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CHAPTER I 

INTRODUCTION  

 

 

 

This Chapter represents an introduction to the present Thesis, entirely 

carried out at the ENEA Research Centre in Portici (Naples) - Laboratory for 

Materials and Devices Basic Research.  

In the present section, after some generalities regarding the pollution and its 

possible damages, I provide a quick look on the dangerous analytes which the 

graphene-based gas sensors would be sensible to. Notes on limits of exposure 

related to these analytes are also given. In addition, an overview on the role of 

nano-materials and nano-technology for the detection of low concentrations is 

discussed, focusing in particular on graphene properties related to the sensing field. 

Finally, the definition of the research problems and the outline of the thesis are 

presented.      

 

 

 

 

 

1.1   General notes on pollution  

 

Emissions of pollutants almost rise from all economic, societal or domestic 

activities.  

In the last decade, the ongoning growth of the industial production has led to 

the increase of the air pollution. Hand in hand, on one side, the increasing need to 

protect the environment has requested to detect ultra-low concentration of chemical 

and biological molecules; on the other side, the detection of volatile organic 

compounds (VOCs) or smells generated from food or household products has also 

become increasingly important in food industry and in indoor air quality. In fact, the 

quality of the human life is strictly dependent on the air quality, admitting that the 

network existing between these two aspects is quite widespread. To confirm this, 

the list below reports some of the main effects that could be caused by the air 

pollution:   

 damages to human health as result of exposure or intake of pollutants 

transported through the air, deposited and accumulated in the food chain; 
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 acidification and eutrophication of ecosystems, with possible changes in species 

diversity;  

 damages, yield losses affecting flora and contribution to climate forcing;  

 impacts of heavy metals and persistent organic pollutants on ecosystems, due to 

their environmental toxicity and due to bioaccumulation;  

 damages to materials and cultural heritage due to soiling and exposure to 

acidifying pollutants [31]. 

As it clearly appears, the pollution consequences cover a large spectrum of 

present and future human life, ranging from food contamination to monuments 

damages, from planet’s climate to ecosystem modifications; therefore, it is 

straightforward, if not mandatory, that the reduction of air pollution and the 

improvement of air quality remain a key priority under all points of view to the aim 

to get better all aspects of human life. 
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1.2   Dangerous analytes and limits of exposure 

 

In almost all the above mentioned effects, NH3 (ammonia) and NOX 

(nitrogen oxides) play a fundamental role.  

Nitrogen oxides are emitted during fuel combustion, such as road transport, 

industrial facilities and, generally, high temperature combustion processes. Among 

the NOX species, nitrogen dioxide (NO2), a reactive gas mainly formed by oxidation 

of NO, is associated with adverse effects on health, as high concentrations cause 

inflammation of the airways and reduction of the lung function. NOX also 

contributes to the formation of secondary inorganic PM (Particulate Matter) and O3 

(ozone) with associated effects on health and ecosystems. 

NH3 is almost entirely produced from the agricultural sector and manure 

management: in 2010, e.g., such sector was responsible for 94 % of the total NH3 

emissions in the EU (European Union) [31]. Also the production of fertilizer, 

chemicals, refrigeration systems, medical diagnosis system and material processing 

have a notable role in the NH3 emissions so that its global production exceeds from 

100 million tons per annum [6]. This toxic gas has been demonstrated to have 

significant negative impacts on health and the environment, determining disease 

symptoms and work-shift declines in pulmonary function or contributing in the 

early faint sun problem [7].  

Here is, therefore, why these two kinds of analytes are among the most 

treated for the research in the gas sensing field. Last but not least, from a chemi – 

physical point of view, NO2 and NH3, respectively, represent the archetype of 

oxidant and reducing gases, so that they are frequently used in the laboratories to 

study and eventually predict the behavior of similar species even more aggressive 

than these.  

However, the dangerousness towards analytes mostly depends on some 

parameters related to the exposure time. To this aim, different definitions of limit 

values and accordingly thresholds can be considered, taking into account different 

endpoints or averaging times. 

In USA, for example, some of the recommendations sources in regards to 

occupational exposure limits have set the thresholds which should not be exceeded: 

the National Institute for Occupational Safety and Health (NIOSH) has set at 25 

ppm (parts-per-milion) the time-weighted average (TWA) exposure at NH3 for 15 
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min; the Occupational Safety and Health Administration (OSHA) permissible 

exposure limit (PEL) for NH3 is 35 ppm as a 15 min short-term exposure limit 

(STEL). For  NO2, instead, a TWA has not been defined, but a “ceiling limit” at 1 

ppm has been established, being the “ceiling limit" the concentration of a substance 

in air which may not be exceeded at any time during the work period; a STEL, 

instead, is basically a ceiling limit but in an averaging time of 15-min [31, 91]. By 

the way, in 2010, EPA (USA Environmental Protection Ambient) set a 1-hour NO2 

standard at the level of 100 parts per billion (ppb) and also retained the annual 

average NO2 standard of 53 ppb [41]. 

In EU, instead, the Air Quality Directive 2008/50/EC set legally thresholds 

for ground-level concentrations of outdoor individual air pollutants that must not be 

exceeded. Analogously to the USA normative, limit and target values are 

accompanied by an averaging period, including also the number of exceedences 

allowed per year, if any. The parameters set by EU refer to World Health 

Organization (WHO) air quality guidelines (AQG), which are often more stringent 

than current EU target and limit values.  

For example, the NO2 limit value for the protection of human health for an 

averaging period of one hour is 200 μg/m
3
, corresponding at about 286 ppb, and it 

must not be exceeded more than 18 times in a calendar year; for an averaging 

period of one year, instead, the limit value is 40 μg/m
3
, that corresponds at about 60 

ppb. Regarding to the protection of vegetation, the concentration critical levels for 

an averaging period of one year is about 43 ppb [31, 83]. A similar European 

directive for NH3, VOCs and other atmospheric pollutants, sets the national 

emission ceilings limit, expressed in kilotonnes, to be not exceeded in a calendar 

year [84]. 

This brief survey wants to highlight how, independently from the various  

definitions and the countries taken into account, the analytes concentration ranges to 

not exceed are quite stringent. Indeed, the general aim of research and technology is 

to find routes and tools to make possible the detection and measurement of gases at 

levels of ppm and also lower.  
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1.3   The role of the nanotechnology  

 

In the frame depicted above, the role of the nanotechnology
1
 appears 

unbelievable indispensable. The recent development in the field of the nano-science 

has allowed, in fact, both to realize gas-sensors by employing several kinds of nano-

materials and to achieve the issues to detect and measure more and more small 

amounts of a wide range of gaseous chemical compounds, also exploiting the 

properties of the materials at this scale.  

Among the sensitive nano-materials, the most investigated class is formed 

by the metal oxides, typically SnO2, TiO2, In2O3, WO3, NiO. The metal oxides 

sensors, often called MOX (from Metal Oxide) or semiconductor sensors, are 

considered the best option for the gas sensing application. In their simplest 

configuration, they consist of a substrate with a heater, electrodes and the sensitive 

layer in contact with the electrodes [17, 78, 86]. 

This kind of devices has been demonstrated to work perfectly at high 

temperatures (>350°C) and are particularly appealing as gas sensors for a series of  

characteristics, in parts reported in the following [87]:  

• low cost, small size and easy to handle (compared to other gas sensors)  

• fast sensor response and recovery2  

• robust construction and good mechanical strength  

• long operating life.  

However, if the goal is to work in environmental conditions and at Room 

Temperature (RT), as discussed in the previous paragraph, the MOX gas sensors do 

not represent the best choice basically for two reasons:  

1. in these scenarios their performances strongly get worse; 

2. they present a high power consumption due to the working conditions at high 

temperature [17].  

In this respect, other classes of sensitive nano-materials result to be more 

suitable, i.e. films based on polymers, optical fibers or organic materials and carbon 

nano-materials, particularly carbon nanotubes (CNTs) and graphene [9, 13]. In the 

                                                 
1
 The prefix “nano” refers to everything, particles, sheets, etc., that has almost one dimension 

ranging from 1 to 100 nanometers.   
2
 These sensor’s parameters will be deeply treated in the following. Briefly, the “response” is the 

ability of the device to react upon the gas interaction while the “recovery” is the sensor property to 

return at the initial conditions after the signal output.     
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last two decades, CNTs have become the most studied carbon nano-material for 

developing gas sensors operating at RT, but the rapidly rise of graphene is 

challenging the dominance of them [14]. The discovery of graphene in 2004, in fact, 

has opened unprecedented opportunity, allowing to detect and measure down to a 

single molecule [25, 70-71].  

What is graphene and why it reveals so powerful? I will try to completely 

answer to the second question in this booklet, by deeply analyzing the material 

properties; instead, concerning the first question, the answer permits to briefly 

explain the potentiality of the material in the sensing field. Graphene is the name 

given to a two-dimensional (2D) fabric of sp
2
-hybridized carbon and, most 

importantly, it can freely exist at RT [70, 82]. The two-dimensionality and the 

absence of bulk perfectly match the conditions to make graphene suitable as 

sensitive layer for the detection of different gases.  

1. In fact, having a large theoretical specific surface area, equal to 2630 m
2
g

-1
, 

graphene provides the highest sensing area per unit volume so that all atoms can 

be considered as surface atoms and the interaction between the adsorbates and 

the sheet involves only the top plane.  

2. In addition, the interactions can be governed by the van der Waals force but also 

by strong covalent bonding. All these kinds of interactions can perturb the 

electronic system of graphene, which can be monitored by suitable electronic 

methods. 

3. Thanks to other electrical and structural properties, such as the charge carriers 

zero rest mass near the graphene Dirac point, the remarkable high carrier 

mobility at room temperature up to 200.000 cm
2
 V

-1
 s

-1
, the extremely low 

resistivity of 10
-6
Ωcm and its high-quality crystal lattice along with its two-

dimensional structure (see Chapter 2), a small amount of extra electrons can 

produce strong changes of the graphene physical properties during the 

interaction with the different substances even down to the molecule level.  

Apart from these unique properties and the high sensitivity, the focus and 

growing interest for the gas sensing application is also due to the graphene 

mechanical flexibility, to its technological compatibility with metals and 

semiconductors, allowing to realize various types of devices, e.g. Schottky hetero-

junctions, and, not least, especially to the strong stability in environmental 

conditions at RT [10, 29, 37, 42, 53, 70, 80, 82].     
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1.4   Goals and outline of the thesis  

 

The goal of this research is twofold: firstly, I will present and compare 

graphene realized by different synthesis techniques, carrying out a study on the 

material; then, analyzing the sensing properties of the materials produced in the 

different routes, I will report on graphene-based transducers towards analytes. 

Apart from the present Chapter that serves as introduction to the thesis, the 

two major items will be split into four sections which can be summarized as 

follows:   

 an overview on the various methods for the graphene synthesis is faced up in the 

Chapter 2, with a particular focus on the routes mostly used in this research, 

that are Liquid Phase Exfoliation (LPE) and Chemical Vapor Deposition 

(CVD). A comparison between these two methods is performed with the aim to 

find advantages/disadvantages for the gas sensing application and, finally, a 

quick look at the role of defects for the same purposes is given;     

 the Chapter 3 is totally devoted to the experimental results on the material 

synthesized by LPE and CVD. I pay particular attention to the material 

characterizations that I have performed via Raman spectroscopy, Atomic Force 

Microscopy (AFM) and Transmission Electron Microscopy (TEM), in order to 

check the quality of such prepared graphene. These analyses are focused to 

optimize the recipes for the material preparations, aimed to improve and make 

the performances of graphene-based gas sensor reproducible.       

 the Chapter 4 pertains a chemi-resistor based on LPE graphene, the first type of 

employed sensor. Starting from the device realization, a brief dissertation on the 

slow and incomplete recovery after the signal detection is presented. However, 

this bottleneck paves the way to a new approach to overcome the problem, using 

the derivative of the signal output instead of the signal itself. It reveals so 

powerful to allow the calibration of the sensor towards NO2 concentrations, as 

discussed in the last part of the chapter. Herein the comparison with the chemi-

resistor based on CVD graphene is addressed with the aim to better understand 

the sensing properties of the material prepared in two different ways.   

 In the last part of the Thesis, there are three appendices: the first one 

(Appendix A) provides the details of alumina substrate employed for the 

chemi-resistive sensor which has been dealt with in Chapter 4; Appendix B is 
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dedicated to the equipment description for the sensor tests and Appendix C is a 

summary of all the abbreviations and acronyms met in the text.      
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CHAPTER II 

ROUTES FOR GRAPHENE PREPARATION 

 

 

 

In this Chapter, an up-to-date overview regarding the various methods for 

the graphene synthesis is discussed, spending few words more for the routes mostly 

used in my research, i.e. Liquid Phase Exfoliation of Graphite and Chemical Vapor 

Deposition. The two methods are compared in order to present the behavior of so 

prepared material for the gas sensing application. The section concludes reporting 

on the material structural defects and explaining the effects of the defects in the 

adsorbates detection.      

 

 

 

 

2.1   The graphene preparation methods: an overview 

 

Starting from the simply definition of GR (see Chapter 1), an ever seen 

growing research effort has been developed in the last decade. To understand the 

trajectory and the aim of research on the material, it is useful to consider GR as 

simply the fewest layer limit of graphite. Generally speaking, this is the basic idea 

underlying the so called GR production approach “top-down”, while the opposite 

idea is the basis of the “bottom-up” approach. The main difference between the two 

approaches consists basically in the starting point: the former starts from graphite, 

then single layer is obtained by its exfoliation, while the latter starts from other 

materials, such as carbon precursors (methane, ethane, acetylene), to epitaxially 

grow the single layer on top of suitable substrates at the end of the process.  

The following flow charts (Fig. 2.1) depict the two typical approaches and 

some of the most known families for the GR production techniques, that will be 

shortly described in conclusion of this paragraph and within the next one.       
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Fig. 2.1: schematic pictures reporting both the approaches top-down and bottom-up as well as 

the methods for graphene production belonging to these families. 
 

Catching eyes from Fig. 2.1, an immediate difference regards the plentiful 

number of the top-down techniques with respect to bottom-up ones. The fact can be 

easily explained by considering the major equipments cost, also taking into account 

the maintenance costs for the bottom-up approach, e.g. of a reactor for the Chemical 

Vapor Deposition (CVD), with respect to the experimental structures used for the 

other methods, in some cases even not necessary; for example, to perform 

mechanical cleavage only adhesive tape and a small block of Highly-Oriented 

Pyrolitic Graphite (HOPG) are required [37].  

As a matter of fact, to date all these methods have revealed particularly 

useful for pure lab research. The key requirement to jump from this step to 

technological applications, making GR even more appealing for the industry, lies 

into the development of industrial-scale, reliable and not expensive production 

processes. Also, the most challenging issue for mass-production is to obtain 

outstanding quality comparable with that of material produced in the research lab. 

