up of the footwall (Fig. 46a). Poles to bedding (S0) of the cherty limestones show 

a broad girdle distribution with a mean NE-SW direction (Fig. 47a). Poles to tectonic 

foliation (S1) indicate weakly W-dipping to sub-vertical planes (Fig. 47b). F1 fold 

hinges (A1) are about sub-horizontal showing a mean NW-SE trend (Fig. 47c), 

whereas the axial plane poles (AP1) spread out around a NE-SW cyclograph (Fig. 

47d). Pre-buckle thrusts (Fig. 47e), when restored (Fig. 47f), indicate a prevalence of 

NE-SW and secondarily N-S planes. The corresponding rose diagram (Fig. 47g) points 

out a NW-SE main direction, providing a prevailing NE-SW shortening. Thrust faults 

(Fig. 47h), associated with the first orogenic deformation stage, provide a WSW-ENE 

shortening (Fig. 47i). F2 fold hinges (A2) are weakly to moderately plunging to NE and 

SW (Fig. 47j), whereas axial plane poles (AP2) form a main cluster providing a mean 

267/71 pole (Fig. 43k). Flexural-slip lineations show a mean NE-SW trend (Fig 47l). 

Finally orogenic stylolites (Fig. 47m), when restored (Fig. 47n), indicate moderately 

dipping to sub-vertical planes with a mean NW-SE direction. 
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Fig. 45- (a) Parasitic F1 folds in the hinge zone of the macro-scale anticline. (b) F1 isoclinal 

fold. (c) SE-verging thrust fault and related F2 fold. (d) S-C structures in the footwall block of 

a D2 thrust fault. (e) A pre-orogenic normal fault deformed by the early LPS; pre-buckle thrust 

deformed by a late F1 parasitic fold. (f) Interference pattern between F1 and F2 folds of 3-type 

Ramsay's classification. 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

132 
 

 

Fig. 46- (a) Pre-orogenic normal faults reactivated as reverse or normal in the D1 deformation 

stage. (b–d) D1 pre-buckle thrusts affecting cherty layers. (e) F1 fold deforming calcareous 

layers hosting pre-orogenic normal faults. (f) F1 fold-related fractures. (g) Minor thrust faults 

in cherty layers accommodating deformation in the F1 fold hinge. 
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Fig. 47- Stereographic projections (equiareal net, lower hemisphere), rose diagram, contour 

and PBT plots (Angelier and Mechler, 1977; Reiter and Acs, 1996-2003) of the analyzed 

orogenic structures. PBT plot of thrust faults: P (254/05) R = 82%, B (345/06) R = 79%, T 

(133/83) R = 91%.  
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Chapter 6 - Discussion 

6.1. Massylian and Predorsalian Units 

Predorsalian and Massylian Units show deformations always heterogeneous often 

localized in levels where the pelitic component is dominant, however with similar 

characters, in terms of orientation, tectonic style and vergences. (D1)1-2
MA

, (D1)1-2
PD

 are 

characterized by almost coaxial folds (Fig. 48), indicating a progressive deformation 

associated to the overthrusting of the Dorsale Calcaire Unit onto Predorsalian Unit 

and together onto the Massylian succession. The most of structures indicate a ca. NE-

SW shortening and SW tectonic vergence in line with previous studies about the Late 

Oligocene-Early Miocene tectonic evolution of the Internal and Maghrebian Flysch 

Basin Units in this sector of the northern Rif (e.g. Chalouan and Michard, 2004; 

Chalouan et al., 2006). Approaching the two main contacts, an increasing of strain 

gradient occurs and frequently, where the strain intensity is very high, the original 

bedding is completely disrupted. This is testified by the occurrence of pervasive C-

type shear bands indicating consistently a mean WSW vergence, in the upper part of 

Predorsalian succession, and a very intense deformation producing the total disruption 

of bedding, in the upper part of Massylian Unit.  

