
FEDERICO II UNIVERSITY OF NAPLES

Ph.D. in COMPUTATIONAL BIOLOGY and BIOINFORMATICS

XXVI cycle

Mara Sangiovanni

Model Checking of Metabolic Networks:
Application to Metabolic Diseases

Ph.D. Thesis

Advisor: Coordinator:
prof. Adriano Peron prof. Sergio Cocozza



Federico II University of Naples
Department of Electrical Engineering and Information Technology
Via Claudio 21, Naples
Italy



To Adriano and Emiliano,
my here and now, my strength.

The ancient covenant is in pieces;
man knows at last that he is alone in the universe’s unfeeling immensity,

out of which he emerged only by chance.
His destiny is nowhere spelled out, nor is his duty.

The kingdom above or the darkness below: it is for him to choose.

Jacques Monod

Tu ne quaesieris, scire nefas, quem mihi, quem tibi
finem di dederint, Leuconoe, nec Babylonios

temptaris numeros. Ut melius, quidquid erit, pati,
seu plures hiemes, seu tribuit Iuppiter ultimam,

quae nunc oppositis debilitat pumicibus mare
Tyrrhenum: sapias, vina liques, et spatio brevi

spem longam reseces. Dum loquimur, fugerit invida
aetas: carpe diem, quam minimum credula postero.

Q. Horatius Flaccus
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1

Introduction

1.1 Towards an Holistic View of Biological Systems

The availability of large amounts of genome-scale omics data coming from high–
throughput sequencing technologies was the driving force behind the rise of Systems
Biology, a new paradigm that emerged in Life Sciences about fifteen years ago [1].

The need for a more complete and whole-istic [2] approach to the interpretation
of this huge and complex amount of information drove a shift of perspective: from a
traditional, reductionist approach, focused on the single biological components (such as
nucleotides, genes, proteins) the attention was moved to an holistic, dynamic view of
interacting networks of biological entities [3, 4]. The large collections of detailed omics
data produced by molecular studies are essential to build complex hierarchical models:
starting from basic elements (such as DNA, mRNA, proteins, and metabolites) several
levels of growing complexity may be considered, that range from protein interactions,
signaling pathways, and reaction networks to large-scale systems such as cells, tissues or
whole organisms [4, 5].

However, the simple organization of data into networks is not enough to gain insight
on the features of the system as a whole. As clearly outlined in the seminal paper of
Kitano [6], a system-level understanding of an organism should address i) the system
structure, i.e. its components and the way in which they are related, and ii) the system
dynamics, i.e. how it behaves over time under various conditions. The reconstruction of
the behaviour in time and in space of the whole system is central in Systems Biology,
and is an essential step to unravel the relationships intercurring between the genotype
and the phenotype of organisms [7].

To this aim, the biological information should be necessarily complemented by math-
ematical and/or computational models, either manually or automatically built: these
models may be executed or simulated to reveal the adequacy of the biological assump-
tions and hypotheses on which they were based, in case leading to a refinement of the
model and to new biological experiments. This hypothesis-driven research approach, and
the cyclic process of information integration and in silico model building, is typical of
the Systems Biology paradigm [4,6].

1.2 Executable models for Systems Biology

Networks of interacting elements are crucial in Systems Biology, since they permit both
an immediate representation of the elements forming the biological system, both an
intuitively modeling of their interactions. However, the bare reconstruction of a network
and the analysis of its topological features are not enough to understand the whole
system behaviour. Moreover, these models are becoming increasingly large and complex,
sometimes involving information at the whole genome scale or at multiple levels of detail.
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Hence, adequate mathematical and computational tools are required for their analysis
and simulation.

Mathematical models can precisely describe quantitative relationships between vari-
ables such as metabolite concentrations, or gene expression levels. However quantitative
modeling is constrained both by the availability of biological precise data both by the
number of variables and equations that may be effectively treated.

Instead, computational models may go beyond this limitation and work also on par-
tial data, and on more complex systems. This qualitative modeling approach relies on the
goodness of the underlying abstraction, rather than on the faithfulness of the mathemati-
cal implementation. The obtained results, although not precise, may give interesting hints
on the features and behaviours of the modeled biological system. The differences between
the computational and the biological models may be used to build new hypotheses, to
refine the model, and even suggest new experiments that can help in validate or reject
the model. This methodology, called by Fisher and Henzinger executable biology [8],
is based on the close interplay between in silico simulations and biological validation of
the data.

It should be noticed that in this repeated process of model building and refining,
automated formal verification methods, such as the Model Checking, play a fundamental
role. Model Checking is a prominent methodology developed for the automatic and ex-
haustive verification of concurrent hardware and software systems. Its strength relies on
the abstract, mathematical approach that is used to address the problem of verifying if a
system is compliant with the desired specifications. Both the system and the property to
verify are translated into suitable mathematical structures, that are used to determine
if the desired property holds in all the possible model computations, i.e. to check if the
system is a model of the desired property. If not, a counterexample is generated.

Model checking techniques may be successfully applied to the analysis of biological
networks, although a shift in the perspective should be performed [9]. In fact, in the
hardware and software domains the verification process is used to ascertain that the sys-
tem built from the model will have the desired behaviour. If the verification fails, the
system is searched against errors (using the counterexamples generated by the checker)
and eventually modified. In biology, the process is the opposite: the (biological) system
already exists and is correct by default, and the model is built to verify that the hypoth-
esis made on its functioning is able to catch some features of the underlying, partially
unknown, mechanisms.

Indeed, Model Checking is a methodology that may fit very well the Systems Biology
approach [10]. This is due to several reasons: i) it enforces model abstraction. Biological
systems are usually very complicated, and abstraction is a crucial strategy to address
this complexity; ii) it is able to deal with the concept of multi-level functionality that is
fundamental in Systems Biology; iii) it offers precisely defined formal languages, with a
semantic that permits to describe both the constituent components and the way in which
they interact. The overall behaviour will emerge from the interplay of the components,
a very close view to the Systems Biology paradigm; iv) it can infer both qualitative
or quantitative properties of all possible executions of a model; v) it can give partial
information through simulations of the model, i.e. a partial exploration of the execution
set.

1.3 Motivations

Several successful applications of Model Checking techniques to biological problems have
been proposed in literature. They can be classified depending on the different granularity
that their semantics are able to capture, as proposed in Brim et al. [9]. The components
of a system are typically interpreted as variables, that can be either discrete or continuous
depending on the selected level of abstraction, the availability of data, and the model
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dimensions. The interactions are interpreted as rules that specify the dynamical changes
of the variables. The time in which these interactions take place may be modeled either
as a dense, continuous entity or may be represented as a discrete quantity. Lastly, the
execution of interactions may be stochastic, i.e. it may proceed with a certain degree
of uncertainty that reflects the assumption of a noisy environment. We will describe in
detail in chapter 4 a wide range of proposed methodologies encompassing all the possible
combinations of the above described features.

In this thesis work we present a non-stochastic, discrete-time and discrete-variables
strategy to address the qualitative analysis of metabolic network models. Our strategy
is based on the use of the Model Checker Spin to both simulate and verify models of
biochemical networks also at the genome-scale size. In particular, we designed a com-
putational workflow that permits the translation of a metabolic network model into an
executable model that can be analysed, either with an exhaustive or with an approxi-
mated strategy, using simple implicit-time properties.

The motivations underlying this choice are manifold. First of all, metabolic networks
models are very large and typically contain thousands of reactions, thus making their
analysis a challenging task. Moreover, the network parameters (such as reaction rates)
are generally known only for a small subset of them. As a result, quantitative analyses are
practically infeasible or reduced to very small models. Hence, only qualitative approaches
may permit to obtain some informations on large or incomplete network models.

Moreover, model checking approaches have been mainly focused on signaling and gene
networks, essentially because they are amenable to a binary representation that permits i)
to fit very well the semantics of those checkers expressely designed for the verification and
simulation of binary circuits, and ii) to reduce the computational burden both in terms
of memory management and in terms of processing time, allowing also the elaboration
of large models.

Metabolic networks have been studied in more depth by means of the Petri nets
formalism, that is very well suited for their representation. However, this approach suffers
of several problems, as very thoroughly described in Baldan et al. [11]. First of all,
Petri Nets analyses are computationally expensive (the problem of deciding whether a
state is part of the reachability set of a net is of intractable complexity, e.g. NP-hard
and EXPSPACE-hard), permitting only the modeling of small networks. Moreover, this
formalism has some limitations in the management of bidirectional reactions as well as
some difficulties in representing the presence of metabolites belonging to different cellular
compartments.

The methodology here proposed relies on the well-estabilished automaton-theory
model checking approach (described in chapter 3) to tackle the problem of extracting
relevant knowledge from a metabolic network model. This method has a computational
complexity linear in the size of the model and exponential in the size of the LTL for-
mula. However, we will demonstrate that several interesting biological properties may
be extracted relying on reachability properties or on very simple LTL formula, hence
preserving the linear complexity of the method. The space complexity is in principle
exponential, although this is a worst-case upper bound that is rarely met. Moreover we
choose as a tool the prominent model checker Spin [12]. Spin implements state-of-the-
art optimization techniques that permit to efficiently explore the space of computations
while limiting the issues related to the so called state-space explosion problem (i.e. the
possible exponential size of the computation space).

Furthermore, we propose an innovative technique that exploits a Flux Balance Anal-
ysis step (see chapter 2) to decide in a biologically sound manner the directions of poten-
tially bidirectional reactions. The results of this analysis may be also used to prune the
model, i.e. to reduce its size by removing zero-flux reactions (see chapter 5). Another key
property of the proposed methodology relies on the use of the swarm technique proposed
by the Spin authors to deal with the verification of large problems: instead of relying on
a single, exhaustive search, several searches with distinct strategies are run, with the aim
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to explore as many distinct subsets of the state space as possible. Using this approach
it is possible to find counterexamples also for usually intractable problems. We exploited
this technique both for verification (i.e to search a single counterexample disproving a
required property), and when using the model checker as a behaviour filter. The latter is
based on a non-standard use of the model checker to extract witnesses of the ability of
a metabolic network model to exhibit certain behaviours. This is obtained by negating
the property of interest, as thoroughly explained in chapter 5.

The system model was built considering the reactions as processes that try to access
concurrently to the shared variables, which represent concentrations of chemical com-
pounds. A reaction may take place only if all the needed metabolites are available, and
when many reactions may proceed at the same time, the possible order of their executions
is resolved by non–determinism.

As a result, we are able to extract interesting information on the metabolite concen-
trations (expressed in generic units) and on the reactions that were used to fulfill the
requested behaviour. Moreover, although using an implicit-time logic to define proper-
ties, we may easily reconstruct the dynamical information on the system evolution by
considering time as a discrete entity inferred by the sequences of transitions along the
extracted model executions.

We proved the effectiveness of this methodology by applying it on a genome-scale
model of the human hepatocyte, with the aim to gain interesting knowledge on the
mechanisms underlying a mendelian disorder called Primary Hyperoxaluria Type I.

1.4 Synopsis

This thesis is divided in two parts. The first one outlines the context in which this work
is framed, whereas in the second part the proposed methodology is discussed in great
detail, and its application to a genome-scale model of the human hepatocyte is described.

In chapter 2 the focus is on the Systems Biology paradigm. The central role of dy-
namical models of biological networks is considered, with a particular attention devoted
to the subject of this thesis, i.e. the metabolic networks. Their essential features are
described, together with their mathematical representation as a stoichiometric matrix
and a brief description of one of the most used analysis tools, namely the Flux Balance
Analysis method.

In chapter 3 the model checking approach is described, and the formal tools used for
the specification of both the model and the property it should satisfy are introduced.
More specifically, the Labeled Transition System (LTS) is defined, which is the low level
structure used to describe a model. After, two high level languages, Promela and SMV,
both having their semantics defined on a LTS, are outlined: the former permits to specify
a model by means of an imperative syntax, whereas the latter is based on a descriptive
definition of a finite-states automaton. Furthermore, two temporal logics, namely the
Linear Temporal Logic (LTL) and the Computation Tree Logic (CTL), are described,
together with their formal semantics. Then the problem of choosing a model checking
tool is addressed, and a comparison between the two prominent model checkers Spin
and NuSmv is performed. Afterwards, the choice of Spin is motivated in detail. Lastly,
the automaton-based model checking approach of LTL properties implemented in Spin
is outlined, together with some consideration on the complexity issues of this operation.

In chapter 4 a review of the existing formal verification approaches to the study
of biological networks is presented, with the aim to correctly contextualize this thesis
work. In particular, the classes of properties that may be determined with these kind of
approaches are described, since they will be used as a reference in the following chapter.

Chapter 5 opens the second part of the thesis, and may be also considered the most
important chapter since it contains several important elements of originality. In partic-
ular, the translation of the biological model into the correspondent a Promela program
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is presented: it is based on the definition of concurrent processes, representing the re-
actions, that try to concurrently access to shared resources, representing the metabolite
concentration values (in generic units). The benefits of a correct model abstraction are
also detailed. Afterwards the set of interesting biological properties that it is possible to
define, either as safety properties or as simple LTL formulae, is introduced. Furthermore,
the non conventional use of the model checker as a behaviour filter is detailed: in this
case the computation space is explored to extract witnesses, i.e. counterexamples showing
the ability of the network to exhibit a certain behaviour. Furthermore, the innovative
strategy of using a Flux Balance Analysis step to decide reaction directions is explained,
together with the possible exploitation of the obtained data to prune, i.e. to also reduce
the model in a biologically sound manner. The problem of an approximated search strat-
egy to deal with very large model is then presented, together with a discussion on the
strength and limits of such an approach. Lastly, a metalevel of control is introduced, to
both help in reducing the portion of the explored space and to permit a more fined-grain
modeling of the biological system.

Chapter 6 is focused on the technical details of the software workflow realized to
implement the proposed methodology. In particular, input and output format of the
various modules are described, with a special focus on how the metabolite concentration
and reaction usage information are extracted from the counterexamples files generated
by the model checker Spin. Furthermore, the file containing the dynamical information of
the metabolites are described: here the time, although not explicitly defined, is considered
as a discrete entity inferred by the sequences of transitions along the executions. Lastly, a
discussion on the parameter settings of the swarm tool, proposed by the Spin authors as
an approximated solution to deal with large models, is presented. More specifically, the
influence of some parameters on the quality of the behaviour filtering results is addressed.

In Chapter 7 the proposed methodology is tested on a genome scale model of the hu-
man hepatocyte, with the aim to verify its correctness and extract interesting information
on the mechanisms underlying a mendelian disorder called Primary Hyperoxaluria Type
I (PH1). This case study demonstrates the effectiveness of the the implemented workflow
on a very large model: proposed methodology allowed both the refinement of the initial
model, both the extraction of a large number of interesting qualitative information that
were consistent with the known biological evidences of the disease.

Chapter 8 closes the thesis highlighting the obtained results and the future directions
of the proposed methodology.
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2

Biological Network Models in the Light of Systems
Biology

Systems Biology is a new paradigm that emerged in Biology about fifteen years ago,
propelled by the the growing amount of data that high–throughput sequencing technolo-
gies were revealing. The need for a more complete and whole–istic [2] approach to the
interpretation of this huge and complex amount of data drove a shift of perspective: from
a traditional, reductionist approach, focused on the single biological components (such
as nucleotides, genes, proteins) the attention was moved to an holistic, dynamic view
of interacting networks of biological entities. In this new light, genome–scale Biological
Network Models play a crucial role: they are the basis for predictive, hypothesis–driven
science focused on understanding the structure and the dynamics of a system at the
whole genome level.

In the following we will give a brief overview of the Systems Biology approach, and
after we will describe different type of Biological Networks. In particular we will focus
on Metabolic Networks, since they are the subject of this thesis work.

2.1 The Systems Biology Paradigm
The availability of large amounts of data coming from genome–scale high–throughput
sequencing technologies was the driving force behind the rise of the Systems Biology
paradigm [1]. In contrast to molecular biology, that is focused on studying the single
components of biological entities, Systems Biology aims at understanding life at the
whole system level. The large collections of detailed omics data produced by molecular
studies are essential to create complex models [3,13]. This data has a hierarchical nature
as shown in figure 2.1: starting from basic elements (such as DNA, mRNA, proteins, and
metabolites) several levels of growing complexity may be considered, that range from
protein interactions, signaling pathways, and reaction networks to large–scale systems
such as cells, tissues or whole organisms [4,5].

However, the simple organization of data into networks is not enough to gain insight
on the features of the system as a whole. As clearly outlined in the seminal paper of
Kitano [6], a system–level understanding of an organism should address i) the system
structure, i.e. its components and the way in which they are related, and ii) the system
dynamics, i.e. how it behaves over time under various conditions. The reconstruction of
the behaviour in time and in space of the whole system is central in Systems Biology,
and is an essential step to unravel the relationships intercurring between the genotype
and the phenotype of organisms [7].

In particular, structure and dynamics together may provide a baseline for investigat-
ing on an essential, system–level property of biological systems, namely robustness [14].
Robustness involves the ability of the system to i) constantly adapt to internal or ex-
ternal changes, ii) be tolerant to the noise generated by the stochastic signals to which
they are exposed, iii) exhibit a graceful degradation, i.e. is a slow and gradual degrada-
tion of a system functions after damage, rather than catastrophic failure [6]. As Kitano
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Fig. 2.1. Insights into the logic of cellular organization can be obtained when the cell is viewed
as a complex network in which the components are connected by functional links. At the bottom
there are the basic elements of life, e.g. genes, proteins and metabolites, that are integrated in a
hierarchy of growing complexity. At the lowest level, these components form genetic–regulatory
motifs or metabolic pathways (level 2), which in turn are the building blocks of functional
modules (level 3). These modules are nested, generating a large–scale architecture (level 4).
Taken from [5].

said in [14], robustness is the fundamental feature that enables diverse species to generate
and evolve. Indeed, this is due to many reasons: i) robustness is ubiquitous, in the sense
that is observable in a wide range of fundamental biological processes; ii) robustness is
tightly connected with the ability to evolve facing the environmental and genetic per-
turbation; iii) diseases may be due to a sort of trade–off between robustness and the
inevitable fragility of evolvable robust systems. Hence, a deep understanding of robust-
ness mechanisms may give fundamental insights on diseases such as cancer, diabetes, and
immunological disorders.

To this aim, the biological information should be necessarily complemented by math-
ematical and/or computational models, either manually or automatically built [15]: these
models may be executed or simulated to reveal the adequacy of the biological assumptions
and hypotheses on which they were based, in case leading to a refinement of the model
and to new biological (wet) experiments. This hypothesis–driven research approach, and
the cyclic process of information integration and in silico model building, is typical of
the Systems Biology paradigm [4,6].

The structures that are most used to represent biological systems are networks of
elements that interact and evolve over time, thus being responsible of the emerging
behaviour of the whole system. Depending on the features of the involved elements and
the exchanged information, different biological network may be considered, each offering
a distinct view of the biological system under study. We will briefly describe some of
them in the next section.

2.2 In silico models: Genome–Scale Biological Networks

Several type of genome–scale biological networks may be compiled starting from omics
data. A schematic view of the most relevant ones is shown in figure 2.2, where they are
classified based on the type of elements and interactions they involve.
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Fig. 2.2. Several hierarchical layers of molecular interactions may be identified in a cell. They
involve different kind of relationships between the fundamental elements of life (DNA, RNA, pro-
teins, metabolites, heterogeneous components). Each level may be represented as a biomolecular
network, characterized by the kind of interaction that intercurs between pairs of elements.

As already said and shown in figure 2.1, the cell organization may be viewed as a
hierarchical combination of layers. The lowest level involve the molecular interactions
among the fundamental elements of life, e.g. DNA, RNA, protein and metabolite networks
[5,16]. It is worth noting that also these interactions are hierarchically organized as shown
in figure 2.2, and each level may be represented as a biomolecular network, characterized
by the type of interaction that intercurs between pairs of elements. Thus, biomolecular
networks can be modeled as graphs, either directed or indirected, where molecules are
represented by nodes, and their interactions are represented by edges.

However, it must be reminded that such choice sometimes trades details for simplic-
ity: many different mechanisms of transcription regulation, for example, may be hidden
by a single interaction (edge); similarly, enzyme strength or speed are not taken into
account when connecting metabolites. Nonetheless, this representation offers indubitable
abstraction advantages, since it permits to capture many of the essential characteristics
of the underlying biomolecular processes. Seeing a biological system as a graph permits
to infer interesting properties (such as robustness [17], or modularity [18]) that have
been already established for other systems having the same representation (such engi-
neering ones) [19,20]. At the same time, computational methods expressly developed for
graph analyses may be used to extract topological and dynamical features of the modeled
systems [18,21–24].

Here, we will give only a brief description and some references related to the network
types shown in figure 2.2. In the following section we will describe in great detail the
metabolic (reaction) networks.

Transcriptional regulatory networks describe the interactions between proteins (tran-
scription factors) and the DNA that controls gene expression in the cells. These are very
complex networks [25], hence a large part of studies focused primarily on their topological
features. To better understand them, the basic building blocks (called motifs have been
extracted and investigated [26].
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Gene regulatory networks describe the interactions between cis–regulatory DNAs
(e.g., enhancers and silencers) that control gene expression and the targeted genes [27].
Due to the tight connection between the structure of the network and the expressed
functions [28] they are widely studied, both in what concerns the network reconstruction
phase (see the ARACNE algorithm [29]) both in their structure [30,31], dynamics [32–34],
stability [32,35] features.

Protein interaction networks describe intentional physical contacts established be-
tween two (or more) proteins as a result of biochemical events and/or electrostatic forces.
They were mainly compiled for small organisms such as yeast (S. cerevisiae) [36], or for
small portions of higher organisms, and only recently a genome–wide human network has
been completed [37, 38]. Several methods to study their dynamics have been proposed,
see [39] for a review on them.

Metabolic networks describe the metabolism of cells and living organisms in terms of
the reactions that both transport biochemical species across the boundary of the cell, and
transform them in the fundamental process of sustaining life [7]. Their reconstruction
is really challenging as described in [7, 40, 41]. The most popular approaches to study
metabolic networks are the so called Constraint Based Methods [42].

Signaling networks describe the complex interactions that are responsible for the
exchange of information within and across the cell boundaries. The signal transduction
networks regulate diverse and fundamental aspects of the cellular life [43], with a highly
dynamic and extraordinarily complex behaviour [44]. The reconstruction of these network
is a very tough task [45], as well as the study of their dynamics over time, that has been
addressed in several mathematical and/or computational ways [46–49]

It is worth noting that also Model Checking approaches have been used to address
the problem of studying the dynamics of Gene Regulatory, Signaling and Metabolic
Networks, as will be described in greater detail in chapter 4.

2.3 Metabolic Networks

Metabolism is the set of molecular transformations and energy transfers which constantly
take place in the cells of living organisms to sustain life. It includes degradation processes
(catabolism) as well as organic synthesis (anabolism) as shown in figure 2.3. This complex
and interwoven system of interacting biochemical transformations, carefully organized in
space and time, is described (at the finest level of detail, see Palsson [7]) by networks of
biochemical reactions, thus called Metabolic Networks.

2.3.1 Network Reconstruction

The process of reconstructing a genome–scale metabolic network, i.e. the identification
of the whole set of reactions that are involved in the metabolism of a living organism, is
really challenging [7, 40,41].

Thanks to the high–throughput technologies, complete genomic sequences of organ-
isms are available, together with the corresponding functional annotations. They permit
to infer the set of the metabolic reactions which are likely to occur in the organism, i.e.
reactions catalysed by the enzymes for which coding genes have been identified. How-
ever, this first collection must be necessarily integrated with physiological knowledge
and a specific curation effort. Moreover, as new genes are annotated as playing a role in
metabolism, or as existing enzymatic annotations are reviewed, the model can be refined.

When the model is complete enough to allow testable predictions about the metabolic
behaviour of the whole cell, it can be used to evaluate the goodness of the reconstruction
obtained from the functional annotations. Typically, this evaluation is achieved by com-
paring the model predictions on specific metabolic targets with the known physiological
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Fig. 2.3. A schematic view of cellular metabolism. It can be roughly divided into a catabolic
activity, in which raw materials and substrates are reduced to fundamental species, and an
anabolic activity, where the basic elements are used to synthesize more complex molecules such
as nucleotides, aminoacids and fatty acids. These, together with the energy obtained in the
catalitic activity, are used for the cell growth, which includes the synthesis of different kind of
macromolecules. Taken from [7].

Fig. 2.4. The Systems Biology approach to metabolism. Taken from [41].

information, or with data obtained from new biological experiments. If incoherences are
found between the model predictions and the expected experimental results, then the
model may be incomplete or erroneous and should be modified. Using the clues sug-
gested by the model predictions, necessarily complemented by a certain degree of func-
tional knowledge, it may be possible to refine the functional annotations and, in case,
design new experiments targeted to clarify the unknown or partially explored portions
of metabolism.

This Systems Biology approach to the reconstruction of a metabolic network is shown
in figure 2.4. Starting from omics data, a system–wide process of component identifica-
tion and quantification is performed, that involves mRNA, proteins, and small molecular
weight metabolites. A subsequent analysis step should lead to the identifications of com-
ponents and interactions, together with the information on their structure and type.
When possible, quantitative measurements of interactions should be extracted. All this
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heterogeneous data should undergo a rigorous step of integration, and then, aided by
computational or mathematical modeling, the cycle of investigation and refinement that
is typical of Systems Biology may take place.