When scientists cite the material quality, generally they refers to the GR 

characteristics, that are the electrical, optical, thermal, mechanical and some other 

physical properties. In Table 2.1 some of them are summarized with the respective 

values.  

 

GRAPHENE  OTHER  

MATERIALS  

REFERENCE VALUES  

TOP-
DOWN 

approach

BOTTOM-
UP

approach

Mechanical 
cleavage

Laser 
ablation

Electrochemical 
methods

Liquid-Phase 
Exfoliation

GRAPHITE GRAPHITE OXIDE

Scotch-tape

Rubbing

Dispersion 
in organic 
solvents

Dispersion in 
water and 

surfactants

Exfoliation 
and next 
reduction

Thermal 
Decomposition 

of SiC

Chemical 
Vapor 

Deposition
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Mobility (@ RT)  103÷ 105 cm2  V-1s-1 

[70, 80, 82] 

Copper  32 cm2  V-1s-1  

 2·105 cm2V-1s-1 

(suspended graphene) 

[66]  

  

Resistivity  1.0∙10-8 Ωm [51]  Silver  1.59∙10-8 Ωm  

Conductivity  105÷108 S/m [4]  Silver 

Copper 

Gold  

6.30∙107 S/m (@ 20 C) 

5.96∙107 S/m (@ 20 C)  

4.10∙107 S/m (@ 20 C)  

Current density  >108 A/cm2 [81]    

Transmittance 

(VIS)  

97,7% 

[59, 60]  

  

Young Modulus  1.02 TPa  

[61]  

Diamond  0.82 TPa  

Thermal 

Conductivity 

(freestanding )  

4800-5300 Wm-1K-1 

[62]  

Diamond  1000-2200 Wm-1K-1  

Thermal 

Conductivity (on 

substrate)  

600 Wm-1K-1 

[48]  

Silver  430 Wm-1K-1  

Carrier density  ~1012 cm-2 

[70, 82]  

  

 

Table 2.1: graphene physical properties and respective values reported in literature. 
 

Noteworthy, the most part of the reported values have been obtained in 

experimental works involving GR flakes realized by micromechanical exfoliation 

(ME) to confirm the quality of as-prepared material. To better validate this 

assessment, it could be relevant to analyze the following sketch (Fig. 2.2), picturing 

schematically some of the above mentioned synthesis methods.   
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Fig. 2.2: sketch reporting level of graphene quality versus production costs for the different 

techniques (ref. [29], © Nature 2012) 
 

Fig. 2.2 also reports the quality of material versus the costs for scalable 

production. It is well known that ME remains the best method for the highest 

quality GR production, primarily because it benefits from the high-quality of the 

starting single crystalline graphite source (HOPG). Unfortunately, this procedure, 

resulting a little bit laborious, is affected by a series of limits, such as poor flakes 

yield, random location of the GR pieces on the substrate and flakes mean size in the 

order of hundred micron square [37]. Hence, it is challenging and simultaneously 

expensive to bring this approach to large scale production level but surely it will 

remain the best for the fundamental studies, for the prototypes realization and it will 

provide the standard to reach for the GR prepared in the other ways [37, 51, 65-67, 

70].  

On the contrary, Fig. 2.2 shows that Liquid Phase Exfoliation (LPE) allows 

to produce material with not so high quality. This could be also true if as-prepared 

GR is compared with that one produced by ME, but LPE represents one the most 

promising tools for mass production, permitting to reach an excellent trade-off 

between the scale-up and the production costs. Furthermore, LPE GR is notably fit 

for some applications [29, 32], e.g. gas sensing, as it will be proved in this thesis. In 

general, in fact, it is important to keep in mind that: 1) the choice of the production 

method will certainly depend on the specific application; 2) GR films on large-scale 



17 

 

could present different physical properties with respect to smaller ones prepared by 

the same methods.  

CVD growth, instead, is considered not only as the most promising 

candidate able to improve the quality up to ME GR one on large scale but also, 

thanks to its flexibility, it can serve as a launching pad for other 2D layered and 

chemically tuned materials, such as hexagonal boron nitride films (h-BN) or 

transition metal dichalcogenides (TMDCs) such as molybdenum disulphide (MoS2), 

tungsten sulphide (WS2), niobium diselenide (NbSe2), simply by changing gas 

sources [29, 33, 47]   

In the following, I am going to shortly inspect the aforementioned methods, 

starting from the bottom-up approach and continuing with the top-down one. In 

particular, CVD and LPE of graphite, that are the mostly exploited techniques for 

the material production in this work, will be more widely discussed.  
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2.1.1 Chemical Vapor Deposition  

 

CVD is a process widely used in semiconductor industry to deposit or grow 

thin films, crystalline or amorphous, from chemical precursors of many materials in 

the vapor phase. The choice of precursors usually depends on the composition of 

the desired film and what is the effective cost for the specific application. Various 

types of CVD processes exist: thermal, plasma enhanced (PECVD), cold wall, hot 

wall, reactive, and many more. One or another type can be chosen according to 

available precursors, the material quality, the thickness and the structure needed, 

strictly jointed to the cost of selecting a specific process [29, 32]. 

The thermal CVD is one of the most used types for the GR growth. The first 

attempt dated back to 1966 when Ni substrate was exposed to methane (CH4) at T = 

900 °C to form thin graphite. In the last years, not only other gaseous hydrocarbon 

sources, such as acetylene or ethylene, but also Cu and other transition metals have 

been introduced while more recently also Mo has been successfully tested [5].  

The growth mechanism can be easily understood analyzing the following 

diagram (Fig. 2.3), reporting a typical process sequence.  

 

 

Fig. 2 2: typical process cycle of GR growth on Cu displaying the temperature profile as time 

function.  
 

The process relies on carbon saturation of a transition metal during the 

exposure to a hydrocarbon gases at high temperature. The substrate cooling 

determines the decreases of carbon solubility in transition metal with a consequent 

carbon layer precipitation on the surface. The catalyst substrate is put in a chamber 

able to reach high temperatures around 1000 °C depending on the substrate and, 

under a continuous flow of carrier gases, the sample is gradually heated up to the 

growth temperature. After flowing the reaction gas mixtures, the carbon atoms, that 

decompose from hydrocarbons due to the high temperature of the substrate, 

T
e

m
p

e
ra

tu
re

 (
°C

) 
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nucleate on the catalyst substrate itself and the nuclei grow into large domains. The 

last step, that is critical in suppressing formation of multiple layers and for 

separating GR layers efficiently from the substrate, regards the rapid cooling of the 

substrate in inert atmosphere to RT [47, 58].   

The nuclei density is principally a function of T and pressure and, when the 

catalyst surface is fully covered, the films become polycrystalline, since the nuclei 

are mis-orientated with respect to each other, even on the same catalyst grain. This 

issue represents the first hindrance to obtain a continuous layer [32]. The second 

one is the removal and transfer process from the growth substrate to the target one, 

this phase being the most critical and tricky in the manufacturing of GR produced 

by CVD. In general, graphene is transferred from one substrate to another using 

either a) the carrier method or b) the stamp method. 

a) In the carrier method, a thick organic film, typically poly(methyl 

methacrylate) (PMMA) or polycarbonate (PC), is required to incorporate GR grown 

on the substrate. After the substrate is etched away, the resulting stack is placed on 

top of the target substrate and finally the carrier film is removed by chemical or 

thermal treatment [15]. 

b) In the stamp method, an elastic and sticky film like 

polydimethylsiloxane (PDMS) is required to attach the GR sheet on the growth 

substrate. This is then etched away with GR/stamp sandwich that is stamped on top 

of the target substrate. Finally, the stamp is removed by mechanical detachment 

similar to slow peeling off [15-16, 43]. 

Albeit outstanding improvements have been obtained, both of these methods 

can provoke damages or cracks, resulting in discontinuous films. Nevertheless, 

some research groups have been able to produce large scale foils. For example, 

Hobara et co-workers have recently reported on the fabrication of GR films one-

hundred m long with physical properties fairly comparable with those of state-of-

the-art CVD-grown graphene films [11]; also Bae et al., in 2010, achieved a similar 

result producing 1m roll-to-roll graphene films for transparent electrodes [45]. This 

means that the mass and scaled-up production of CVD grown GR is a possible and 

almost a reached goal. 
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2.1.2 Thermal decomposition of silicon carbide  

 

The preparation of GR by the thermal decomposition of silicon carbide 

(SiC), sometimes indicated also as SiC segregation, has been proposed as one of the 

viable routes for the synthesis of uniform and large-scale GR layers [56]. The 

method of producing graphite from SiC is known as early as 1896, as reported by 

Acheson [32].  

Growth of GR on SiC is usually referred to also as “epitaxial growth”, 

where the term “epitaxy”, deriving from the Greek, is formed by the prefix “epi”, 

which means “over” or “upon”, and “taxis”, which means “order” or 

“arrangement”. Actually, there is a considerable lattice mismatch between SiC 

(3.073Å) and GR (2.46 Å) and, differently from what happens in a traditional 

epitaxial growth process, in which Si is deposited on the SiC surface, in this growth 

technique the carbon rearranges itself in a hexagonal structure after the Si 

evaporation from the SiC substrate [32].  

The procedure for the SiC thermal decomposition is theoretically simply and 

consists basically of two steps: firstly the samples cleaning is required to remove 

surface polishing damage, then the growth starts by thermal treatment of SiC.  

Regarding the first step, various approaches have been adopted: Rollings 

and co-workers, for example, polished the SiC surfaces in situ by annealing up to 

850°C under silicon flux for 20-30 min [77]; Emtsev et al., instead, etched the 

samples in hydrogen (grade 5.0, p=1 bar, T=1550°C) for 15 min [56].  

For what concerns the second step, the annealing of the substrates results in 

the sublimation of the silicon atoms while the carbon-enriched surface undergoes 

reorganization and, for high enough temperatures, graphitization [51]. The typical 

range of annealing temperatures goes from 1300°C to 2000°C and the usual heating 

and cooling rates are 2-3°C/sec, although Sodano et al. reports on that the quality of 

GR is improved by operating at 1650 °C under argon rather than at 1150 °C in 

ultra-high vacuum (UHV) [51, 56].  

This technique allows to obtain, to date, GR domains up to 200 nm in size 

with mobility at RT up to 3·10
4
 cm

2
V

-1
s

-1
. The thermal decomposition, however, is 

not a self-limiting process and areas of different film thicknesses may exist on the 

same SiC crystal but the major short-coming regards the SiC wafers cost that blocks 

up the breakthrough of this method. A considerable advantage for the technological 
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applications is that SiC, being an insulating substrate, can be simultaneously used as 

growth and election substrate without transferring the graphitic layers to another 

insulator substrate, avoiding all the drawbacks due to this process, as will be 

discussed later, for example, for the CVD technique [32, 56]. 
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2.1.3 Mechanical cleavage  

 

The mechanical cleavage or exfoliation can be regarded as the mother of all 

techniques for the GR production, since it was the way that allowed Geim and co-

workers at Manchester University in 2004, to isolate the first single-layer samples 

from graphite [82]. 

It consists basically in the exfoliation of a graphite block, HOPG or other 

types, through the adhesive tape so that the method has been universally known as 

“the scotch-tape technique”. Then, the first piece of tape is repeatedly cleaved by 

other sticky pieces down to obtain an almost invisible powder on the starting tape
3
. 

The number of  the exfoliations ranges from 10 to 20 but, as I demonstrated in ref. 

[37], a trade-off between this number, namely the flake thickness, and the mean size 

needs to be reached. Finally, at the end of the exfoliation process, the tape is 

transferred onto the election substrate that usually is silicon dioxide on Si (SiO2/Si) 

[37].       

As I said before, it is clear why this procedure is proposed as the origin of 

the top-down approach: ideally, in fact, the single-layer graphene (SLG) can be 

obtained making thinner and thinner the thickness of the graphite block.    

However, transferring the adhesive tape to the SiO2/Si implicates that also 

glue residues can be released on the substrate. Because the residues make the GR 

optical identification and the samples processing more difficult, e.g. by 

photolithographic methods for the devices production, several attempts have been 

done. Among these, for example, I was spurred to improve the “scotch-tape 

technique” replacing the scotch with something less sticky than scotch. A thermo-

curable elastomer, called polydimethylsiloxane (PDMS) resulted to be extremely 

suitable to the aim and the introduced variant, that I named PDMS-film technique, 

besides eliminating the glue residues, was able to increase the mean flake size from 

ten up to hundred of microns [37-38]. Unfortunately, the bottlenecks related to the 

mass production are always confirmed but, as discussed before, once more time it 

appears the best avenue for the pure lab research.    

 

 

                                                 
3
 In some cases, instead of exfoliating continuously the first piece, the last piece of the tape series is 

subsequently folded down to obtain, at the end, an almost invisible powder at naked eye on the tape.    
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2.1.4 Electrochemical methods 

 

In the class denoted as electrochemical methods the most used one relies on 

the anodic bonding (AB) which may be classified as a variant of mechanical 

cleavage. AB is widely used in the microelectronics industry to bond Si wafers to 

glass, to protect them from humidity or contaminations, but also for joining glass to 

conductive material, the two materials being fairly well matched in terms of thermal 

expansion (silicon-on-insulator bonding or SOI bonding) without intervening glue 

or others sticky resins [52].  

AB is achieved by pressing borosilicate glass on a Si wafer at high 

temperatures, above 200°C, while a high voltage, typically in the range 1700–

1800V, is applied perpendicular to the layers. The heating makes decompose the 

Na2O impurities in the glass into Na
+
 and O

2-
 ions and the mobility of the lighter 

sodium ions is higher than that of O
2-

 ones. The voltage polarity is chosen so that 

the Na
+
 ions can migrate away from the Si-glass interface to the back contact, 

leaving behind a negative space charge in the region of the interface formed by the 

static oxygen ions remained there. Since the space charge layer is typically a few 

hundred nanometers to a few micrometers thick, the field created across this layer is 

very strong and pulls the wafer into contact with the substrate, ultimately leading to 

the formation of stable Si–O–Si bonds and resulting in a wafer bonded to the glass 

substrate. When employing this technique to deposit GR, graphite replaces the Si 

and the same above described procedure is followed. The typical time of potential 

difference application is 10-20 min. At the end, when the bonding is achieved, the 

bulk graphite sample can be peeled off, using either a scalpel blade or adhesive tape 

or both and leaving onto the glass many transparent areas with one-layer, or few-

layer GR portions. It should be noted that all these steps are performed in standard 

laboratory environment, there being no need for a controlled, clean room 

atmosphere, exactly as happen for ME [52, 57]. This requirement represents an 

important added value for the technique that, despite the simplicity of the employed 

setup, has been rarely adopted mainly because it allows depositing graphene on 

substrates with relatively mobile ions, such as borosilicate glass. This substrate is 

useful to study the optical properties of GR, but it is not particularly suitable for 

other kinds of studies, such as transport measurements, because of the lack of 

backgate. On the other hand, AB prepared material has quality as high as that 
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prepared by ME, as confirmed by Moldt et al. in ref [92], where they have obtained 

charge mobility of so-prepared flakes on the order of 6000 cm
2
V

-1
 s

-1
, which is 

fairly comparable with devices prepared with exfoliated GR. Therefore, similarly to 

ME, AB technique permits to obtain GR of superior quality with an extremely low 

yield of SLG and FLG and mean flakes lateral size in the range of few hundred 

micrometers.    
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2.1.5 Laser ablation 

 

The basic idea underlying the laser ablation GR growth technique is the 

same mostly adopted for the cure of the monuments or works of art since the 

ablation generally serves to remove material from a solid surface through the laser 

beam. If irradiation results in the detachment of an entire or partial layer, the 

process is called photoexfoliation [32]. 