The occurrence of conjugate extensional shear bands, in the latter two successions, 

indicating extension both orthogonal and parallel to the main tectonic transport, 

suggests a pure shear component, synchronous with the dominant simple shear strain 

related to the regional thrusting. However the extensional structures, although 

dispersed, point out a prevalence of extension orthogonal to the shear direction, i.e. 

parallel to the axis of the orogenic belt. This is a frequent feature in arched mountains 
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such as the Rif and Betic Chains (e.g. Balanyà et al., 2007, 2012) as well as the 

southern Apennines and Calabrian Arc (e.g. Ferranti et al., 1996), where the radial 

displacement caused a continuous arc spreading with divergent transport directions, 

extension parallel to the thrust front (Piedmont Glacier model of Hindle and Burkhard, 

1999) and different rotations for adjacent arc sectors. The latter is testified in the Rif 

Chain and Betic Cordillera (e.g. Lonergan and White, 1997) by counterclockwise 

(Platzman et al., 1993; Saddiqi et al., 1995; Platt et al., 2003) and clockwise 

paleomagnetic rotations (Feinberg et al., 1996; Platzman et al., 2000; Calvo et al., 

2001; Cifelli et al., 2008), respectively.  

The successive deformation stage, well recorded in this two successions, includes 

reverse and thrust faults and associated folds mainly verging to NW, more or less 

orthogonal to the previous ((D1)1-2
MA

, (D1)1-2
PD

) shortening (Fig. 48). Two main almost 

orthogonal fold sets are described in the whole Rif Chain (e.g. Hlila, 2005) and a 

similar deformation evolution was recently described in tectonic equivalent 

successions of the Ligurian Accretionary Complex cropping out in the southern 

Apennines (Vitale et al., 2010, 2013; Ciarcia et al., 2012). An early shortening is 

recorded in Mauretanian, Massylian, Predorsalian and Dorsale Calcaire Units within 

the whole northern Rif, however with variable directions, as for the Dorsale Calcaire 

Unit where tectonic shortening ranges from E-W, SW-NE and N-S in the northern, 

southern and southernmost area, respectively, the latter bounding the Jebha-Chrafate 

Fault (Platzman et al., 1993; Hlila, 2005). Also the successive N-S/NW-SE shortening, 

expressed as folds and thrusts, is reported in the whole Rif Chain both in Maghrebian 

Flysch Basin and Internal Units (Hlila and Sanz de Galdeano, 1995; Hlila, 2005). 

Finally strike-slip and normal faults, affecting the whole thrust pile, indicate a NW-SE 
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compression and an ENE-WSW/E-W extension, respectively (Fig. 48). For the former 

faults is not to exclude a close relationship with the last shortening stage having the 

similar NW-SE direction for the maximum stress. 

 

6.2. Dorsale Calcaire 

The Liassic succession of the External Dorsale Calcaire is affected by several 

structures, as en-echelon veins, normal faults, drag folds and deflexed cherty layers, 

suggesting a pre-orogenic, syn-sedimentary brittle-ductile deformation suggesting a 

not complete lithification of calcareous and cherty sediments. This deformation stage, 

according to several authors (Mouhssine et al., 1990; Blidi and Hervouet, 1991; El 

Kadiri et al., 1992; Blidi, 1993; Lallam et al., 1997; El Kadiri, 2002), was related to 

Liassic Neotethys rifting, synchronous with the deposition of cherty limestones and 

conglomerates (Fig. 49a). More in detail, the most of extensional deformation was 

probably recorded during the deposition of conglomerates, because they fill structural 

depressions, seal the graben-bounding normal faults and in turn host extensional 

structures. 

The orientation of pre-orogenic normal faults, show a main NW-SE direction 

indicating a dominant NE-SW extension. Generally, associated to pre-orogenic normal 

faults, two orthogonal vein sets occur (Figs. 41c, d, g, 42b), with a main orientation 