The detailed account of the genome–wide metabolic network reconstruction process
is out of the scope of this thesis, but a detailed analysis may be found in Feist et al. [40],
where the described methodology is applied to the reconstruction of bacterial metabolic
networks. This paper also offers a web resource [50] (maintained by the Systems Biology
Research Group at the University of California, San Diego) that trace the current state of
development of a large collection of genome–scale metabolic network models for bacteria,
archea and eukaryotes. To have a visual perception of the overwhelming complexity
of metabolic networks a navigable online map, based on the Roche atlas of metabolic
pathways, is maintained online at the EXPASY site [51], and is widely described in the
book of Michal [52]. The Kyōto Encyclopedia of Genes and Genomes (KEGG) [53,54] is
the most comprehensive resource for omics studies, available online here [55]. It includes
also metabolic pathways of several organisms, that are explorable through a visual map
and linked with a wide range of supplementary information on the involved metabolite
species, reactions, and enzymes.

2.3.2 Network Analysis

As can be deduced from the above sketched description of the network reconstruction pro-
cess, the analysis of genome–scale metabolic models is a very complicated and demanding
task. First of all, even the simplest organism model contains hundreds of reactions and
metabolites (see the the already cited resource at [50] for several examples), and this
number grows with the organism complexity, reaching more than three thousand in the
homo sapiens model. Second, the quantitative parameters, such as reaction fluxes and
component concentrations, are not yet available at the whole genome–scale for many of
the reconstructed models.

For these reasons, the first works on reconstructed genome–scale metabolic models
were mainly exploiting the topological features of networks [56, 57]. With the advances
in omics technologies, different approaches have been devised to highlight the temporal
dynamics of metabolic networks, each of them having advantages and disadvantages as
described in Palsson et al. [58]. Among them, quantitative stochastic or deterministic
kinetic approaches have been proposed [59, 60]. However, these models are usually com-
putationally intensive and strongly affected by the lack of precise parameters, and can
be better exploited to study small–scale biological processes.

On the contrary, the Constraint-Based modeling framework first proposed by Price et
al. [61] has obtained a great success. The already cited work of Palsson et al. [58] provides
an online list [62] of more than six hundred papers (dating from 1985 to 2014) that ex-
ploited this methodology to investigate on the expressed phenotype of metabolic network
models of several organisms. The Constraint–Based Method (CBM) class encompasses a
high number of qualitative approaches that may be used for modeling whole-genome scale
networks for which quantitative data are not available. Many of them are implemented
in widely used software environments such as the COBRA [63], the OptFlux [64], and
FASIMU [65] toolboxes. The papers of Dandekar et al. [66] and Lakshmanan et al. [67]
offer an exhaustive review of the features and limitations of a wide range of dedicated
tools.

In a nutshell, CBMs interpret a metabolic network as a flow network. A mathematical
representation of the network (the stoichiometric matrix) is used to compute a solution
space, that is limited by three primary constraints: reaction substrate and enzyme avail-
ability, mass and charge conservation, and thermodynamics [42]. Other bounds, derived
by a specific knowledge of the system at hand, may be used to reduce the solution space.
The obtained solutions define the metabolite fluxes that traverse the reactions while
satisfying the given physico–chemical constraints.



2.3 Metabolic Networks 15

A complete description of all the existing CBMs is out of the scope of this thesis,
however a very thoroughly review can be found in Lewis et al. [42]. We will focus here
only on the Flux Balance Analysis approach, since it is used as a preprocessing step in
this thesis work (see subsection 5.3.5).

Although abstract and simplified, the representations obtained with CBM may pro-
vide relevant insights on cellular metabolism. In fact, they offer: i) a descriptive view of
the structured ensemble of reactions that take place in the cell, and ii) a predictive power
that allows to describe to some extent qualitative and quantitative dynamic features of
the cellular metabolic behaviour.

2.3.3 Network Representation

The traditional representation of a metabolic network used by CBMs takes into ac-
count the reactions, their direction and the involved metabolites, whereas the enzyme
catalysing activity is not explicitly modeled [68]. A biochemical reaction involves amount

Fig. 2.5. An example of metabolic network model representing a small portion of the human
metabolism. Reactions belonging to the cytoplasm and mitochondria compartments are shown.
Their preferential directionality is indicated by the arrow, whose color indicates the reaction
type: black for the internal, and red for the transport and exchange reactions. The stoichiometry
of reactions is also shown, together with the name, in blue, of the catalysing enzyme. Adapted
and modified from [69].

of metabolites that are indicated by the corresponding integer stoichiometry. The ele-
ments on the left of a reaction are called reactants whereas the one on the right part are
called products. The reactions in a GEnome–scale Model (GEM) may be organized in
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groups, corresponding to the cellular compartments (if any) of the modeled biological sys-
tem. The reactions that move metabolites across compartments or exchange them with
the outside environment are indicated as transport (or external) reactions to distinguish
them from the other ones (in turn called internal).

The preferential reaction direction is normally indicated by an arrow. However the
effective reaction direction is tightly connected to the associated Gibbs free energy under
the standard conditions ∆G0. When ∆G0 is large and negative, the reaction tends to go
in the forward direction; when ∆G0 is large and positive, the reaction tends to go in the
reverse direction; and when ∆G0 ' 0, the system is at equilibrium, and the reactions
may proceed in any direction (bi–directional reactions) depending on other parameters
such as the reactants/products concentration [70]. When the ∆G0 value is not known,
the corresponding reaction is indicated as being bi–directional, and the effective direction
will be established during the analysis.

However, the CBMs are based on a mathematical abstraction of this representation,
called the stoichiometric matrix. It is defined as the matrix S ∈ Rn×m, where n and
m indicate respectively the number of metabolites and reactions. An element sij in S
is non–zero if the metabolite i is present in the reaction j. Its value is given by the
stoichiometric coefficient that the element i has in the reaction j, with a negative sign if
it acts as a reactant, and a positive one if it is a final product.

Lastly, a metabolic network may be easily represented and exchanged using the Sys-
tems Biology Markup Language (SBML) [71], an XML–based description language that
is widely used to publicly distribute reconstructed GEMs.

2.3.4 Flux Balance Analysis

Flux Balance Analysis (FBA) is the most basic and commonly used method for simulating
genome–scale metabolism [58]. In FBA, a cellular objective is defined, and a qualitative
flux distribution is computed by solving a linear programming problem without knowl-
edge of detailed kinetics of metabolic reactions and of compound concentrations. The
solution is found optimizing an objective function that represents the principal biologi-
cal target (such as the biomass production), subject to the constraints imposed by the
metabolic network and metabolite uptake rates [42]. This calculation finds a point in
the solution space that should best represent the true cellular phenotype. The solution
includes a prediction of the optimal objective magnitude (e.g., biomass yield or growth
rate) and potential flux values for each reaction.

We will give same detail only of the FBA approach used in [72], since it was the one
used as a preprocessing step in this thesis work (see chapter 5). Here the optimization
problem starts from the hypothesis that the cells perform their functions using the mini-
mal possible amount of energy. Furthermore, the flux are weighted using the information
on the Gibbs free energy under the standard conditions: this permits to decide the flux
directions using biologically sound constraint.

The considered stoichiometric matrix S ∈ Rn×2m has 2m reactions because a
metabolic flux across a reaction can be, in principle, positive or negative. Therefore,
to ensure the non–negativeness of the variables, the flux of each reaction rj is decom-
posed into an irreversible forward one, v(+)

j , and an irreversible backward one, v(−)
j , as

vj = v
(+)
j − v(−)

j . Since, by definition, only one of the two components can be different
from zero, we have that v(+)

j = vj · χ(vj), and v
(−)
j = vj · [χ(vj)− 1], where χ(·) rep-

resent the unit–step function. The flux balance constraint is given by S · V = 0 where
V = (v(+)

1 , v
(+)
2 , . . . , v

(+)
m , v

(−)
1 , v

(−)
2 , . . . , v

(−)
m ) ∈ R2m is the vector of fluxes associated

with the reactions of the network. Additional constraints, including those related to the
maximal fluxes that can be supported by each reaction, are introduced as inequalities.
Furthermore, we need to specify the metabolic input(s) and output(s) of the network,
i.e. the boundary reactions. By considering k boundary reactions, we obtain an extended
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stoichiometric matrix S̃ ∈ Rn×(2m+k) and an extended vector of fluxes Ṽ ∈ R2m+k. To
accomplish a particular functional state, the fluxes through a certain number of essential
reactions, called target reactions rtarj , have to be maintained at non–zero values, that is,
vtarj = κj > 0.

In order to optimize biological objective functions, we applied the principle of flux-
minimization, which states that, given the value of relevant target fluxes, the most likely
distribution of stationary fluxes within the metabolic network is such that the weighted
sum of all fluxes is a minimum [73]. Hence, it results in the solution of the following
constrained optimization problem for the calculation of steady–state metabolic fluxes:

min
V ∈R2m

 m∑
j=1

(wj · v(+)
j + wj ·Kequ

j · v(−)
j )

 (2.1)

where wj is the weight associated with vj , while the equilibrium constants Kequ
j are

introduced to constraint fluxes according to Gibbs free energy calculations. We expressed
the equilibrium constant for a reaction rj through the change of Gibbs free energy under
the standard conditions, denoted as ∆G0

rj :

Kequ
j = e−

∆G0
rj

R·T (2.2)
where R is the universal gas constant and T is the absolute temperature. Weighting
the backward flux with the thermodynamic equilibrium constants takes into account the
thermodynamic effort connected with reversing the natural direction of the reaction. The
minimization problem (2.1) is subject to the following constraints:

S̃ · Ṽ = 0
0 ≤ v(+)

j ≤ u
(+)
j (2.3)

0 ≤ v(−)
j ≤ u

(−)
j

vtarj = kj

where u(+)
j , u

(−)
j ∈ R+ represent the upper bounds of v(+)

j and v
(−)
j , respectively.

The target fluxes to specify in the minimization problem of equation 2.3 depend from
the features of the used model. Since a metabolic network usually encompasses a wide
range of very complex functions, its associated network model should be able to satisfy
several minimization problems, each one that accomplishes a different metabolic objective
(i.e. a different function).

In this case, being l the number of different metabolic objectives, an optimization
problem is solved for each of them. This results in a m × l matrix V ∈ Rm×l that
contains the calculated fluxes of the m internal reactions for the l distinct targets. An
element vi,j ∈ V represents the flux of reaction ri in the j–th metabolic objective.

It is possible to extract the average flux distribution across all the metabolic objectives
as:

v̄i = 1
l

l∑
j=1

vi,j (2.4)

.
The average flux is a representation of the average behaviour of the network across all

the possible metabolic objectives, and is a fundamental information that will be exploited
in this thesis work (to be more precise in section 5.3.5).

2.4 Chapter Summary

In this chapter the Systems Biology paradigm was introduced. In contrast to the tra-
ditional reductionist approach of molecular biology, Systems Biology is aimed at inter-
preting in a dynamic and holistic way the growing amount of data that high–throughput
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sequencing technologies are revealing. To get a whole–system picture of the behaviour
of an organism, two aspects must be taken into account: i) the system structure, i.e. its
components and the way in which they are related, and ii) the system dynamics, i.e. how
it behaves over time under various conditions. Hence, the most natural representation
of the system structure is a network of interacting elements. However, the bare topo-
logical information do not suffice to describe the behaviour of the underlying biological
system: instead a dynamical understanding is needed. To this aim, the biological informa-
tion should be necessarily complemented by mathematical and/or computational models
that may be executed or simulated to reveal the adequacy of the biological assumptions
and hypotheses on which they were based, in case leading to a refinement of the model
and to new biological (wet) experiments. To make this possible, mathematical represen-
tation of the biological systems are needed. In particular we described the Mathematica
representation of metabolic network models, namely the stoichiometric matrix, together
with one of the most used methods to study them, namely the Flux Balance Analysis,
since they are both essential to this thesis work.
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Model Checking

It is well known that building flawless computer systems (either hardware or software)
is a very tough task, and it is a matter of fact that finding errors and increasing the
reliability of those system is, if possible, harder [74]. Although much research is aimed
to improve the existing methods [75, 76], the testing approach does not guarantee the
complete coverage of all the possible system executions. Moreover, errors in concurrent
systems are more difficult to find, since they are often hard to reproduce.

Starting from the intuition that computer systems may be thought as mathematical
objects, a new field of study, often referred to as Formal Methods, has emerged about
forty years ago. The main idea behind this approach was that, for the mathematical
representations of computer systems, a specification of the wanted (correct) behaviour
could be expressed in terms of some logic. Then, a formal proof could establish if the
system was fulfilling the given specification. The first efforts in this sense were proof-
theoretic approaches (such as the Floyd-Hoare Logic [77,78]) based on constructing proofs
by hand. However, the infeasibility of hand writing proof for complex systems made this
technique rapidly outdated.

Moreover, concurrent programs (which are often described as reactive systems, [79]),
typically show nonterminating behaviour, and are non-deterministic so that their non-
repeatable behaviour was not amenable to testing in the Floyd-Hoare Logic.

In the early eighties, Emerson and Clarke [80] and Queille and Sifakis [81], inde-
pendently defined the foundation of Model Checking (actually Emerson and Clarke also
coined the term Model Checking). They were inspired by a seminal paper of Pnueli [82],
where he suggested the use of Linear Temporal Logic for reasoning about reactive sys-
tems (whose semantics can be given as infinite sequences of computation states (paths)
or as computation trees [83]).

Temporal Logics were developed by philosophers to reason about the ordering of
events in time, but without the explicit definition of time itself [84]. These logics are
often classified based on the assumption made about the underlying time structure, that
could be defined either as linear or branching. The meaning of a temporal logic formula
is established with respect to a labeled state-transition graph, i.e a Kripke structure [85].
Bot linear and branching time logics are characterized by a high degree of expressiveness,
that permits to capture a wide range of correctness properties of concurrent programs,
and a great deal of flexibility [82].

The brilliant intuition of Emerson and Clarke was to combine the state-exploration
approach with Temporal Logic in an efficient manner, showing that the result could be
used to solve non-trivial problems. As they state in their first paper [80]: “We argue
that proof construction is unnecessary in the case of finite state concurrent systems and
can be replaced by a model-theoretic approach which will mechanically determine if
the system meets a specification expressed in propositional temporal logic. The global
state graph of the concurrent systems can be viewed as a finite Kripke structure and
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an efficient algorithm can be given to determine whether a structure is a model of a
particular formula (i.e. to determine if the program meets its specification)”.

Following these ideas, the Model Checking Problem is stated by Clarke [86] as follows:

Definition 1 (The Model Checking Problem) Let M be a Kripke structure (i.e. a
state-transition graph). Let f be a formula of temporal logic (i.e. the specification). Find
all states s of M such that M, s |= f .

This consists in determining if the temporal formula f is true in the Kripke structure M
i.e. in checking whether the structure M is a model for the formula f .

Emerson and Clarke presented a polynomial algorithm for solving the Model Check-
ing Problem for a new (Branching Time) Temporal Logic called Computation Tree Logic
(CTL); an improved, linear version of the algorithm was presented in [87], and imple-
mented in the EMC model checker, the first implementing Fairness Constraints [86,88].
The Explicit Model Checker (EMC) evolved rapidly in the MCB model checker, that was
able to return a counterexample if the property was not satisfied, introducing a feature
that is now a standard for all model checking system.

In the same years, different approaches to the Model Checking of concurrent systems
were introduced. The most prominent is due to Vardi and Wolper [89], that used Büchi
automata to represent and validate Linear Time Logic (LTL) formulae. The resulting
methodology, often referred to as Automata-based Model Checking is implemented, for
instance, in the popular Model Checker Spin [12].

A detailed account of the birth, the past and the future perspectives of this prominent
methodology are given by the main protagonists in a book containing the papers written
for the 25th anniversary of Model Checking, [90].

The general structure of a Model Checking system is shown in figure 3.1: the require-
ments that the system should fulfill are formalized in a suitable property specification
language (for instance a Temporal Logic). The system model is fed to the Model Checker
together with the property specification. The Model Checker will exhaustively explore
all the possible computation of the system model, verifying if the property holds for
each of them. If it is not the case, a counterexample is produced that should help in the
debugging procedure.

Fig. 3.1. A schematic view of the general structure of a Model Checking system (adapted
from [91]).

This methodology has been successfully applied to a large variety of systems, hardware
[92, 93], software (ranging from protocol communication [94] to spacecraft controllers
[95]), and even biological ones (see chapter 4).
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In the following we will give some details on the techniques needed for the Model
Checking of linear and branching time properties on parallel and communicating (con-
current) systems. Then, we will motivate our choice of Spin as a model checker and
we will briefly describe the techniques on which its based. After we, will address some
complexity issues such as the well known state-space explosion problem.

3.1 Techniques

The input to the Model Checker (see figure 3.1) are the specifications of the system under
study and the property that the system should fulfill. We will give some detail on the low
level mathematical structures used for describing system models, and we will provide the
description of the high level languages ot two prominent model checking tools, namely
Spin and NuSMV. After we will introduce the LTL and CTL logics, describing both their
syntax and semantics.

3.1.1 Model specification

The model of the system under study is a prerequisite for Model Checking, and should
be specified with a language able to describe its fundamental features, such as:

• the structure, i.e. the component of the system and the way in which they are in-
terconnected. In particular, it must be possible to define parallel and communicating
components;

• the state, i.e. a complete snapshot of the system. A snapshot is the set of information
that describe the system at each moment of its behaviour;

• the behaviours, i.e. the sequence of states that the system may go through, while
changing.

Besides having a well defined syntax, such a language should possess a formal semantics
permitting the association of the syntactic description to a mathematical structure, on
which the model checking process will be de facto performed.

Although several specification formalisms have been defined, like Petri Nets [96] or
Process Algebras (such as the π-calculus [97], the Communicating Sequential Process
(CSP) [98], or the Performance Evaluation Process Algebra (PEPA) [99]) we will focus
only on the State-Transition formalism, since it represents a standard in Model Checking
[91] due to its expressive power and its intuitive graphical representation. The State-
Transition formalism class contains, for instance, the Finite State Machine (FSM) [100],
the Mealy [101] and the Moore [102] Machines, the Büchi [103] and the Timed Automata
[104].

Since several automata formalisms are available, the right choice depends from the
nature of the problem that should be modeled. The first fundamental issue is related
to the importance of time. Indeed, if the system under study is a time-critical system
with stringent timing constraints, a suitable formalisms is needed that includes an ex-
plicit representation of time. To model these systems, a Timed Automata formalism has
been successfully implemented in UPPAAL [105] and in Kronos [106]. Both these Model
Checking tools provide a high level language to describe the system and avoid the direct
declaration of the timed automata.

If time does not need to be explicitly represented, different choices are available
that are mainly based on the properties that should be verified (either in linear or in
branching time logic) and on the availability of a high level specification language suitable
to capture the features of the system under study. Among the existing tools, we will
consider only the Spin model checker [12], that implements the Automata-based Model
Checking approach for Linear Temporal Logic (LTL) properties, and the NuSMV model
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checker [107], that performs Symbolic Model Checking of properties expressed in both
Linear and Computation Tree Logic (CTL).

This choice is due to the following considerations: i) we are not interested in the
time-critical features of the (biological) system under study in this thesis work. ii) both
Spin and NuSMV have a high level model specification language, called Promela and
SMV, respectively.

It is worth noting that both these languages, despite being remarkably different as will
be clarified in section 3.1.1, have their formal semantics defined on the same mathematical
structure, namely a Labeled Transition System (LTS), that will be introduced hereafter.

Labeled Transition Systems

A Labeled Transition System (LTS) can be formally defined as follows.

Definition 1 Labeled Transition System
Let Σ be an alphabet. A LTS is a triple 〈S, S0, ∆〉 where

• S = is a set of states
• S0 ⊆ S = is the set of the initial states
• ∆ ⊆ S × Σ× S = is the transition relation between states.

In this formalism a state is a snapshot of the system (i.e. the state of both the control
and the data structures), and a transition 〈s, α, s′〉 ∈ ∆ means that the system may
evolve from state s to state s′ with an observable action that is labeled as a. A behaviour
of the system is a sequence of transitions (either finite or infinite) that starts from an
initial state and follows a path in the LTS:

Definition 2 Behaviour of a LTS
A behaviour is a sequence of states s0

a0−→ s1
a1−→ s2 . . .

ai−1−−−→ si with

• s0 ∈ S0
• 〈sj−1, aj−1, sj〉 ∈ ∆, ∀ 1 ≤ j ≤ i.

A trace is the observable part of a behaviour, and is given by the sequence of the labels
i.e. trace(s0 . . . si) = a0, a1, . . . ai−1. A path π of the transition system is defined as a
behaviour that either ends in a terminal state or is infinite. The set of all the paths starting
in a state s are indicated with Paths(s). Traces(s) is the set of the traces of all the paths
starting in s, i.e. Traces(s) = trace(Paths(s)). Lastly, Traces(LTS) =

⋃
s∈S0

Traces(s)
is the set of all traces starting from an initial state of the LTS.

It is worth noting that, although it shares the same graphic structure of a State-
Transition systems, the LTS is a lower level formalism with respect to the correspondent
specification language. Since the LTS is the same mathematical structure in which differ-
ent languages are translated (via the formal semantics), the definition of an equivalence
criterion may permit the comparison between different syntactic specification. This is
of great interest in the process of translating the system into its formal specification:
the initial model may be very close to the original system, and several subsequent step
of abstraction will eventually transform the initial specification into a reduced model
that captures only the details relevant to the checking process. Hence, the possibility
of controlling the correctness of the abstraction process through the comparison of the
obtained LTS is of capital relevance. To this aim, several equivalence relationships have
been defined, such as the strong and the weak bisimulation [91].
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High Level Specification Languages

Although the LTS is the common mathematical structure used for model specification,
usually model checking tools provide high level languages that offer a great deal of flexi-
bility and easiness of specification when compared to the manual specification of a LTS
model. We will briefly describe the Spin language, Promela, and the NuSMV one, called
SMV. When choosing a tool, besides considering the type of logic it supports, also the
available modeling language should be carefully evaluated.

Promela

Promela is an imperative language, especially tailored for the purpose of writing high-
level specification models of concurrent systems [12]. It allows for the declaration of three
type of objects:

• Processes. They describe the structural components of the system. A maximum num-
ber of 255 process may be declared;

• Data Objects. These are the variables, either local to processes or global. A global
declaration allows for shared variable communication. The variable size must be finite;

• Message Channels. They model the exchange of data between processes, allowing both
for handshaking (i.e. synchronized communication) or for asynchronous send/receive
operations. A set of side-effect free operations permits to check if the queue is empty
or full, to verify its length or the presence of a value on the top.

The semantics of the Promela instructions is based on the concept of executability:
each statement is either executable or blocked depending on the system state. The se-
lection among multiple executable statements is non-deterministic: instructions, either
belonging to the same or to different processes, may be arbitrarily interleaved. However,
it is possible to explicitly define blocks of uninterruptible sequences of instructions using
the keyword atomic. The Promela language provides also flow control instructions, such
as the if-else selection construct and the do repetition statement. However, their seman-
tics is different from similar statements of other imperative languages: indeed, if more
then one instruction is executable, then the choice is purely non deterministic.

SMV

SMV is a descriptive language, originally created by McMillan [108] and extended in the
NuSMV tool [109] to include invariants and LTL formulae specifications. It allows to
declare:

• Modules. Each module is a Finite State Machine. A complex system can be divided
into modules, each instantiable many times. Modules can be composed either syn-
chronously or asynchronously (using interleaving). They can also be hierarchically
nested;

• Signals. These are the variables, and are associated with finite data types. It is possible
to assign to a signal an enumeration of values, among which a value will be non–
deterministically chosen at runtime. Variables in a module are visible inside the same
module and inside all the including ones. The variables outside a module can be
passed as parameters;

• Assignments. These permit to model the behaviour of the components defining the
way in which the values of the variables change. It is possible to: assign a value in
the initial state (with the keyword init), specify the transition relation to the next
state (with the keyword next), specify a state invariant (with a simple assignment).
Of course, it is not possible to specify for the same variable both an invariant and a
changing behaviour. All the assignments of the systems are viewed as parallel, and are
simultaneously executed. When modules are synchronously connected, a single step
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corresponds to a single step in each of the components. In asynchronous connection
a single step corresponds to a single step performed by exactly one component.

It is clear from this succinct description that these two modeling languages are rather
different: in fact, SMV is more suitable for the description of hardware, synchronous
systems, whereas Promela is tailored for describing asynchronous, complex systems like
software ones.

3.1.2 Property Specification

Together with model specification, also the property specification should be provided to
the model checker. We will briefly describe the syntax and semantics of a linear and
a branching time logic. The linear logic assumes that time is linear, thus its semantics
is defined on paths, i.e. on sequences of states. Instead, the branching time logic has a
semantics defined on trees. However both of them allow for the specification of properties
that regard the relative ordering of events, but without any explicit reference to their
precise timing. The time is assumed to be discrete, with transitions corresponding to the
advance of a single time unit. Hence, the system is observable only at fixed time points.

We will focus in particular on the Linear Time Logic (LTL) introduced by Pnueli [82]
and on the Computation Tree Logic (CTL) proposed by [87]. Both have their semantics
defined on a Kripke structure, i.e. a LTS extended with a set of atomic propositions AP
and a labeling function L that associates to each state of the LTS the subset of atomic
propositions holding true in that state.