In the case of GR growth, the material that is usually ablated is HOPG and 

the laser mainly used is the neodymium-doped yttrium aluminum garnet (Nd:YAG). 

[39-40,  72]. Keeping fixed the laser pulse rate, the growth substrate and the HOPG 

sample, as target wafer, are loaded in a vacuum chamber. The laser energy density 

tuning is the parameter that mainly affects the ablation and consequently the 

deposited number of GR layers (nLG). In fact, Qian et al., exploiting a laser energy 

density windows, have observed the variation in the nLG as well as the different 

nature of the deposited material, involving amorphous carbon, FLG and thin 

graphite films  [40]. 

Although the process is still in its infancy and needs further developments, it 

has the interesting potentiality to allow the deposition of graphene nanoplatelets on 

arbitrary surfaces. Also, besides the PDMS-film technique, it provides an 

alternative route to solve the glue residues problem reported about the ME 

technique. On the other hand, the main short coming is that it reveals not 

particularly suitable for mass-production since the mean flake lateral size is around 

ten microns [40]. 

 

 

  



26 

 

2.1.6 Liquid Phase Exfoliation of Graphite Oxide  

 

The chemical routes for GR production appear to be the most viable 

alternatives to the other methods. In order to address this issue, there are two main 

chemical ways to do this: oxidization of graphite followed by exfoliation in water to 

give graphene oxide and exfoliation of graphite in solvents or surfactant solutions to 

give dispersed GR flakes (see next paragraph). Notably, both of them are real cost-

effective methods for mass-producing graphene, but it is important to keep in mind 

the trade-off already discussed in Paragraph 2.1 and the applications to be 

addressed.  

The first method consists in producing chemically modified GR, such as 

graphene oxide (GO), according to the Hummers method, successively reducing 

into GR [90]. Large-quantity of GO can be easily produced by the chemical 

exfoliation of graphite through oxidation and the subsequent dispersion in water. 

The oxidation of graphite in the presence of acids and oxidants disrupts the sp
2
 

network and introduces hydroxyl or epoxide groups with carboxylic or carbonyl 

groups attached to the edges and to the basal plane. In this way, GO sheets become 

readily dispersible in water and in several other solvents. Even though large flakes 

can be potentially obtained, GO is electrically insulating, does not possess the GR 

properties and it is also conceptually different from GR.  GO needs to be processed 

in order to significantly increase the electrical conductivity, owing to the 

presumably restoration of the sp
2
 bonds. This can be achieved by exposing GO to 

reducing agents such as hydrazine, NaBH4, through high-temperature treatment or 

via UV-assisted photocatalysis and so prepared material is generally identified as 

reduced graphene oxide (rGO) [29, 50, 74, 93]. 

However, several attempts show that, besides being hazardous and enough 

aggressive methods for the environment, it is quite impervious to make rGO regain 

the pristine GR electrical conductivity because of the significant presence of many 

structural defects introduced by the oxidation process that continue to disrupt the 

GR band structure. On the other hand, rGO presents the advantages that it can be 

deposited on different substrates and, thanks to the presence of functional groups 

which favors the link with polymers, is ideal for nano-composites preparation [32, 

75]. 
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2.1.7 Liquid Phase Exfoliation of Graphite  

 

Liquid-phase exfoliation of graphite is based on exposing powdered graphite  

to special solvents or surfactants that favor an increase in the total area of graphite 

crystallites [34, 44]. Solvents ideal to disperse graphene are those that minimize the 

interfacial tension [mN/m] between the liquid and GR flakes, i.e. the force that 

minimizes the area of the surfaces in contact [3, 32]. The solvents that mainly match 

this requirement are N-methyl-pyrrolidone (NMP), Dimethylformamide (DMF) and 

others Lewis bases [68].  

The second step of the procedure consists in the ultra-sonication aimed to 

favor the splitting of graphite into individual platelets. Finally, a “purification” step 

is required to separate the unexfoliated flakes from the thinner ones, constituting the 

so called surnatant phase of the suspension. Thicker flakes can be removed by 

different strategies based on ultra-centrifugation in a uniform medium or in a 

density gradient medium [32]. 

Because this technique is regarded as one of the most promising tools for 

mass production, high concentration is desirable so that the main research efforts 

are addressed to improve the SLG-FLG yield in the dispersion. The yield is usually 

defined as the ratio between mono- or few-layers and the graphitic flakes in the 

dispersion. To this regard, it is important to note how the yield and accordingly the 

final result is strongly affected by each parameter involved in the three steps of the 

procedure: for example, Khan et al. have proved that, increasing the mild sonication 

time, they are able to obtain concentration 100 times higher than that reported in 

literature [44]; similarly, increasing the sonication time from 3h to 168h for material 

prepared in NMP,  we have observed a series of beneficial effects related to a better 

exfoliation of graphite, a higher concentration of FLG as well as a larger lateral size 

of FLG, as will be better discussed in the next chapter; also, ref [32] reports that the 

sonication power can dramatically influence the flakes size because of the in-plane 

fracture.     

In conclusion, these intrinsic drawbacks are counterbalanced by much 

heavier assets: the cheapness, the easy scalability and the absence of expensive 

growth substrates. More importantly, LPE reveals particularly suitable for a large 

range of applications and to produce inks, thin films, and composites; the versatility 

of such preparation technique displays in the ability to deposit the GR on rigid and 
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flexible substrates by several approaches, such as drop and dip casting, rod coating, 

spray coating, screen and ink-jet printing and other techniques discussed in ref [32]. 

Finally, LPE as well as CVD can be also adapted to produce other layered materials 

and TMDCs [29].   
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2.2   A challenge for sensing  

 

All the definitions associated to GR generally refer to the ideal structure, but 

the films usually prepared by means of the various methods might be different from 

the ideal case and they can contain defects. In Physics, the term “defect” identifies 

anything that breaks the symmetry, in this case the symmetry of the infinite carbon 

honeycomb lattice. Hence, in GR sheets a plenty of defects can be observed such as 

edges, grain boundaries, vacancies, implanted atoms and the defects associated to a 

change of carbon-hybridization, for example, from sp
2
 into sp

3
 [28]. It is remarkable 

to note that some of these, albeit impossible to remove, as happens for the films 

edges due to the impossibility to obtain infinite sheet, do not represent a drawback; 

on the contrary, deviations from perfection can have a strong influence on the GR 

electronic, optical, thermal, mechanical and sensing characteristics making possible 

to tailor the local properties of GR and to achieve new functionalities, like in 

conventional semiconductors [63, 94]. In addition, GR, differently from the 

conventional 3D materials, is the ideal means to study defects because its planar 

nature allows easily to add, remove or move carbon atoms and accordingly modify 

the basal structure [28]. The case of interstitial atoms, as they appear in 3D crystals, 

for example, cannot exist in GR because placing an atom to any in-plane position 

would require a prohibitively high energy. Therefore, obeying to energetic 

considerations, the additional atoms use the third dimension and the energetically 

favored position is the bridge configuration on top of a C-C bond [46]. At first 

glance, the presence of this additional not-conjugated atoms in the defected GR 

configuration makes clearer why the sensing properties of the sheet could be 

improved so that it becomes more prone to the sensing application with respect to 

the pristine one.  

As far as the defects generation is concerned, there are basically three 

mechanisms which can produce defects in GR, that are: 1) the crystal growth, 2) the 

irradiation with energetic particles, for example, electrons or ions, and 3) the 

chemical treatments [26, 46].  

1) The defects originating from the growth techniques, firstly are 

generally present on GR grown via techniques on large-scale, secondly are due to 

the intrinsic way of the layers growth. A GR layer, in fact, does normally not occur 

atom-by-atom from one nucleus but rather as a relaxation of a metal carbon system 
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with many nuclei, e.g. in CVD, determining, in this way, the rise of a no perfect 

crystal lattice.     

2) Irradiation beams lead usually to a generation of point defects whilst 

an uniform irradiation of large areas can produce randomly distributed vacancies. 

Also focused ion beam (FIB) can generate vacancies in the lattice with the 

difference that preselected positions can be stricken by the highly focused gun. 

3) As regards the chemical treatments, the reactions occurring between 

carbon atoms in a GR layer and other species can provoke the loss of atoms and 

thus the defect production. One of the most common reactions involving GR at RT 

is the oxidation that usually happens with oxidizing acids, such as HNO3 or H2SO4, 

for example during the transfer of CVD grown GR from the catalyst substrate to the 

insulating one. Such treatment can allows to attach oxygen and hydroxyl (OH) or 

carboxyl (COOH) groups to GR.  

As discussed before, all types of defects can contribute to improve the GR 

properties, as reported, for example, in ref. [22] regarding the thermal transmission. 

In the sensing field, particularly, the role of defects has been deeply investigated, 

above all from a theoretical point of view. Numerous simulations have shown, in 

fact, that defects associated with dangling bonds should enhance the reactivity of 

GR, in particular OH, COOH or other groups can easily be attached to vacancy-type 

defects. The same is equally true for GR edges that are normally saturated with 

hydrogen [55, 63].  

The enhanced effects of defects for GR sensing properties is also confirmed 

by Zhang and co-workers [54]. They report on a first-principles simulation of the 

interactions between several small molecules and various GR sheets, i.e. pristine, p-

, n-doped and defected GR. The results show that the adsorption of three over four 

considered molecules is favored over the defected GR in comparison with the other 

kinds of sheets.  

In addition, several experimental works provide proofs of this concept. 

Salehi-Khojin’s group [27] demonstrates that deliberately defected GR-based 

sensors not only show higher response in comparison with defects-free GR but also 

the combination of different kinds of them, such as line and edge defects, improves 

the response much more than edges or line defects alone. In ref. [36, 64] the authors 

analyze GO and rGO-based gas sensors, respectively. As discussed before, GO 

contains oxygen functional groups such as epoxides, alcohols, and carboxylic acids 
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determining a strong defected structure as well as rGO that has not only chemically 

active defect sites but also partly the honeycomb sp
2
 structure. Both the papers 

describe two regimes in the response curve upon the gas exposure: a faster and a 

slower one. These phenomena are easily understood by attributing the fast response 

to the molecular adsorption onto binding sites with low energy, such as sp
2
-bonded 

carbon, while the slow response is due to the interactions between gaseous 

molecules and high-energy binding sites such as vacancies, defects, and oxygen 

functional groups.       

To conclude, this brief survey clearly suggests that: 

1. in the sensing field, defected GR, being more reactive towards 

molecules, seems to be more suitable for the gases detection; 

2. because it is practically impossible to obtain defects-free GR, even 

simply because the sheets are finite and edges or grain boundaries are considered 

defects, a avenue could be to increase intentionally the creation of defects offering a 

means for improving the GR sensing performances; 

3. provided that edges and grain boundaries can be extremely useful for 

sensing, in this field the GR flakes dimension does not seem to be an essential 

requirement, because ideally the more the flakes are small the more the edges are 

present.  
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CHAPTER III 

MATERIAL PREPARATION AND 

CHARACTERIZATION 

 

 

 

In this Chapter, the optimized procedures for the GR synthesis by LPE and 

CVD are described. The characterizations performed through Raman spectroscopy, 

Atomic Force Microscopy and Transmission Electron Microscopy are also 

presented. The experimental results, compared with those reported in the literature, 

allow to argue the morphological and structural nature of such prepared materials. 

The issue regarding the GR defects is also addressed with the purpose to better 

understand the strong sensitive of material in the sensing field. 

 

 

 

 

3.1   Liquid Phase Exfoliation: the procedure 

 

As discussed in the previous chapters, the LPE technique belongs to the top-

down approaches and basically consists in the separation of the graphite planes 

through the energy provided by the sonication of graphite previously dispersed in 

the solvents. However, the mostly used solvents are characterized high boiling 

points (>450 K), are expensive and require special care in handling due to their 

toxicity; e.g. NMP may be toxic for the reproductive organs, while DMF may have 

toxic effects on multiple organs [3, 68]. In particular, the high boiling point can 

negatively affect further processing of the material, such as to the solvent removal 

after the exfoliation and the deposition of individual flakes due to their aggregation 

during the solvent slow evaporation. These circumstances make advisable the 

recourse to green solvents. In addition, these approaches will be highly regarded 

since the availability of high quality GR dispersions in the most environmentally 

friendly solvent, i.e. water, could pave the way to the use in a wider range of 

applications [3].  

Among the thermodynamic properties related to the solvent solubility 

capabilities, the key role in the process is attributed to the solvent surface 

tension (γ) so that, the closer to the graphene (around 40 mN/m) the solvent 
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surface tension value is, the more effective the exfoliation is. As a matter 

offact , water, the “natural” solvent, has γ ~72 mN/m that is both too high for 

the GR dispersion and about 30 mN/m higher than NMP [32].  

Therefore, by analyzing the solvents thermodynamic properties and the 

physicochemical parameters, we have successfully addressed a green mixture 

of iso-propanol (IPA) and ultrapure water in volumetric ratios 1:5 having a 

surface tension value suitable to achieve the target value of ∼40 mN/m and, 

especially, able to exfoliate graphite. The optimized recipe for the colloidal 

suspensions preparation consists in dispersing graphite flakes (Natural 

Graphite) at 2.5 mg/ml and sonicating in an ultrasonic bath for about 48h with 

power set at about 40 W. The “purification” step aimed to separate 

unexfoliated graphite from the thinner flakes has been carried out by the 

suspension centrifugation for 45 min at 1000 rpm [3]. 

The achievement of this result has twofold relevance: besides 

developing a new mixture able to directly exfoliate graphite, more 

importantly the solutions so prepared have been demonstrated to be stable 

with yield in few layer graphene content and flakes quality fairly comparable 

with those obtained using NMP, as I will deeply discuss in the following.         
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3.2  Characterization of LPE graphene    

 

The first characterization on the GR suspension is conducted through 

Dynamic Light Scattering (DLS), mainly devoted to determine the dimension of the 

platelets. This analysis, performed by means of NanoZetasizer (Malvern 

Instrument), has revealed a mean flakes lateral size of (430±10) nm and (260±30) 

nm for suspensions prepared in H2O-IPA and NMP, respectively. Analogues results 

have been collected at later times, confirming the stability of such prepared GR 

solutions [3-4]. 