NW-SE and a secondary NE-SW direction (Fig. 44e) probably related to a local 

exchange between the intermediate (σ2) and the minimum (σ3) stress axes close to the 

growing fractures instead of a rotation of the stress field (e.g. Guerriero et al., 2010). 
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The successive shortening (Figs. 48; 49b-d), characterized by a NE-SW direction and 

producing the overthrusting of the External Dorsale Calcaire Unit onto the 

Predorsalian Unit, includes (i) a (D1)1
DC

 early layer parallel shortening (Figs. 48, 49b) 

producing pre-buckle thrusts, stylolites orthogonal to cherty limestone beds and clast-

indentation in cherty conglomerates. (ii) A (D1)2
DC

 shortening stage (Figs. 48, 49c) 

developing the Chefchaouen anticline (locally with an overturned limb) with 

associated several minor folds and occasionally meso-scale SW-verging thrust faults, 

late NE-verging back-thrusts (Fig. 48d) and an overall northeastward tilting of all 

allochtonous units (Hlila and Sanz de Galdeano, 1995; Michard et al., 2002; Guerrera 

et al., 2005; Hlila, 2005). 

Pre-orogenic extensional faults can control the geometry of the new structures, related 

to successive shortening structures in the mountain building, by means of simple 

reactivation as reverse or strike-slip faults (e.g. Coward, 1994; Ziegler et al., 1995; 

Tavani et al., 2011a, b; Quintà and Tavani, 2012); truncation or folding by late thrust 

faults (e.g. Butler, 1989; Tavarnelli, 1996; Scisciani et al., 2002); localization of the 

new structures without a notable reactivation (e.g. Laubscher, 1976; Wiltschko and 

Eastman, 1982).  

In the analyzed succession, the most of pre-orogenic structures were not reactivated 

with a reverse kinematic but rather they behaved as passive markers, such as described 

in other orogenic chains (e.g. Vitale et al., 2012; Uzkeda et al., 2013). Due to flexural-

slip mechanism, presently, the pre-orogenic normal fault planes are characterized by 

dislocation along the bedding surfaces; whereas the buttressing mechanism, produced 

indentation between hanging wall and footwall enhanced by pressure-solution 
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processes. Only occasionally pre-orogenic normal faults show a reverse reactivation 

with minor displacements (Fig. 46a).  

Several geological features, such as striations along the bedding planes, stylolites and 

fold-related fractures, indicate shallow deformation conditions for the shortening 

stages, ruled by the flexural-slip mechanism, as dominant process for the fold 

development, preceded and accompanied by pressure-solution mechanisms. However 

the not abundance of veins and stylolites suggests a deficiency of fluids assisting the 

shortening deformation. This feature, in addition to: (i) lacking of relevant damage-

zones related to inherited meso-scale normal faults able to covey fluids (Sibson, 2004); 

(ii) unfavorable orientation of pre-orogenic normal faults generally characterized by 

high-angles to the bedding and orthogonal to the shortening direction; (iii) localization 

of the Miocene deformation along neo-formed low-angle structures or along favorably 

oriented major pre-orogenic normal faults as described in other areas (e.g. Mouhssine 

et al, 1990; El Hatimi et al., 1991); favored the passive behavior of the pre-orogenic 

meso-scale structures rather than a their reactivation. 

 

6.3. Geodynamic Evolution 

High velocity anomalies (Wortel and Spackman, 2000) show a steep subducted slab 

under the Betic Cordillera-Rif Chain arc down to 660 km of depth. However this 

lithospheric panel does not continue in the eastern sector of Morocco. This deep 

geometry is interpreted as resulting from the tear mechanism affecting the downgoing 

slab from Late Oligocene to Late Miocene (Rosenbaum and Lister, 2004). The W-

migration of the slab break off and the subsequent fast roll-back of the lithosphere 
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(with a subduction rate of ca. 3.3 cm/y considering a distance of 660 km covered in ca. 

20 My; Rosenbaum and Lister, 2004), allowed the Betic-Rif thrust sheet pile to 

traveland spread out along the present arc (e.g. Lonergan and White, 1997). 