Definition 1 Kripke structure
Let LTS = (S, S0, ∆) a labeled transition system and AP a set of atomic proposition.
The associated Kripke structure is

K = (S, S0, ∆,AP,L)

where L : S → 2AP

Hence, if a ∈ L(s) then the atomic proposition a is true in the state s.

Linear Temporal Logic

LTL formulae over a transition systems are built with the atomic propositions a ∈ AP ,
the boolean connectors ¬ and ∧ and two temporal modalities, e.g. O(meaning “next”)
and U (meaning “until”). The formula Oφ holds in the current moment if φ holds in the
next one. The formula φ1 U φ2 holds in the current moment if there is some moment in
the future in which φ2 holds and φ1 holds in all the moments before.

Definition 1 LTL Syntax
Let a ∈ AP be an atomic proposition. LTL formulae are defined according to the follow-
ing grammar:

φ ::= True | a | φ1 ∧ φ2 | ¬ φ |O φ | φ1 U φ2

Of course, it is possible to derive the other propositional logic operators from the ¬ and
∧. More important, it is possible to derive the temporal modalities ♦ (“eventually”) and
� (“always”) as follows:

• eventually: ♦φ def= True Uφ
• always: �φ def= ¬♦¬φ

From these it is possible to derive other temporal modalities such as

• “infinitely often φ”: �♦φ
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• “eventually forever φ”: ♦�φ

We will now define the satisfaction relation |= for the infinite words over 2AP , i.e. to the
sequence (sets) of labels associated to the states that belongs to a path π in the Kripke
structure K.

Definition 2 Satisfaction Relation for LTL
Let σ = A0A1A2 · · · ∈ (2AP )ω be a sequence of words over 2AP , and σ[j...] =
AjAj+1Aj+2... is the suffix of σ starting in the (j + 1)-st symbol Aj.
The satisfaction relation |= is defined by

σ |= True
σ |= a iff a ∈ A0
σ |= φ1 ∧ φ2 iff (σ |= φ1) ∧ (σ |= φ2)
σ |= ¬φ iff σ 2 φ
σ |= Oφ iff σ[1...] = A1A2 . . . |= φ
σ |= φ1Uφ2 iff ∃ j ≥ 0 : ((σ[j...] |= φ2) ∧ (σ[i...] |= φ1 ∀ 0 ≤ i < j))

For the derived operators the satisfaction relation is:

σ |= ♦φ iff ∃ j ≥ 0 : σ[j...] |= φ
σ |= �φ iff σ[j...] |= φ ∀ j ≥ 0
σ |= �♦φ iff

∞
∃j : σ[j...] |= φ

σ |= ♦�φ iff
∞
∀jσ[j...] |= φ

Where
∞
∃ means ∀i ≥ 0 : ∃j ≥ i, i.e. “for infinitely many j ∈ N”. Similarly

∞
∀ means

∃i ≥ 0 : ∀j ≥ i, i.e. “for almost all j ∈ N” The satisfaction relation permits to define the
semantics of a LTL property φ as the language Words(φ) that contains all the infinite
words over the alphabet 2AP that satisfy φ:

Definition 3 LTL Semantics over Words
Let φ be an LTL formula over AP.

Words(φ) = {σ ∈ (2AP )ω : σ |= φ}

Then it is possible to define the semantics of LTL w.r.t a Transition System. This is
assumed, for simplicity, to be without terminal states.

Definition 4 LTL Semantics over a Transition System
Let K be a Transition System defined by the Kripke structure K = (S, S0, ∆,AP,L) and
Φ a LTL-formula over AP.

• For a path π of K the satisfaction relation is defined as

π |= φ iff trace(π) |= φ.

• For a state s ∈ S the satisfaction relation is defined as

s |= φ iff ∀pathsσ ∈ Paths(s) σ |= φ.

• For the transition system K the satisfaction relation is defined as

K |= φ iff Traces(K) ⊆Words(φ).

From these definition follows that a transition system K satisfies φ iff π |= φ ∀π ∈
Paths(K). Thus,

K |= φ iff s0 |= φ∀ s0 ∈ S0.
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Computation Tree Logic

CTL has a syntax that distinguishes between state and path formulae. The former involve
properties of a single state, such as assertion over the atomic propositions or the state
branching structure. The latter involve features of a path (i.e. an infinite sequence of
states), such as temporal properties.

Definition 1 CTL Syntax
Let a ∈ AP be an atomic proposition, and φ a path formula.
State formulae are defined according to the following grammar:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬ Φ | ∃ φ | ∀ φ

Path formulae are formed as follows:

φ ::= O Φ | Φ1 U Φ2

The temporal operators O(Next) and U (Until) have the same meaning as in LTL. How-
ever to obtain a legal state formula they should be preceded by a universal (∀) or an
existential (∃) path operator. The boolean operators are defined in the usual way. It is
possible to derive other temporal modalities such as “eventually” or “always” as follows:

• eventually: ∃ ♦ Φ = ∃(true U Φ)
∀ ♦ Φ = ∀(true U Φ)

• always: ∃ � Φ = ¬∀♦¬Φ
∀ � Φ = ¬∃♦¬Φ

The CTL formulae are interpreted over the states and paths of a transition system
described by a Kripke structure. The semantics of CTL is defined by both a satisfaction
relation for the state formulae and a satisfaction relation for the path formulae. Writing
s |= Φ means that s satisfies Φ if and only if the state formula Φ holds in state s. Similarly,
π |= φ means that the path π satisfies the path formula φ. Paths(s) represent the set of
all the paths starting from state s.

Definition 2 Satisfaction Relation for CTL
Let a ∈ AP be an atomic proposition, K = (S, S0, ∆,AP,L) a Kripke structure, and s a
state of S.
Let Φ and Ψ be two CTL state formulae, and φ be a CTL path formula.
The satisfaction relation |= is defined for state formulae by

s |= a iff a ∈ L(s)
s |= ¬Φ iff ¬(s |= Φ)
s |= Φ ∧ Ψ iff (s |= Φ) ∧ (s |= Ψ)
s |= ∃Φ iff ∃π ∈ Paths(s) : π |= Φ

s |= ∀Φ iff π |= Φ ∀π ∈ Paths(s)

For a path π, the satisfaction relation |= is defined for a path formula by

π |= OΨ iff π[1] |= Ψ

π |= ΦUΨ iff ∃ j ≥ 0 : (π[j] |= Ψ ∧ (π[k] |= Φ ∀ 0 ≤ k < j))

where for path π = s0 s1 s2 . . . and integer i ≥ 0, π[i] denotes the (i + 1)-th state of π,
i.e. π[i] = si.

Then it is possible to define the semantics of CTL on a Transition System.
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Definition 3 CTL Semantics
Let K be a Transition System defined by the Kripke structure K = (S, S0, ∆,AP,L). The
satisfaction set SatK(Φ) for the CTL-state formula Φ is defined by:

SatK(Φ) = {s ∈ S|s |= Φ}

The transitions system K satisfies the CTL formula Φ if and only if Φ holds in all initial
states of K:

K |= Φ iff s0 |= Φ ∀ s0 ∈ S0

.

3.2 Choosing the Model Checker

CTL and LTL not only differ in the assumption made on the underlying time structure,
but also on the expressive power they have. It is worth noting that their expressiveness
is sometimes not comparable, in the sense that some properties can be defined only in
one of them [110, 111]. For instance, fairness properties (see section 3.2.1) are easily
expressed in LTL, and can be checked using the same algorithm used for checking other
LTL properties. This does not apply to CTL. Conversely, in CTL it is possible to easily
define the restart property (i.e. ”From any state, it is possible to get to the reset state“)
that in LTL is not expressible. The diversity of their inner structure is reflected also
in the difference between the algorithms used to model check these properties. We will
consider the ones implemented in the most prominent tools developed for these tasks,
e.g. Spin [12] and NuSMV [107]. In brief, the first is an explicit-state checker based on the
transformation of the (negated) LTL formula in a Büchi automaton that is synchronously
executed with the system automaton. On the resulting automaton the problem of the
acceptance of the empty language is resolved (see section 3.2.1). NuSMV is a symbolic
model checker based on the construction of Ordered Binary Decision Diagrams (OBDD).
The model checking problem is solved using a fixed-point based, recursive traversal of the
parse tree of the state formula. Additional algorithms are needed for fairness checking
and counterexample building (see [91] for details).

A great debate is still open on which of the two approaches is the best, both in
theory and in practice. But until now, no clear response is available [112, 113]. From a
theoretical point of view, the complexity in time and space should be compared. The
LTL model has a time complexity linear in the dimension of the model but exponential
in the length of the formula. Instead, CTL model checking has a time complexity that
is linear both in the length of the model and in the formula. However, in practice, the
running time of LTL model checkers is comparable to the CTL checkers over a wide
range of problems [114, 115]. This is due to several reasons, including that useful LTL
formula are generally short, and that very rarely the conversion of a LTL formula shows
a worst-case (exponential) behaviour.

The principal differences between linear time and branching time logics are summa-
rized in table 3.1, adapted from [91]

Similar consideration can be made for the space complexity. Indeed, the LTL model
checking is affected by the state-space explosion problem (see Section 3.3) whereas sym-
bolic model checking offers a very effective strategy to deal with this problem. However,
several techniques like partial order reduction and on-the-fly space construction meth-
ods mitigate this effect in the LTL checking [116, 117]. Moreover, comparison on the
effective amounts of memory (bytes) and time used to solve similar problems with both
the techniques show often similar results for both [118]. It should be noted also that,
if more than a counterexample is needed, with LTL checking no additional searches are
needed (counterexamples are the traces generated during verification). On the contrary,
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Table 3.1. The principal differences between linear time and branching time approaches.
Adapted from [91].

Linear time Branching time

”Behaviour“ in a
state s is

path-based: state-based:
trace(s) computation tree of s

Temporal logic
LTL: path formulae φ CTL : state formulae plus
s |= φ iff existential path quantification ∃
∀π ∈ Paths(s), π |= φ universal path quantification ∀

Complexity of the
model checking
problems

O(|K| · 2|φ|) O(|K| · |Φ|)

Counterexample
generation and
added complexity

During verification Additional search needed

none O(|K|)

fairness supported by the LTL special techniques
language needed

expressiveness Not Comparable

with CTL the generation of a counterexample is not part of the verification process, and
requires an additional exploration of the whole space. Also, the structure of the CTL
counterexamples is linear only for a small subset of universally quantified formulae, oth-
erwise it has much more complex structures that make more difficult their exploitation
w.r.t the linear trace obtained with the LTL checking [119].

Concluding, a clear answer is not available, but in general CTL symbolic verifica-
tion tends to be adopted in the hardware verification domain, where variables are often
very simple (bit, boolean or bit-arrays) and more suitable for OBDD representation. On
the contrary, LTL model checking is more used in the software domain, where the vari-
able structures are generally more complex. Moreover, asynchronous processes tend to
be dominant in software applications, condition that is very well exploited by the par-
tial reduction order techniques, whereas hardware systems tend to be synchronized and
clocked.

Table 3.2. The principal differences between the Spin and NuSMV model checker.

Spin NuSMV

Model specification
language

Imperative: Descriptive:
Promela SMV

Property specification
languages

LTL CTL
ω-properties LTL

Verification Explicit: Symbolic:
Automaton-theoretic OBDD

Number of
counterexamples

≥ 1 1

Type Trace Tree

Fairness support yes yes
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In this thesis we decided to use the Spin model checker. The reasons for this choice
are based on the following considerations:

1. the biological system we want to model does not need an explicit time representation,
and is inherently asynchronous;

2. the properties to express are very simple, thus not pushing toward a worst-case
behaviour if expressed with LTL;

3. the LTL automaton-theoretic approach implemented in Spin permits to generate
more than a single counterexample, whereas NuSMV CTL based approach allows to
generate only a single counterexample;

4. the specification language of Spin is more suitable for the description of this system:
the representation in the SMV language would have been clumsy and rather difficult
to obtain, whereas the Promela translation was immediate and straightforward;

5. Spin comes with many facilities that allows to fine tune the search for counterexam-
ples in the state-space, such as the possibility to decide the number of the extracted
counterexamples, or the amount of memory needed for the structures;

6. Spin can be configured to perform partial explorations of the state-space, that is
often the only solution to tackle very large problems, such as the biological ones;

7. the Promela language offers support for the specification of simple state properties,
that can be easily and directly included into the system model with the assert in-
struction.

3.2.1 Model Checking of LTL Properties

Since this thesis is based on the use of the model checker Spin, we will focus only on the
model checking methodology that Spin implements, i.e. the Automata-based approach.

We will briefly describe how model checking of LTL properties is performed using
an Automata-based approach. Recall that the LTL semantics defines for a formula φ a
language Words(φ) ⊆ (2AP )ω (see definition 3). It is possible to demonstrate that the set
Words(φ) is an ω−regular language, hence it may be represented by a Non–deterministic
Büchi Automaton (NBA) [91]. Instead of proving that K |= φ, the complement of φ is
considered, e.g. ¬φ and a path π such that π |= ¬φ is searched in K. If this path is found,
then TS 2 φ and a prefix of π is returned as a counterexample. More precisely:

K |= φ iff Traces(K) ⊆ Words(φ)
iff Traces(K) ∩ ((2AP )ω\Words(φ)) = ∅
iff Traces(K) ∩ Words(¬φ) = ∅.

Let B¬φ be the NBA with accepted language Lω = Words(¬φ), then it follows

K |= φ if and only if Traces(K) ∩ Lω(B¬φ) = ∅.

If K has a finite number of states, then it can be transformed into an equivalent Büchi
automaton AK . Its synchronous product with the NBA for the LTL formula is indicated
as AK ⊕ B¬φ.

This process shown in figure 3.2: the model, specified in a high level language, is trans-
lated into the corresponding LTS and eventually into the corresponding Büchi automaton
AK . Similarly, the specification φ is negated and then translated into the corresponding
NBA B¬φ. Then the synchronous product is calculated and the corresponding automa-
ton is searched for an acceptance path π. If this path is not found, it is proved that the
system model satisfies the requested property. Otherwise a counterexample (e.g. a prefix
of π) is returned.

Hence, the problem of model checking a LTL formula is transformed into the problem
of verifying if the product automaton accepts the empty language. In the NBA this
corresponds to find a path from the initial state to a cycle containing a final state. This
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Fig. 3.2. A schematic view of the Automata Based Model Checking approach

is a reachability problem on a finite state/transition graph, and can be efficiently solved
with a linear (in the size of the graph) procedure.

However, the translation of a LTL formula into the corresponding NBA has time and
space complexity O(2|φ|). This affects the overall complexity, that is linear in the size of
the model and exponential in the length of the formula, i.e. O(|Ak| · 2|φ|) (see [91] for
further details).

An efficient algorithm for the LTL model checking problem is the Nested Depth First
Search, that has been implemented in Spin [12].

Correctness claims

We will briefly review the categories of claims that are relevant for the verification of
concurrent systems, and how they can be specified in Spin. Interesting properties might
be classified as follows:
• Safety. They require, informally, that ”nothing bad should happen“. To this class

belong both state properties and path properties. The firsts, also called invariants, are
linear time properties given by a condition φ that should hold in all the reachable
states. They are the simplest (yet powerful) type of properties, and can be verified
in a time that is linear in the length of both the transition system and the formula
φ. Path properties are a generalization of invariants, since they express conditions on
finite path fragments rather then on single states;

• Liveness. These properties constrain the infinite system behaviour. A typical liveness
property is the starvation freedom requirement (each waiting process will eventually
be scheduled);

• Fairness. This class is very important in reactive system, since it helps in ruling out
unrealistic behaviours. It is possible to define three types of fairness assumption, based
on the strength of the requirement, i.e. Unconditional, Strong and Weak Fairness.
Fairness claims constrain actions along infinite behaviours.
These classes may be specified in Spin using different combinations of the tools here-

after described.
• The assert instruction. An assert instruction is always executable, and permits to

specify state invariants that can be easily verified with a reachability check;
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• LTL formulae. It is possible to express a wide range of correctness claims, including
fairness, using a LTL syntax that comprise operators such as Always [], Eventually
<>, and Until U. The set of operators may be extended with the Next operator (X),
but this should be used with caution and it is by default disabled since it may conflict
with the Partial Order Reduction algorithm (see [12] for details). The LTL formula
is converted into an automaton (using the never instruction) and the synchronous
product of the system model and the property automaton is checked as described in
section 3.2.1;

• The never claim. This instruction permits to directly specify the NB automaton that
will be synchronized with the system model to perform the checking. The never claim
may be used to specify all those ω-properties that are not expressible with the LTL
syntax. Never claims are intended to express a behaviour that should never happen in
the system, and Spin flags as errors the executions that exactly matches the behaviour
specified by the claim;

• Meta labels. Spin permits to use special meta labels to mark states of interest, thus
allowing the detection of the presence/absence of infinite, cyclic behaviours for liveness
properties checking. In particular it is possible to specify:
– accept labels. Usually, these labels are used to formalize Büchi acceptance con-

ditions: they are generated automatically by the LTL translator and placed into
the corresponding never claim. However they can be used elsewhere to prove, for
instance, LTL liveness properties;

– end labels. These are used to identify acceptable (i.e. non-deadlock) end states;
– progress labels. These are used to identify infinite cycles that are allowed in the

model. This can used to detect starvation cycles.

Lastly, it should be noted that in Spin there is support only for the weak fairness
assumption.

3.3 Complexity Issues

Here we will briefly address the nemesis of model checking, i.e. the so called state-space
explosion problem, and the techniques implemented in Spin to contain the exponential
blow–up of memory and time that are connected with this issue.

The state-space of a system is the set of all the possible states of the associated Kripke
structure. If we consider a finite system with variables defined on a finite domain, we
might have a state for each possible value combination of all the variables: for N variables
having a domain of k values the number of states is kN . This exponential blow-up is
exacerbated by: i) the presence of parallel components, for which the resulting state-
space is given by the product of the dimensions of the state-space of each component,
and ii) the presence of shared channels, that further increase the number of possible
states. Thus, it is evident that even very small systems may require a huge amount of
memory to be exhaustively verified.

As already said, Spin implements a Nested Depth First Search, that in its original
version was first described in [120]. The basic algorithm is modified to perform on-the-fly
verification. In this approach, the construction of the automaton for the LTL formula is
performed simultaneously with, and guided by, the generation of the model automaton.
Thus, it is possible to find that a property does not hold by constructing only a fraction
of the model.

Anyway, this is not enough to deal with real problems. Hence, several other methods
have been implemented in Spin for tackling the exponential explosion of the states.
They rely on optimization techniques aimed at reducing i) the number of reachable
states ii) the memory required for storing each of them. The partial order reduction
algorithm and the statement merging technique fall in the first category, whereas the
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lossless memory reduction strategies (such as the minimal automata representation and
the collapse compression) fall in the second one.

In addiction to the aforementioned techniques, Spin offers also the possibility to per-
form approximated searches on the state space. Indeed, real problems may have a number
of states so high that an exhaustive search is practically infeasible (see [121]). The bit-
state hashing strategy permits to partially explore the state space: if no counterexample is
found, nothing can be stated on the property satisfaction. However, if a counterexample
is found, then we can surely assert that the property is not satisfied. Recently, Holzmann
et al. have developed and tested a multi-cpu bitstate hashing approach that, together
with a random transition ordering (to solve non–deterministic choices) and other tuning
strategies, permits to effectively explore different parts of a very large state space. The
swarm technique is described in full detail in [122], and has been largely exploited in this
thesis when dealing with very large biological models. A complete description of all these
methodologies is outside the scope of this thesis, for all the technical details please refer
to the Spin Primer and Reference Manual [12].

3.4 Chapter Summary

In this chapter we introduced the prominent Model Checking methodology. After a brief
description of its historical roots, we addressed the problem of specifying the system
model and the property that it should fulfill. We started describing a low-level mathe-
matical formalism used for the model specification, i.e. the Labeled Transition System
(LTS), and after we outlined the features of two high-level languages, Promela and SMV,
that both have their semantics defined on a LTS.

Afterwards we described two property definition languages, i.e. the Linear Temporal
Logic (LTL) and the Computation Tree Logic (CTL). For both of them we gave a precise
definition of their semantics.

Then, we addressed the delicate issue of the choice of a model checker, and since we
decided to not model time explicitly, we restricted our possibilities only to two promi-
nent tools, Spin and NuSMV (whose languages are respectively Promela and SMV). The
former is able to verify ω-regular properties (which include LTL ones) with an automaton-
theoretical approach, whereas the latter performs symbolic verification of CTL properties
using binary decision diagrams (BDD). Strengths and limits of both the strategies are
discussed, and the choice of the model checker Spin is motivated. After, we outlined the
Spin automaton-theoretical approach to verification, together with the Promela instruc-
tions that supports the properties specification. Lastly, we discussed the computational
issues related to the so-called state-space explosion problem, and we briefly outlined the
optimization strategies implemented by Spin.



4

Model Checking in the Systems Biology Era

Systems Biology can be described as an approach to the understanding of life through the
study of how the properties of biological systems arise through the multi-level interactions
between their components. In particular, the focus is on the construction of models of
the biological systems that can help in understanding the mechanisms suggested by the
experimental data. These models are becoming increasingly large and complex, some-
times involving information at the whole genome scale or at multiple levels of detail.
Hence, adequate mathematical and computational tools are required for their analysis
and simulation.

However, mathematical and computational approaches provide techniques for mod-
eling these systems that are widely different and often complementary. Indeed, mathe-
matical models are focused on a precise (denotational) description of the system, based
on equations that may simulated and possibly solved. On the contrary, computational
models are based on an operational semantics that captures and mimics (through the
execution) the model behaviour.The differences between these two strategies lie both in
the size of the systems that can be modeled, both in the quality of the obtained results.

Mathematical models can precisely describe quantitative relationships between vari-
ables such as metabolite concentrations, or gene expression levels. However quantitative
modeling is constrained both by the availability of biological precise data both by the
number of variables and equations that may be effectively treated.

Instead, computational models may go beyond this limitation and work also on par-
tial data, and on more complex systems. This qualitative modeling approach relies
on the goodness of the underlying abstraction, rather than on the faithfulness of the
mathematical implementation. The obtained results, although not precise, may give in-
teresting hints on the features and behaviours of the modeled biological system. The
differences between the computational and the biological models may be used to build
new hypotheses, to refine the model, and even suggest new experiments that can help
in validate or reject the model. This methodology, called by Fisher and Henzinger ex-
ecutable biology [8], is based on the close interplay between in silico simulations and
biological validation of the data, as shown in figure 4.1.

It should be noticed that in this repeated process of model building and refining,
automated formal verification methods, such as the Model Checking, play a fundamental
role, although a shift in the perspective should be performed [9]. In fact, in the hardware
and software domains the verification process is used to ascertain that the system built
from the model will have the desired behaviour. If the verification fails, the system
is searched against errors (using the counterexamples generated by the checker) and
eventually modified. In biology, the process is the opposite: the (biological) system already
exists and is correct by default, and the model is built to verify that the hypothesis made
on its functioning is able to catch some features of the underlying, partially unknown,
mechanisms.
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Fig. 4.1. The executable biology framework: biological knowledge and experimental data are
used to draw an hypothesis, from which a computational model is built. The model is exe-
cuted and the results are compared to the data, possibly resulting in a model refinement or in
suggestions for new experiments (adapted from [8]).

Indeed, Model Checking is a paradigm that may fit very well the Systems Biology
approach [10]. This is due to several reasons:
• It enforces model abstraction. Biological systems are usually very complicated, and

abstraction is a crucial strategy to address this complexity.
• It is able to deal with the concept of multi-level functionality that is fundamental in

systems biology [123].
• It offers precisely defined formal languages, with a semantic that permits to describe

both the constituent components and the way in which they interact. The overall
behaviour will emerge from the interplay of the components, a very close view to the
systems biology paradigm.

• It can infer both qualitative or quantitative properties of all possible executions of a
model.

• It can give partial information through simulations of the model, i.e. a partial explo-
ration of the execution set.
We will now review some successful applications of Model Checking techniques to

biological problems, with the aim to better describe the context in which this thesis is
placed.

4.1 Modeling Biological Systems

As described in chapter 2, the typical objects to model in the framework of Systems
Biology are networks of interacting elements, that evolve in time. Depending on the
features of the network and on the desired properties, various approaches may be used.
They might be classified according to the different granularity that their semantics is
able to capture, as proposed in Brim et al. [9] and hereafter described.

A modeling semantics should be able to describe the dynamics of the system taking
in consideration:
• the components. They are interpreted as variables, that can be either discrete or

continuous, depending on the selected level of abstraction, the availability of data
and the model dimensions;
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Fig. 4.2. Model types sorted according to different level of details captured in their semantics
(adapted from [9]). DTMC: Discrete-Time Markov Chains, MDP: Markov Decision Processes,
CME: Chemical Master Equation, CTMC: Continuous-Time Markov Chains, ODE: Ordinary
Differential Equations, DAE: Differential Algebraic Equations

• the interactions. They are interpreted as rules that specify the dynamical changes of
the variables. The time in which these interactions take place may be modeled either
as a dense, continuous entity or may be represented as a discrete quantity. Lastly, the
execution of interactions may be stochastic, i.e. it may proceed with a certain degree
of uncertainty that reflects the assumption of a noisy environment;

According to these possible semantics, the various modeling approaches may be clas-
sified as shown in figure 4.2. On the right side of this scheme, there are models involv-
ing continuous component quantities and deterministic interactions. These models are
mathematical and inherently quantitative, since are based on a purely denotational se-
mantics [8]. They are generally based on ordinary differential equations (ODEs) and/or
differential algebraic equations (DAEs). On the left side of the scheme the discrete-value
models can be found. If time is treated as a discrete quantity, we have either quali-
tative executable models based on Finite State Machine representations or stochastic
models such as Discrete-Time Markov Chains (DTMC) or Markov Decision Processes
(MDP). For time quantitatively abstracted, we have executable models based on Timed
Automata representations or, if probability is considered, stochastic approaches based on
the Chemical Master Equation (CME). This can be converted into an executable model
using Continuous-Time Markov Chains (CTMC). Lastly, Hybrid Models, such Hybrid
Automata or Process Algebraic Techniques, mix discrete and continuous representation
for both variables and time dynamics.