Afterwards, Raman spectroscopy is performed on GR films. This non-

destructive technique, particularly useful for all carbon allotropes, represents an 

extremely versatile tool for studying all GR properties, allowing to obtain structural 

and electronic information, and can be applicable at both laboratory and mass-

production scales [20]. In other words, through the Raman spectrum, the complete 

GR fingerprint can be depicted.   
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Fig. 3.1: typical Raman profiles for LPE GR exfoliated in NMP (red line) and in H2O-IPA 

mixture (green line); the black line shows the graphite spectrum. All proper graphitic bands in 

the explored range are labeled. Inset: an optical image of graphene film.   
 

The Raman measurements herein presented have been performed depositing 

few microliters of the feed solution onto Si wafers coated with SiO2 thin film (250 

(50X, N.A.=0.8) 
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nm). The inset in Fig. 3.1 shows a GR film picture taken under the optical 

microscope.  

The spectra have been captured through a Renishaw inVia Reflex apparatus 

in back-scattering configuration by using the 514.5 nm line of Ar laser as excitation 

source with an incident power of ~10 mW and a magnification 100x.  

The typical Raman profiles for LPE GR, prepared by using NMP (red line) 

and H2O-IPA (green line) as solvents, are shown in Fig. 3.1, in comparison with the 

graphite spectrum (black line). The distinct graphitic bands in the explored range 

are labeled and, in order to facilitate the visualization, all spectra have been 

normalized to the G band intensity [20-21]. The G peak corresponds to in-plane 

vibrations at Γ, whereas the breathing mode of the six-atom ring gives rise to the D 

peak and requires a defect for its activation. The D’ peak originates from a double 

resonance intravalley process which also activated by a defect. Therefore the 

intensities of D and D’ peaks are closely related to the amount of defects in the GR 

lattice. In contrast, the 2D peak (overtone of D-peak) and the 2D’ peak (overtone of 

D’-peak) are both activated without requiring the presence of defects and are thus 

always present. 

By comparing the graphite spectrum (black line) with the others two (red 

and green lines), some indications of the successfully graphite exfoliation are well 

rendered: firstly, the rise of D (~1350 cm
-1

), D’ (~1620 cm
-1

) and D+D’ (~2900 cm
-

1
) peaks, then the change of the 2D band (~2700 cm

-1
) shape. The remarkable 

overlapping  of the two spectra related to GR (green and red lines) represents a first 

confirmation of the equivalence between the different solvents in the direct 

exfoliation of graphite.    

As regards the D and D’ peaks, an in-depth speech will be done later, 

whereas the 2D band features are examined in Fig. 3.2
4
. The lower and the upper 

panels refer to graphite and  exfoliated material, respectively. To perform the 

following comparison, the spectrum of the exfoliated material has been captured in 

another point of the film deposited onto the SiO2/Si substrate.      

                                                 
4
 This analysis is conducted on the material prepared by using NMP solvent due to the substantial 

equivalence to GR exfoliated in H2O-IPA.  
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Fig. 3.2: Zoom on the 2D band of graphite (lower spectrum) and oligolayered graphene (upper 

spectrum). Both spectra are normalized to the 2D intensity. The deconvolution of the 2D band 

is reported as green line, while the black and red lines report the profile and the two 

components sum, respectively. In both panels, the two components are quite  distinguishable as 

well as the evolution from graphite to oligolayered graphene. 
 

As demonstrated by Ferrari et al. [76], the 2D band of graphite consists of 

two Lorentzian components, 2D1 and 2D2, centered roughly at 2695 cm
-1

 and 2735 

cm
-1

, respectively (green lines in the lower panel of Fig. 3.3), with the 2D1 less 

pronounced than the 2D2. As the number of graphene layers decreases and reaches 

the limit of five, the relative intensity of the 2D1 peak increases progressively and 

2D1 shifts towards 2D2 peak (upper panel in Fig. 3.3), until it becomes, in general, 

the only component in SLG. During this evolution, the 2D band becomes smoother 

and broader and, in presence of SLG, the 2D band can be fitted with a single, sharp 

Lorentzian as reported, for example, in ref. [21]. In our work [2] this behavior can 

be argued and the full-width at half maximum (FWHM) is estimated equal to about 

70 cm
-1

.  Indeed, because FWHM is higher than 25 cm
-1

, corresponding to SLG, a 

further validation of the evolution from graphite to FLG is provided.  

Finally, Fig. 3.3 reports five spectra for material exfoliated in NMP (Fig. 

3.3a) and in H2O-IPA (Fig. 3.3b). The intensities, normalized to the G band, have 

been averaged on ten values collected in different points of the films.   
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Fig. 3.3: spectra of FLG exfoliated in (a) NMP and (b) H2O-IPA. Each profile is determined as 

the average of the spectra taken in ten different points of the film. The black profile refers to 

the graphite flakes. 
   

In each family, comparing the spectra, a fairly reproducibility can be 

observed, justifying the homogeneity of such prepared films.   

As far as the D and D’ peaks is concerned, it is well known that these bands 

are activated by defects [20, 28, 35, 73, 76]. The onwards challenge is to find a link 

between these features and the nature of disorder.  

Following the guide adopted by several authors, the intensity ratio between 

D and G peak can be exploited to infer information on the defects [20, 35, 85]. 



38 

 

For instance, the most part of the Raman spectra acquired for the GR 

solutions discussed in this text, have showed I(D)/I(G) ranging from 0.5 up to 1, 

similar to the values reported by Torrisi and co-workers for sub-micrometric flakes 

[21]. In the same work, the defect peaks are assigned to flake edges rather than 

other kind of defects. In addition, because the LPE process is demonstrated not only 

to determine the separation of the graphite planes but also to affect the flakes lateral 

size, as a result, the production of platelets with mean lateral size in the order of 

hundred nanometers is obtained, as confirmed by the DLS measurements and the 

following TEM images (see next paragraph). Hence, a first indication on the D peak 

origin due to the flakes edges can be stabilized.  

This assignment is further validated by reporting I(D)/I(G) versus 

FWHM(G) for both NMP (Fig. 3.4a) and  H2O-IPA exfoliated GR (Fig. 3.4b).         
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Fig. 3.4: I(D)/I(G) as function of FWHM(G) for (a) NMP and (b) H2O-IPA exfoliated 

graphene. In both cases, the absence of an evident correlation between the two parameters is 

highlighted.    
 

Analogously to what reported in Ref. [21], the lack of a correlation in both 

data set is visible at first sight. In that paper, the authors claimed that the intensity 

ratio I(D)/I(G) with FWHM(G) allows to discriminate between disorder localized at 

the edges and disorder in the bulk of the samples. Because a higher I(D)/I(G) would 

correspond to higher FWHM(G) for bulk disorder, if no relationship is found 

thisclearly suggests that the major contribution to the D peak comes from the 

disorder localized at the edges.  

Another powerful tool used to discriminate between sp
3
-defects, vacancy-

like defects and boundaries has been developed by the Casiraghi’s group who 

exploits the intensity ratio between D and D’ peak [28]. Although D′ is not much 

studied in the literature because of its relatively small intensity compared to the D 

peak, they proved that I(D)/I(D′) is roughly equal to 13 for defects associated with 

sp
3
-hybridization, decreases till to ≃7 for vacancy-like defects and reaches the 

minimum value (≃3.5) for boundary-like defects for GR flakes produced by anodic 

bonding and mechanical exfoliation.   

In the GR films herein presented, I(D)/I(D′) values up to 2.5 have been 

calculated. The disagreement with the paper can be easily explained by considering 

both the different GR production methods with respect to LPE used herein and the 

concentration of defects. The ratio values reported there, in fact, were obtained in 
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the approximation of low defects concentration. Taking into account these 

differences,  

1. defects due to the sp
3
 bonds and related to basal plane can be 

definitively discarded since in such a case the ratio should be much more higher 

than 2.5;  

2. on the contrary, I(D)/I(D′)≃2.5 can be compared with that reported 

in Ref. [28]. 

Further evidence of the integrity of the basal plane for chemically exfoliated 

graphene is provided by Coleman and co-workers [44]. In the cited paper, they 

found that the flake dimensions of graphene exfoliated in NMP, undergone to 

sonication and centrifugation process, scale as t
1/2

, t being the sonication time, and 

that the sonication process is responsible for the defects formation. From the 

dependence of I(D)/I(G) ratio on the sonication time they inferred the observed 

defects are likely associated with the edges and the bodies of the flakes are 

relatively defect free. 

Therefore, the boundary–like nature for LPE defects can be assumed. As 

such, also the approximation of low defects concentration supposed in the 

aforementioned paper can be discarded in the case herein presented since the LPE 

GR films are built up by patchworks of sub-micrometric flakes in which edges play 

a key role, as discussed in the next paragraph.     
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3.2.1 Transmission Electron and Atomic Force Microscopy 

characterizations 

 

Transmission Electron Microscopy (TEM) and Atomic Force Microscopy 

(AFM) are discussed in this section as applied to LPE GR with the purpose to 

extract other morphological and structural information regarding the exfoliated 

material.   

 TEM images have been taken by means of FEI TECNAI G12 Spirit-Twin 

operating at 120 kV. The samples have been prepared by dipping Cu standard holey 

carbon grids (400 mesh) into the colloidal suspensions.  

Analogously to the Raman characterization, AFM images have been 

collected from GR films deposited onto the Si/SiO2 substrate, using the Ntegra 

Spectra microscope in semicontact mode.  

Examples of TEM and AFM images for both examined suspensions are 

reported in Fig. 3.5, where groups (a) and (b) refer to NMP and H2O-IPA exfoliated 

GR, respectively. Noteworthy, due to the substantial homogeneity of the 

suspensions, demonstrated in the previous paragraph, these images can be estimated 

as representative of the overall samples.  

 

  

(a) (a) 
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Fig. 3.5: TEM and AFM images of (a) NMP and (b) H2O-IPA exfoliated graphene. The scale 

bars confirm the flakes mean size in the range of few hundred nanometers. For the AFM 

images, the profile (on the left) and the phase (on the right) are reported.   
 

Both groups of images in Fig. 3.5 permit to demonstrate what has been 

previously stated. Firstly, starting from the TEM images, the high degree of 

graphite exfoliation for both suspensions is confirmed, disclosing FLG, SLG and 

sparse thicker fragments arranged in a nearly continuous film either way. Then, the 

scale bars show that the flakes mean lateral size in the range of few hundred 

nanometers is achieved.  

Examining the AFM pictures, besides on the confirmation of the flakes 

dimensions, that can be easier inferred from the phase image, a further analogy 

between the two solutions is found. The roughness value, in fact, results to be 

roughly 24 nm and 18 nm for NMP and H2O-IPA exfoliated GR, respectively. 

Taking into account the tendency to wrap of the LPE GR films onto the substrate 

and, in turn, the difficulty to estimate this parameter, the two values can be fairly 

comparable.  

Finally, as regards the defects issue, both characterizations in either cases 

testify the quite huge amount of edges in the films. Therefore, the boundary-like 

nature of defects, introduced with the Raman discussion, can be definitely 

confirmed. Additional proofs will be given in the following, discussing GR grown 

by CVD.       

In summary, because defected GR has been demonstrated to be more 

reactive towards molecules (see Chapter 2), the sub-micrometric dimensions of the 

flakes and, in turn, the presence of edges allow to easily understand why this kind 

of material is particularly suitable in the gas sensing field, as it will be demonstrated 

in the next chapter.  

 

 

 

 

 

 

 

   



44 

 

3.3   Chemical Vapor Deposition: the procedure 

 

The overall CVD procedure consists of different steps, especially for what 

concerns the transfer process from the catalyst to the target substrate. Indeed, with 

the aim to obtain a film as much continuous and clean as possible , several 

parameters in the transfer need to be adjusted. Hence, in the following, firstly the 

optimized procedure is reported, then the most significant employed attempts and 

related characterizations to arrive at the complete procedure are presented. 

Fig. 3.7 displays the temperature profile of the process cycle for GR growth 

on Cu by CVD, performed using an AIXTRON Black Magic Pro system at 25 

mbar. 
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Fig. 3.6: process cycle of graphene growth on Cu displaying the temperature profile. The 

curves are referred to the set and read temperatures in the reactor: black and green lines 

report the set points on the chuck and top heater, respectively, while red and blue lines show, 

respectively, the read temperatures by the thermocouple put on the chuck and by the sensor 

placed on the top heater.   
    

Due to the thermal inertia determining a small difference between the set 

point and the actual temperature value, in Fig. 3.6 four curves are reported: black 

and green lines are referred to the set points on the chuck and top heater of the 

reactor, respectively, whereas red and blue lines show, respectively, the 

temperatures read by the thermocouple put on the chuck and by the sensor placed 

on the top heater.    

1 2 3 
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During the first 18 min, the Si wafer with Cu
5
 is brought gradually

6
 to 900 

°C in Ar and H2 atmosphere and then annealed for about 5 min in order to remove 

the native oxide (step 1 in Fig. 3.6). Subsequently, CH4 is introduced in the chamber 

for about 5 min (step 2 in Fig. 3.6) and finally the chuck is cooled down from 

900°C to 500°C (step 3 in Fig. 3.6) with a rate of 50°C/min in order to reduce stress 

in the film.  

The cooling is the most critical phase in the growth process since, during 

this step, damages can be easily generated in the film. A gradual cooling rate 

reduces stress and cracks in the film. 

The growth is followed by the critical and tricky transfer phase from the Cu 

to the target substrate, that is SiO2/Si (see Chapter 2). The optimized procedure 

herein described is a combination between the two methods discussed in the 

previous section (Par. 2.1.1) and the specific steps can be set as follows.  

1. The wafer (GR/Cu/SiO2/Si) is mildy treated for 10 min in 

Hexamethyldisiloxane (HMDS) bath to favor the PMMA adhesion. 

2. PMMA dissolved in chlorobenzene with a concentration of 46mg/ml is spin-

coated at a speed of 1500 rpm for 60 s (acceleration of 1000 rpm/s). The 

resulting PMMA thickness is approximately 2 µm. 

3. A soft baking is required to cure the PMMA: 150°C for 60 s on hotplate.  

4. After the baking process, the sandwich (PMMA/GR/Cu/SiO2/Si) is cut into 

pieces of about 1cm
2
. The samples area need to be a trade-off between two 

requirements: the etching time of the catalyst (discussed below) and the way 

to handle the samples.  

5. Sticky gel-pak elastic sheet (GP) is placed on the sandwich and is gently  

pressed to make sure that GP and P MMA have a good contact. 

6. The GP/PMMA/GR/Cu/SiO2/Si samples are put into a FeCl3+H2O solution 

at 8% using a Teflon colander. When the Cu foil is etched away from the Si 

substrate, the Si piece falls down in the colander while the GP/PMMA/GR 

stack floats on the solution. The duration time of this step strictly depends 

on the sample size and the dilution of the etching solution.     