Furthermore thetear lateral propagation produced differentiated displacements of 

contiguous sectors probably accommodated by some main transfer faults such as the 

Jebha-Chrafate Fault (Benmakhlouf et al., 2012) bounding the SE margin of the 

analyzed area (Fig.32). It is worth to note as the formation of the other large orogenic 

arc such as the southern Apennines-Calabria Arc (Fig. 1) was driven by means of 

similar tear mechanisms (e.g. Ascione et al., 2012). As regarding the ages of 

deformation stages, the thrusting of the Dorsale Calcaire Unit onto the Predorsalian 

Unit and the latter onto the Massylian succession, involved the Lower Burdigalian 

deposits of the Numidian-like sandstones. Unfortunately in the Rif Chain further 

geological constraints lack, such as unconformably wedge-top basin, contrarily to the 

corresponding Ligurian successions where the Langhian-lowermost Tortonian Cilento 

Group (Vitale et al.,2013b) confines this tectonic stage to the late Burdigalian (Ciarcia 

et al., 2012). However, according with the most of authors (Hlila and Sanz de 

Galdeano, 1995; Michard et al., 2002; Guerrera et al., 2005; Hlila, 2005), and in 

analogy with the tectonic evolution of the Maghrebian Flysch Basin successions in the 

Betic Cordillera (e.g. Serrano et al., 2007) and the LAC in southern Italy (Ciarcia et 

al., 2012), a Late Burdigalian age for (D1)1-2
MA

, (D1)1-2
PD

 and (D1)1-2
DC

 tectonic stages 

can be hypothesized. Consequently, this orogenic event, corresponding to the 

paroxismo Burdigaliense of the Spanish authors (e.g. Hermes, 1985; Martín Algarra, 

1987), was synchronous in the whole western Mediterranean domain from the 

southern Apennines (e.g. Vitale and Ciarcia, 2013) up to the Rif and Betic chains. For 
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what concerns the successive shortening phase (D2
DC

, D2
PD 

and D2
MA

), characterized 

by a NW-SE direction (in this sector of northern Rif), there are no confident geological 

data able to constrain the age of this tectonic pulse. However this event could be 

associated to the final compression of the Rif Chain resulting in out-of-sequence 

thrusts affecting the whole orogenic belt (e.g. El Mrihi, 1995, 2005; Hlila, 2005; 

Chalouan et al., 2006), probably Tortonian in age (Sanz de Galdeano and Vera, 1992; 

Hlila and Sanz de Galdeano, 1995) or younger (Plio-Quaternary) as described by (i) 

Ait Brahim and Chotin (1984) for the Moroccan foreland where the N-S shortening 

was recorded as strike-slip faulting or by (ii) Meghraoui et al. (1996) that describe a 

NNW-SSE transpression within the Alboran Sea domain. Although the deformation 

history, such as resulting from this work, regards only a small sector of the Rif Chain, 

we attempted to reconstruct a tectonic evolution according to the wide literature about 

this part of the western Mediterranean area (between others: Martín Algarra, 1987; 

Serrano et al., 1995; Hlila and Sanz de Galdeano, 1995; Lonergan and White, 1997; 

Michard et al., 2002; Rosenbaum and Lister, 2004; Guerrera et al., 2005; Hlila, 2005; 

Chalouan et al., 2008). The figure 50 shows the paleogeographic evolution from Early 

Jurassic to Middle Miocene of the western Mediterranean area and some schematic 

cross sections. Pre-orogenic structures, hosted in the analyzed rocks, presently indicate 

a NE-SW extension; however it reasonable to assume that they were successively 

rotated following the arching of the orogenic belt (e.g. Platzman et al., 1993; Feinberg 

et al., 1996). Supposing, in the Early Jurassic time (Fig. 50a), an original NW-SE 

direction of the extension, associated with the rifting and opening of Neotethys Ocean 

(e.g. Handy et al., 2010; Schettino and Turco, 2011), a counterclockwise rotation of 

80-90° for this sector is inferred. These values are consistent with the paleomagnetic 
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data carried out on the External Dorsale Calcaire in this area the by Platzman et al. 

(1993). 

In the Middle Eocene-Oligocene interval (Fig. 50b) some extensional basins of the 

northern African margin, such as the High and Middle Atlas (Arboleya et al., 2004) 

and the Mesorif Suture Zone (MSZ, Michard et al., 2007), previously formed as 

consequence of the Neotethys rifting (e.g. Schettino and Turco, 2011), were inverted. 