4.2 Specification of Biological Properties

The specification of interesting biological properties is of course dependent on the chosen
modeling approach. It is possible to distinguish between qualitative and quantitative
properties specification.
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4.2.1 Qualitative Properties

These are properties for which the information on time is considered implicitly. We have
described in chapter 3 two of the most prominent temporal logic, i.e. Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL). LTL and CTL suffice to express the
major part of the interesting biological property, that can be classified as follows (see [9]):

1. reachability properties. They express reachability of specified concentration levels in
given model variables, and can be used for expressing global bounds of attainable
concentrations;

2. temporal ordering of the events. These properties may be used to capture the quali-
tative temporal patterns in the dynamics of the inspected variables;

3. variable correlations. These properties are intended to catch cooperation and depen-
dencies in biological processes, such as co-expression of certain genes.

4. stability properties. They can be used to analyse the presence of stable concentration
levels for a certain species.

5. monotonous trends. These are very important properties in biology, since monotonic-
ity captures strong increasing or decreasing dynamics of individual species.

6. oscillation. These properties capture behaviours that are typical of biological systems
(such as circadian or ultradian clocks).

It is worth to note that the majority of these properties may be expressed by means
of very simple logic formulae, often involving only state invariants, as described, for
instance, in [9, 124,125].

4.2.2 Quantitative Properties

Quantitative properties involve reasoning on the dynamics of the system over time, such
as the

1. energy consumption rates of the involved reactions;
2. metabolite dynamics, i.e. production/degradation rates of the involved metabolites;
3. equilibrium states of the whole system.

To this aim several formalisms have been proposed that allow to deal with these
quantitative aspects of biological systems. They usually extend the LTL or CTL logics,
and can be roughly divided into deterministic and stochastic logics. The formers are
characterized by a quantitative notion of time, such as the time extension of CTL called
Timed Computational Tree Logic (TCTL) [126] and its simplified version used in the
tool UPPAAL [127].

Stochastic logics allows to specify the probability and performance measures on
Markov Chains. In the case of DTMCs the PCTL logics, a Probabilistic extension of
CTL, can be used [128] It is worth noting that PCTL is a discrete-time logic and thus
the path formulae are interpreted over discrete time steps. To formalize properties of
CTMC, Continuous Stochastic Logic (CSL) [129] has been introduced.

4.3 Related works: an overview

A broad range of different modeling approaches has been successfully applied to the
verification and simulation of biological networks. Table 4.1 shows a comparison between
a significant subset of relevant examples. The description of the property and the model
types are based on the classifications given in sections 4.1 and 4.2.
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Gene Regulatory Networks (GRNs) have been very well studied in the model checking
context because the interaction between components may be easily represented by their
presence/absence, i.e components are represented by a boolean variable and the interac-
tions are represented by logical rules on their values. Following this approach Chabrier et
al. [124] successfully modeled a very large network, involving more than 500 genes. They
defined the Concurrent Transition Systems (CTS), a modeling syntax that permits to
define modular systems, and is after translated in the NuSMV language. They checked
using CTL reachability, stability and temporal ordering properties.

A similar study on a much smaller (although real) biological system has been per-
formed by Bošnački et al. [130] and uses the LTL specification syntax and the Spin model
checker to verify stability properties.

Lastly, a Petri Net approach that integers metabolic pathways knowledge and GRNs
has been proposed by Simao et al. [132], and reachability and variable correlation prop-
erties have been explored. However, also in this case the size of the model is small.

When a quantitative approach is chosen, the model dimensions drop drastically. This
is essentially due to lack of knowledge on the parameter values for all the interactions, and
to the increased computational complexity deriving from a large model. Brim et al. [9]
propose a stochastic, continuous-time model of a small regulatory network described by
two equations.

They use CTMC as a modeling language and verify stability properties specified in
CSL using the prominent tool PRISM [139]. An alternative approach is proposed by
Batt et al. [131]: they start from a continuous-variable model described by seven equa-
tion and discretize it using Qualitative Transition System (QTS), a syntax that permits
to assign to each variable a set of inequalities describing its values range. The model is
then translated into the language of the Gene Network Analyzer tool [140] and again into
a NuSMV model. Reachability and stability properties are verified using the CTL syntax.

Reaction Networks (RNs) are maybe the most difficult systems to study since they
are not amenable to a boolean representation as the GRNs. In fact, the information
on the production/consumption rates are essential to their modeling and understanding.
Moreover, the real parameters governing the reactions are often unknown. A qualitative
approach has been proposed in [9], where a continuous variable model of a RN is dis-
cretized using Rectangular Abstraction Transition System (RATS), a syntax based on
an approach similar to the one described by Batt et al. for the GRN. The model is then
converted into a Kripke structure within the tool BioDiVinE [141], and reachability and
stability properties are expressed in LTL.

Bio-PEPA, a new modeling language based on Process Algebra, is proposed by Cioc-
chetta and Hillston [133] to describe biological networks. They use it to quantitatively
model a small reaction network. The Bio-PEPA model is converted into a CTMC, for
which the metabolite dynamics are analysed using the PRISM tool.

The last example involving a RN is described by Ballarini et al. [134], where a small
toy model described by three equations is investigated to detect the presence of oscillation
behaviour. The system is modeled in the PRISM tool using DTMCs and the oscillation
properties are specified using the PCTL language.

The last type of biological system we take into account are the Signaling Networks
(SNs). Also in this case, many approaches have been used. Ghosh et al [135] qualitatively
investigate the equilibrium states of the Notch-Delta signaling system of four interacting
cells using Hybrid Models.

Also Fages et al. [125] qualitatively describe a SN using the BIOCHAM [142] tool.
They investigate reachability, stability and temporal ordering properties of a SN. The
properties are expressed in CTL and the network is modeled as a LTS.

A quantitative approach is described in Heath et al. [136], where they use the tool
PRISM to obtain a quantitative description on a not-too-small SN. They use CTCM to
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model the network and the CSL syntax to investigate on metabolite dynamics. Lastly,
Schivo et al. [137] propose a quantitative approach based on a Timed Automata (TA)
representation. The system may be visually modeled and simulated using the ANIMO
interface [138], and is then translated into a TA that is analysed using UPPAAL. Metabo-
lite dynamics properties are specified using TCTL.

A complete review of all the application of Model Checking to the modeling, verification
and simulation of Biological Networks is out of the scope of this thesis. The already cited
papers of Brim et al. [9], Fisher et al. [8], and Melham [10] offer a comprehensive view
of the state-of-the-art methodologies and techniques. The paper of Chaouiya et al. [143]
describe a the Petri net approach to the analyses of different kind of networks, whereas
the review of Baldan et al. [11] is focused on Petri net application to metabolic networks.
Carrillo et al. [144] review the existing modeling tools.

Nonetheless, also a small subset of examples permits to draw some interesting con-
siderations:

• Gene Regulatory Networks and Signaling Networks are widely studied, whereas Re-
action Networks are less explored;

• model checking is a widely used and invaluable tool for biological systems modeling;
• both quantitative and qualitative approaches are needed to investigate a biological

system, since the type of modeled properties are quite different;
• the size of the modeled systems is generally very small, and a great degree of abstrac-

tion and suitable tools are needed to deal with large models;
• qualitative approaches are generally enough to analyse a large variety of interesting

biological properties;
• interesting qualitative properties may be very simply expressed both in LTL and

CTL.

4.4 Chapter summary

In this Chapter we introduced the concept of executable biology as defined by Fisher
in [8], and we highlighted how the model checking approach is very well suited to fit
this paradigm, both for quantitative and for qualitative analyses. After, sticking to the
classification proposed in [9] we described different classes of strategies, that can be cate-
gorized, based on the granularity of their semantic expressivity in discretecontinous time,
discretereal variable value, and stochasticnon-stochastic representations. Furthermore, we
presented both qualitative and qualitative properties that can be expressed using these
methodologies. Lastly, we presented a brief review of related efforts, describing for each
of the them the methodology type, the extracted properties the model dimension.
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5

Model Checking of Metabolic Network Models

In the first part of this thesis work the Systems Biology paradigm (chapter 2) and the
Model Checking approach (chapter 3) have been described, and the reasons that make the
choice of model checking a proper methodology to investigate on the genotype-phenotype
relationships in Genome-scale Models have been elucidated (chapter 4).

We will describe in this and in the following chapter a framework for the verifica-
tion and simulation of Genome-scale Metabolic Network models by means of
Model Checking techniques. The basic idea relies on considering the reactions of a
metabolic network as processes that try to access concurrently to the shared resources
represented by metabolites. Interesting properties are expressed as safety properties on
states, i.e as invariants or simple Linear Time Logic (LTL) always formulae, and checked
or simulated using the Spin tool. A preprocessing step based on a Flux Balance Analysis
(FBA) approach is described, that is essential to decide the reaction directions and/or to
reduce the model size in a biologically coherent and sound manner. A complete pipeline
for the conversion into a Promela model of a metabolic network, either provided in SBML
format or as a stoichiometric matrix, is built using the Perl language, together with tools
for extracting and analysing in a parallel environment the data coming from the Spin
generated counterexamples. It is described in detail in chapter 6.

The proposed methodology is then successfully applied to the study of a Mendelian
metabolic disorder, namely Primary Hyperoxaluria type I, using a genome-scale metabolic
network model of the human hepatocyte cell. The obtained results are described in depth
together with some considerations on the complexity issues in chapter 7.

To our best knowledge, this approach is novel and original, although perfectly in con-
text with the Systems Biology paradigm and the executable model philosophy that have
been described in chapter 4. Furthermore, we will show that the use of the Model Check-
ing techniques for Metabolic Network analyses is worthwhile and effective, and permits
to obtain invaluable qualitative information on the dynamics of large-scale models for
which the detailed kinetics and dynamic information are still unavailable.

This chapter is organized as follows: in section 5.1 a toy model is described, to give
a first idea of how Model Checking is used to analyse a metabolic network. Section 5.2
addresses the difference between traditional model checking and the behaviour filtering
approach, and their strength and limits. In section 5.3 the translation of a network
into an executable model is described in detail, together with the strategies used for
its abstraction and the reduction of the overall complexity. A Flux Balance Analysis
preprocessing step is also introduced and discussed. In section 5.4 the biological properties
of interest are described, together with the associated invariant definitions. In section
two 5.5 control tools, one based on coupling two processes that communicates through
synchronized channels, one based on defining priorities among reactions, are presented,
and their use to constrain the state space search is explained.
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5.1 Model Checking of Metabolic Networks at a Glance

We start giving an intuitive idea of how model checking works when applied to the
qualitative study of the dynamics of a metabolic network.

To model check a metabolic network, the first step needed is to build an executable
model that preserves the features of the system. A metabolic network may be viewed as
made up by metabolites (the components of the system) whose concentrations is changed
according to the rules represented by the biochemical reactions (the dynamics of the
system). The time is not explicitly modeled, but flows in a stepwise fashion: a reaction
takes place in a single atomic step, if and only if all the metabolites are available. Since
we deal with finite variables, we may assign a value to all the metabolite and let the
network evolve, and we are guaranteed that the associated Labeled Transition System
(LTS) is finite. Hence, we may observe the overall emerging behaviour by tracing the
changes of the variable values in response to the performed reactions.

This idea is better understood with an example. A toy model made of only four

Fig. 5.1. A graphical representation of (a portion of) a LTS modeling a set of four internal (R1
to R4) and one transport (T1) reactions. The involved metabolite concentrations are represented
by the variables: GCext (external glycolate), GC (glycolate), GO (glyoxylate), AL (alanine), GL
(glycine), PY (pyruvate), OX (oxalate). Each state is represented by a circle and identified by
a snapshot, i.e. the set of the variable values. The double circled state is the initial state. Ar-
rows represent transitions between states and are labeled with the actions (i.e. the reactions)
that trigger the state change. The | (or) operation symbol means that different actions may be
executable. Sequence of actions are sometimes represented by comma-separated label sequences
or by a multiplication symbol (representing the same action being executed in all the inter-
mediate states). A terminal state, i.e. a state without a leaving transition, is indicated by a
thick-bordered circle. The Oxalate (OX) concentration is indicated in bold in all those states
where it increases its value. This can occur both in intermediate or in terminal states.

internal and one transport reactions is shown in figure 5.1, together with a graphical
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representation of a part of the associated LTS. A state in the transition system is given
by a snapshot of the variable values, each representing a concentration (in generic units)
of a metabolite. The initial state is the double circled node: all the variables have been
assigned the same initial value. Each path in the graph starting from the initial state
is a different computation, identified by the associated trace. For instance, a computa-
tion leading to the production of eight (generic) units of oxalate is given by the trace
π = T1, T1, R1, R2, R2, R3, R1, R3, R3, R3, R4, R4, R4, R4, R4, R4. Different computa-
tions may lead to the same state and different computations may start from the same
state, being the model intrinsically non-deterministic. However, each computation has
a different associated trace (i.e. a different sequence of actions). Please do note that it
is very straightforward to determine the dynamic behaviour of the system along a com-
putation: the sequence of labels corresponds to the (ordered) set of reactions that took
place, whereas the sequence of states follows at each step the change in metabolite con-
centrations. When no reaction can take place due to the lack of the needed metabolites,
a final state is reached (in figure shown as a thick circled node).

Once the model is defined, we must specify the properties we want to check. What
are the biologically relevant properties that may be interesting to check or deduce from
the model? Referring to the classification that we presented in section 4.2 we may be
interested in the following qualitative properties:

• reachability: does the model produces Oxalate? In case, what is the maximum Oxalate
production and what are the values of the other metabolites?

• temporal ordering: what is the ordered sequence of reactions (if any) that corresponds
to the maximum produced Oxalate?

• monotonous trend: what are the metabolites that are only produced by the network?
And what are the ones that are only consumed?

Furthermore, we may imagine to remove reaction R2 from the network, obtaining a so-
called Knock-Out (KO) model, and then compare the results for the two networks. We
can ask for instance, if the maximum Oxalate is the same or what are the metabolites
that change the most, and which is the sign of this variation.

As will shown in section 5.4 all these information may be extracted using properties
expressed as simple invariants.

5.2 Model Verification and Behaviour Filtering

As outlined in the previous section, there are several interesting properties that can
be defined for a Genome-scale Metabolic Network model. However, an important topic
should be immediately addressed, that is concerned with working on biological models.

First of all, is often important to assess if a biological network is able to satisfy
a property. This is in contrast with the standard automaton-theoretic approach that
we have described in subsection 3.2.1, in the sense that we do not want to ascertain
that the model is free from errors, rather we want to prove that the model is able to
express a required property. In this sense, we are following the concept (widely used
in the context of SAT-based or BDD model checking [91, 145]) of generating a witness
for a property that has been proved to hold in the system. Indeed, if the model is able
to satisfy the required property then an example of a successful computation will be
generated.

The use of a simple trick makes this approach immediately amenable also to the
automaton-theoretic methodology that we have described: since in its standard use the
Non–deterministic Büchi Automaton (NBA) is specified for the negation of the property
that should hold (see figure 3.2), to extract a witness it suffice to negate the property of
interest. In fact, the first negation will be annealed by the innermost negation applied
when building the NBA. In other words, if Φ is the property for which we require a
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witness, we will submit to the model checker the property Ψ = ¬Φ. The checker will
build the automaton for ¬Ψ = ¬¬Φ = Φ. In practice, the extracted counterexample (if
any) will be a witness of the ability of the system to satisfy the property Φ.

The second issue is more delicate. Indeed, for many of the biological properties above
described a single witness is not enough: due to their intrinsic robustness (see chapter 2),
biological systems are usually able to accomplish a function using different paths in the
network. It would be of great interest being able to extract a whole set of witnesses
describing a complete behaviour of the network. This is not a problem, since the Spin
model checker permits to generate all the counterexamples that it is able to find. Indeed,
we are using the model checker to query the behaviour of the model [146]. Since we are
extracting a set of interesting computations from the whole set of the possible ones, we
refer to this operation as behaviour filtering. The information gained from the filtered
behaviours may help both in improving the understanding of the model both in inferring
new properties, thus remaining in the context of the hypothesis-driven approach (see
chapter 2) that is a distinctive feature of the Systems Biology paradigm.

However, this approach, when applied to large models, may cause some problems: fil-
tering out the whole set of counterexamples that represent a behaviour may be practically
infeasible. This is due both to the computational issues related to the state-space explo-
sion problem (see section 3.3) both to the intrinsic difficulty in elaborating a very large
number of computations. The state-space explosion issue is common also to the stan-
dard Model Checking approach. Apart from being tackled with dedicated algorithms,
this problem may be circumvented moving from an exhaustive to a monitoring ap-
proach [9]. That is, instead of perlustrating the whole computation space a sort of
“sampling” is performed that extracts only a subset of the computations of interest. This
is a wide used approach to deal with large models, and sometimes the only feasible one
to have some information on their correctness.

Of course the application of sampling-like procedure raises the problem of the repre-
sentativity of the extracted computations, but some considerations should be done. First,
we are using Model Checking in a different perspective, i.e. as a tool to extract qualitative
information from a model that is representing an already-existing system, i.e. the biolog-
ical one (see chapter 4). Hence the extracted information, although not exhaustive, may
be of great importance because: i) they still permit to describe the dynamic behaviour of
the system and ii) they may be compared with the existing knowledge either confirming
it or, if different, suggesting new hypotheses about the system (and hence the model)
behaviour.

Moreover, both the sampling problem and the issue of dealing with a large number
of counterexamples may be mitigated using the swarm tool proposed by Holzmann et
al. in [122] to tackle the problem of verifying a model too large to be exhaustively
analysed. As will be explained in detail in chapter 6 it is possible to tailor the perlustration
of the computation space by sampling at different depths, and in different portions of
the computation tree. Furthermore, it is possible to specify the maximum number of
extracted counterexamples in each sampling zone. Indeed, a well tuned strategy makes it
possible to extract a great amount of very interesting information from model on which
any other exhaustive approach would have been impossible.

5.3 From a biological model to an executable model

As already described in chapters 2 and 4, a metabolic network model can be considered
as a dynamic system based on the interplay between the contained reactions, which
consume/produce metabolites in a mainly concurrent fashion. The relative amounts of
the produced/consumed metabolites depend on the reactions specific stoichiometry. The
system keeps changing until there are reactions that can take place i.e. until there are
reactants that can be transformed in products by some reactions. Indeed, the reactions
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activity is limited only from the availability of the stoichiometric quantity of the involved
reactants.

The approach that we propose captures all these biological relevant features, and is
based on considering each chemical reaction as a process that tries to access concur-
rently to the shared resources represented by the metabolite concentrations.
Intuitively, when a reaction occurs the reactant concentrations should diminish whereas
the product ones must increase, both according to the reaction stoichiometry. Further-
more, we require that the reactions should take place until there are reactants to use.
This perspective is described in detail in the following sections.

5.3.1 Metabolites

Each chemical compound is represented by a numeric (global) variable, storing the
metabolite concentration (in a generic unit measure). Metabolites that can move be-
tween cellular compartments or can be exchanged with the environment (i.e. involved in
transport reaction) will have a distinct variable for each of the compartment in which they
appear. Metabolite concentrations may assume only integer values, since we are dealing
with integer multiples of the stoichiometric coefficients (that are defined as integers).

5.3.2 Reactions

As described in chapter 2, a metabolic network may contain two kinds of reaction: trans-
port reactions involve the transfer of (usually) a single chemical species to a different
compartment, or its exchange with the external environment. The usual chemical reac-
tions are called internal reactions because they involve only compounds that belong
to the same compartment. Each reaction type should be modeled in a different way:

• transport reactions: each reaction is modeled as a process that tests if the metabolite
variable corresponding to the source compartment is greater than zero and, in this
case, will decrement of one unit its value and increment of one unit the metabolite
variable of the destination compartment. To ensure that this sequence of operations is
executed without any interruption, it must be implemented as an atomic instruction
(see section 3.1.1).

• internal reactions: each reaction is a process that tests the value of the reactants
variables and, if all of them are available in the quantity defined by the reaction
stoichiometry, updates the values of the reactant and product variables. Also in this
case, an atomic clause should be used to ensure the exclusive access of the process to
the needed variables.

5.3.3 Translating the biological model to Promela

With the ideas of section 5.3 in mind, we designed first a näıve translation that captures
in a direct and smooth way the essential features of the model. In the following paragraph,
we will address some drawback of this solution, and give details on the improved, final
implementation that was developed and effectively used on two biological models (see
chapter 7).

The Promela translation has a proctype declared for each reaction and a do statement
to model its repeatability. The test-and-set operation on the variables is obtained with an
atomic clause surrounding the guard and the variable update instructions. An example,
shown in the Promela code snippet 1, involves the reactions of the LTS of figure 5.1.
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/* THE METABOLITE VARIABLES */
byte GC_ext = 2;
byte GC = 0;
byte GO = 2;
byte AL= 2;
byte GL=2;
byte PY=2;
byte OX=2;

/* INTERNAL REACTION N. 1: GC -> GO */
proctype R1(){

do :: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
od

}

/* INTERNAL REACTION N. 2: GO + AL → GL + PY */
proctype R2() {

do :: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1}
od

}

/* INTERNAL REACTION N. 3: GL -> GO */
proctype R3(){

do :: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
od

}

/* INTERNAL REACTION N. 4: GO -> OX */
proctype R4(){

do :: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}
od

}

/* TRANSPORT REACTION N. 1: GC_ext -> GC*/
proctype TRN_R1(){

do :: atomic{(GC_ext > 0) → GC_ext=GC_ext-1; GC=GC+1;}
od

}

/* START THE PROCESSES */
init { atomic{run R1(); run R2(); run R3(); run R4();

run TRN_R1(); } }

Promela code snippet 1: The translation of a metabolic network made of four internal
and one transport reactions. Each reaction is mapped on a distinct process; an additional
process is used for the timeout invariant property specification.

5.3.4 Model abstraction: reducing the complexity

As clearly pointed out in the Spin Manual [12], a poorly designed model may have a deep
impact on the computational complexity. Unwanted processes or variables may deeply
affect the size of the state space, increasing the time and memory required for its ex-
ploration. On the contrary, abstracting the model and keeping it as simple and small
as possible (building the “smallest sufficient model”, as called by Holzmann) has a deep
impact on the feasibility of the verification/exploration steps. The Promela implemen-
tation of code snippet 1 relies on defining a process for every reaction. But this choice
may have sense only for very small models, for two reasons: first, Spin has a limitation
on the max number of processes that may be run at the same time (i.e. 255, see [12]).
This may result in a severe constraint on the number of representable reactions, and this
is not acceptable since metabolic network models typically include a number of reactions
larger than 255. Second, and most important, the presence of a large number of processes
results in an unwanted increment of the computational burden, condition that is never
desirable when working with large models.

Hence, we decided to adopt another approach, building a new, more abstract, model
that relies on the definition of a single process containing a single do statement, with each
branch corresponding to a distinct reaction. The reaction itself is modeled as before, i.e.
as an atomic test-and-set of the variables. The main difference with the previous model
is that reactions are not modeled as single processes, but as single instructions, each
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one competing for (not-deterministic) execution inside the do statement (see subsection
3.1.1). The same principle also holds when modeling the network compartments, if any.
The first idea was to design each compartment as a distinct process. However, this choice,
although reflecting the original model structure, introduces only additional complexity
while not improving the functionalities. Hence, it was rapidly abandoned.

To reduce complexity, a second relevant issue must be addressed: the choice of the
initial value of the metabolite variables. The model itself is finite, and it will evolve
until there are metabolites to transform. But the number and type of possible executions
clearly depends on the available metabolites: indeed, higher the initial values higher
the number of possible different states to be explored. Since a genome scale metabolic
network usually contains a large number of metabolites, often in different compartments,
the number of variable to define may be very high (see chapter 2). Keeping the number of
different states as low as possible, while guaranteeing the full functionality of the model,
is mandatory. The approach we decided to use is based on a fundamental assumption: we
are mainly interested in exploring the behaviour of the system in terms of the executed
reactions and of the relative metabolite consumption/production rather than reasoning
on the values themselves. The initial values are then chosen taking into account the
minimal amount that is needed to make each reaction of the model executable at least
once. This minimal amount is simply the maximum (w.r.t. all the reaction) stoichiometric
coefficient of each metabolite. This is a good choice because: i) the reaction stoichiometry
usually involves only small integer numbers; ii) it assures that in principle every reaction
can be used at least once.