                                                 
5
 A thin film of Cu (500 nm) is deposited through magnetron sputtering at room temperature with 

pure Cu (99.995%) target on Si (100) wafers coated with 100 nm thermal oxide.  
6
 Some attempts of growth have been performed at T=925°C, however being this point quite closer 

to the Cu melting point (1085°C) pinholes have been observed onto the films.   
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7. The GP/PMMA/GR stack is then gently cleaned with water, in order to 

remove the residues of the etching solution, and kept in air for almost 2 

hours with the GR face up, in order to dry the stamp before transferring on 

the target substrate.    

8. The dried GP/PMMA/GR stack is placed on a wafer (SiO2/Si) with the GR 

layer facing down. This whole system is baked on a hotplate set at 160°C for 

10 min with gentle pressure on GP. 

9. Operating on the hotplate, the GP sheet is slowly peeled off and the 

PMMA/GR film keeps attached to the target substrate.  

10. The colander with PMMA/GR/ SiO2/Si sample is rinsed, firstly, in NMP for 

8 min at 70°C to remove PMMA, then in IPA for 3 min and finally in water.   

The step by step optimization of this recipe has been driven basically by 

three requirements: 1. the preservation of the GR film integrity and cleanness; 2. the 

achievement of the largest possible flakes dimension; 3. the completion of the 

overall process in the shortest time possible.  

With the above-mentioned points in mind, the following flow chart resumes 

some parameters and attempts performed for the recipe optimization, especially for 

what concerns the point 1.    
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Fig. 3.7: parameters taken into account for the recipe optimization. The lighter rectangles 

indicate the final choice. 
 

As carrier film, PMMA is the polymer allowing to reduce the GR cracks and 

to obtain the larger and cleaner flakes with respect to the other polymers. However, 

PMMA residues are confirmed to be not easily removable at the end of the process 

[95], that is why several solvents and combinations have been tested. Noteworthy, 

impurities and defects can be introduced during the transfer process, resulting in a 

rise of improper peaks in the Raman spectrum, as it will showed later. Therefore, in 

order to exactly address the nature of peaks and bands, it is essential to reduce the 

presence of unknown prominences.         

As far as the latter requirement is concerned, for instance, in Fig. 3.8 the 

employed attempts for the Cu etching time as function of FeCl3+H2O solution are 

reported.    
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Fig. 3.8: Cu etching time as function of FeCl3 dilution for GR samples with area approximately 

1 cm
2
. 

 

The fitting curve (red line) in Fig. 3.8 not only shows a fairly match with the 

experimental data but also provides a calibration plot for further attempts.  
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3.4   Characterization of CVD graphene  

 

In Fig. 3.9, the Raman spectra of CVD grown GR are presented. In order to 

be sure of the GR growth, the lower four spectra have been taken directly on the 

catalyst substrate (Cu) in the same set up conditions previously described; the upper 

four spectra have been captured on the target substrate. As a matter of fact, both 

groups come from the average on five values collected in different points of the film 

on Cu and SiO2/Si, respectively. All spectra are normalized to the 2D band intensity   
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Fig. 3.9: typical Raman profiles for CVD grown GR captured on the copper (first four spectra 

at the bottom) and on the target substrate (other spectra), respectively. 
 

With respect to the spectra captured on the SiO2/Si, the first group of spectra 

present a higher noise due to resonances of the Cu activated by the laser. However, 

apart this difference the typical profiles of CVD grown GR can be easily recognized 

on both substrates. To this regard, a deep investigation is presented in the following. 

For instance, in Fig. 3.10, the spectrum of graphite (black line), CVD grown 

GR (red line) and ME GR
7
 (green line) are reported, being the latter two films 

deposited on SiO2/Si. Also for this group, all spectra are normalized to the 2D band 

intensity. In the inset, a picture of CVD grown GR film taken under the optical 

microscope is showed.   

 

 

                                                 
7
 These flakes as well the production technique were presented and discussed in my master thesis 

[37]. 

GR on Cu 

GR on SiO2/Si 
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Fig. 3.10: Raman spectra for CVD grown GR (red line) and in ME GR (green line); as 

comparison, the black line shows the graphite spectrum. The intensities are normalized to the 

2D band. Inset: optical image of CVD grown GR film on SiO2/Si. 
 

Aclear evolution can be observed in the passage from graphite to GR. 

Firstly, there is the inversion of the relative ratio between I(G) and I(2D); then the 

two components of the graphite 2D band presented in the previous paragraph 

become only one peak, that can be fitted with a single sharp Lorentzian (see Fig. 

3.11) [76].  

Also the comparison between ME and CVD is remarkable interesting. The 

two profiles, both referred to SLG, are perfectly comparable, suggesting that the 

material quality of ME GR has been finally achieved, as it has been stated in Fig. 

2.2. The only handicap with respect to ME is the laboriousness affecting the CVD 

recipe, as described in the previous paragraph. However, this is the only ticket to 

pay on the road of the large scale production.    

By focusing on the 2D band, in Fig. 3.11 an explosion of the spectra peaks 

reported in Fig. 3.10 is exhibited.  

(50X, N.A.=0.8) 

 
200 µm 
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Fig. 3.11: Zoom on the 2D band of graphite (lower spectrum), CVD GR (middle spectrum) and 

ME GR (upper spectrum). All spectra are normalized to the 2D intensity. The deconvolution 

and the fit of the 2D band are reported as green line, whereas the black line reports the profiles 

and the red one in the lower spectrum is the sum of the two components.  
 

The Lorentzian curves (green lines) fitting the 2D peaks of CVD and ME 

GR have FWHM roughly 34 cm
-1

 and 26 cm
-1

, respectively. If compared with the 

value usually reported in the literature for SLG (~25 cm
-1

) [76], this firstly means 

that the exact way to produce SLG has been definitively found. In addition, the 

outstanding findings further allow to demonstrate the equivalence between CVD 

and ME technique.  

As regards the D peak usually rising at ~1350 cm
-1

, the Raman spectra  

herein presented are almost totally D-peak free.   

The lack of D peak in such prepared CVD GR allows to put a significant 

contribution in understanding the defects issue for LPE GR, as discussed later.   

Fig. 3.12 shows two AFM images of CVD GR transferred on SiO2/Si 

substrate. Due to the homogeneity of the GR film that has been demonstrated by the 

Raman characterization, the images can be considered representative of the whole 

sample. The same operating set up conditions described for LPE GR 

characterization have been adopted.    
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Fig. 3.12: AFM images of CVD GR depositated on SiO2/Si. Flat and smoth flakes with lateral 

size in the range of few ten micrometers are visible.  
 

The images exhibit extremely flat and smooth flakes with mean lateral size 

approximately 10-20 µm. Maximum size up to few millimeters can be sometimes 

achieved (e.g. see the optical image in Fig. 3.10). On the other hand, in Fig. 3.12 

wrinkles appear on the films, likely due to the gentle pressure applied during the 

step n. 8 of the transfer procedure (Par. 3.3). A further improvement of this step will 

pave the route to produce larger and much more continuous films. However, the 

achieved result in flake dimensions indicates that CVD flakes are several orders of 

magnitude bigger than the LPE ones. In turn, taking ideally into account the same 

area of the GR film, the edges density results to be completely incomparable 

between the materials prepared by the two techniques.         

This crucial difference definitely allows to understand the edges nature for 

LPE GR. At the same time, the edge defects can be assumed as the major players 

for the better performances of LPE GR-based chemi-resistors with respect to those 

based on CVD GR, as it will be discussed in the next Chapter.     
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3.5   Conclusions 

 

In this Chapter, GR prepared by LPE and CVD has been reported and  

widely investigated through several characterization techniques, including Raman 

spectroscopy, AFM and TEM. 

The Raman analysis has allowed to infer that LPE material is composed by 

flakes with number of layers equal or less than five. The Raman spectra has also 

provided information on the presence of some defects that TEM and AFM have 

confirmed to be due to the edges of flakes. Furthermore, TEM and DLS results have 

pointed out that the nanoplatelets have mean lateral size in the range of hundred 

nanometers and result to are arranged in a nearly continuous film. By means of 

these characterization techniques also the perfect equivalence between the two GR 

suspensions has been demonstrated. The first one, totally ideated and realized by 

ourselves, has been prepared by exfoliating graphite in a green solvent, i.e. H2O-

IPA; the second suspension has been realized using NMP as solvent.        

As regards the CVD technique, the recipe for growth of GR has been 

presented. Also all steps of the optimized transfer procedure have been described, 

mentioning all parameters taken into account for the process optimization. Raman 

Spectroscopy on CVD GR has permitted to fully characterize the material, 

demonstrating the successfully achievement of SLG growth on Cu and transfer on 

SiO2/Si. The flake sizes are in the range of few ten micrometers, as it has been 

confirmed by AFM measurements. By comparing CVD GR with ME one presented 

in my master thesis, the extremely high quality of the former one has been 

demonstrated.    

Finally, by cross-checking the obtained results for LPE and CVD GR, the 

nature of defects has been definitively disclosed, especially for LPE GR: defects are 

not due to crystalline imperfections but only to the flake edges. This assessment 

also permits to clearly explain the different behavior of the chemi-resistors based on 

LPE and CVD GR, that will be discussed in the following.      
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CHAPTER IV 

GRAPHENE-BASED CHEMI-RESISTORS FOR NO2 

DETECTION 

 

 

This Chapter illustrates the behavior of a chemi-resistor based on LPE GR 

detecting NO2 and operating at room temperature and pressure as well as in 

presence of humidity. In the first part of the section, the questions related to the 

devices preparation by drop-casting and the differences from device-to-device 

performances are investigated. Starting from the absence or slow recovery after the 

signal output of the chemi-sensor, a new approach to overcome this bottleneck is 

introduced. This method, besides providing a solution to the recovery problem, 

allows calibrating the sensor in a large range of concentrations from 100 ppb up to 

1000 ppb, making the device particularly appealing as graphene-based sensor for 

NO2 operating in wet environment. Finally, the chemi-sensor based on CVD grown 

GR is introduced and the performances in NO2 detection are compared with those 

related to the first discussed device.          

 

 

 

    

4.1   Notes on devices preparation and experimental set up   

 

The chemi-resistor is the simplest conceivable transducer structure to be 

used as chemical sensor, since the interaction between the active medium and the 

analyte determines a resistance change. Accordingly, the current variations 

represent the output in response to the gas inlet. 

The LPE GR-based devices presented herein are prevalently prepared by 

drop casting, a simple technique that does not require laborious equipment. In our 

case, it consists in depositing a fixed GR suspension volume onto alumina (Al2O3) 

substrate
8
 on which interdigitated gold electrodes (IDE) are printed (Fig. 4.1). The 

transducers are finally heated at 130-150°C to promote the evaporation of solvent 

residues that may persist in the deposited film. 

 

                                                 
8
 The detailed information regarding the transducer are reported in Appendix A. 
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Fig. 4.1: flow chart for the chemi-resistor preparation by drop casting of graphene suspension 

  

 

In spite of the same suspension volume is deposited on the transducers and 

although the technique is fairly easy to be used, the drop casting is affected by the 

lack of uniformity since the drops can spread randomly onto the transducers. This 

means that variations of the initial device resistance and differences from device-to-

device performances in detection could be obtained (see next paragraph). Indeed, 

two different routes have been thought to run:  

1. the development of an approach able to correlate the analyte 

concentrations with the conductance variations of the device, independently of its 

original properties, as deeply discussed later;  

2. a different deposition technique, such as the ink-jet printing, has been 

starting to investigate since it can provide a better control on the dispersion 

homogeneity  [96].      

Generally, to have first indications and evaluate the device performances in 

sensing measurement, a standard protocol is adopted, which basically consists of 

three steps (refer to Fig. 4.2): 

• a baseline in which only a carrier gas is flowed, typically synthetic 

air or nitrogen. This step serves both to stabilize the device in the environment in 

which it is enclosed and to determine the starting point of the sensor response at the 

gas inlet; 

• a time window during which the analyte in an appropriate 

concentration is flowed; 

• a final step, namely the recovery, in which only carrier gas is again 

present and it is needed to restore the device at the initial conditions. 
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Fig. 4.2: sketch of standard protocol for sensing measurement representing the three steps as 

function of time: 1. the baseline; 2. the gas exposure; 3. the recovery. The y-axis is 

dimensionless since the physical quantity to be monitored depends on the transduction 

mechanism. 
   

The described protocol, besides being the simplest test performed on gas 

sensitive devices, is aimed to simulate a real event that can happen in common life 

and represents the ideal sensor behavior when it is exposed to a gas flow
9
. 

In Fig. 4.2, the y-axis is dimensionless since the physical quantity recorded 

as function of time towards the gas exposure depends on the transduction 

mechanism. Because in this section the analyzed sensors are chemi-resistors, the 

output is the current or, equivalently, the conductance. 

Hence, the experimental set up for sensing measurement is a system (Gas 

Sensor Characterization System, GSCS) equipped to perform volt-amperometric 

measurements on chemi-resistive devices. Owing to deal with sensors operating in 

environmental conditions, the most important requirement of ENEA GSCS
10

 is the 

exact reproduction of these conditions in terms of room temperature and pressure as 

well as relative humidity (RH)
11

.  

 

  

                                                 
9
 The described protocol can be generally applied to all sensors put through an external perturbation. 

In this case, the baseline and the recovery represent the status of the device immediately before and 

soon after the perturbation, respectively.  
10

 The equipment detailed description is reported in Appendix B. 
11

 The relative humidity (RH) is defined as the ratio between the amount of water vapor contained in 

the air mass and the maximum amount of water vapor that the air mass can contain in the same 

conditions of temperature and pressure (saturation). That is why RH is expressed as percentage. 
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Recovery 
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4.1.1 Differences from device-to-device performances 

 

In Fig. 4.3, two examples of GR-based chemi-resistor
12

 behavior upon the 

previously described protocol are showed.  
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Fig. 4.3: two examples of GR-based chemi-resistor dynamic response towards 350 ppb of NO2. 

The dashed blue area represents the exposure window towards the target gas.   
 

In particular, the employed test, called Test1, is set as follows:  

• 20 minutes in N2 as carrier gas;  

                                                 
12

 After drop-casting GR suspension on IDE, a volt-amperometric characterization is performed for 

each prepared device in order to verify the effectiveness of the contacts realization and the ohmic 

nature of the GR/Au junction. 
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• 10 minutes exposure to 350 ppb of NO2;  

• 20 minutes of flushing with N2.     

RH and temperature are set at constant values of 50% and 22°C, 

respectively.  

Although Fig. 4.3 shows behaviors quite different from that reported in Fig. 

4.2, the efforts are addressed to make sensors as much similar as possible to the 

ideal one. On the other hand, these two preliminary tests allow to highlight some 

fundamental features: 

1. the GR-based chemi-resistor exhibits a current increase during the 

exposure time. Because NO2 is a well known oxidizer, the observed increase in the 

current is therefore naturally expected as a result of molecule interaction with a p-

type material if, during the interaction, an electron can be partially transferred from 

the GR to the analyte. The p-type main carrier behavior has been confirmed by 

Seebeck effect evaluation [4,  37, 71].  