This stage ended in the late Oligocene (Fig. 50c) about synchronously with the 

tectonic imbrication of some of the Internal Units (External Dorsale Calcaire 

excluded). Such as described before, in the Burdigalian (Fig. 50d, e), the External 

Dorsale Calcaire, Predorsalian, Mauretanian and Massylian Units were progressively 

included in the accretionary wedge forming an arcuate belt with radial displacements 

and extension parallel to the thrust front (Vitale et al., 2014a). Finally in the Middle 

Miocene (Fig. 50f) the thrust front migrated toward the external zones including the 

Intrarif, MSZ, Mesorif and Prerif domains (Michard et al., 2007). 
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Fig. 48- Synoptic sketch showing correlation of deformation stages for the studied units. 

Acronym legend. C' SB, C'-type shear band; CL, crenulation lineation; ESB, conjugate 

extensional shear bands; F, fold; NF, normal fault; PBT, pre-buckle thrust; RF, reverse fault; 

S, tectonic foliation; SC, S-C structure; SSF, strike-slip fault; TF, thrust fault. 
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Fig. 49- Cartoon showing deformation structures at macro- and meso-scale and related 

deformation orientations and ages. 
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Fig. 50- Paleogeographic reconstruction and cross sections of the western Mediterranean area. 

Not to scale. IDC: Internal Dorsale Calcaire; EDC: External Dorsale Calcaire; MSZ: Mesorif 

Suture Zone.  
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Chapter 7 - Conclusions 

7.1. Conclusions 

The structural and petrographic analyses carried out on LAC both in the southern 

Apennines (Frido, Nord-Calabrese, Parasicilide and Sicilide Units) and northern 

Calabria (Diamante-Terranova Unit) allowed to reconstruct the tectonic history of this 

tectonic complex within the context of the Eocene to Late Miocene geodynamic 

evolution of the eastern sector of the proto-Central-Western Mediterranean Sea.  

The Frido Unit represents a segment of an ocean-continent transition domain that 

reached HP/VLT metamorphic conditions probably during the Aquitanian and then 

rapidly exhumed in the late Serravallian-middle Tortonian interval. During the (i) 

burial; (ii) exhumation and (iii) emplacement into the obducted LAC, the Frido Unit 

experienced several deformation phases.The first two (D1 and D2),characterized by 

HP/VLT conditions, suggested by the occurrence of Fe-Mg-carpholite (XMg = 0.29–

0.41), in phyllites and metapelites, aragonite in the calcshists (Spadea, 1976) and blue 

amphibole in metabasites. The presence of carpholite, associated to phengite, indicate 

an HP/VLT metamorphism characterized by pressures of ~1.2-1.4 GPa and 

temperatures around 350 °C. In high strain zones, fold hinges of F2 folds, are parallel 

to the maximum lenghtening direction marked by the stretching lineation SL2, with a 

mean NW-SE trend, whereas, in low strain zones, fold hinges are at a high angle to the 

maximum stretching direction. The third deformation phase (D3) is related to the early 

stages of exhumation of the Frido Unit. This is recorded in meta-sandstones by the 

growth of Na-amphibole and stilpnomelane on the S2 foliation and along extensional 

shear surfaces, indicating lower pressure and temperature conditions. The latter 
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structures are frequent all around continental and oceanic crust mega-boudins, 

indicating extension both parallel and orthogonal to the stretching lineation SL2. In 

analogy with the tectonic transport recorded by the Lungro-Verbicaro Unit in northern 

Calabria (Vitale and Mazzoli, 2008) and the Nord Calabrese and Parasicilide units in 

the Cilento area (Ciarcia et al., 2012; Vitale et al., 2011), a mean SE tectonic transport 

appears to have characterized the Frido Unit during the main deformation stages, 

leading to its final inclusion in the LAC.  