Another way to reduce the model size takes into account the presence of transport
reactions that move metabolite from or to the outside environment, although it requires
some care and an a priori knowledge of both the model at hand and the properties that
will be defined. Indeed, if the external metabolites are not included in the properties to
check, then we are not interested in modeling the transport to/from the environment.
Since a Promela model is a finite and closed one (i.e. all the sources of input and all
behaviours are completely specified [12]), the net effect of the transport reactions is
only to sum/subtract the total values of the involved external metabolites to/from the
corresponding internal variables. Hence, unless we need to specify conditions on the
external metabolites, the corresponding transport reaction may be removed (together
with the external metabolites) thus lowering the overall complexity of the model. The
initial value of metabolites that are transferred from the external environment into the
system, might be directly assigned as the initial value of the internal corresponding
variable (as in the Promela code snippet 2).

The last topic concerns the definition of properties, in particular of the state invari-
ants. Indeed, for small models is easy to define a monitoring process containing an assert
clause. Due to the inner non–deterministic choice of the instructions and to the exhaus-
tive approach, the monitoring process will be interleaved in all the possible combination
with the main process. However, this choice can in principle double the state space (see
page 386 of the Spin Manual [12]). This is not an issue in small models, but may be
relevant for larger ones. Hence, a clever implementation of the property checking code
may significantly change the overall verification process, as described in Section 5.4.6.

Concluding, the modeling strategy here described is biologically plausible, and cap-
tures the key properties of the metabolic networks structure and dynamics:

1. the production/consumption of the network metabolites is represented by the incre-
ment/decrement of the corresponding variables;

2. the reaction stoichiometry is guaranteed by the exclusive access to the metabolite
variables;

3. the reaction dependence is modeled by the presence/absence of the needed metabo-
lites;

4. the concurrency of reactions is guaranteed by non-determinism.
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/* THE METABOLITE VARIABLES */
byte GC = 2;
byte GO = 2;
byte AL= 2;
byte GL=2;
byte PY=2;
byte OX=2;

/* INTERNAL REACTION N. 1: GC -> GO */
/* INTERNAL REACTION N. 2: GO + AL → GL + PY */
/* INTERNAL REACTION N. 3: GL -> GO */
/* INTERNAL REACTION N. 4: GO -> OX */

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1 }

:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 2: The same example metabolic network of snippet 1, but
translated using a single do-statement rather than multiple processes

In the Promela code snippet 2 the same internal reactions contained in the example
code of the snippet 1 are shown, but modeled this time as a single process. The transport
reaction moving GCext from the outside environment and the GCext variable itself have
been removed, whereas the value of GCext was directly assigned to the GC variable.

Please note that the techniques here described have been used for building the exe-
cutable models used in this thesis work (chapter 7).

5.3.5 The importance of a Flux Balance Analysis step

We have implicitly assumed right now that all the reactions in the network have a unique,
defined direction. However, this is not always the case: first, in large-scale models, infor-
mation on the Gibbs free energy associated to a reaction (and hence to its direction, see
subsection 2.3.3) is often missing. Second, some reactions are inherently bi-directional. Of
course, bidirectional reactions may add a great load of unwanted computational burden,
since each of them may result in a cycle in the corresponding LTS. This is a very delicate
issue, that must be carefully addressed.

To this aim, we have devised a novel approach that exploit the powerful Flux Balance
Analysis (FBA) method to decide the directions of potentially bi-directional reactions.
As explained in subsection 2.3.4, the Flux Balance Analysis approach used in [72] deter-
mines the reaction directions in a way that has a strong biological meaning. Indeed, the
minimization process is based on the assumption that the modeled organism should ac-
complish its biological functions with the minimum waste of energy, and the steady-state
flux distribution is calculate for a precise metabolic object. When more than a metabolic
function exists, the mean of the distributions of the fluxes across the l metabolic objec-
tives may be considered, as already described in subsection 2.3.4.

Thus, the direction of each reaction may be decided taking into account the sign of
the corresponding flux, i.e. for each reaction ri, with associated average flux v̄i:
• if v̄i > 0, the reaction will have its normal direction (i.e. the one which is contained

in the stoichiometric matrix).
• if v̄i < 0, the direction will be the inverse one, i.e. products and reactants will be

exchanged (i.e. the i− th row of the stoichiometric matrix will be multiplied for −1).
• if v̄i = 0, different strategies may be considered. A zero-flux indicates that the corre-

sponding reaction is never used, hence it is possible to remove it from the network.
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Otherwise, the choice may be guided by some biological knowledge. Lastly, it is pos-
sible to decide randomly its direction.
We call network pruning this combined process of direction decision and reaction

removal. It is worth noting that the pruning step is of capital importance when dealing
with large models: in fact i) pruning permits to avoid the cycles in the LTS induced by
the presence in the network of bi-directional reactions, and ii) it has the secondary but
fundamental effect of reducing the model size in a biologically consistent manner. Using
this novel, combined approach of FBA and model checking also very large metabolic
network models are amenable to qualitative analyses.

In this thesis work, we decided to perform a network pruning in which the unused
reactions were removed. This choice was made for all the tests we performed on real
problems (chapter 7).

5.4 From biological features to formal properties

Once introduced the model specification, we have to define the formal properties (i.e. the
behaviours) we want to check or extract. As already outlined in the example of section 5.1,
several interesting questions about metabolic network models may be asked. We will now
describe in depth the process of translation of the biological properties into the formal
tools we have introduced in chapter 3. It is worth noting that a wide range of interesting
biological features may be expressed using the Promela assert instructions (i.e. state
invariant specifications) that can be verified with a simple reachability analysis. Only in
one case a LTL formula, although very simple, might be used to speed the verification
process (see subsection 5.4.6).

We will follow the property classification proposed in section 4.2 when describing the
properties that we implement in our framework. Please do note that in this classification
the set of the reachability properties refers to the ones expressing the possibility for the
network to reach a fixed concentrations of a species. This does not necessarily correspond
to the concept of reachability of a state into the associated LTS. To avoid confusion we
call the former Concentration reachability properties, since they are mainly concerned
with the ability of the network to produce particular metabolite concentrations (such as
the minimum or the maximum one). Before detailing the set of the expressible properties
and the detail of their implementation in Promela or LTL, we introduce an important
instruction, namely the timeout, that permits to defer the verification of an assert when
a deadlock state is reached.

5.4.1 The timeout clause

Once an invariant property is specified (using the assert instruction) and the verification
is started, the model checker Spin will verify whether the specified invariant holds in
each of the states. That means that a counterexample is generated as soon as a state
not fulfilling the specified property is found. But in the metabolic network context, it is
often more interesting to investigate the concentration values obtained when the final,
”steady-state“ condition of the network is reached after the initial perturbation caused
by the input concentration (i.e. the initial values) of the metabolites. To this aim, the
invariant check can be performed when a deadlock state is reached by the model.
A deadlock state corresponds to a situation in which all the reactions that may occur
have already took place, and nothing more can happen due to the lack of the needed
metabolites.

This idea is implemented using the Promela timeout instruction. This instruction
becomes executable only when no other instruction in the whole Promela program is
executable, i.e. when a deadlock state is reached. Hence it is possible to trigger the
invariant check only when the deadlock condition is reached. An example of timeout
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/* THE METABOLITE VARIABLES */
byte GC = 2;
byte GO = 2;
byte AL= 2;
byte GL=2;
byte PY=2;
byte OX=2;

/* INTERNAL REACTION N. 1: GC → GO */
/* INTERNAL REACTION N. 2: GO + AL → GL + PY */
/* INTERNAL REACTION N. 3: GL → GO */
/* INTERNAL REACTION N. 4: GO → OX */

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1 }
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}

:: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}
:: timeout → assert(OX <= 2);

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 3: The same code of snippet 2, here including an assert clause
in combination with a timeout instruction. The timeout instruction is used to trigger the
assert only when all the other instructions are blocked.

invariant specification is given in the Promela code snippet 3. Its application to the LTS
of figure 5.1 would result in the extraction, from the computation space, of only those
states in which: i) the oxalate is above the initial value and ii) no reaction can take
place (the bold bordered state of figure 5.1 is one of them). Without the timeout clause,
instead, the filtering process would generate a counterexample for each of the intermediate
states in which the oxalate concentration increases (indicated in Fig. 5.1 with the OX
state variable written in bold). Of course, the timeout (deadlock) condition forces the
metabolic network to consume all the available metabolites. This may correspond, in a
biological context, to the waste of some energies in the so called futile cycles. However,
this effect is only marginal, and can be easily deduced from the computation analysis.

5.4.2 On limits and strengths of an approximated verification strategy

As already discussed in section 5.2, working with genome-scale models may be very
challenging, due to their size and intricacy, and approximated strategies are sometimes
the only possible approach to have useful insights on their dynamics.

When an approximate strategy is used, two different issues must be took into account,
i.e. the representativity of the extracted behaviours and, at the opposite, the meaning of
a verification step that does not find a counterexample.

For what concerns the sampling process, by no means it is possible to precisely know
how many states might be generated for a model. This is essentially due to the tech-
niques used for the verification process, i.e. the on-the-fly generation of the LTS, the
partial order reduction and the nested search algorithms [12]. Hence, it is impossible to
quantify the explored portion of the space and assess the representativity of a set of coun-
terexamples. However, tests on small and ad hoc built models [122] have shown that the
approximated swarm approach supported by Spin performs very well in the verification
context. Since we are interested in finding more than one counterexample, an intelligent
extraction strategy should be carefully devised as will be described in chapter 6. With
some precautions, a filtering procedure may be finely tuned to gather a large number
of interesting counterexamples within the limits of a reasonable trade-off between the
computational expense and the obtained results.
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On the other hand, when an exhaustive search ends without finding counterexamples
we are assured that the specified property holds in the model. If an approximate strategy
is used, it is not possible to draw a sharp conclusion. In the software and hardware
verification context, it would be of course a big issue, since nothing could be stated
about the correctness of the model. However, in the biological context we have to take
into account other conditions. In fact, as described in chapter 2, biological systems are
robust. But a system would not be so robust if relying on a combination of events that
has a very low chance of occurring. Hence, if a counterexample is not found at the end
of an approximated search, it is very unlikely that an exhaustive one will find it.

As introduced in chapter 4, the verification of biological models requires a shift of per-
spective from the traditional model checking view. Indeed, in the hardware and software
verification context, the lack of an exhaustive answer can invalidate the whole search.
Instead, in the biological context even an approximated result may be of great interest.
This inversion is rooted in the crucial difference between the biological system and the
hardware or software ones: the latter may contain design errors that should be exhaus-
tively detected, whereas a biological system already exists and is correct by default. The
biological model is built to verify that the hypotheses made on its functioning are able
to catch some features of the underlying, partially unknown, mechanisms. Hence also
partial, qualitative information may be essential in elucidating the possible dynamics of
the modeled system.

In conclusion, we are trading a sure - but impossible to obtain - answer with a less
accurate, but available one.

5.4.3 Concentration reachability properties

We will describe now the properties that may be used to extract interesting information
about the metabolite concentrations. All of them are specified using the invariant con-
struct provided by the Promela language, i.e. the assert instruction. Apart from knowing
if the network is able to produce a metabolite, is usually very important to have the
details of how this target is reached. Hence, the list of the performed reactions, as well
as the final concentration of the other metabolites should be extracted: luckily, these
information are very easily obtained from the counterexample files that Spin generates
(see chapter 6).

Production or consumption of a given metabolite

The simplest property that may be defined involves the ability of a network to produce/-
consume a metabolite. This is readily obtained specifying as invariant the negation of the
desired behaviour (see section 5.2): in fact, if we want to know if a given metabolite is
produced, we should specify as an invariant that the value of the metabolite concentration
should be always not greater than the initial value. That is:

Property Definition 1 Production of a metabolite
Let M0 be the initial value of the concentration of a metabolite M . We want to check the
property:

Φ = ♦(M > M0).
The property passed to the checker is:

Ψ = ¬Φ = ¬(♦(M > M0)) = �(M ≤M0).

The extracted counterexample (if any) will be a witness of the ability of the system to
satisfy the property Φ, i.e. to produce an amount of metabolite M greater than the initial
value M0.

A similar property may defined for the consumption of a metabolite: we require that
the value should be always not lower than the initial value. That is:
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Property Definition 2 Consumption of a metabolite
Let M0 be the initial value of the concentration of a metabolite M . We want to check the
property:

Φ = ♦(M < M0).
The property passed to the checker is:

Ψ = ¬Φ = ¬(♦(M < M0)) = �(M ≥M0).
The production/consumption properties can also be used with a timeout clause. How-

ever, this corresponds to a more stringent request on the network behaviour, since it is
stating that the final value of the metabolite should be greater (for the production) than
the initial one. Of course the satisfiability of the property in an intermediate state (i.e.
without the timeout clause) does not imply the satisfiability of the property in the final
state, since a metabolite that can be both produced and consumed by the network does
not necessarily accumulate in the final states. The same holds for the consumption of a
metabolite.

This strategy may of course be used both to extract a single counterexample, i.e. a
witness of the ability of the network to express the required property, or to filter out a
behaviour, i.e. a set of counterexamples describing in more detail how the network is able
to fulfill it.

Maximum or minimum concentration of a given metabolite

A more interesting feature is the ability of a network to reach a maximum or minimum
concentration of a metabolite. We will describe the first the strategy to obtain maxima.
Since an a priori knowledge of a possible maximum value is not available, we can not
directly use the approach described in Definition 1. Rather we implement an iterative
extraction strategy (similar to the one described in [9]). At first, a behaviour filtering step
is performed as described in Definition 1. The metabolite maximum value is extracted
from the obtained counterexamples. This value is used to start another extraction step,
with the same strategy, and the whole process is performed until no counterexamples are
found.

Property Definition 3 Maximum of a metabolite
Let M0 be the initial concentration value of the metabolite M , and Mi−1 the maximum
reachable concentration of M obtained at the (i− 1)-th step. At the i-th step the required
property is:

�(M ≤Mi−1)
If a counterexample is found, then extract the maximum concentration value Mi and start
again the process.
Else the maximum value is given by

Mmax = Mi−1.

Extracting more than a counterexample at each step obviously speeds up the whole
process. Since the initial values of the model are finite and the model itself is finite, a
maximum will be obtained in a finite number of steps. Moreover, in the biological context
it is often not so relevant to get the actual absolute maximum, but also a near-to value
will be of the same interest.

The maximum search may be also performed using the timeout clause, although it
should be noticed that this will represent a more stringent request on the network be-
haviour. When searching for a maximum concentration of a metabolite at timeout (i.e.
at the final state reached from the network) an a priori knowledge of the metabolite
behaviour may be useful. Indeed, for metabolites that can be only accumulated by the
network, the maximum search strategy above described may be directly applied, and the
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timeout value is guaranteed to be an absolute maximum. On the contrary, if a metabolite
is both produced and consumed by the network (i.e. its dynamics is not monotonically
increasing) the timeout search may result in a local maximum value, since the timeout
favours metabolite consumption (when possible). Hence, if the metabolite is both pro-
duced and consumed by the network, or if an a priori knowledge of its behaviour is not
available, a two-step approach may be used: the first with the timeout, to establish the
(maybe local) maximum and a subsequent one without the timeout either to confirm it,
or to get the absolute one.

The minimum search is based on the same techniques above detailed. Hence, a generic
extraction step is described as follows:

Property Definition 4 Minimum of a metabolite
Let M0 be the initial concentration value of the metabolite M , and Mi−1 the minimum
reachable concentration of M obtained at the (i− 1)-th step. At the i-th step the required
property is:

�(M ≥Mi−1)

If a counterexample is found, then extract the minimum concentration value Mi and start
again the process.
Else the minimum value is given by

Mmin = Mi−1.

Also in this case, the whole process may benefit from a behaviour filtering approach
to speed up the search and lower the number of required iterations. In contrast to the
maximum search, using the timeout clause may sometimes be mandatory: in fact for
metabolites that are only produced by the network a simple minimum search will find
only the initial states (i.e. the initial values), that are not really informative. Instead,
with a timeout is possible to find the more interesting, final-state minima.

Satisfaction of a Metabolic Objective

Another set of interesting behaviours involves the ability of the network to simultaneously
satisfy a set of concentration constraints, i.e. the so-called Metabolic Objectives. As said
in section 2.3.4, they represent metabolic functions that the network should be able to
perform. A Metabolic Objective is usually expressed as a constraint on the simultaneous
production and/or consumption of a set of metabolites. The corresponding property may
be easily obtained combining the conditions on the production/consumption of the single
metabolites (expressed as described in the Property Definition 1 and 2) with the boolean
logic operator ∧ (and). We describe hereafter this approach (similar to the one used in
Chabrier et al. [124]).

Property Definition 5 Satisfaction of a Metabolic Objective
Let m be the total number of metabolites in the network, Mj0 the initial concentration of
the metabolite j, and Mj its generic concentration value, with {1, .., j, .., l} ⊆ {1, ..,m}
is the subset of the involved metabolites. The property for the j-th metabolite is defined
either as pj = ♦(Mj < Mj0) or pj = ♦(Mj > Mj0)
We want to check the property

φMO = (p1 ∧ ... ∧ pj ∧ ... ∧ pl)

The property passed to the checker is:

ΨMO = ¬ΦMO = ¬(p1 ∧ ... ∧ pj ∧ ... ∧ pl).

That is

((¬p1) ∨ ... ∨ (¬pj) ∨ ... ∨ (¬pl))
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and

¬pj =
{
�(Mj ≥Mj0), if pj = ♦(Mj < Mj0)
�(Mj ≤Mj0), if pj = ♦(Mj > Mj0)

∀j ∈ {1, .., l}

Also for the validation of a Metabolic Objective it is possible to extract a single coun-
terexample, i.e. a witness of the ability of the network to fulfill the required property,
or to filter out a whole behaviour describing the different ways in which the property
is satisfied. The timeout clause, as usual, expresses a tighter constraint on the network
behaviour, since it requires the network to satisfy the metabolic objective in the final
states.

5.4.4 Monotonous trend properties

Another interesting feature of a network is the ability to monotonically consume or
produce a metabolite. This is of course a more stringent constraint than the simple pro-
duction/consumption above described. Since the presence into the network of reactions
that both consume and produce a metabolite does not imply the ability of the network
to eventually use them, a formal verification might me be used. This property may be
easily implemented introducing a boolean variable, that is used to flag the inversion in
trend of a metabolite value. The instruction that updates the flag value is placed inside
the atomic clause surrounding each reaction changing the metabolite trend in the inverse
direction with respect to the desired one. If we are interested in verifying the monoton-
ically increasing (decreasing) production of a metabolite, we will place the flag update
instruction only in the reactions that consume (produce) the metabolite.

/* THE METABOLITE VARIABLES */
....

/* THE FLAG VARIABLE */
bool flag_monotonic = true;

/* THE PROPERTY TO CHECK */
#define GO_monotonic (flag_monotonic==true)

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
/* THE REACTION DECREASING THE GO METABOLITE CHANGES THE FLAG VALUE */

:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1; flag_monotonic=false;}
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}

od
}

/* START THE PROCESS */
init{run REACT_process()}

/* THE LTL FORMULA */
ltl Monotony_check { always GO_monotonic}

Promela code snippet 4: The implementation of the increasing monotonicity check
for the GO metabolite. The assert is expressed as an LTL always formula.

This property can be implemented as a simple assert stating that the flag value
should remain unchanged in all the reachable states. However, if we are not interested
in the generated counterexample, we may use a more efficient approach (as explained in
section 5.4.6) and use an always LTL formula, as shown in Promela code snippet 4. The
monotonicity check property may be defined as follows:

Property Definition 6 Monotonicity
Let flag monotonic be a boolean variable, placed in the atomic clause surrounding the
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reactions that decrease (respectively: increase) the concentration of a metabolite M .
The check for increasing (decreasing) monotonicity is given by the property:

Φ = �(flag monotonic == true).

It is worth noting that in this case we are using the checker in a traditional way, i.e.
simply specifying the property that we want to be verified by the model. Lastly, in the
monotonicity check the timeout clause has no sense, and its use in this context has not
been further investigated.

5.4.5 Temporal ordering properties

Linear Time Logic does not account for an explicit description of time. Hence it is not
possible to express properties that directly address the relative timing of the events.
However, it is still possible to extract relevant biological information on the temporal
behaviour of the system by extracting the ordered sequences of reactions from the coun-
terexamples. Assuming that each reaction takes places into a generic unit of time, the
sequences of the performed instructions may give information on the relative ordering
that the reactions should have to reach a specific network condition (see subsection 6.1.5).
Furthermore, as described in section 5.5 it is possible to define some tools that constrain
the ordering of a subset of transitions while executing the model.

5.4.6 Reducing complexity with clever choices

As already introduced in subsection 5.3.4 a great effort must be spent in the model
abstraction process, since a good model can drastically reduce the effort needed for
verification. Among the different aspects that should be considered, a clever choice of how
coding the property to check may be essential. We use essentially safety properties that
can be expressed as state invariants. However, the different ways in which invariants are
declared may strongly affect the overall computation. We take into account three different
strategies to express the same property, and we well briefly review their strengths and
limits:
1. a monitoring process. This is the simplest way to check an invariant: an assert is

placed in a process that is run in parallel with the system one (see Promela code
snippet 5). Due to the inner non–deterministic choice of the instructions and to the
exhaustive approach, the monitoring process will be interleaved in all the possible
combinations with the main process. However, this choice can in principle double
the state space (see the Spin Manual [12]). This is not an issue in small models, but
may be relevant for larger ones. Moreover, when an approximated search is used,
the explored paths may not contain the monitoring process, with two net effects:
i) potentially more time is needed for the verification, since the assert will not be
triggered until the monitoring process is executed; ii) it may become difficult to
ascertain if an empty search is due to the property effectively holding or to an unlucky
choice of the process interleaving. The only strength of this approach, in our context,
relies in the easiness of its use, since there is no need to put the assert instruction in
a special place.

2. an inline assert. Here we may distinguish two cases. If the invariant verification is
performed at timeout, then it can be placed in the do loop, as shown in the Promela
code snippet 2. Indeed, the timeout clause ensures that the assert will be triggered
only when no other reaction in the do cycle is executable. Otherwise, the assert can
be placed into the atomic clauses of the reactions of interest, i.e. the reactions that
involve the metabolites contained in the assert itself, as shown in 6. Although this
approach requires the knowledge of the right place for the assert, it is the safest one:
in fact, the atomic clause ensures that the assert is triggered as soon as the reaction
has took place. Since the assert refers to the metabolites involved in the reaction, we
are sure that we are checking their value at the right moment.
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3. a LTL formula. A third possible approach is shown in 7. Here, instead of using an
assert clause, we specify an LTL formula stating that the property of interest should
be always true. To this aim, we use the always operator defined as in subsection 3.1.2.
The LTL formula is translated into a Promela never claim, i.e. an automaton that
is executed in synchronous product with the model LTS (as explained in subsection
3.2.1). In this case the property is checked before and after the execution of each
instruction. A never claim constrains the generation of the state space to only those
executions that may violate the property (see [12]). Hence it may detect more rapidly
a property violation, but does not generate all the witnesses that are generated with
the other strategies above described.

Hence, we rely on the inline assert strategy whenever we want to extract a witness
or a whole behaviour, since we are interested in the generated counterexamples. Instead,
we use the LTL formula strategy when we want only to verify if a property holds, but
we do not care about counterexamples (as for the case of the monotony check see section
5.4.4). Please do note that when using the inline assert strategy without the timeout,
only a subset of all the possible counterexamples is generated: it contains the executions
in which a combination of the instruction without the inline assert eventually leads to the
instruction with the assert. To obtain a larger set of behaviours including, for instance,
more than one use of the instruction with the assert interleaved by various combinations
of the other instruction without the assert, another strategy may be used: in this case
the assert should be specified inline also in all other instructions, event though they do
not alter the variable monitored by the assert.

/* THE METABOLITE VARIABLES */
....
byte OX=2;
....

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1; }
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}

od
}

proctype MONITOR_process() {
assert(OX <= 2);

}

/* START THE PROCESSES */
init{atomic { run REACT_process(); run MONITOR_process } }

Promela code snippet 5: Invariant checking strategy n. 1. The assert is placed into a
monitoring process, that is interleaved with the one containing the reactions.

5.5 Control tools: working on transitions

In this section we describe the technique we have designed to constrain the computa-
tion space exploration to only some interesting portions. These strategies are based on
controlling the transitions that the checker will generate and explore during verification.
These tools may be very useful, for different reasons: i) they permit to generate models
that are more similar to their biological counterpart, and ii) they allow to perturb the
system, simulating conditions that are different from the normal ones. The model checker
we decided to use in this thesis work, e.g. Spin, and the formal techniques on which it
is based (e.g. the automaton-theoretic approach described in subsection 3.2.1) do not
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/* THE METABOLITE VARIABLES */
....

byte OX=2;
...

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1; }
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1; assert(OX <= 2);}

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 6: Invariant checking strategy n. 2. The assert on the OX
concentration is placed inline, in the atomic clause surrounding the reaction involving
the OX metabolite

/* THE METABOLITE VARIABLES */
....
byte OX=2;
....

/* THE PROPERTY TO CHECK */
#define OX_increase ((OX <= 2))

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1;}
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1;}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1;}

od
}

/* START THE PROCESS */
init{run REACT_process()}

/* THE LTL DECLARATION */
ltl Invariant_check { always OX_increase}

Promela code snippet 7: Invariant checking strategy n. 3. The property involving the
OX concentration is defined as a constant with a preprocessor directive. The always LTL
formula, named Invariant check, is specified at the end of the Promela program.

permit to directly express properties on the transitions between states. That means, for
instance, that is not possible to remove from the state space all those computations that
not involve reactions in which we are interested. However some “tricks” may be used to
force the executions along interesting paths: we implemented two approaches, one based
on the definition of a synchronized control process running in parallel with the principal
one, and a second that is based on defining subsets of reactions with different priorities.
Of course, both these techniques may be used together with the property verification and
behaviour extraction strategies that have been previously described.