2. a remarkable signal variation towards only 350 ppb of NO2 can be 

observed. In other words, we obtain signs that chemi-resistors based on LPE GR 

and operating at RT can be able to detect such low analyte concentration so that 

they could represent the ideal candidate to be adopted in real atmosphere;   

3. the signal does not present saturation during the exposure. The main 

reason for this behavior is that the GR film is composed by a patchwork of sub-

micrometer flakes that provides an extremely high number of sites available to the 

interaction with the analyte. In addition, also the presence of boundary like defects 

is notably huge, offering further reactive sites to the interaction with the molecules 

and contributing to hardly reach the complete occupation of all sites and, in turn, the 

signal saturation;    

4. expanding the output around the instant in which gas enters into the 

chamber, e.g. 20 minutes from the test start, it could be observed an immediate 

increase of the current signal, testifying the extremely high response readiness of 

the device towards toxic gas. 

5. after the exposure to the target gas, either way the signal is not able 

to return at the value assumed at the gas inlet. This point will be better discussed in 

paragraph 4.1.2. 

Fig. 4.3 allows also to outline the item related to GR chemi-resistor 

performances and reproducibility that seem to be strongly dependent on device 
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fabrication, including film deposition. In our previous work, in fact, we have proved 

that, even though GR materials come from the same batch and the same fabrication 

protocol, as happens for devices considered for measurements in Fig. 4.3, the results 

can vary from one to another (Table 4.1) [8]. The device parameters taken into 

account in Table 4.1, i.e. resistance, conductance variation and SNR, are defined as 

follows: 

- resistance is the value measured soon after the device preparation; 

- the conductance variation was calculated as ΔG/G0, where G0 represents 

the conductance value soon before the introduction of the analyte, 

referring to the test measurement shown in Fig. 4.3; 

- SNR was evaluated as SNR=Gmax/Anoise, where Gmax represents the 

maximum conductance value during the exposure time and is the 

maximum amplitude of the noise oscillation before the analyte inlet [89]. 

 

Name Resistance (k) Solvent Centrifugation speed 

(rpm) 

Centrifugation 

time (min) 

Conductance 

variation (%) 

SNR 

       

DEVICE 1 50000 NMP 500 45 1,3 42 

DEVICE 2 180 NMP 500 45 0,9 199 

DEVICE 3 460 NMP 500 45 7,7 42 

DEVICE 4 5,14 NMP 500 90 5,6 1656 

DEVICE 5 73,7 NMP 500 90 1,9 134 

DEVICE 6 8,5  NMP 2500 90 0,6 1646 

DEVICE 7 4,2 NMP 2500 90 1,2 128 

DEVICE 8 44,6 NMP 13000 90 2,2 1150 

DEVICE 9 4,14 NMP 13000 90 4,1 1012 

DEVICE 10 173 DMF 13000 10 3 197 

DEVICE 11 400 DMF 13000 10 11,7 226 

DEVICE 12 16,6 DMF 13000 10 3,2 510 

 
Table 4.1: recipes utilized for the material preparation and results obtained by applying Test1 

to several chemi-resistors towards 350 ppb of NO2. 
 

For example, looking at the first three or the last three devices, in principle 

they are thought to be equivalent, having GR materials coming from the same batch 

and being the devices fabricated with identical procedure, but the respective values 

in the first column or in the last two ones testify remarkable differences in their 

performances. These can be explained by considering the lack of homogeneity in 

the dispersion deposition by drop casting: the different contact between GR and 

IDE can affect both the resistance value and the presence of different paths for the 
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charge carriers. As a result, the signal or noise can improve or become worse and 

different SNR values are determined [8]. 

As such, these findings, jointed to the difficulty to reach a complete recovery 

for sensors operating at RT (see Chapter 1 and next paragraph), aim to uncover how 

strong efforts need to be done in order to enhance the effective devices 

reproducibility.    
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4.1.2 A simple method to recover the graphene-based chemi-resistor signal 

 

By analyzing the diagrams in Fig. 4.3, the other device feature catching 

immediately eyes regards the recovery step. 

It is well known that a crucial point for solid-state gas sensor use at RT is 

the difficulty to return at the initial conditions after the sensing operation. The 

drawback arises from the interaction energy between sensitive materials and gases, 

as reported by conventional transition state theory. At RT, in fact, the energies 

involved in the adsorption phenomena are in the range of eV, so that, once 

chemisorbed, reversibility is not thermodynamically favored [97]; at high 

temperature, instead, the adsorbates desorption is better allowed, which is why 

MOX-based sensors, for example, work better in this scenario than at RT (see 

Chapter 1). Because the absence of recovery makes the device useless or, better, 

allows to use it just one time, this issue has been deeply investigated in our previous 

work [98].  

We considered two GR-based chemi-resistors, differing each other for the 

feed recipe preparation: in one case, GR suspension was prepared dispersing 

graphite flakes (Sigma-Aldrich, product N.332461) at 2.5 g/l in NMP, in the other 

case a mixture of isopropanol and n-butanol (IPA/n-BuOH) replaced NMP as 

solvent
13

. Then, in both cases the mild sonication treatment for 168h at low power 

and the centrifugation at 500 rpm were carried out [44, 98]. The chemi-resistor 

devices were fabricated by drop casting few microliters of the colloidal dispersions 

directly onto the alumina substrates and then were tested upon Test1 at three 

different steps: as soon as prepared, after about one month, during which they were 

intentionally exposed in air, and finally after applying two restoring methods, 

namely, the device annealing at 130°C in vacuum for 120 min and a newly 

developed method which encompasses the dipping of exhaust devices into ultrapure 

water at 100°C for 60 sec followed by a drying step on the hot plate at 150°C for 5 

min. The latter proposed method stems from the strong solubility of NO2 in H2O, 

this dissolution mechanism being well known in the literature [18]. 

In Fig. 4.4, the stacked curves refer to tests carried out at different times on 

devices prepared with GR exfoliated in NMP (panel a) and in IPA/n-BuOH (panel 

                                                 
13

 Two recipes have been taken into account with the aim to verify the approach effectiveness on 

material prepared according to different ways. 
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b). Because of the huge device current ranges, as previously discussed, the output 

was normalized at G0, that is the initial value during the gas inlet.    

In Fig. 4.4b, the conductance after the restoration by the annealing method is 

not reported due to the overall absence of signal in that measurement, indicating 

that all GR sensing sites could be occupied by the adsorbates so that the sensing 

layer is insensitive to additional molecules. 
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Fig. 4.4: normalized electrical conductance behaviors for chemi-resistors based on GR 

exfoliated in NMP (panel a) and in a mixture of IPA/n-BuOH solvent (panel b). The described 

Test1 was applied to devices corresponding to different initial state: as soon as prepared (black 

line), after the restoration by dipping  method (red line), after the restoration by annealing 

method (green line) and after the restoration by annealing method (blue line). In Panel b, the 

test after the annealing method is not reported because of the overall absence of signal.  



62 

 

 

The effects of the refreshing approach on the chemi-resistors can be 

straightforwardly observed in Fig. 4.4a: the conductance variation after one month 

(red line) appears almost flat, maybe due to the strong poisoning effect that 

occurred in storage period by the exposure to contaminants present in the 

atmosphere, NO2 included; after the dipping into ultrapure water (green line) the 

variation becomes about ten times higher (from 3% to 33%), resulting also more 

intense with respect to the annealing method (black line). The curves in Fig. 4.4b 

confirm once more that the developed method is able even to restore sensing layers 

fully insensitive to NO2 (red line) since the device left in air and then tested again 

did not give any signal.  

Comparing the curves in the panels (Fig. 4.4), a disagreement concerning the 

SNR values after the restoration by the annealing method is observed. In Panel a, 

the green curve shows SNR dramatically higher than that referred to response of the 

as prepared device (2200 vs 645). This does not happen in Panel b, in which the 

signal after the refresh appears noisier, namely having a lower SNR, than that 

referred to the freshly prepared device. The main explanation for this phenomenon 

is that, in the second case, the water treatment could have removed not only the 

adsorbates from GR surface but also some GR flakes from the alumina substrate, 

worsening the electrical conduction through the IDE.     

The method was applied on other two couples of chemi-resistors, prepared 

with feed solutions similar to that of the above discussed devices. The 

reproducibility of the restoration process for the developed approach is confirmed in 

all four experiments [98].           

To summarize, with respect to other more laborious techniques [98], an easy 

and original method to refresh the exhaust GR-based chemi-resistor after NO2 

exposure has been introduced. This novel approach basically derives from the 

ability of water to remove the adsorbed NO2 molecules. The method effectiveness is 

demonstrated by the fact that devices fully unreactive to the analyte, after the 

restoration, show performances not only comparable to but in some cases even 

better than those obtained when the device is freshly prepared. 
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4.2    A new approach for the sensor response 

 

In most of the common applications, the operating mode for gas sensors  

requires cyclical exposures to toxic gases. Consequently, equivalent events are 

obviously expected to return the same output. A way to face up the device 

reproducibility, has been explored using a GR-based chemi-resistor (inset in Fig. 

4.5) with material exfoliated in NMP [4].   

To this aim, an appropriate protocol, named Test2, has been written out. It 

represents an up-grade of Test1 and consists in repeating cyclically for three times 

the steps involved in Test1: baseline (20 min), exposure towards 350 ppb of NO2 

(10 min) and recovery (10 min). In Fig. 4.5, the conductance dynamic response is 

shown.  
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Fig. 4.5: conductance dynamic behavior of GR-based chemi-resistor as response upon protocol 

named Test2. It consists of three sequential repetitions of Test1 towards 350 ppb of NO2 

(dashed blue areas). Each single exposure to the target gas is characterized by a worsening of 

the conductance variation, passing from 8% in the first run to 3.3% in the last one, and a 

partial, slow recovery to the initial conditions. Inset: picture of tested GR-based chemi-resistor.      
 

Focusing on the single response towards the target gas exposure, the 

conductance trend seems to be exactly comparable with those reported in the 

previous paragraphs. Also in this case a slow and incomplete recovery is observed. 

The device recovery, even in absence of NO2, suggests that the conductance 

variation is mainly related to the monotonous time-increasing of the number of 
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interacting molecules, continuously extracting a negative charge from the active 

film and resulting, in turn, in the observed time-dependant conductance 

improvement. Since in fact:  

  
 

 
 

  and   

            

where q is the electron charge, A the interacting surface of the device, V the 

applied bias and n(t) the reactive carrier density for surface and time unit that 

changes as function of the analyte concentration, the conductance is given by 

G(t)=Aqn(t)/V.   

 

     
      

 
 

 

Now, being                  
 

 
, with n0 the initial carrier density and 

C(t) the analyte concentration, the signal could then be governed by the following 

equation
14

:  

                      
 

 
       (1) 

                                                                          

where G0 is the unperturbed conductance, Cs(t) is the surface analyte 

concentration in the time window and α is a dimensional constant that takes into 

account the electron charge, the applied bias and the surface reaction rate constant. 

Here in eq. (1) it can be assumed, for the sake of simplicity, that during the 

interaction a single, unitary negative charge, is exchanged between film and analyte.  

In addition, examining the entire measurement, a worsening of the 

conductance variation, calculated as usual ΔG/G0, is obtained, passing from 8% in 

the first exposure window to 3.3% in the third one. This phenomenon can find a 

possible explanation considering that GR sites likely remain partly occupied by the 

NO2 molecules after each recovery step so that less sites could be available to 

subsequent sensing measurement. As a result, at fixed gas concentration, the 

response reduces progressively.  

                                                 
14

 This kind of equation is typically adopted to describe the so called integrating sensors that are 

characterized by the accumulation of the quantity determining the output.   
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With these points in mind, we were spurred to seek for a different operating 

way for our GR-based chemi-resistor. To do this, a new protocol (Test3) was 

defined (Fig. 4.6). Differently from the protocols introduced so far, it consists of 

NO2 pulses at different concentrations, followed by short recovery steps. For all 

concentrations, except for the exposure to 50 and 10 ppb, the protocol is set as 

follows: 

• 2 minutes exposure to NO2;  

• 4 minutes flushing with carrier gas (N2) 

In the case of exposure towards inferior NO2 concentrations, the only change 

regards the time window that requires 4 minutes to achieve an appreciable 

conductance variation since this parameter has been suggested to be proportional to 

the integral of concentration in the whole exposure time (eq. 1). Also, at the test 

start, the baseline lasts 15 min in order to better stabilize the device.  
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Fig. 4.6: conductance dynamic behavior of GR-based chemi-resistor as response upon protocol 

named Test3. It consists of sequential NO2 pulses at different concentration levels (dashed blue 

areas) from 1000 ppb down to 10 ppb. Each pulse lasts 2 min apart from those at 50 ppb and 

10 ppb that last 4 min in order to achieve an appreciable conductance variation. No 

conductance change is observed at 10 ppb. Inset: picture of tested GR-based chemi-resistor.    
             

It is straightforward to observe that, for each NO2 pulse, the conductance is 

characterized by the slope change as function of concentration level: it results to be 

steeper when the device is exposed to 1 ppm and becomes flatter during the 

exposure towards 50 ppb while the concentration of 10 ppb appears to be too much 

low to be detected. Accordingly, it is immediate to move the glance from the 
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conductance (or current) to the derivative of the signal itself because the slope 

observation could return information on the gas concentration and vice versa. 

Moreover, this simple and essential observation reveals so powerful that a series of 

device drawbacks can be circumvented. First of all, the derivative analysis allows to 

compare devices fabricated starting from different batches and/or having a large 

different parameters such as initial conductance and response to the analyte, as 

already discussed (Par 4.1.1). More importantly, the lack of the signal saturation 

(see Par. 4.1), the slow and incomplete recovery for GR-based gas sensors no more 

represent a limitation, since the derivative of the conductance signal provides all the 

information needed to correlate the device response to the analyte. As a result, the 

restoration of the signal to the initial conditions is no longer strictly required.  

Looking at the eq. (1), this conjecture finds ulterior confirmation. The time 

derivative, in fact, is found to be directly proportional to the analyte concentration: 

 

    
     

  
                (2) 

  

suggesting that the first order time derivative of the device conductance is 

strictly connected only to the interacting analyte concentration and that this 

biunivocal correspondence could be advantageously exploited to correlate device 

response and analyte concentration itself (see next paragraph). 

Therefore, the introduction of this innovative approach is of particular 

relevance to successfully overcome the herein presented limitations, such as 

recovery and devices reproducibility, which are related not only to GR-based 

devices but also to all solid state sensors. Last but definitively not least, the 

advantage of using such powerful analysis method lies in the possibility to calibrate 

the GR-based gas sensor in a narrow NO2 concentration range. 
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4.3    Sensor calibration 

 

An essential requirement for sensors is to provide correlation between input 

and output, being this procedure usually defined as calibration [89]. In this way, it is 

immediate to climb up to the input, knowing the output and vice versa. 