The Nord Calabrese, Parasicilide and Sicilide Units show a similar deformation 

evolution characterized by the superposition of four fold and thrust sets (D1-D4). The 

first two stages show common features indicating a progressive deformation especially 

localized in less competent rocks, with an overall strain gradient existing from the 

more deformed Nord Calabrese Unit to lesser deformed Parasicilide and Sicilide 

Units. The progressive deformation was mainly recorded as two superposed fold sets 

(D1-D2), for all analyzed successions, related to the building of the thrust sheet pile in 

the Burdigalian time.The third fold and thrust set (D3), affected also the wedge-top 

basin deposits of Albidona Fm. and the underlying carbonates of the Pollino-Ciagola 

Unit. It was associated to the overthrusting of the Apennine wedge onto the eastern 

sector of the Apulian domain and the inclusion of Lagonegro Units in the tectonic 

prism (Vitale and Ciarcia, 2013). The latter event probably occurred before the 

deposition of the unconformable upper Tortonian-lower Messinian wedge-top basin 

deposits of Oriolo Fm. A further deformation (D4) was expressed by long wavelength-

high amplitude folds, related to deeply rooted thrusts, deforming the whole thrust sheet 

pile and producing, in the easternmost sector of the analyzed area, the tectonic 

windows of Valsinni and Rotondella, where Numidian Sandstones (Lagonegro-Molise 
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Basin Units) crop out. This thick-skinned thrusting, synchronous with the Pliocene-

Middle Pleistocene filling of the Sant’Arcangelo wedge-top basin, was responsible 

also of the uplifts of Castroregio, Farneta and Monte Alpi in the central sector of the 

study area. All the analyzed LAC Units show a similar stratigraphy and a strong 

correspondence exists between the Upper Cretaceous-Lower Miocene deposits of 

Sicilide Unit and the Lagonegro-Molise Basin successions (Flysch Rosso Fm.). This 

relation is probably associated with the paleogeographic evolution of this sector, where 

the Panormide Platform, that separated the Ligurian/Maghrebian Flysch and 

Lagonegro-Molise/Imerese basins, starting from the uppermost Cretaceous, drowned 

and allowed the joining of these two basins. Finally tectonic vergences, recorded in 

different thrust sheets and unconformable wedge-top basin deposits, indicate: (i) an 

Early-Middle Miocene mean SE tectonic transport for the LAC successions; (ii) a Late 

Miocene transport from NW to NE for the LAC Units, overlying Albidona Fm., 

Apennine Platform and Lagonegro-Molise Basin Units; and finally (iii) a constant NE-

SW shortening for the tectonic structures related to the Plio-Quaternary thick-skinned 

thrusting. 

As concerning the Diamante-Terranova Units, although the studies are in preliminary 

stages, several important considerations can carry out. The present work shed light on 

the complex deformation affecting the whole succession characterized by: (i) three 

progressive deformative stages (D1-D2-D3) in blueschist facies conditions (P~0.9-1.1 

GPa, T~380 °C; Liberi and Piluso, 2009), followed by a tectonic exhumation stages 

recorded by extensional brittle-ductile shear zones and normal faults. 

The petrographic analysis provides other important information, amongst others: (i) 

the occurrencepre- to inter- and post-tectonic lawsonite, suggests also its continuous 
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growth during all metamorphic path (D1-D2-D3); (ii) the amphibole zonation from Na-

rich blue core to Ca-rich greenish rim suggests lower pressure conditions during the 

tectonic exhumation (D4). 

The reconstruction of the tectono-metamorphic evolution of the LAC units both in the 

southern Apennines and northern Calabria clarified the first stages of the history of the 

southern Apennines/CPT system. Such Eocene-Late Miocene tectonic stages, 

associated with the closure of the Ligurian Ocean and coeval back-arc opening of the 

Ligurian-Provençal Basin, are dominated by a general E/SE-directed tectonic transport 

(in present-day coordinates). Later (late Tortonian to Middle Pleistocene) thrusting, 

coeval with back-arc opening of the Tyrrhenian Sea, was characterized by a more 

dispersed (i.e., radial) pattern, resulting in a mean NE-directed tectonic transport (in 

present-day coordinates) in the Apennines.  