5.5.1 Synchronized processes

Sometimes may be crucial that a specific reaction (or a set of reactions) should be ex-
ecuted as soon as possible. This may be due to some biological knowledge stating, for
instance, that a reaction is catalyzed by a very strong enzyme and therefore should take
place as soon as all the needed metabolites are present. Since we have no direct con-
trol on the choice of the next transition that the model checker will explore, we decided
to partially circumvent this problem coupling the execution of the main process with
another one running synchronously with it. This “control” process will direct the execu-
tion of the non–deterministic one, checking at each step if the reaction of interest may
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take place. If this is the case, the reaction is performed, and after the control returns
to the main process where one of the possible other reactions is non-deterministically
chosen. This strategy is implemented using synchronization channels, i.e. a handshaking
communication between the two processes. The reaction of interest is contained in the
control process, and is executed only if all the metabolites are available. At each step
the control process will try to execute the reaction, and after it will return the control
to the main process. The details of the implementation are given in the Promela code

/* THE METABOLITE VARIABLES */
byte GC = 2;
byte GO = 2;
byte AL= 2;
byte GL=2;
byte PY=2;
byte OX=2;

/* CHANNELS AND MSG FOR THE SYNCHRONIZATION PART*/
chan R_goes_chan[2] = [0] of mtype; // An array of two channels.
chan S_goes_chan = [0] of mtype; // A channel
mtype token; // the token passed on the channels.

/* THE REACTION PROCESS */
proctype R_process() {

do
/* INTERNAL REACTION N. 1: GC → GO */
:: atomic{ R_goes_chan[((GC > 0) -> 1 : 0)]?token → GC=GC-1; GO=GO+1; S_goes_chan!token}
/* INTERNAL REACTION N. 3: GL → GO */
:: atomic{ R_goes_chan[((GL > 0) -> 1 : 0)]?token → GL=GL-1; GO=GO+1; S_goes_chan!token}
/* INTERNAL REACTION N. 4: GO → OX */
:: atomic{ R_goes_chan[((GO > 0) -> 1 : 0)]?token → GO=GO-1; OX=OX+1; S_goes_chan!token}

od
}

/* THE CONTROL PROCESS */
proctype S_process(){
atomic{

do
::S_goes_chan?token; if

/* INTERNAL REACTION N. 2: GO + AL → GL + PY */
:: ((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1
:: else;
fi;
// THE CONTROL IS PASSED BACK TO THE REACTION PROCESS
R_goes_chan[1]!token;

od
}
}

/*ANTI-DEADLOCK PROCESS, ACTIVATES S_PROC*/
proctype Once_process(){

S_goes_chan!token;
}

/* START THE PROCESSES */
init{

atomic{
run Once_process(); // runs first the Once_process to avoid deadlock
run S_process();
run R_process();

}
}

Promela code snippet 8:

snippet 8. Three process are now present: the principal one, called “R process”, contain-
ing all the reactions that should be non-deterministically chosen; the control one, called
“S process”, containing only the reaction of interest; and the “Once process” containing
the first activation of the channel. This last process is essential to avoid an initial dead-
lock state. In fact, the principal and control processes may communicate only through a
synchronous handshake: this means that one process should be sending and the other one
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receiving, or vice-versa. However, in the first state they are both in a receiving state. The
Once process passes the token to the control process, and then terminates. The control
process contains the reaction of interest, that is executed if all the needed metabolites are
present. After, the control is passed to the main process. As before, this process contains
a do statement, expressing the non-deterministic choice between the contained reactions.
However, it may happens that the selected instruction is not executable due to the lack
of some metabolites. To avoid deadlocks, the receiving instruction may be executed only
if all the metabolites are available: in fact, only in in this case the logical expression in
the receiving clause will evaluate to one, thus matching the channel array id of the send.
In all other cases it will evaluate to zero: this index corresponds to a dummy channel
expressly built to deflect handshake attempts that should fail.

Of course, this approach may be used together with the verification/filtering tech-
niques described in section 5.4. However, the property instructions must be placed with
some care: to be sure of their executability they should be placed before a synchronization
point (i.e. before a write instruction). Hence, the best place for an assert clause is in the
S process, right before it passes back the control to the main process: this guarantee that
it is evaluated at each cycle of execution. The flags for the monotonicity check should
be placed as usual in the atomic clause surrounding the reaction of interest, but before
the token passing, that should be the last instruction. Instead, a timeout clause may be
safely placed as before at the end of the do cycle in the main process: if no reaction is
executable when the control passes back to the main process, then the system is in a
deadlock state that will trigger the timeout.

This strategy can be used both to simply constrain the execution space, filtering
out the more meaningful behaviours, both to perturb the model. For instance it can
be used to simulate the expression, suppression or over-expression of a gene involved in
the production of an enzyme, that in turn controls presence, absence or over-usage of a
reaction, as briefly described in the following sections.

Switching Reactions on/off

The handshaking strategy above described may be used to specify a reaction that should
always take place in a normal model (usually called Wild Type model). Hence, the pres-
ence of the control process assures that the reaction is performed each time the needed
metabolites are available, thus simulating the preference of the Wild Type (WT) model
for the executions in which the reaction of interest works well. A simple change in the
code of the Snippet 8 makes it possible to switch off a reaction: it suffices to put a skip
instruction in place of the reaction execution to simulate a diseased model (called also
Loss of Function or Knock-Out model).

Multiple Execution of a Reaction (Gene Overexpression)

Another biological feature that may be simulated using the handshaking approach above
described is the over–usage of a reaction. This can be obtained altering the ”speed of
the execution“: normally a reaction takes place only once in a single ”time unit“ (i.e. an
execution step). Instead, to represent over-expression, a reaction is performed as many
times as possible in a single time unit, and this process is limited only by the availability
of the right amounts of the needed metabolites. This is obtained simply substituting a
do cycle to the if block in the controller process, as shown in the Promela code snippet
9. With this construct, the essential behaviour of an enzyme over-expression is modeled:
the correspondent reaction takes place more rapidly than in a normal system, provided
that the needed metabolites are present.
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/* THE CONTROL PROCESS */

proctype S_process(){
atomic{

do
::S_goes_chan?token; do

/* OVEREXPRESSION OF REACTION N. 2: GO + AL → GL + PY */
:: ((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1
:: else-> break;
od;
// THE CONTROL IS PASSED BACK TO THE REACTION PROCESS
R_goes_chan[1]!token;

od
}
}

Promela code snippet 9: This code fragment shows how the control process is changed
to implement the multiple execution of a reaction. All other parts remained unchanged
(see Promela code snippet 8)

5.5.2 Reactions with Priorities

The second control technique we have designed deals with the possibility of specifying
sets of privileged reactions, whose execution is favourite with respect to the others. The
reactions in a biochemical model are usually considered as being all equally executable,
and are essentially constrained only by the availability of the needed substrates. However,
this assumption may lead to neglect interesting features of the biological systems. In fact,

Fig. 5.2. Building priority sets. Priorities are usually defined between pair of reactions. Starting
from the pairwise relationships a directed graph is build. A priority set for a node (i.e. a reaction)
contains all the direct successor of the node itself. Nodes without successors have an empty
priority set. A reaction with an empty priority set may be always executed. A reaction with a
not-empty priority set may be executed only if all the reactions in its priority set can not take
place.

sometimes may be of interest to model priorities between reactions that compete for the
same substrate (such as reactions R2 and R4 in the example of figure 5.1), or that
are tightly coupled in production/consumption cycles of the same metabolites (such as
reactions R2 and R3 in the same example). In those cases, establishing priorities among
the involved reactions may help in building more effective and realistic models. The
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priorities may be established taking into account biological informations, such as the
relative strength of the enzymes regulating the reactions.

When a priority relationship is defined among two reactions, the one with the lower
priority is blocked until the other one can be executed. Referring again to the example of
figure 5.1, if R2 > R4 (i.e. R2 has greater priority than R4) then if R2 may take place,
R4 is skipped. Hence R4 may be executed only if R2 can not and all the metabolites
needed for R4 are available We will now describe in more detail this strategy.

Complete inhibition

As shown in the examples above, typically priorities are defined among reaction pairs.
We can write ri < rj if the reaction i has a priority lower than reaction j. Starting
from these pairwise relationships, a priority set may be build for each reaction with a
simple graph-based exploration procedure, as shown in figure 5.2. A directed graph is
built representing the priority relationships between the reactions. Then the priority sets
are built exploring the graph. For each node representing the reaction ri, the priority set
Pi contains all the direct successors of ri. Hence, nodes without direct successors have an
empty priority set. A reaction ri can take place if and only if all the reactions contained
in its priority set Pi can not be executed. Of course, reactions with an empty priority set
can be executed at any time, since they do not depend from any other reaction.

Let be Ei the executability condition of a reaction ri , i ∈ (1..m), where m is the total
number of reactions in the system. Each Ei is a test expression that is true if and only
if all the metabolites needed to the reaction i are available, and is false otherwise (see
section 5.3.2).

The priority set associated to the reaction ri is Pi = rl, ...rk with (l, ..., k) ⊂ (1..m)
and (l, ..., k) ∩ (i) = ∅.

Lastly, we indicate with “¬” the boolean connector not and with “∧” the boolean
connector and.

A reaction ri can take place iff (¬ ((El) ∧ · · · ∧ (Ek)) ∧ (Ei)).
That is, a reaction ri with priority set Pi can take place if and only if no reaction in

set Pi can take place and all the metabolites needed to ri are available. For a reaction rj
with set Pj = ∅ nothing changes: as before, it can be executed whenever its executability
condition Ej becomes true.

The Promela snippet 10 shows the Promela implementation for the example of figure
5.1. Reactions R3 and R4, beyond having their own executability clause, also have the
negation of the executability clause of R2. It should be noted that in the case of R4 the
overall executability clause may also be rewritten as follows: E4 = (¬((GO > 0)∧ (AL >
0)))∧ (GO > 0))⇒ E4 = (((GO <= 0)∨ (AL <= 0))∧ (GO > 0)). Since concentrations
may not be negative we have: E4 = (((GO = 0) ∨ (AL = 0)) ∧ (GO > 0)). However,
to be executed reaction R4 needs in input GO, hence it will be executable only when
((AL = 0) ∧ (GO > 0)), i.e. only when the AL metabolite, essential for R2 to take
place, is not available and the GO concentration is greater than zero (i.e. GO is still
available). For reaction R3 a similar reasoning leads to the following final executability
clause: E3 = ((GO = 0) ∨ (AL = 0)) ∧ (GL > 0)). In this case it suffice that only one
of the metabolites needed from R2 is not available to make R3 executable. When R2
is not more executable, then R3 and R4 become both executable (provided that GO is
still available, of course): in this case the choice of the reaction to perform will be purely
non–deterministic.

In this approach, a reaction is completely blocked until the reactions from which it
depends (i.e. the ones with higher priority) remain executable. Please do note that we
decided to consider only the direct successors of each node. Another possible choice was
to extend the dependency of a reaction also to all successor nodes. However, this would
be a very stringent and unlikely biological constraint, and was not further considered.

Also, the effect of the priorities on the reactions may be modeled in a different way:
instead of completely blocking the reactions with lower priority, a fixed rate of executions
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/* REACTION PRIORITIES: */
/* R4 < R2 ; R3 < R2 */

/* PRIORITY SETS: */
/* P1= {}; P2= {} ; P3= {R2}; P4= {R2} */

/* INTERNAL REACTION N. 1: GC → GO */
/* INTERNAL REACTION N. 2: GO + AL → GL + PY */
/* INTERNAL REACTION N. 3: GL → GO */
/* INTERNAL REACTION N. 4: GO → OX */

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1;}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1 }
:: atomic{(!((GO > 0) && (AL > 0))) && (GL > 0)) → GL=GL-1; GO=GO+1;}
:: atomic{(!((GO > 0) && (AL > 0))) &&(GO > 0)) → GO=GO-1; OX=OX+1;}

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 10: This code fragment shows how priorities between reactions
are implemented. Reaction R4 and R3 have a lower priority with respect to reaction
R2. Hence they can be executed only if R2 is blocked. This is obtained coupling the
executability clauses of R3 and R4 with the negation of the R2 clause.

may be established. Using again the same example, if R2 > R4 (i.e. R2 has greater
priority than R4) then the resulting effect of this new policy is that if R2 is executable,
R4 is skipped as before. However, after a fixed number of times, a possibility to execute
is given to R4: as soon as the needed metabolites are available, R4 may take place, and
then the cycle starts again. We decided to explore this possibility in our future works
(see section 8.1).

Concluding, from these examples it clearly emerges that the set of possible computa-
tions is drastically reduced by the introduction of the priority constraints. Hence, priority
definition has a double beneficial effect: it reduces the state space to explore (without
increasing the model complexity), and permits to refine the model adding meaningful
biological informations.

5.6 Comparing models

At this point, we have described in detail all the building blocks needed to successfully
adapt the model checking approach to the metabolic network context. All these pieces
may be assembled in different fashions to obtain executable models of biological system
with varying phenotypes. It is worth noting that the final products of the verification/sim-
ulation of different models are counterexamples, which are always made of metabolite
concentrations and reaction sequences. This is an important feature, since it permits to
readily compare biologically different models. We will exploit this feature when working
on a real model, as described in chapter 7.

5.7 Chapter Summary

This chapter is the core of whole thesis, since it describes in details the essence of the
proposed methodology. We started introducing a small example to permit an easier un-
derstanding of the relationships between the network model and the executable model.
Then we present the fundamental idea of using the model checker as a behaviour filter to
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extract witnesses of the ability of the model to satisfy a property. Limits and strengths
of such an approach are discussed. The remainder of the chapter is mainly organized in
three parts: the first describes in detail how a Promela model of a biological network
is realized, with a section entirely dedicated to the model abstraction techniques that
permitted do contain the computational complexity of the verification/behaviour filter-
ing processes. The second part of the chapter presents in detail the type and the formal
definition of interesting biological properties, such as the concentration reachability or
the monotonous trend properties. A section address the issues related to the use of ap-
proximated strategies to explore the network model, and the strengths and limits of such
a strategy are thoroughly discussed. Furthermore, the use of a timeout clause to investi-
gate on the final states of the network is also presented, and a final section describes the
implementation tricks that may give the best results in terms of complexity. The third,
and last, part of the chapter is devoted to the presentation of the control elements that
were designed to address the problem of reducing the search for counterexamples only to
some portions of the computation space by selecting interesting transitions or defining
priorities among them.
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An Analysis Workflow

In this chapter we will describe in detail how the verification and behaviour filtering
strategies presented in the previous chapter have been implemented. In section 6.1 we
outline the elaboration workflow that has been designed to analyse a metabolic network
model. Each step of this pipeline will be illustrated in detail in a dedicated subsection,
with a particular attention on the final outcome of the whole pipeline. Furthermore, in
section 6.2 we will address the issue of a satisfactory tuning of the approximated search
strategies when dealing with timeout/non timeout behaviour filtering processes. In this
chapter we will describe the details of the implementation and the general parameter
settings used to obtain the results shown in chapter 7, where the proposed workflow is
applied to a real-sized case study. However, this is a very general framework, that can be
adapted to the study of any biological system that may be described through a metabolic
network.

6.1 The Elaboration Pipeline

A schematic view of the proposed pipeline is shown in figure 6.1. The input is a metabolic
network model, expressed either as a stoichiometric matrix or as a SBML file (see sub-
section 2.3.3). The input file is passed to the Promela Translation Module that converts
it into an executable Promela model. If the network contains bi-directional reactions, or
a pruning step is needed, then a Flux Balance Analysis step is performed and the re-
sulting pruning and/or reaction directions are passed to the Promela Translation Module
together with the network model. The translation module expects in input also a file
containing the initial variable values, and a file with the property specification. At this
stage, also a control strategy may be defined as described in section 5.5. The output of
the Promela Translation Module is a Promela program containing both the model and
the property specification. The Promela program is verified and/or simulated using the
Spin Model Checker. Approximated searches are defined and fine-tuned used the Swarm
tool. The counterexamples found by the model checker are saved in special-format files
called trails. Trail files are translated in textual format and information are extracted us-
ing the Extraction Module. The Promela Translation Module and the Extraction Module
are both written in the Perl programming language [147]. This choice it is due to several
reasons, listed hereafter.

• Perl is a language explicitly designed to be easy to use and efficient;
• Perl has a powerful built-in support for text processing, an essential feature when

working with thousands of counterexamples as we do;
• Perl has one of the world’s most impressive collections of third-party modules, that

permit to easily solve a wide range of common problems;
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Fig. 6.1. The elaboration workflow. The input is a Metabolic Network, either represented as a
SBML file or as a stoichiometric matrix. If the network contains bi-directional reactions or if a
pruning is needed to reduce its size, a Flux Balance Analysis step is performed. The resulting
information are passed to the Promela Translation Module together with the network. This
module expects in input also the initial values of the metabolite variables and the property
specification. If needed, a control tool may be defined according to the strategies described in
section 5.5. The generated Promela program is passed to the model checker Spin. The swarm
tool is used to fine-tune the configuration parameters when an approximated search strategy is
needed. The counterexample computations generated by the checker are saved in the trail files.
These special-format files are translated in a textual format by the Extraction Module, whose
final results are the information on the performed reactions and the metabolite values.

• Perl has a community, grouped under the BioPerl project [148], that develops and
maintains code expressly designed to tackle issues related to the bioinformatics and
computational biology fields;

• Perl is free and open access.
We will now describe in depth the proposed pipeline, detailing the input, output and

inner mechanisms of each module. The general settings here described have been tested
on a real, large-sized model of an human hepatocyte, as described in chapter 7.

6.1.1 The Flux Balance Analysis Step

The Flux Balance Analysis (FBA) step has been performed as outlined in subsection
2.3.4 using the Cobra extension of Matlab [63]. This part has been developed by R.
Pagliarini at the Telethon Institute of Genetics and Medicine (TIGEM) of Naples in the
context of a genome-wide study of the human hepatocyte, described in Pagliarini and di
Bernardo [72].
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However, thanks to the modularity of the whole pipeline, in principle any sound FBA
strategy could be used in place of the above cited approach, provided that the final
results are the fluxes traversing the reactions contained into the network. The output of
the FBA step should be a textual file containing m lines, e.g. one entry for each reaction
in the network.

6.1.2 The Promela Translation Module

The Promela Translation Module contains a set of programs designed for the specific
purpose of converting a metabolic network into a Promela program. Each of the developed
Perl programs deals with two network input format (i.e. SBML or stoichiometric matrix),
or with the different kind of structures needed to verify several types of properties.
Moreover a completely different Promela program should be created if one of the control
structures described in chapter section 5.5 is specified.

In input the module needs several files: the network definition, the property specifi-
cation, the initial values of the variables, and, optionally, the pruning/direction files. In
output it generates a Promela program. The format of the various files are described in
more detail in the following sections. Among the files that are needed in input, only one
is optional, namely the one containing the reaction directions or the network pruning.
If it is not specified, the whole network is loaded from the network input file, and the
reaction directions are established accordingly to the information there contained.

The metabolic network

The metabolic network in input may be given in input to the module either as a SBML file
or as a stoichiometric matrix. In the former case, a specific BioPerl module is used to load
the unique associated files, containing all the information about the network. Otherwise,
three textual files are needed: one containing the stoichiometric matrix with n rows (the
metabolites) and m columns (the reactions); a second file should contain n lines with
identifiers and extended names of the metabolites (tab-separated); the third one should
contain m lines, with identifiers and extended string of the reactions (tab-separated).

The identifiers will be used in place of the compound names and of the reactions
string to have a more compact and safe generation of the Promela code.

The initial values

The initial value file should contain the type of each variable, and its initial value. It
can contain a line with the keyword “ALL”, whose settings of type and value will be
applied to all the variables, or n lines with the specification for different variables, or a
mix of both the specifications. The variables can be declared using either the name or
the identifier.

The property specification

The property specification file is a single line of text containing the Promela code for
the assert that should be coupled with a specified Promela program. The timeout clause
should be explicitly declared before the assert.

The pruning/direction file

The pruning file should have m columns. Each line contains a number ri ∈ R, i = 1, ..m
which represent the mean flux through the corresponding reaction. Depending on the
value of the flux, we have the following possibilities:



70 6 An Analysis Workflow

1. ri > 0. The i-th reaction should be considered with its original direction, i.e. the one
specified in the stoichiometric matrix or in the associated SBML file.

2. ri < 0. The i-th reaction should be reversed, i.e. the reactants should be treated as
products and viceversa.

3. ri = 0. In this case the choice may be different depending on the needed strategy:
a) the i-th reaction is ignored, since is carrying a zero flux, and is pruned i.e. cut

away from the resulting network.
b) the i-th reaction direction is randomly chosen.
c) the i-th reaction direction is chosen according to the original direction in the

network.
The default is to prune the network (since this operation reduces its size), however the
other behaviours may specified via an input flag to the model.

Output

The output of the module is a Promela program, as the one presented in the Promela
code snippet 11. Another file, called the description file, is generated together with the
Promela program, and will be used by the Extraction Module to link the compounds and
reaction identifiers with their descriptions.

6.1.3 The model checker Spin

We used the version 6.2.2 of the model checker Spin. When launching exhaustive searches,
we have used it from command line or within a bash script, as in the example that follows:
#!/ bin/bash
cd /user/ sangiovanni /test/
‘spin -a LTS_mini .pml ‘
‘gcc -DMEMLIM =4096 -O2 -DSAFETY -DNOFAIR -DNOCLAIM -w -o pan pan.c‘
./ pan -m10000 -E -n -c1
Here we first moved in the directory containing the Promela file (a necessary step to make
the overall process work), and then we call Spin specifying the name of the Promela
file to use. The compilation of the Promela program generates a C program, usually
called pan.c. The pan.c is compiled into the corresponding executable, and in this phase
the compile-time parameter should be specified. They specify how the model should
be built, and the total memory it can use. In the above example we specified 4 GB of
RAM (DMEMLIM=4096), to verify only safety properties (-DSAFETY) without fairness
enforcement (-DNOFAIR ) and without using a never claim automaton (-DNOCLAIM).
The -O2 parameter is for C optimization.

After, the pan is executed passing the run-time parameters that specify details on
how the search should be performed: the max reachable depth (-m10000), if the search
should stop after the first error and how many counterexamples should be saved (-c1).
The flag -E suppresses the report of deadlock states, the -n flag suppresses the report
of unreached states. See the Spin Manual [12] for all other details on parameters. The
output of a verification step are files called trails, containing the information on the
visited states and the executed transitions.

6.1.4 The Swarm Tool

The swarm tool has been thoroughly described in the paper of Holtzmann et. al [122].
It is used to launch in parallel several approximated (i.e. bitstate) perlustrations of the
state space, each one using a (possibly different) strategy, with the aim to maximize the
explored portions exploiting multiple and different randomized searches. Here we will
describe the parameter settings that we have used to run Spin via the swarm tool. The
first step to use swarm is to define the compile-time and run-time parameters for the pan
executable as global shell variables with a fixed name, as in the following example:
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#!/ bin/bash
export CCOMMON ="-O2 -DSAFETY -DNOFAIR -DVECTORSZ =3072"
export RCOMMON ="-e -c5 -E"
After, a configuration file must be created following the template that is given together
with the swarm tool. All the details on its inner functioning and on the meaning of the
parameters may be found in the already cited Spin Manual and swarm paper [12,122]. In

Listing 6.1. An example swarm configuration file.

## Swarm Version 3.1 -- 9 April 2011
# range
k 3 8 # min and max nr of hash functions
# limits
d 10000 # optional : to restrict the max search depth
cpus 2 # nr available cpus (exact)
memory 2G # max memory (M=megabytes , G= gigabytes )
time 15s # max time (h=hours , m=min , s=sec , d=days)
hash 1.5 # hash - factor ( estimate )
vector 512 # nr of bytes per state ( estimate )
speed 25000 # nr states explored per second ( estimate )
file LTS_mini .pml # file with the spin model to be verified

# each line defines one complete search mode
-DBITSTATE -DPUTPID -DP_RAND -DT_RAND
-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DT_REVERSE
-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DREVERSE
-DBITSTATE -DPUTPID -DP_RAND -DT_RAND -DREVERSE -DT_REVERSE

particular, the swarm configuration file contains the specification of the search modes, i.e.
the strategies used to explore the state space. Since in Spin the verification is performed
executing the instructions in the order in which they are declared in the Promela program,
an unlucky ordering may result in an infeasible search. Spin permits the random ordering
of states (-DP RAND) and transitions (-DT RAND) to overcome this issue. Clearly, this
is is an essential feature of the swarm search since it allows the exploration of different
portions of the state space, and will be exploited on a real-sized problem as the case
study of chapter 7.

However, the swarm tool uses the same file with some fixed and predefined seeds to
launch all the different searches that include a random ordering. This means that the
same random seeds are always used in the same order, also if the swarm file is compiled
again. Hence, simply compiling two different swarm script does not imply using different
seeds, i.e. a different ordering of states or transitions. This corresponds in exploring
always the same portion of the space, that in some cases may not be useful. The above
example of variable setting and the swarm configuration file of listing 6.1 were used to
extract the data of subsection 6.2.