In the case herein discussed, the derivative exploitation makes also possible 

the GR-based chemi-resistor calibration in the narrow NO2 concentration range 

from 1 ppm down to 100 ppb.       

In Fig. 4.7, the conductance dynamic behavior, previously shown in Fig. 4.6, 

is now reported overlapped to its derivative signal is. The derivative is calculated as 

the average of the incremental ratio according to the following relation 

implemented by OriginPro® software:  

 

       
 

 
  
       

       

 
       

       

  

 

where xi and yi are generic time instant and conductance value, respectively.  

0 10 20 30 40 50 60 70

360,0µ

362,0µ

364,0µ

366,0µ

368,0µ

370,0µ

372,0µ

374,0µ

 C
o

n
d

u
c

ta
n

c
e

 (
S

)

D
e

ri
v

a
ti

v
e

 C
o

n
d

u
c

ta
n

c
e

 (
S

/s
e

c
)

50 ppb

100 ppb

250 ppb

500 ppb

1000 ppb

Time (min)

-20,0n

0,0

20,0n

40,0n

60,0n

80,0n

100,0n

 

Fig. 4.7: conductance dynamic behavior of GR-based chemi-resistor as response upon protocol 

named Test3 (black line). Derivative of the conductance signal (red line). 
 

The effects of the algorithm application on the signal are well-rendered: in 

sensor devices whose reaction kinetic is speed up by a fairly high working 

temperature, the t dependence in the equation (2) is rapidly lost and G(t) rapidly 
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attains a constant value, related to the analyte concentration in the testing 

environment. On the contrary, in devices operating at RT as in our case, during the 

target gas exposure, G(t) exhibits a maximum, which corresponds to the 

achievement of analyte maximum concentration on the sensing film surface. This is 

the reason for which the time derivative of the conductance signal presents as a 

sequence of maxima, strictly correlated to the analyte concentration: indeed the 

trend between the maxima and the concentration is fairly linear, also highlighting an 

increase of one order of magnitude passing from 100 ppb to 1000 ppb upon NO2 

exposure (Fig. 4.8).  
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Fig. 4.8: maxima of conductance derivative reported in Fig. 4.7 as function of NO2 

concentration.    
 

To further validate this result, the number of NO2 pulses have been 

increased with respect to that shown in Fig. 4.8, using the same set up conditions, 

and the maxima were plotted vs the concentration in Fig. 4.9.  
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Fig. 4.9: calibration plot of graphene-based chemi-sensor towards NO2 exposure. The red 

straight line fits the points of maximum of the signal derivative collected at different NO2 

concentrations. From the calibration curve, the sensor LOD and the sensitivity can be 

estimated: the LOD value is about 50 ppb, obtained intersecting the line with the abscissa; the 

sensitivity, defined as ∂Y/∂M, where Y is the sensor output and M is the independent variable, 

corresponds to the curve slope, and is equal to 6.2·10
-9

 S/(sec·ppb). 
 

The result
15

 highlighted by Fig. 4.9 permits to further prove two 

assessments: first of all, the validity of the theoretical model concerning the 

interaction between the analyte, as described by eq. (1); then, more importantly, eq. 

(2) is definitively confirmed and effectively the first order time derivative can be bi-

univocally put in correspondence with the analyte concentration, providing a mean 

to successfully calibrate the GR-based gas sensor between 100 ppb and 1000 ppb. 

Notably, the result importance is borne out by the fact that, in eq. (1), the 

dependence from the gas concentration results not immediate, being involved in the 

integral for the whole exposure window. 

Finally, through the calibration plot, two characteristic quantities of sensors 

can be estimated: the sensitivity and the limit of detection (LOD). The sensitivity is 

generally defined as ∂Y/∂M, where Y is the sensor output and M is the independent 

variable
16

. LOD is the minimum amount of analyte that the sensor can be able to 

detect. As regards the examined sensor, in particular, the sensitivity corresponds to 

the straight line slope and is equal to 6.2•10
-9

 S/(sec•ppb) while LOD is about 50 

                                                 
15

 The error bars in Fig. 4.9 have been calculated by considering the difference between two 

subsequent points in the neighborhood of the maximum for each derivative peak. Regarding the 

concentration levels, the uncertainty is determined by the NO2 bottle supplier. 
16

 Since the sensitivity can be calculated for each kind of sensor, Y and M can be whatever output 

and input variables, respectively. 
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ppb. Despite of this value derives from an extrapolation, Figs. 4.6-4.7 show that the 

signal and its derivative are fairly distinguishable from noise at 50 ppb, differently 

from what happens at lower concentration level.    

 To the best of our knowledge, in the literature there are no GR-based 

sensors operating in environmental conditions able to achieve the detection of NO2 

in the sub-ppm range [4, 10, 24], except for the work of Chen et al.; in that paper, 

they report on the record gas detection of parts per trillion (ppt), nevertheless such a 

remarkable result is accomplished by operating in particular conditions, namely in 

inert atmosphere and continuously refreshing the sensor surface by pumping UV 

light in situ [25].  
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4.4   Preliminary results towards other analytes 

 

Once we have reached the essential goal to detect the concentration down to 

50 ppb of NO2 with the sensor operating in environmental conditions, we would 

like to go deeply and try to answer to the question: could this sensor be sensible to 

other analytes? To this aim, the sensor has been put again through Test1 towards 

other two different analytes, NH3 and H2 
17

(Fig. 4.10), always setting RH=50% and 

RT.        
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Fig. 4.10: normalized electrical conductance behavior of chemi-sensors towards NH3 (red line) 

and H2 (black line). The sensor seems to be almost insensitive to H2 and has an extremely small 

signal variation upon NH3 especially if compared with NO2 exposure (see Fig. 4.4). The H2 

concentration has been chosen in order to test the sensor at a level quite far from the limit of 

inflammability in air, that is around 4%.   
 

Fig. 4.10 shows that the sensor does not produce a remarkable signal 

variation during the H2 exposure (black line) and, when the gas flow is stopped, the 

sensor does not recover at all. Also the interaction with ammonia generates an 

extremely small signal variation, especially if compared with that reported in Fig. 

4.4 towards NO2. Indeed, once more again, on one side, the strong specificity of this 

GR-based gas sensor at NO2 is confirmed, on the other hand the answer to the 

starting question seems to have a negative answer.  

                                                 
17

 For realistic applications of the device under test, the level of H2 concentration has been set at 1%, 

since the H2 limit of inflammability in air is approximately 4% [Assembly of thermally reduced 

graphene oxide nanostructures by alternating current dielectrophoresis as hydrogen-gas sensors]. 
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In the literature, instead, several works have theoretically proved that 

different types of GR functionalizations could help to solve this problem [1, 10, 99] 

and GR-metal nanoparticles (GR/MNPs) hybrids seem to be very interesting 

candidates [99-101]. 

In Fig. 4.11, the first preliminary results of GR-based sensors functionalized 

with Pd and Ag nanoparticles are reported. In Panel (a), the comparison between   

conductance variation of GR-PdNPs based chemi-resistor towards the three analytes 

is shown, while in Panel (b) the same comparison is carried out for device based on 

GR functionalized with Ag NPs.  
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Fig. 4.11: normalized electrical conductance behavior of the chemi-sensor based on GR 

functionalized with (a) Pd and (b) Ag nanoparticles towards H2 (black line), NO2 (red line) and 

NH3 (green line). GR-PdNPs and GR-AgNPs are strongly specific to H2 and NH3, respectively,  

while the conductance variation towards the other two analytes are much less pronounced.   
 

With respect to the pristine GR (Fig. 4.10), GR-PdNPs and GR-AgNPs, 

exhibit a greater specificity towards H2 and NH3, respectively. The results reveal 

particularly promising and encouraging because, apart from the specificity 

modulation towards other analytes, the functionalization procedure has been 

successfully employed for the first time on LPE GR; in the literature, instead, most 

of the research groups have recourse to rGO and GR grown by CVD or by SiC 

thermal decomposition [100, 102-103]. Therefore, these results could pave the way 

to investigate the functionalization with other MNPs in order to detect other 

dangerous molecules [1].   
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4.5   Chemi-resistor based on CVD grown graphene  

 

The achievement of the aforementioned outstanding findings has spurred me 

to better understand their origin in order to further improve the performances. Thus, 

exploiting the assessments concerning the material characterization (see Chapter 3), 

the comparison between LPE GR-based sensor and a chemi-resistor based on CVD 

GR has been employed. This part of experimental activity has been conducted at the 

Electronic Components, Technology and Materials Laboratory of the Delft Institute 

of Microsystems and Nanoelectronics. 

The device has been realized by transferring CVD grown GR on IDE 

prepared by lithography (Fig. 4.12). The gold fingers are spaced of about 3 µm so 

that the GR flakes, that are almost 10 µm in size, surely close the contacts. The 

transfer procedure from the Cu substrate to the bare structure has been detailed in 

Paragraph 3.3.  

   

 

 

 

Fig. 4.12: gold interdigited electrodes showing the bare structure for the resistor based on 

CVD grown GR.  
 

After the GR film deposition, a volt-amperometric characterization is 

performed (Fig. 4.13) in order to verify the effectiveness of the contacts realization 

as well as their ohmicity.  
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Fig. 4.13: I-V plot for resistor based on CVD grown GR. From the curve fit a resistance value 

equal to 262 Ω is determined. 
 

By fitting the data, a resistance equal to 262 Ω can be extrapolated, 

indicating a quite good adhesion between GR flakes and fingers, whereas the 

symmetric behavior of the volt-amperometric characteristic testifies the ohmic 

nature of the GR/Au junction. Also, the strong conductivity of the material further 

proves the presence of SLG on the fingers (see Table 2.1). 

Such prepared device has undergone Test1 such as in Fig. 4.3, with the 

equipment operating in the same environmental conditions previously described.  
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Fig. 4.14: dynamic response of a chemi-resistor based on CVD grown GR towards 480 ppb of 

NO2. A conductance variation, ΔG/G0, is calculated as equal to 0.85%.   
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Analyzing the graph depicted in Fig. 4.14, analogies and differences with 

respect to the other sensor can be noticed. An appreciable current variation (0.85%) 

has been recorded upon NO2 exposure to 480 ppb. The LPE GR-based sensor, 

instead, was able to achieve values up to 33% towards 350 ppb. In addition, the 

high conductivity and, in turn, the current in the range of few mA depends on the 

different morphology of the CVD GR with respect to LPE one. The perfect planar 

structure of the graphene grown by CVD, in fact, and the absence of ripples on the 

flakes surface make easier the current flow than in the more complex morphology 

of the LPE deposited material. These differences are also borne out by the slower 

kinetics during the exposure window if compared to that reported in Fig. 4.4, for 

instance.      

The investigations on the material presented in the previous Chapter lead to 

address these phenomena to the GR flakes composition and to the film arrangement. 

Here, the goal is to find further proofs for this thesis. 

The analogy with the LPE graphene based device lies instead in the direction 

of the response variation to NO2, since also in this case an increase of the 

conductance is observed, indication of the occurrence of a p-type doping also for 

the material produced by means of CVD. Furthermore, despite of the slightly tilted 

baseline, also this device shows a partial and slow recovery.  

As far as the device is concerned, the first purpose is to evaluate the 

performances reproducibility. To this aim, Test2 has been accomplished on the 

device, by repetitively exposing the device towards the same analyte concentration, 

in this case 480ppb of NO2.  
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Fig. 4.15: current dynamic behavior of CVD GR-based chemi-resistor as response upon 

protocol consisting of five sequential exposure towards 480 ppb of NO2 (dashed blue areas). 

Except the first step (ΔG/G0=0.8%), equal variations of the current are observed in the 

following steps (ΔG/G0=0.4%). The disagreement is likely due to the adaption of the device to 

the test chamber conditions.  
 

In Fig. 4.15, except the first step, in which a conductance variation equal to 

0.8% is calculated, the other data are comparable, being 0.5% in the second step and 

0.4% in the last three ones. The reason for the difference between the first and the 

other steps can be likely explained by considering the delay for the device adaption 

to the test chamber conditions. Therefore, the device performances towards NO2 

detection can be assumed quite reproducible.    

 Once this crucial point has been certified, the test for the device calibration 

has been performed. This protocol (Test4), similar to Test3, consists of NO2 

exposures at different concentrations, followed by recovery steps. In particular, the 

protocol is set as follows: 

• 2 minutes exposure to NO2;  

• 20 minutes flushing with carrier gas (N2) 

Due to the slight current variation recorded in the previous tests, a wider 

range of concentrations, from 2400 ppb down to 240 ppb, has been taken into 

account compared with that in Test3 (Fig. 4.6). The measurement has been repeated 

two times (black and red lines in Fig. 4.16) in order to prove the performance 

reproducibility also for this test.  
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Fig. 4.16: current dynamic behavior of CVD GR-based chemi-resistor as response upon 

protocol named Test4. It consists of sequential NO2 pulses at different concentration levels 

(dashed blue areas) ranging from 2400 ppb down to 240 ppb. Each exposure step was 2 min 

long, preceded and followed by 20 min long baseline and recovery phases, respectively, in inert 

atmosphere. 
 

The dynamic behaviors in Fig. 4.16 clearly exhibit repeatable measurements, 

as showed by the inset in Fig. 4.17 where the current variations for cycles in Fig. 

4.16 are reported. The experimental data are fairly overlapped.     

By plotting the conductance variation as function of the concentration, a 

linear relationship is observed (Fig. 4.17). To a first analysis this behavior could 

appear inconsistent with the model discussed in section 4.2 to explain the linearity 

between the time derivative of conductance and analyte concentration. 

Nevertheless, noting that in the case of CVD GR-based sensor the exposure to about 

the same concentration of analyte produces a variation of conductivity of over one 

order of magnitude lower than that of LPE GR-based chemi-resistor, this suggests 

that the conductance signal variation can be approximated to the first derivative, 

thus justifying the linearity with the analyte concentration. In this case, the sensor 

calibration can be properly carried out by correlating the variation of conductance to 

the NO2 concentration.  
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Fig. 4.17: calibration plot of CVD graphene-based chemi-sensor towards NO2 exposure. The 

sensitivity is estimated as 0.6%/ppm whereas the LOD is roughly 600 ppb. Inset: current 

variations for cycles in Fig. 4.16 showing agreement between the two data set. 

 

Fig. 4.17, allowing the calculation of sensitivity and LOD, definitively fills 

the frame of the comparison between the two types of chemi-resistors and, in 

general, between the LPE and CVD GR. The sensitivity is determined to be 

0.6%/ppm whereas the LOD
18

 is approximately 600 ppb that is roughly 10 times 

higher than the value extrapolated for LPE GR-based chemi-sensor.  