The study of the Chefchaouen area (Morocco), where the Internal Unit of Dorsale 

Calcaire overthrust the MFB Units, the latter corresponding to the sedimentary LAC 

units, allowed to reconstruct the Jurassic-Early Miocene tectonic evolution of a key-

sector of the northern Rif. 

The Rhaetian-Liassic portion of the External Dorsale Calcaire Unit, cropping out in 

the study area, recorded a polyphasic deformation with a wide range of structures. The 

first stage was characterized by an early syn-sedimentary extension related to the 

Liassic Neotethys rifting, whereas the two following main deformative events were 

related to Miocene shortening pulses. However the pre-orogenic extensional 

structures, such as normal faults and veins, mainly behaved as passive markers, due to: 

(i) scarcity of fluids and well-developed fault-related damage zones able to convey 

fluids; (ii) unfavorable orientation of pre-orogenic structures generally at high angle to 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

149 
 

the bedding; (iii) strain localization along neo-formed low-angle thrusts. The passive 

behavior of pre-orgenic structures is marked by folded, tilted and dislocated normal 

faults (flexural-slip), and indented by means of pressure-solution mechanisms fault 

planes, as a consequence of the buttressing effect. Only few meso-scale extensional 

structures were reactivated as reverse faults with minor displacements.  

The first orogenic deformation, characterized by a NE-SW shortening, produced the 

tectonic superimpositions of the Internal Unit (Dorsale Calcaire Unit) onto 

Predorsalian Unit, and the latter onto the Massylian Unit. This stage was recorded by a 

progressive deformation expressed by early structures such as pre-buckle thrusts and 

LPS stylolites and subsequent meso- to macro-scale folds and thrust faults in the 

hanging-wall carbonate succession. In the footwall (Predorsalian Unit) the 

overthrusting produced a progressive deformation characterized by a wide shear zone, 

located close to the main regional thrust fault, hosting early isoclinal folds and, in the 

pelitic levels, a severe boudinage. Successively the succession was deformed by open 

to close folds and late reverse faults. In turn the PredorsalianUnit tectonically covered 

the Massylian succession where a progressive deformation was recorded by early 

isoclinal and late open to tight folds and thrust faults. 

Late back-thrusts affected the whole thrust-sheet pile, as well as tectonic contacts 

among the Internal Units, frequently northeastward tilted. The subsequent deformation 

stage, affecting the whole thrust sheet pile and consisting of a NW-SE shortening, 

includes thrust faults and related folds verging both to NW and SE. Strike-slip faults 

crosscut all structures providing an about NW-SE shortening probably related to the 

last stages of the accretionary wedge building. Finally normal faults cut all 

successions. The Jurassic extension and the successive Miocene shortening presently 
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show the same NE-SW direction, however assuming a Jurassic NW-SE extension (e.g. 

Handy et al., 2010; Schettino and Turco, 2011), a Miocene counterclockwise rotation 

of 80-90° results, well-fitting with paleomagnetic data for the External Dorsale 

Calcaire in this area (Platzman et al., 1993). 

The reconstructed deformation evolution, joined to the wide geological knowledge 

about the Rif Chain, allowed to reconstruct a possible tectonic evolution from the Late 

Oligocene up to the Recent. The Late Oligocene  paleogeography was characterized by 

the MFB separating the Europe continent and AlKaPeCa microplate to the north and 

the African continent to the south, with the Predorsalian succession deposited along 

the W/SW margin of the AlKaPeCa microplate. In the late Burdigalian, the most of 

deposits in this basin domain were completely detached from their basement and 

accreted in the tectonic prism by means of a dominant thin-skinned tectonics, 

including a NE-SW shortening for the study area. This deformation was the result of 

the W-migration of the thrust front as consequence of the down-going plate roll back 

and slab tear. The thrust front migration was accommodated by (i) a main lithospheric 

sinistral transfer zone; (ii) the arching and (iii) the counterclockwise rotation (for the 

Moroccan sector) of the orogenic belt. The radial translation was accompanied by syn-

thrusting extension resulting in a ductile and brittle stretching parallel to the thrust 

front. This Burdigalian deformation testifies an orogenic event recorded in the most of 

peri-Mediterranean chains from the southern Apennines up to the Rif and Betic chains. 