6.1.5 The Extraction Module

We will now describe in detail an essential step of the pipeline, i.e. the Extraction Module.
The purpose of this module is the translation of the results coming from the Spin model
checker into useful knowledge about the used metabolites, the performed reactions and
their dynamics in time. This target is reached with the combination of two distinct steps:
a translation phase, in which the information coming from the trail files is converted and
stored into binary files, and a subsequent one in which the binary files are processed to
collect structured information about the system. We will describe them in more detail
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in the following subsection. It is worth noting that this pipeline has been conceived
essentially to deal with the behaviour filtering analyses. However, other kind of processing
on the results may be performed as briefly outlined in subsection 6.1.6.

The Translation Phase

The result of a verification/extraction step performed by Spin is a set of files with ex-
tension .trail. Each of these files records the steps that lead from the initial state to the
one in which the assert has been triggered. They are not immediately exploitable, since
they use an internal representation of states and transitions. However they are easily
translated in a textual file calling Spin with the following instruction

spin -g -p -k $trail -c $promelapgm > $transtrail
where the input variable should respectively specify the generated trail file, the Promela
program used to generate the trail and the destination file that will contain the textual
translation. The textual file that is obtained looks like the one of listing 6.2. This listing
contains all the information needed to reconstruct the metabolite dynamics and the used
reactions. In fact on each step is listed the line of the Promela program that was executed,
and, immediately after, the list of the changed variables together with their new values.
At the end of the file the final values of all the variables are listed. It is only a matter of
extracting, storing and processing all the information.

However, this can be a very though task when the program contains thousands of
reactions and metabolites, and the generated trails are in the order of hundred of thou-
sands. To address this problem in the most efficient way, some Perl programs have been
developed to rapidly parse the textual trail files and convert them into the small possible
pieces of binary information. To speed this process, we designed a bash pipeline to run in
parallel as many possible jobs, each converting and writing a subset of all the generated
trails.

Two separate programs were designed to convert the trail files, each one that works
on a single file at a time: one extracts from a trail file the overall information on the final
compound values and on the total reaction usages, the other extracts from the trail file
detailed information on the metabolite dynamics, saving the time steps and the reaction
that changed the metabolite values. They are described in more detail in the following
subsections.

The overall information

For each trail file the the following two files are generated:
• a compound file: it contains as many lines as the used metabolites. Each line is made

up of two fields, a fixed length char for the metabolite code (i.e. the identifier specified
in the metabolic network model, see subsection 6.1.2), and a long unsigned integer
for the final metabolite value;

• a reaction file: it contains as many lines as the used reactions. Each line is made up
of two long unsigned integer fields, one for the Promela program line number code
(that corresponds to the performed reaction), the second for the usage value, i.e. for
the total number of times the reaction has been used.

The dynamics information

For each counterexample the following two files are generated:
• a compound file: it contains as many lines as the number of steps in which some

metabolite has changed its value. Each line is made up of three fields, a long unsigned
integer that specifies the step number, a fixed length char for the metabolite code (i.e.
the identifier specified in the metabolic network model, see subsection 6.1.2), and a
long unsigned integer for the metabolite value at the end of the step;
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Listing 6.2. An excerpt of a translated trail file

proc 0 = :init:
using statement merging
Starting R_proc with pid 1
proc 1 = R_proc

1: proc 0 (: init :) LTS_mini .pml :29 (state 1) [( run R_proc ())]
2: proc 1 ( R_proc ) LTS_mini .pml :17 (state 1) [(( Gc_ext >0))]
2: proc 1 ( R_proc ) LTS_mini .pml :17 (state 2) [ Gc_ext =

(Gc_ext -1)]
Gc_ext = 1

2: proc 1 ( R_proc ) LTS_mini .pml :17 (state 3) [GC = (GC +1)]
Gc_ext = 1
GC = 1
....
....

17: proc 1 ( R_proc ) LTS_mini .pml :21 (state 19) [((GO >0))]
17: proc 1 ( R_proc ) LTS_mini .pml :21 (state 20) [GO = (GO -1)]

GO = 0
17: proc 1 ( R_proc ) LTS_mini .pml :21 (state 21) [OX = (OX +1)]

GO = 0
OX = 8

18: proc 1 ( R_proc ) LTS_mini .pml :22 (state 23) [( timeout )]
spin: LTS_mini .pml :22, Error: assertion violated
spin: text of failed assertion : assert ((OX <=2))

19: proc 1 ( R_proc ) LTS_mini .pml :22 (state 24)
[ assert ((OX <=2))]

spin: trail ends after 19 steps
-------------
final state:
-------------
# processes : 2

Gc_ext = 0
GC = 0
GO = 0
AL = 0
GC = 0
PY = 4
OX = 8

19: proc 1 ( R_proc ) LTS_mini .pml :16 (state 25)
19: proc 0 (: init :) LTS_mini .pml :30 (state 2) <valid end

state >
2 processes created

• a reaction file: it contains as many lines as the used reactions. Each line is made up of
two long unsigned integer fields, one for the step number, the other for the Promela
program line number code (that corresponds to the performed reaction).

Hence two separate procedures are run, one to collect the overall compound and
reaction information, the other to extract the dynamics. Both will work on the complete
set of trail files that were generated by Spin, launching in parallel as many jobs as possible.
At the end of the conversion phase, the first procedure has created two directories storing
the overall information, with each directory containing as many files as the number of
extracted trail files. The second procedure has created a directory containing two files
for each of the processed trail files.
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The Extraction Phase

After, the binary files are parsed to extract a more compact view of the system be-
haviour. This task is accomplished by three distinct procedures, that can be launched
in parallel and independently from each other: the first collects the information on the
final metabolite values across the different counterexamples; the second collects the in-
formation on the total reaction usage, i.e. the total number of times a certain reaction
is performed across the different counterexamples; and the third translates the dynamics
of a metabolite in a more human-readable format. Each of them extracts the data stored
in the binary files described in the previous subsection, elaborates them and, at the end
of the process, creates one or more textual files. The data contained in these files are
described in more detail in the next subsections. Since the extraction of the dynamic
information is a very computational demanding process, only a subset of metabolites
(specified in a file given in input to the procedure) is extracted.

Output

The output of the Extraction Module are i) the file containing the metabolite final
values, ii) the file containing the reaction usage values, and iii) the directories containing
the dynamics of the specified metabolites. The first two files offers already a structured
knowledge of the data collected from the counterexamples, whereas the dynamic data
might be further processed to extract more compact information. All of them will be
described in more detail in the following subsections. We will use as an example the
results obtained for the program of the Promela code snippet 3. The timeout behaviour
filtering results in three trail files (see subsection 6.2 for more details).

The compound file

The compound file is a tab-separated textual file, that contains the information on the
value of the variables across all the extracted counterexamples as the one shown in listing
6.3. The columns contain on each row, i.e. for each compound:

Listing 6.3. The compound usage values file

COMPOUND COMPOUND INITIAL USAGE MIN MAX USAGE MEAN AND
ID NAME VALUE VALUES VALUE VALUE DISPERSION
LC00001 Gc_ext 2 0; 0 0 0 + - 0
LC00002 GC 0 0; 0 0 0 + - 0
LC00003 GO 2 0; 0 0 0 + - 0
LC00004 AL 2 0-2; 0 2 1 + - 1
LC00005 GL 2 0; 0 0 0 + - 0
LC00006 PY 2 2-4; 2 4 3 + - 1
LC00007 OX 2 8; 8 8 8 + - 0

1. the unique identifier of the compound (see subsection 6.1.2);
2. the name;
3. the initial value: it is the concentration value when the verification process was

started, i.e. the one indicated to the Promela Translation Module (see 6.1.2)
4. the range of final values. They are called final since they indicate the metabolite

concentration in the last state of each extracted counterexample. It can be a unique
value, thus meaning that the metabolite has reached always the same concentration
in all the different counterexample (such as the OX or the GC ext compounds in
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listing 6.3). Otherwise a metabolite concentration may be different across the coun-
terexamples: in this case they are indicated by ranges, i.e. by a pair of numbers
separated by a dash symbol (–), meaning that the whole range of values, included
the extremes, have been reached by the metabolite in different counterexamples.

5. minimum and maximum final value;
6. mean and dispersion of the final value, calculated across all the counterexamples.

The reaction file

Similarly, the reaction file is a tab-separated textual file, that contains the information on
the usage values of the reactions across all the extracted counterexamples. An example
is shown in listing 6.4. The columns contain for each row, i.e. for each reaction:

Listing 6.4. The reaction usage values file

REACT. REACTION USAGE MIN MAX USAGE MEAN
ID STRING VALUES VALUE VALUE AND DISPERS .
1 1 Gc_ext -->1 GC 2; 2 2 2 +- 0
2 1 GC -->1 GO 2; 2 2 2 +- 0
3 1 GO + 1 AL -->1 GL + 1 PY 1-2; 1 2 1.33 +- 0.58
4 1 GL -->1 GO 2-4; 2 4 3 +- 1
5 1 GO -->1 OX 6; 6 6 6 +- 0

1. the unique identifier of the reaction (see subsection 6.1.2);
2. the string describing the reaction;
3. the usage value: each reaction can be used a certain amount of times between the

first and the last state of the counterexample. The usage value of a reaction is exactly
the number of times the reaction has been used. It may be the same across all the
counterexamples, as happens for the reaction 1Gc ext −−→ 1GC or may vary as
for the reaction 1GO + 1AL−¿1GL + 1PY in listing 6.4. In the latter case they
are indicated by ranges, i.e. by a pair of numbers separated by a dash symbol (–),
meaning that the whole range of values, included the extremes, have been reached
by the usage value in different counterexamples;

4. the minimum and maximum final value;
5. the mean and dispersion of the final value calculated across all the counterexamples.

The compound dynamics

The dynamics extraction procedure creates a directory containing as many directories as
the generated trail files. Each of these subdirectory contains a distinct files for each of
the compound specified in the input file. The single dynamics file looks like the one in
listing 6.5 For the compound indicated on the first line, one or more lines are present,
depending on the number of step (if any) in which the metabolite was changed. Each
line contains:

1. the step id. This can be considered as the time in which the metabolite was changed.
By convention the initial state is considered as the step 0;

2. the value of the compound concentration at the end of the time step;
3. the reaction string, i.e. the event that changed the compound value. The initial value

has no reaction associated, of course;
4. the reaction unique identifier.
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Listing 6.5. The dynamics file for the GC compound.

DYNAMICS FOR COMPOUND ID LC00005 ( GC ):
STEP N. VALUE REACTION STRING REACTION ID
0 2 initial value
7 3 1 GO + 1 AL -->1 GC + 1 PY 3
8 4 1 GO + 1 AL -->1 GC + 1 PY 3
9 3 1 GC -->1 GO 4
10 2 1 GC -->1 GO 4
11 1 1 GC -->1 GO 4
12 0 1 GC -->1 GO 4

The sequence of steps together with the metabolite values may be regarded as a temporal
series describing the dynamics of the metabolite concentration over the time, where time
itself is considered a discrete quantity that flows in a stepwise manner.

The information contained in these file may be exploited as a whole by simply col-
lecting the dynamics across the different counterexamples as done on a real case study
in section 7.4

6.1.6 Other Processing

All the data extraction process above described has been expressly tailored for the be-
haviour filtering process. However, sometimes the only information needed is the simple
presence or absence of a counterexample after a verification step, such as in the the
Metabolic Objectives Satisfaction or the Monotony Check verifications (both described
in chapter 5). For these purpose some ad hoc bash shell scripts were designed to travel
across the directories and extract the needed information on the presence of counterex-
amples.

6.2 Search Tuning With the Swarm Tool

We would like now to investigate more deeply the effects of the swarm search strategies
on the representativity of the extracted counterexamples, when using the system as a
behaviour filter. The aim of a swarm approximated search is to gain as much information
as possible, while relying on a partial exploration of the state space. The essence of this
approach is the use of multiple different searches to expand the coverage of the state
space. However, when using this technique in combination with the behaviour filtering
strategy, a careful tuning of the search parameters may have beneficial effects on the
quality of the extracted counterexamples.

In fact, for a specified property, the search tuning may deeply affect the number and
the structure of the extracted counterexamples depending on the presence or absence of
the timeout clause. When an exhaustive search is performed, of course, we have not these
issues, since the state space is completely explored. Instead, if an approximated search is
used, we shall distinguish between behaviours that are extracted using the timeout and
behaviours that results from the information collected in intermediate states. We use the
example of section 5.1 to show the differences among the results, in both timeout and non
timeout searches, obtained with different search strategies related to the specification of
the number of extracted counterexamples and of the number of search modalities.

We want to filter out the behaviours in which the compound OX is produced, and to
this aim we define the assert as detailed in Property 1, i.e. assert(OX ≤ 2). Moreover,
we want to extract all the possible counterexamples that Spin would generate, hence we
will use the inline assert strategy (see subsection 5.4.6), placing the assert instruction
after all the reactions. The resulting program is shown in the Promela code snippet 11.



6.2 Search Tuning With the Swarm Tool 77

/* THE METABOLITE VARIABLES */
....

byte OX=2;
...

proctype REACT_process() {
do

:: atomic{(GC > 0) → GC=GC-1; GO=GO+1; assert(OX <= 2);}
:: atomic{((GO > 0) && (AL > 0)) → GO=GO-1; AL=AL-1; GL=GL+1; PY=PY+1; assert(OX <= 2); }
:: atomic{(GL > 0) → GL=GL-1; GO=GO+1; assert(OX <= 2);}
:: atomic{(GO > 0) → GO=GO-1; OX=OX+1; assert(OX <= 2);}

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 11: The Promela program used for the exhaustive search of all
the possible counterexamples in which the OX compound is produced

When we restrict the search only at the final states, we will use the timeout instruction,
and the resulting Promela program will be the one of the code snippet 3. The results
of the exhaustive search for the two cases are shown in table 6.1. These results and all
the the other presented in this subsection have been collected as described in subsection
6.1.5. Of course the concentration ranges are quite different among the two strategies,

Table 6.1. Metabolite concentration values (in generic units) after two different exhaustive
searches involving respectively a non timeout and a timeout strategy. The number of extracted
counterexamples for each of them is shown. The concentrations are reported as ranges. Numbers
separated by a dash symbol (–) means that the whole range of values, included the extremes, have
been reached by the metabolite. A single number indicates that the metabolite concentration
has the same value among all the counterexamples.

No timeout Timeout
Gc ext 0–2 0
GC 0–2 0
GO 0–5 0
AL 0–2 0–2
GC 0–4 0
PY 2–4 2–4
OX 3-8 8
Counterexamples 658 3

since the timeout generates only three counterexamples that corresponds to the three
different final states of the LTS. These states are characterized by the different values
of the compounds PY and AL. It is worth noting that the non-timeout concentrations
include also the timeout ones.

Now we will address the case in which approximate searches are performed. Several
parameters may affect the obtained results: among them there are some more connected
with the availability of needed resources such as time, memory and number of CPUs.
Of course, for them the more, the better. Here we will take into account other settings,
namely the number of extracted counterexamples per job, i.e. what we call the max trail
parameter, and the number of distinct search strategies to use, i.e. the search modes, while
maintaining unchanged the maximum elaboration time, set to 15 seconds (a very large
value since the exhaustive problem is solved in about 2 seconds), the number of CPUs,
set to 2, and the amount of available RAM, set to 2 GB. More specifically, the max trail
parameter is important when extracting information using a non-timeout search. In this
case, several counterexamples may be found as soon as a state s not satisfying the assert
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is met: these are the counterexamples corresponding to nearby states, in which the value
of the variable of interest is the same of s and the other state variables undergo some
small fluctuations. That means that only the topmost part of the LTS is explored, and the
range of the extracted counterexamples may be not so much representative, as happens
for the results shown in table for the max trail parameter set to 5, as shown in table 6.2 In

Table 6.2. Metabolite concentration values (in generic units) for three different swarm runs of
a non-timeout search. The value used for the max trail parameter is shown, together with the
number of extracted counterexamples. Numbers separated by dash symbols (–) indicate range
of values, including the extremes.

Max trail parameter value
5 10 20

Gc ext 0–2 0–2 0–2
GC 0–2 0–2 0–2
GO 0–3 0–5 0–5
AL 0–2 0–2 0–2
GC 0–4 0–4 0–4
PY 2–4 2–4 2–4
OX 3–5 3-7 3-8
Counterexamples 25 50 100

this case, the search extracts a very small number of counterexamples, too few to obtain
a decent coverage of the results: the maximum OX value extracted is only 5 generic units.
The second one, in which the value of the input parameter is doubled, results in a doubled
number of extracted counterexamples. In this case the OX value is 7, almost near to the
final value, and with only a small portion of the all possible counterexamples. Doubling
again the parameter value (Max trail=20), we obtain the complete range of values for
the OX compounds, but extracting only the 15% of the all possible counterexamples.
A similar effect, of course, is found for the reaction usage values. Please do note that
these results were all obtained using the same 4 distinct search modes, a high number
for a very small problem. This was intentional, to demonstrate that the search modes
setting does not suffice alone to extract a relevant subset of counterexamples in the case
of a non-timeout search strategy. When using a timeout strategy, on the contrary, the

Table 6.3. Metabolite concentration values (in generic units) for two different swarm runs of a
timeout search. The number of different search modes used is shown, together with the number
of extracted counterexamples. Numbers separated by dash symbols (–) indicate range of values,
including the extremes. A single number indicates that the metabolite concentration has the
same value among all the counterexamples.

Search modes number
2 4

Gc ext 0 0
GC 0 0
GO 0 0
AL 0–1 0–2
GC 0 0
PY 3–4 2–4
OX 8 8
Counterexamples 4 10

different number of search modes may be of great importance. In fact each search mode
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corresponds to the exploration of a different portion of the state space, hence widening
the possibilities to find timeout counterexamples. The model we are using as example
is really small, hence here the difference is not so striking. However on large models
adopting different search strategies may be essential, as highlighted also by Holtzmann
et al. in their paper describing the swarm strategy [122].

Fig. 6.2. A representation of the effects of different exploration strategies for the verification of
a property on a Labeled Transition System. The thick blue-circled nodes represent final states.
Black nodes represent states in which a counterexample is generated. Black arrows represent
explored transitions, grey arrows unexplored ones. A: exhaustive search without timeout; B:
exhaustive search with timeout; C: approximated search, without timeout; D: approximated
search with timeout; E: the same of C, but with a larger setting for the Max trail parameter;
F: the same of D, but with a larger setting for the number of Search modes. For approximated,
non timeout searches (C, E) the max number of extracted trails affects the representativity
of the extracted information. Instead, for approximated, timeout ones (D, F) is the diversifi-
cation of search modes that plays an important role in the representativity of the extracted
counterexamples.

Here we fixed the number of the extracted counterexamples to max trail=2. We first
performed an approximated timeout search with 2 random search modes, and after we
raised it to 4. The results are shown in table 6.3.
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It is immediate to notice that the number of generated counterexamples, 4 and 10, is
greater than the number of real final states, i.e. 3. This is due to the presence of more
than one search modes, each one exploring a portion of the state space. Indeed, it may
happen that these portions overlap: when only two search modes have been used, four
counterexamples have been generated.

However, the extracted information, as can be deduced from table 6.3, are not com-
plete. When the number of search modes is increased, a larger number of counterexamples
is generated and all the concentration values are recovered. Of course, having so many
identical counterexample is not of any use, and for this reason the number of the gen-
erated counterexamples, e.g. the max trail parameter should be possibly set to a low
value.

All these search tuning strategies are graphically represented in figure 6.2. The re-
sults of an exhaustive search without a timeout (A) and with a timeout condition (B)
are shown: in both cases all the transitions are explored. Without the timeout a coun-
terexample is generated in all the intermediate states satisfying the property, whereas
with the timeout only the counterexamples in the final states are generated. When ex-
tracting all the intermediate states (C,E), the specification of the number of extracted
counterexamples has a great impact on the exploration of the states space: in C a low
number of counterexample is rapidly generated by perlustrating a small part of nearby
states in the topmost portion of the state space; in E an higher value of the Max trail
parameter permits to explore more in depth the state space. When searching for timeout
counterexamples (D,F), it is the number of the search modes that affects the results: in
D only a reduced portion of the state space is explored; in F the diversification of the
search strategies permits to explore more portions of the state space.

Of course this is a really simple task when the LTS is as small as the example one,
but it is way more complicated on big models. Anyway, it is important to be aware of
the influences of the two described parameters on the reliability of the obtained results.

We would like to conclude this section pointing out that these examples very well
demonstrate, also on a very small state space, that is it possible to recover a great
amount of information also with a very limited number of extracted counterexamples, as
more thoroughly demonstrated in the Holtzmann et al. paper [122].

6.3 Chapter summary

In this chapter we have presented in detail how the proposed verification and behaviour
filtering strategies have been implemented. A complete workflow was defined, that starts
from a metabolic network model either represented as a stoichiometric matrix or as SBML
file. Then a Perl module converts the metabolic network model into a Promela program
that also contains the property specification, and, in case the control strategy definition.
Moreover, the results of the Flux balance Analysis should be passed to the same module,
if the specification of direction or a pruning is needed. The Spin model checker is used
either as a verifier or as a behaviour filter, and in case some counterexamples, in the form
of trail files, are generated. The approximated searches are managed through the swarm
tool proposed by the Spin authors. Another Perl module extracts the information from
the trail files. The resulting files are described in great detail, since they are the main
outcome of the whole pipeline. They mainly contain: the metabolite concentrations (in
generic units), expressed as ranges of values obtained in the extracted counterexamples;
the reaction usage values, e.g. the total number of times in which a reaction is used,
expressed as ranges of values obtained in the extracted counterexamples; the dynamics
of a subset of selected metabolites, expressed in terms of the stepwise variation in each of
the extracted counterexamples. Lastly, we considered the problem of tuning the swarm
parameters when performing approximated searches for both timeout and non-timeout
behaviour filtering. We show how a good parameter choice may result in obtaining a very
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good quality of the collected results despite having extracted only a very small subset of
the existing counterexamples.





7

Modeling the disease: Primary Hyperoxaluria Type I

In this chapter we will exploit the methodology described in the previous chapters to in-
vestigate on the causes and the effects of the Primary Hyperoxaluria Type I, a monogenic
disease related to the misfunctioning of the liver enzyme AGT.

7.1 The Disease

The Primary Hyperoxalurias are inborn errors affecting the metabolism of glyoxylate
and oxalate. Primary Hyperoxaluria type 1 (PH1) is the most common form, caused by
a defect in the glyoxylate metabolism related to a low or absent activity of the liver-
specific peroxisomal enzyme alanine/glyoxylate aminotransferase (AGT) [149, 150]. The

Fig. 7.1. A schematic view of the metabolic pathways involved in the Primary Hyperoxaluria
Type 1 (PH1) disease. Arrows represent reactions, labels on it indicate the catalyzing enzymes.
Double arrows represent postulated pathways, for which the intermediate reactions are still
unknown. Metabolites directly involved in PH1 are indicated in red. Adapted from [151].

functional deficiency of AGT results in a failure to detoxify glyoxylate within the per-
oxisomes. Instead of being transaminated to glycine, glyoxylate is oxidized to oxalate
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and/or reduced to glycolate, resulting in greatly increased urinary excretion of oxalate
and glycolate [152].

Oxalate in mammals can not be further metabolized and its overproduction results in
the deposition of calcium oxalate (CaOx) crystals and stone formation almost everywhere
in the body [153]. Because of the poor solubility characteristics of calcium oxalate, an
excess of oxalate has potentially lethal consequences: crystallization may occur in sen-
sitive organs such as the kidney [149], eventually leading to renal failure, but may also
involve eyes, heart, and bones with high invalidating effects, see [153,154].

The PH1 is a monogenic disease caused by various mutations involving the AGXT
gene [152]. These alterations may have different effects on the gene product, which cause
in turn, different alterations in the functionality of the associated enzyme, that may be
not produced at all, or may be produced but with alterations making it only partially
active, or it may be fully active but carrying defects causing a mistargeting from the
peroxisome to the mitochondria [153]. Hence, the resulting phenotypic traits cover a
wide spectrum, ranging from almost silent cases to fulminant neonatal deaths ( [151,153,
155]). However, they are all characterized at the biochemical and metabolic level, by an
increased production of oxalate and glycolate [152,154].

A schematic view of the fundamental reactions involved in the disease is shown in
figure 7.1. The detoxification reaction catalyzed by the AGT enzyme takes place in the
peroxisome of liver cells. Glyoxylate is transformed into glycine when AGT is present,
otherwise the opposite reaction converts glycine into glyoxylate. The glyoxylate in excess
escapes from peroxisome to the cytosol, where is converted either directly or indirectly
through glycolate into oxalate. The cytosolic oxalate is then transported outside the cell
in blood and urine. From the biochemical point of view the hallmark of PH1 is indeed
the high production of cytosolic glycolate and oxalate.