This result, jointed to findings regarding Fig. 4.14 and to materials 

characterizations, notably proves that the flake structure plays a key role in the 

sensing properties. As such, the LPE GR-based sensor differs from the CVD GR-

based one for the material composition. In the latter case, in fact, because of the 

flake size in the micrometric range, the density of edges at fixed area of GR film is 

remarkable reduced. In turn, the surface of the flakes is predominant and is mostly  

involved in the interactions with the analyte molecules. However, both the lower 

values of current variation at comparable NO2 concentrations and the LOD here 

reported attest that the boundaries result to be much more reactive with respect to 

the flake plane. The contribution of the edges in the sensing properties could be also 

testified by the linear relationship of ΔG/G0 versus the NO2 concentration since the 

basal planar structure has surely a different behavior with molecule analytes in 

comparison with the edges.       

                                                 
18

 The LOD is calculated as LOD =3SD/m, where m is the slope of the calibration curve and SD is the 

standard deviation of noise in the presence of the only carrier gas. 
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4.6  Conclusions 

 

In this Chapter, all aspects concerning the chemi-sensors prepared with LPE 

GR interacting with NO2 and operating in environmental conditions (i.e. RT, 

pressure and in presence RH) have been investigated.  

The sensor has been firstly demonstrated to be stable in these conditions, 

then to be able to achieve a signal variation up to 33% in the single sensing 

measurement towards 350 ppb of NO2, this concentration being in agreement with 

the limits imposed by the European rules for NO2 (see Chapter 1).  

Also the issue related to the devices reproducibility is addressed. Because 

the drop casting deposition technique can be affected by lack of homogeneity of GR 

suspension onto the alumina substrate, some differences from device-to-device 

performance could be obtained, even if the feed solution comes from same batches.  

The gas sensors, similarly to all solid state sensors, suffer the absence or 

slow return to the initial conditions after the signal output. Various routes have been 

run in order to circumvent this drawback. Firstly, an easy and original method to 

refresh the exhaust GR-based chemi-sensors has been introduced, simply exploiting 

the strong solubility of NO2 in water. The approach, consisting in dipping the 

device into hot water, reveals so effective that devices fully insensitive to NO2 due 

to intentional poisoning effects return to the initial conditions, leading to 

performances even better than those obtained when the devices were soon prepared.  

Then, a more powerful solution has been presented. Instead of analyzing the 

sensor output as response to the gas exposure, the signal derivative has been taken 

into account. This has allowed to successfully overcome the limitations already 

discussed. Regarding the devices reproducibility, the derivative analysis allows to 

compare devices based on materials coming from different batches and/or having a 

huge range of different parameters. As concerns the absence and the slow recovery, 

the method permits to avoid the return at the initial conditions since only the output 

derivative can be exploited. Finally, the methodology seems particularly attractive 

since it provides a mean to strictly correlate the conductance derivative to the 

analyte concentration in the extremely narrow concentration range from 1000 ppb 

down to 100 ppb, making this device one of the first calibrated GR-based chemi-

sensor for NO2 presented in the literature able to work in environmental conditions.  
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The sensor has been made sensitive to other analytes, H2 and NH3, 

functionalizing for the first time in the literature LPE GR with Pd and Ag 

nanoparticles. The results appear particularly promising since pristine GR was 

almost fully insensitive to the same analytes.    

Finally, the chemi-resistor based on CVD grown GR has been introduced. 

The volt-amperometric characterization has showed the success in the device 

preparation by transferring on IDE CVD grown GR. Through the comparison of the 

sensors performance in NO2 detection, the role of the material defects, particularly 

edges defects, have been addressed. In fact, for the sensor based on LPE GR, having 

a much higher density of defects edge, LOD equal to 50 ppb has been determined. 

CVD GR-based sensor, instead, has exhibited LOD of approximately 600 ppb since 

the GR film basically consists of larger flakes and especially the surface is involved 

in the adsorption phenomenon rather than boundaries.   
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APPENDICES 

 

 

A.   Alumina transducer details 

 

In this section, the information regarding the alumina transducer used as 

substrate for the chemi-sensors (see Chapter 4) are reported.   

The sketch is depicted in Figure A1. 

 

 

Fig. A1: Sketch of transducer used as substrate for chemi-sensor 
  

All the finger dimensions have been designed by ourselves and customized 

by 3M taking into account our need and the structure of the Gas Sensor 

Characterization System (see Appendix B). The GR film covers the Au interdigited 

electrodes (IDE) for an area of about 49 mm
2
.  

Because the devices have been used as chemi-resistors, volt-amperometric 

measurements have been performed by applying the two probes on the larger pads 

of the transducer. The probes have a diameter of about 500 µm [3]. 
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B.  Gas Sensor Characterization System 

 

The Gas Sensor Characterization System (GSCS) employed in the ENEA-

MDB lab has been designed by ENEA researchers and customized by Kenosistec.  

 

 

 

 

Fig. B1: Pictures of Gas Sensor Characterization System and corresponding circuital scheme.  
 

The sensor device is located in a stainless steel test chamber (see Fig. B1) 

placed in a thermostatic box. The chamber is provided of an electrical grounded 

connector for bias and conductance measure as shown on the right in Fig. B1.  

A constant flow (500sccm) of the gas carrier, i.e. N2 crosses the test 

chamber. The carrier can be properly humidified through a water bubbler placed in 

a thermostatic bath. In this environment, characterized by controlled temperature 

and humidity, the conductance value of the device in its equilibrium state is firstly 

measured and this step represents the so called baseline; after that, an intentional 
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disruption of the equilibrium state is produced by introducing the analyte gas in a 

controlled amount and by mixing it with the carrier gas via pneumatic valves and 

through programmable Mass Flow Controllers. Because the concentrations needed 

to be detected are in the range of hundred  ppb, this poses a fundamental issue in 

reproducing as much as possible these conditions in lab. In addition, the 

reproducibility of these levels of concentration in the lab equipment appears no 

immediate since the pipes and the core of test chamber is made of electro-polished 

stainless steel. This means that the NO2 molecules can spread over and adhere also 

to the chamber walls, reducing the effective analyte concentration interacting with 

the sensor. In order to minimize the effects of these limitations, within 30 minutes 

before the measurements, the maximum available concentration of NO2 is fluxed 

into the chamber for 15 minutes through a protocol controlled via software. In order 

to check the degree of agreement between the gas concentrations set in the 

protocols and those present into the chamber, tests have been performed through an 

FTIR (THERMO ANTARIS IGSS) equipped with a cryogenic detector and a cell 

having an optical path equal to 10 m. All these operations guarantee the 

reproducibility of the condition of the test chamber. Hardware and software 

implemented on a work station allow to control and record environmental 

parameters, device bias and output signal, making possible to perform customizable 

automated tests on devices (Protocols). 
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C.  Abbreviations and acronyms 

 

Here below a list of the mostly used abbreviations and acronyms in the text 

is reported. 

 

AB Anodic Bonding 

AFM Atomic Force Microscopy  

AQG Air Quality Guidelines  

CNTs Carbon nanotubes  

CNP Charge Neutrality Point  

CVD Chemical Vapor Deposition  

DLS Dynamic Light Scattering  

DMF Dimethylformamide  

EPA Environmental Protection Ambient 

EU European Union 

FLG Few-Layer Graphene 

h-BN hexagonal Boron Nitride   

FWHM Full Width at Half Maximum  

GO Graphite Oxide  

GP Gel-pak elastic sheet 

GR Graphene 

GR/AgNPs Graphene-silver nanoparticles 

GR/PdNPs Graphene-palladium nanoparticles 

GR/MNPs Graphene-metal nanoparticles 

HF Hydrofluoric acid  

HNO3 Nitric acid  

HOPG Highly-Oriented Pyrolitic Graphite 

IDE Interdigitated Electrodes  

IPA Isopropylic alcohol  

LOD Limit Of Detection  

LPE Liquid-Phase Exfoliation 

ME Micromechanical Exfoliation  

MOX Metal Oxide 

NA Numerical Aperture  



86 

 

Nd:YAG Neodymium-doped yttrium aluminum garnet  

NEMS Nano-ElectroMechanical System 

NIOSH National Institute for Occupational Safety and Health 

nLG Number of graphene layers  

NMP N-methyl-pyrrolidone  

OSHA Occupational Safety and Health Administration  

PC Polycarbonate 

PDMS Polydimethylsiloxane  

PEL Permissible Exposure Limit 

PM Particulate Matter 

PMMA Polymethylmethacrylate 

PPB Parts Per Billion  

PPM Parts Per Million  

PPT Parts Per Trillion  

rGO Reduced Graphene Oxide 

RT Room Temperature  

sccm Standard cubic centimeter  

SEM Scanning Electron Microscopy  

SiC Silicon carbide 

SiO2 Silicon Dioxide 

SLG  Single-Layer Graphene  

SNR Signal to Noise Ratio  

STEL Short-Term Exposure Limit  

TEM Transmission Electron Microscopy 

THF  Tetrahydrofuran 

3D Three-dimensional 

TMDC Transition Metal Dichalcogenide  

2D Two-dimensional  

TWA Time-Weighted Average  

UHV Ultra-High Vacuum 

VOCs Volatile Organic Compounds 

WHO World Health Organization   
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CONCLUSIONS 

 
 

The present thesis work was focused on two major items: 1. preparation and 

characterization of GR films; 2. test of the material sensing properties towards 

analytes by employing GR-based chemi-resistors as transducers.    

As regards the material synthesis, a brief survey on the growth techniques 

present in the literature and the related peculiarities were reported . In this work, the 

mostly exploited techniques for the GR production were LPE and CVD.  

The liquid phase exfoliation of graphite down to FLG and SLG was 

achieved preparing two types of suspension. The first one was realized by using a 

green solvent, i.e. a mixture of H2O and IPA, in volumetric ratios 1:5. This recipe, 

presented for the first time in the literature, was mainly developed with the purpose 

to find an eco-friendly and no-toxic solvent for the production of GR layers: the 

goal was successfully achieved by performing a study both on the solvents 

thermodynamic property and the physicochemical parameters.  

The second GR suspension was prepared exfoliating graphite in NMP, 

in order to demonstrate that the hydro-alcoholic mixture provides comparable 

results to those obtained by means of this most common solvent . By means of 

DLS and Raman characterizations, the perfect equivalence between the two GR 

suspensions was demonstrated, in terms of yield and mean flakes lateral size, 

that is in the range of few hundred nanometers, similarly to values reported in 

the literature. The flake dimensions were confirmed through TEM and AFM 

characterizations. The Raman analysis also allowed to infer that LPE material is 

composed by flakes with number of layers equal or less than five. In addition, 

Raman spectra information on the presence of some defects that TEM and AFM 

disclosed to be due to the edges of flakes.   

As far as CVD technique is concerned, the recipe for GR growth was 

presented as well as all steps of the optimized transfer procedure. To this respect, 

three requirements were basically taken into account: the preservation of the GR 

film integrity and cleanness; the achievement of flakes size as large as possible; the 

possibility to perform the overall process in the shortest time possible. For instance,  

the etching time of the growth substrate (Cu) as function of the FeCl3 dilution was 

reduced from 17-18 hours down to 9-10 hours, obtaining also the calibration curve 
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for this parameter. Raman Spectroscopy on CVD GR proved both the successful 

achievement of SLG growth on Cu and the transfer of large, clean flakes on 

SiO2/Si. The typical lateral sizes were in the range of few ten micrometers, as 

certified by AFM measurements. The comparison of CVD GR spectrum with ME 

one, that I discussed in my master thesis, showed the extremely high quality of the 

former. By cross-checking the characterization results for material synthesized by 

the two different methods, the nature of defects for LPE GR was definitively 

uncovered as due to the flake boundaries. In turn, this further confirms the lack of 

crystalline imperfections.   

The sensing properties of the GR layers synthesized according the two 

different ways were investigated by testing GR based chemi-resistors towards NO2. 

This specie was taken into account since it is associated with adverse effects on the 

human health and the air pollution. To this aim, the sensors were tested in 

environmental conditions, i.e. RT, pressure and in presence of RH, towards low 

concentration levels. In fact, a survey on the international concentration ranges to 

not exceed and on the exposure limits demonstrated that the general aim is to find 

routes and tools to make possible the detection and measurement of gases at levels 

of ppm and also lower. For instance, the LPE GR-based device was able to achieve 

a signal variation up to 33% during a single measurement towards 350 ppb of NO2, 

this concentration being in agreement with the limits imposed by the European 

rules.  

Because this gas sensor, similarly to all solid state sensors, suffers the 

absence or slow return to the initial conditions after the signal output, various routes 

were run in order to circumvent this drawback. Firstly, an easy and original method 

to refresh the exhaust GR-based chemi-sensors was introduced, simply exploiting 

the strong solubility of NO2 in water. The approach, consisting in dipping the 

device into hot water, revealed so effective that devices fully insensitive to NO2 

returned to the initial conditions. Then, a more powerful solution was presented 

consisting in the analysis of the signal derivative instead of the sensor output as 

response to the gas exposure. This allowed to successfully compare devices based 

on materials coming from different batches and/or having a huge range of different 

parameters. As concerns the absence and the slow recovery, the method permitted 

to avoid the return at the initial conditions since all the information are involved in 

the derivative. The methodology provided a mean to strictly correlate the 
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conductance derivative to the analyte concentration in the extremely narrow 

concentration range from 1000 ppb down to 100 ppb. To the best of our knowledge, 

in the literature there are no GR-based sensors operating in environmental 

conditions able to achieve the detection of NO2 in the sub-ppm range. 

The sensor was made sensitive to other analytes, such as H2 and NH3, 

functionalizing for the first time in the literature LPE GR with Pd and Ag 

nanoparticles. The preliminary results appeared particularly promising since pristine 

GR was almost fully insensitive to the same analytes. These outstanding 

performances were easily explained by considering the large density of edge defects 

that are more reactive towards analyte interaction than the flakes surface. This 

assessment was further proved by comparing the performances of LPE GR-based 

chemi-sensor with the device based on CVD grown GR. Such prepared material, 

having flakes few orders of magnitude larger in size with respect to LPE GR, offers 

more surface prone to the interaction with the analyte molecules and, in turn, the 

density of edges at fixed area of GR film is remarkable reduced. Several 

experimental data attested this result. Firstly, the second sensor showed an 

appreciable current variation equal to 0.85% upon NO2 exposure to 480 ppb while 

the first sensor reached values up to 33%. Then, CVD GR-based sensor exhibited 

LOD of approximately 600 ppb that is roughly 10 times higher than the value 

extrapolated for LPE GR-based chemi-sensor. Finally, the contribution of the edges 

could be also testified by the linear relationship of ΔG/G0 versus the NO2 

concentration, in the range from 2400 ppb down to 240 ppb, since the planar 

morphology has surely a different behavior with molecule analytes in comparison 

with the edges.   

In summary, in this work the GR flakes morphology was addressed and 

demonstrated to play a key role in the gas sensing. Through GR-based sensors, the 

NO2 detection in the sub-ppm range was achieved operating in environmental 

conditions.  
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