The successive shortening stage, especially recorded in the internal sector, has 

occurred in the Tortonian-Pliocene interval and was characterized by out-of-sequence 

thrust faults, mainly verging to NW, and late strike-slip faults. 
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It is worth to note that the Rif chain and the southern Apennines-Calabria Arc (Fig. 1) 

were driven by means of similar tear mechanisms (e.g. Ascione et al., 2012). LAC and 

MFB Units, both subject of this study, recorded two main almost orthogonal fold sets 

as well as described in the previous paragraphs and in several recent work (Vitale et 

al., 2010, 2013a, b, 2014a, b; Ciarcia et al., 2012). Comparable is also the deformative 

style, with the deformation that, in both cases, was localized mainly in the pelitic 

portions and giving to these successions, sometimes, the characters of broken 

formations. 

As regarding the ages of deformation stages, in the Rif Chain further geological 

constraints such as unconformably wedge-top basin, occurring in southern Apennines, 

lack. In the latter sector, the Langhian-Lowermost Tortonian Cilento Group (Vitale et 

al., 2013b) confines this tectonic stage to the Late Burdigalian (Ciarcia et al., 2012). In 

the light of these considerations and in analogy with the tectonic evolution of the MFB 

successions in the Betic Cordillera (e.g. Serrano et al., 2007), (D1)1-2
MA

, (D1)1-2
PD

 and 

(D1)1-2
DC

 tectonic stages can be ascribed to the paroxismo Burdigaliense of the Spanish 

authors (e.g. Hermes, 1985; Martín Algarra, 1987). Also another important feature, as 

the extensional structures pointing out a prevalence of extension orthogonal to the 

shear direction, i.e. parallel to the axis of the orogenic belt, is a frequent feature in 

southern Apennines and Calabrian Arc (e.g. Ferranti et al., 1996) and more in general 

in arched mountains. In the southern Apennines, the radial displacement caused a 

continuous arc spreading with divergent transport directions, extension parallel to the 

thrust front (Piedmont Glacier model of Hindle and Burkhard, 1999) and different 

rotations for adjacent arc sectors. 
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7.2. Concluding remarks about analogies and differences between LAC and 

MFB Units tectonic evolution 

 All sedimentary basin units were included in the tectonic wedge by frontal 

accretion, all detached by their Cretaceous (LAC Units) and Jurassic (MFB 

Units) basements; 

 the main overthrusting stages occurred in the Burdigalian time (Paroxismo 

Burdigaliense) both for LAC and MFB units; 

 The radial translation was accompanied by syn-thrusting extension resulting in 

a ductile and brittle stretching parallel to the thrust front both for LAC and 

MFB units; 

 In the Rif, the Internal Unit of the Dorsale Calcaire, overthrust onto the MFB 

Units, such as occurred in the northern Calabria where the Internal Unit of Sila 

tectonically covered the Diamante-Terranova Unit, but differently from the 

southern Apennines where the Internal Units lack;  

 In the southern Apennines several wedge-top basin deposits allowed to 

constraint all tectonic pulses, on the contrary in the Rif, no Miocene 

unconformable deposit crops out onto the MFB successions; 

 In all sedimentary basin units the deformation was: 

(a) Heterogeneous and localized in the lesser competent levels often producing 

a chaotic tectonic facies as a "broken formation"; 

(b) Progressive, characterizing the first stages of the thrusting, with brittle-

ductile structures indicating shallow deformation conditions. 



TECTONICS, STRUCTURAL ANALYSIS AND GEODYNAMIC EVOLUTION OF THE MAGHREBIAN FLYSCH BASIN AND LIGURIAN ACCRETIONARY 

COMPLEX UNITS: EXAMPLES IN THE WESTERN MEDITERRANEAN AREA. 

153 
 

 The Frido and Diamante-Terranova Units show a comparable P-T-path (with 

higher pressures and lower temperatures for the Frido Unit) suggesting an 

origin in a common oceanic domain (Ligurian Ocean). 
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