7.2 The Extended Hepatocyte Model

HepatoNet1 (HN1) is a metabolic network reconstruction of the human hepatocyte re-
cently published by Gille et al. in [156]. However, the proposed model is lacking all the
pathways leading to oxalate production. The missing part was reconstructed and inte-
grated into HN1 by Pagliarini et al. using knowledge derived from different sources as
described in [72]. This new version, that we will call HepatoNet2 (HN2), contains 2589
reactions and 1445 metabolites, arranged in 8 cellular compartments. The model was
validated through producibility analysis, to test its ability to produce all the compounds
in the glyoxylate metabolism, and flux-balance analyses was used to establish a flux dis-
tribution for each of the different metabolic objectives listed in the already cited paper
of Gille et al. For easiness of use, the metabolite variables inside the Promela programs
are indicated by the 9 character code which identifies each species in the HN1 network,
e.g. cytosolic oxalate = oxalate(c) = HC00195 c. For the newly inserted compounds we
adopted a similar coding: peroxisomal oxalate = oxalate(p) = H2C0014 p. Similarly, the
reactions are identified with the identification number adopted in HN1 (ranging from re-
action number 1 to reaction number 2539), with the newly introduced ones that simply
follow the numbering from the last used identifier (i.e. from 2539 to 2589). As an exam-
ple, the detoxification reaction Alanine(p) + Glyoxylate(p)→ Glycine(p) + Pyruvate(p)
is indicated as:

reaction 2541 : H2C0010 p + H2C0001 p→ H2C0011 p + HC00032 p

7.3 Model Verification and Simulation

The methodologies developed in this thesis work, and described in chapter 5, have been
tested on the HepatoNet2 network. The following sections will address several impor-
tant issues related with the reconstruction, simulation and verification of genome-scale
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metabolic network models, with a special focus on understanding the Primary Hyper-
oxaluria type I disregulation. All the results have been obtained using the workflow
described in chapter 6.

7.3.1 Validation of the Metabolic Network Model

The first feature of the network that we wanted to ascertain was the ability of the model
to produce oxalate fulfilling all the known biological constraints, i.e. i) the accumulation
of the oxalate in the cytosol compartment, ii) the transport of the glyoxylate from the
peroxysome to the cytosol, and iii) the conversion of glyoxylate into glycolate and oxalate
in the cytosol.

Fig. 7.2. An excerpt of the reactions and the metabolites contained in the HN2 model and
directly involved in the oxalate synthesis. Colored lines enclose the compartments. Dotted lines
represent transport reactions, whereas solid lines represent internal ones. The glyoxylate detoxi-
fication reaction, involved in the PH1 disease, is indicated by a red cross together with the name
of the catalyzing enzyme AGT.

Model Specification

The network has several bi-directional reactions and a considerable size. Hence we decided
to rely on the network pruning and direction selection techniques that we have described
in subsections 5.3.5 and 2.3.4. The thermodynamic evaluation of the fluxes was performed
considering T = 37◦C and using the values for ∆G0

rj reported in Gille et al. [156] to
obtain the equilibrium constants. This approach was applied the HN1 model in order
to compute flux distributions across the l = 442 different metabolic objectives listed in
Supplementary Data 3.2 of the same paper. To further reduce the size of the resulting
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network model, we decided to focus only on the compartments directly involved in the
oxalate synthesis, namely the peroxysome and the cytosol. To this aim, we removed from
the network all the reactions that were not containing at least one metabolite belonging
to the peroxysome or the cytosol. The final number of used reactions was 952, and
the metabolites 967. Moreover, we removed from the model all the transport reactions
exchanging metabolites across the system boundaries, as explained in subsection 5.3.4.

The initial value for all the metabolite variables was fixed at 5 concentration unit,
following the criterion described in subsection 5.3.4. However, it should be noted that
the complete HN2 network contains several reactions involving very high stoichiometric
coefficients. These abstract reactions have been inserted in HN1 to model the formation
or degradation of large molecular complexes [156]. We decided to allow their presence in
the network, but we did not take into account their stoichiometry when calculating the
initial concentration of the metabolites.

Expected Behaviour Specification

As already outlined, the hallmark of PH1 is the high production of oxalate in the cy-
tosolic compartment. Since we want to investigate if our hepatocyte network is able to
express this phenotype (i.e. this behaviour), we extracted the behaviour in which the
final cytosolic oxalate concentration is increased with respect to its initial value. To this
aim, we use the negation of the property we are looking for, as explained in subsection
5.4.3. Since we are not interested in all the intermediate values, rather we want to know
the states the network can reach at the end of the initial perturbation, we used a timeout
instruction (see subsection 5.4.1) in combination with the assert clause. The property
specification was inserted as a possible choice in the do cycle of the principal process, as
explained in subsection 5.4.6.

It is worth to note that oxalate can be only produced from the network and can never
be consumed, hence the timeout value corresponds to the maximum possible oxalate
value along that computation.

Running Spin: Computational Issues.

The hepatocyte model obtained considering only the cytoplasm and peroxysome is still
a very large one, even if we adopted all the possible strategies to reduce its size. Hence,
it resulted very difficult to manage in terms both of memory and time needed to obtain
the filtered behaviours.

Table 7.1. Number of counterexamples found and elapsed time for different Spin configura-
tions are shown. MA indicates the minimal automaton representation. Simply increasing the
available memory or the CPU number does not significantly increase the number of extracted
counterexamples. The best results are obtained with swarm approach with the random ordering
of the instructions and transitions.

Spin search
configuration

CPUs Available Elapsed
Time

Counterexamples NotesMemory found (number)

Exhaustive 1 2 GB 1 hour 0 out of memory
Exhaustive 4 8 GB 12 hours 0 out of memory
Exhaustive with MA 4 8 GB 2 months 4 stopped
Approximated (bitstate) 4 8 GB > 2 days 6
Approximated (swarm) 16 16 GB 1 hour ≈ 200000 random ordering
Approximated (swarm) 16 32 GB 4 hours ≈ 800000 random ordering

With an incremental approach, it has been run on machines of growing capabili-
ties. The largest part of the results, however, were obtained on the Nirvana cluster at
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Tigem. Different Spin verification configuration were used, ranging from the exhaustive
default settings to the swarm approach [12]. The results, in terms of time and number of
counterexamples obtained, are given in Table 7.1.

Two main aspects emerge: the first is that, of course, the amount of available memory
dramatically influences the performances of Spin in terms of explored portion of the
computation space. The second is that an exhaustive search approach is still out of
reach for genome-scale metabolic network models. Moreover, since the instructions are
executed in the order in which they are declared in the Promela program (see [12], an
unlucky ordering of the instructions may affect also the approximated bitstate approach,
as happens in the example of table 7.1, where more than two days of work resulted in
few counterexamples found.

Hence, we decided to adopt the swarm approach that was designed exactly to address
the verification of models with a very large state space. Indeed, using swarm and speci-
fying the random instruction and transition ordering, (see chapter 6 for all the details)
we were able to find, using the Nirvana cluster, a very huge amount of executions in few
hours.

Swarm settings

The swarm search was tuned as follows (see chapter 6). In particular, a very large number
of counterexamples were extracted for each of the executed search jobs. Each of the pos-
sible search modes are included only once. They include the normal search, the reversed
instruction and transition ordering, and the random ordering searches.

Max search depth: 10000
Max trail: 50000
Cpu Number: 16
RAM amount: 32 Gigabytes
Time: 4 hours
Hash function range: 3 – 8
Search modes: 4 normal ordering, 4 random ordering, 4 reversed ordering.

Results

To investigate on the correctness of our model, we extracted from more than 800.000
counterexamples all the final metabolite concentrations and the reaction usage values
as detailed in subsection 6.1.5. We also selected, for each final oxalate value, the reac-
tion usages for the gyoxylate transport, the glyoxylate detoxification, and the cytosolic
glycine production. Since different reaction usages may obtained for the same oxalate
concentration, we decided to work with the average values.

The oxalate final concentration ranges from a minimum of 20 units to a maximum of
103. However, the absolute value is not enough to clearly understand what happened into
the network. Instead, we have to consider how much oxalate is produced with respect
to its maximum producible amount. We can estimate an upper bound for the oxalate
production by evaluating the maximum producible amount of cytosolic glycolate and
glycine. In fact, glycine (through glyoxylate) and glycolate are directly related to the
oxalate production, see figure 7.1. It is worth noting that this maximum might be a bit
overestimated, since it is very unlikely that in a cell all the glycine would be transformed
to oxalate, being glycine an essential aminoacid used to accomplish several fundamental
cellular functions (see Lehninger [70]). More precisely, we calculated for each oxalate
value the mean usage value of all the reactions producing glycine or glycolate in the
cytosol, or moving these compounds into the cytosol from an outside compartment. The
considered reactions are listed hereafter. The letters in brackets indicate the metabolite
compartment (c=cytosol, s=sinusoidal space, m=mitochondria):
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Fig. 7.3. Analyses of the extracted behaviours of cytosolic oxalate accumulation. The results
referring to the initial network version (left column) and the modified final one (right column) are
shown. The first row displays the produced oxalate and the detoxified glyoxylate both weighted
on the maximum producible oxalate (calculated from glycolate and glycine). The second row
shows the average usage of the transport reaction of glyoxylate from peroxysome to cytosol with
respect to the oxalate production. The straight curve is a linear fit of the data. The coefficient
of determination is also shown.

CoA(c) + Glycochenodeoxycholate(c) −−→ Glycine(c) + Chenodeoxycholoyl−CoA(c)
CoA(c) + Glycocholate(c) −−→ Glycine(c) + Choloyl−CoA(c)
Glycine(m) −−→ Glycine(c)
Glycine(s) −−→ Glycine(c)
Glycolaldehyde(c) + NAD+

(c) −−→ 1Glycolate(c) + 2NADH(c)
Serine(c) + THF(c) −−→ H2O(c) + Glycine(c) + (510)−Methylene−THF(c)

The obtained maximum is used to weight not only the oxalate production but also
the usage of the detoxification reaction, which directly corresponds to the amount of
potentially producible oxalate that has instead been detoxified.

The produced oxalate over the maximum can be as much as the 90% of the maximum
producible, as shown in the first row, left column of figure 7.3. This is really interesting
because it shows that the network is able to generate, starting from the same quantity of
initial metabolite concentrations, very different amount of cytosolic oxalate. This should
be due to the different usage of the detoxification reaction. At the same time we expect the
glyoxylate transport reaction to be directly related to the oxalate production. However,
if we investigate on the usage of these reactions, we find very different results, as shown
in the left column of figure 7.3. The topmost figure shows the detoxified oxalate (also
weighted over the estimated maximum) together with the relative oxalate production.
The detoxification reaction is used a very low number of times, and there is no relation
between the percentage of oxalate produced and the detoxified one. Furthermore, no
relation between the glyoxylate transport and the oxalate production emerges as shown
in the bottom left panel of figure 7.3. Here the oxalate gain, expressed as the x-fold
increment with respect to the initial value, is shown in relation with the usage number
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of the transport reaction. This is confirmed also by the very low value of the linear fit
determination coefficient R2, whose value is R2 ≈ 0.08.

We can immediately conclude that the network we are using is not a good model
for the glyoxylate and oxalate metabolism: although it correctly simulates the oxalate
accumulation, it fails in being consistent with the known biological evidences on the
glyoxylate detoxification and transport. Hence, we focused on all the reactions producing
or transporting oxalate, and revised the initial compiled model removing some reactions.
The obtained model is shown in figure 7.4. The reactions modeling the displacement of

Fig. 7.4. The final network model of the peroxysome and cytosol reactions involved in PH1.
As in figure 7.2 the colored lines enclose the compartments. Dotted lines represent transport
reactions, whereas solid lines represent internal ones. The glyoxylate detoxification reaction,
involved in the PH1 disease, is indicated by a red cross together with the name of the catalyzing
enzyme AGT. Enzymes catalyzing other reactions are indicated in green.

oxalate and glyoxylate in the mitochondrial compartment have been proposed in HN1
(see the supplementary materials of [156]). However, as already said, HN1 does not model
PH1 and since these transport reactions can not be found in the PH1 dedicated literature,
we removed them from the model. The reaction accounting for the direct production of
oxalate from tryptophan is proposed in some literature (see for instance [151]) but is
still not widely accepted, and deserve further investigations before it can be properly
included in the model. Lastly, the reaction modeling the direct conversion of glycine into
glyoxylate was removed because we could not find biological evidences for it.

After these changes we started again with the FBA step, that resulted in a new
pruning of the network. The new model was then analyzed again in search of the same
behaviour. The results are shown in the right column of figure 7.3. The absolute amount
of produced oxalate varies from 31 to 111, whereas relative oxalate production is only
slightly lower than in the initial model. This is very likely due to distinct portions of
space explored in the two models. Also in this case, starting from the same quantity of
initial metabolite concentrations, the network is able to generate very different amount of
cytosolic oxalate. This is due to the different usage of the detoxification reaction, as can be
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seen from the upper right image of figure 7.3, but also to the different fate of the involved
metabolites. This is really interesting, since the disease may show different levels of
severity related to the oxalate production and concentration in blood and urine [154]. It is
also interesting to note that the maximum produced oxalate with respect to glycine is the
85%. This is consistent with the expected behaviour of a real hepatocyte, where glycine
is normally involved in a large variety of reactions and not only in glyoxylate/oxalate
production [157].

For what concerns the relation between the detoxification reaction, it is not easy to see
at a glance what is happening, because the searched space results in a very fragmentary
distribution of the final values (topmost panel of the right column of figure 7.3). This
effect was present also in the first network (where some “clusters” are clearly visible in the
topmost left panel of figure 7.3), but the overall effect was much easier to interpret. Here
we have few point per “clusters” and we have to investigate on the single groups. However,
looking at the values we find that almost everywhere there is an inverse correlation, as
expected. Furthermore the glyoxylate transport and oxalate production are very nicely
correlated, with R2 ≈ 0.98, as can be deduced from the linear fit and the data shown in
the bottom right panel and right column of figure 7.3).

This final metabolic network model exhibits the behaviours we are expecting from the
actual biological knowledge, and will be the one used for all the following investigations.
We will refer to it as HepatoNet3 (HN3).

7.3.2 Model Comparison: Wild Type vs Loss of Function

Once defined the correct network, we decided to investigate the differences between the
model containing the detoxification reaction, the so called Wild Type (WT) model and
the one in which this reaction is not functional, i.e. the Loss of Function (LoF) one.

Model Specification

We started from the HN3 model obtained in the previous section. For the WT model,
the network pruning was calculated as described in subsection 7.3.1. Instead, in order to
simulate the effect of a loss-of-function mutation of an enzyme regulating a reaction rj ,
the same flux-balance problems described in subsection 2.3.4 were solved by constraining
the fluxes through vj to zero, that is, v(+)

j = v
(−)
j = 0. In both cases the reactions

carrying a zero flux were omitted, and only the cytosol and peroxisome compartments
were considered.

The resulting network models are slightly different: the WT model contains 915 re-
actions and 951 compounds, whereas the LoF one contains 911 reactions and 950 com-
pounds. Furthermore, they differs in terms of included/excluded reactions and com-
pounds, and in terms of reaction directions. Also in this case, the initial values for all
the metabolite variables was fixed at 5 concentration unit.

Expected Behaviour Specification

We are interested in investigating the production of oxalate in the cytosolic compartment,
both for the WT and the LoF model. Hence, we use the same approach as in subsection
7.3.1, i.e. we define the negation of the property we are looking for, and we combine the
resulting assert clause with a timeout instruction inserted in the do cycle of the principal
process. Furthermore, to better understand the differences between the two models, other
steps were performed to obtain the maximum and minimum oxalate final concentration
values for both the models, with the invariant specifications expressed as explained in
subsection 5.4.3.
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Fig. 7.5. The absolute final oxalate concentration value is shown for the wild type model and
for the loss-of-function one. To show the effects of the glyoxylate detoxification, a final value is
shown, obtained adding the amount of the detoxified glyoxylate to the wild type concentrations.
The results are ordered from the minimum produced oxalate to the maximum (progressive
index).

Swarm settings

The swarm search was tuned as follows (see chapter 6). Here the number of extracted
counterexamples per job was lower than before, but a larger number of search modes
was specified. The aim is to investigate the larger possible part of the state space using
several search strategies, especially the ones with random ordering. Moreover, since we
are searching also for maxima, we allowed a higher limit for the depth search.

Max search depth: 20000
Max trail: 200
Cpu Number: 16
RAM amount: 32 Gigabytes
Time: 1 day
Hash function range: 3 – 8
Search modes: 4 normal ordering, 20 random ordering, 4 reversed ordering.

Results

The final oxalate concentration values (including minimum and maximum) for both the
WT and LoF models are shown in figure 7.5. The results, ordered by increasing values,
clearly show that in the LoF model the final concentrations, as well as the minimum
and maximum, are higher than in the WT model. This is due to the presence of the
detoxification reactions: when the detoxified amount is added to the final WT oxalate
concentrations, the obtained values are higher than the LoF value. It is worth noting
that in the WT filtered disease behaviour the detoxification reaction always takes place,
even in those cases where the final oxalate production is very high. The percentage of
produced oxalate for both the WT and LoF models is shown in figure 7.6. In this case,
especially for low oxalate productions, the WT model results in higher percentages than
the LoF. This is related to the new network pruning induced by the removal of the
detoxification reaction. In fact, in the WT model a relevant portion of the glycine (up
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Fig. 7.6. The produced oxalate is shown for both the wild type and loss of function models. The
final concentrations are weighted on the maximum producible oxalate (calculated from glycolate
and glycine).

to 21 concentration unit) is consumed in the cytosolic reaction Glycine + Cysteine −−→
H2O + CysGly, thus reducing the total amount of glycine that may be converted into
oxalate, and consequently lowering the maximum producible oxalate that is used to
weight the obtained data. The above reaction carries a zero flux int the LoF model, and
hence was removed in the pruning step. Moreover, in the LoF model two more reactions
that move glycine from an outside compartment to the cytosol are present, whereas they
are not included in the WT model (since they have null fluxes).

Nonetheless, when very high amounts of oxalate are produced this difference is not so
relevant. In particular, it is possible to observe that i) the maximal value of oxalate pro-
duction is reached in the LoF model, and ii) the LoF model results in higher percentages
than the WT, for high oxalate productions. These results agree with the PH1 expected
phenotype [154].

7.3.3 Satisfaction of Metabolic Objectives

Another useful investigation involves the ability of the network to fulfill some metabolic
objectives. A metabolic objective (MO) is a cellular function that should be accom-
plished by the biological system using as input a subset of compounds. Typically a
metabolic objective is specified as the combined production and consumption of some
specific metabolites given the input ones.

Here, we focused on a small subset (containing 50 functions) of the metabolic ob-
jectives that have been used in Gille et al. [156] to simulate on HepatoNet1 different
physiological hepatocyte functions. More precisely, our reduced set was obtained consid-
ering only the MO in which there is an oxalate production, i.e. the fluxes through the
oxalate producing reactions are different from zero and the specified MO was fulfilled.
We will refer to this set as the Oxa MO set.

Each MO is usually characterized by an Objective indicating the metabolite that
should be produced (or consumed) by the network, and by a set of Constraints containing
the metabolites that the network should consume and produce to fulfill the MO. Table
7.2 shows a minimal subset, taken from the Oxa MO set, of MO together with their
Objective and Constraints. The MES, DES, and MIPES are special sets of constraints,
described in Gille et al. [156]. Both for the Objective and the Constraints a minus sign (-)
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indicates the consumption of a metabolite, a plus sign (+) its production and an equal
sign (=) the initial availability of a metabolite, that can be both consumed and produced
by the network.

Table 7.2. Some examples of Metabolic Objectives taken by the Oxa MO set. The Simulation
ID describes the expected target of the MO. The Objective is the metabolite that should be
produced or consumed by the network while fulfilling the limits listed in the Constraints column.
Minus (-) signs indicates the consumption of a metabolite, whereas a plus sign (+) indicates
its production. An equal (=) sign indicates that the metabolite may be both consumed and
produced by the network. The letter in brackets indicate the metabolite compound. MES, DES,
and MIPES are predefined sets of constraints described in [156].

Simulation ID Objective Constraints

ATP(s) production +ATP(s) MES

Uridine(s) waste -1 Uridine(s) DES

ATP(c) salvage from
Hypoxanthine +ATP(c) -Hypoxanthine(c) -Glucose(s) -Pi(s) -Glutamine(s)

+CO2(s) -O2(s) =H2O(s)

Glycine degradation -1 Glycine(c) -Palmitate(s) -O2(s) +ATP(c) -ADP(c) -Pi(c) =H2O(s)
+Urea(s) -Methionine(s) +H2S(s) +CO2(s)

Synthesis of stearate +Stearate(c) MIPES

These information will be exploited to build both the model and the expected be-
haviour specifications. The ability of the network to fulfill the MO contained in the
Oxa MO set will be tested both for the WT and the LoF model. The aim is to investi-
gate on the effect of the chosen pruning on the obtained network, and on the differences
among the wild type and diseased (LoF) models.

Model Specification

We used the pruning already defined in subsection 7.3.2 both for the WT and the LoF
models. However, since MO are defined on the whole network, we included all the com-
partments, discarding only the zero-flux reactions. This pruning resulted in 951 com-
pounds and 1153 reactions for the WT model and 950 compounds e 1150 reaction for
the LoF one. However, as will be explained in detail in the results, the network was
able to fulfill only a small subset of the Oxa MO objectives. Hence, to understand if
this behaviour was an effect of not considering the zero-flux reactions, we tested the
ATP production MO (which is the first in table 7.2 and the one producing more oxalate
among all the MO contained in the Oxa MO set) on the whole network. We decided to
establish the zero-flux reaction directions using the information contained in the HN1
model: if a reaction ri was considered mono-directional in HN1, we set its direction in
HN3 accordingly. Otherwise, a random choice should be made (although this was not the
case, since the information from HN1 and HN3 together were enough to define all the
directions). The whole network contains 2576 reactions and 1445 metabolites.

Since the constraints specify which metabolite should produced and which consumed,
we decided to set the initial value of the network metabolites as follows: let C be the set of
constraints of a MO, and O the set of corresponding Objectives. Let be mi a metabolite
and vi its initial value, where i ranges from 1 to the number of metabolites contained in
the network. Hence:
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if mi ∈ O and sign(mi) : +⇒ vi = 5
if mi ∈ O and sign(mi) : − ⇒ vi = 30
if mi ∈ C and sign(mi) : + ⇒ vi = 5
if mi ∈ C and sign(mi) : − ⇒ vi = 30
if mi ∈ C and sign(mi) := ⇒ vi = 30
if mi /∈ C and mi /∈ O ⇒ vi = 5

Since the metabolic network needs at least a minimum concentration of metabolites
to work, we decided to set to 5 concentration unit all the initial values of the metabolites
that are either not involved in the MO or are involved, but should be only produced.
Instead, the metabolites that should be consumed (the ones with the - sign) or may be
also consumed (the ones with the = sign) are set to 30. Please do note that for each MO
contained in the Oxa MO set a different Promela program was built and verified.

Expected Behaviour Specification

Each MO was specified as described in subsection 5.4.3. However, we decide to exclude
from the assert clause all the metabolites in the constraints having an = sign specification:
in fact, these species may be both produced and consumed, hence we can not specify
the direction of their changing. The assert clause was used either in combination with
a timeout clause, either alone, since the timoeout is a very strong requirement for a
biological system.

/* ATP salvage from Hypoxanthine */

/* EXPECTED MO: +HC00012_c -HC00238_c -HC00040_s -HC00019_s -HC00067_s
+HC00021_s -HC00017_s =HC00011_s */

/* THE METABOLITE VARIABLES */
....
short HC00011_s = 30; /* NAME: Glycine(s) */
short HC00012_c = 5; /* NAME: ATP(c) */
short HC00017_s = 30; /* NAME: O2(s) */
short HC00019_s = 30; /* NAME: Pi(s) */
short HC00021_s = 5; /* NAME: CO2(s) */
short HC00040_s = 30 /* NAME: Glucose(s) */
short HC00067_s = 30; /* NAME: Glutamine(s) */
short HC00238_c = 30; /* NAME: Hypoxanthine(c) */
....

/* THE REACTION PROCESS */
proctype REACT_process() {

do
.... /* all the network reactions*/
:: timeout → assert( (HC00012_c <= 5) || (HC00238_c >= 30) || (HC00040_s >= 30)

|| (HC00019_s >= 30) || (HC00067_s >= 30) || (HC00021_s <= 5)
|| (HC00017_s >= 30));

od
}

/* START THE PROCESS */
init{run REACT_process()}

Promela code snippet 12: An excerpt of the Promela program implementing the
timeout verification of the MO ”ATP(c) salvage from Hypoxanthine”.

The resulting Promela program for the MO ATP(c) salvage from Hypoxanthine is
shown in the Promela code snippet 12. The other 49 MO contained in the Oxa MO set
have been similarly implemented.

Swarm settings

The swarm search was tuned as before, except for the max search depth that was incre-
mented. Also, only a small number of counterexamples were considered.
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Max search depth: 30000
Max trail: 2
Cpu Number: 16
RAM amount: 32 Gigabytes
Time: 4 hours
Hash function range: 3 – 8
Search modes: 4 normal ordering, 20 random ordering, 4 reversed ordering.

Results

The results of the timeout verification were all negative: the network was not able to
fulfill in the final state any of the required objects, both in the WT and in the LoF
models. Without the timeout clause some result is obtained, as shown in table 7.3. Apart

Table 7.3. List of the MO that the WT and LoF models are able to satisfy. A check mark
indicates that the corresponding MO has been fulfilled in the specified network. These results
have been obtained without the timeout clause.

Simulation ID WT LoF

CTP(s) waste X
Uridine(s) waste X
CDP-diacylglycerol-VLDL-PI-pool(l) production X
ATP salvage from Hypoxanthine X X
Glutamate degradation X X
Glycine degradation X X
Histidine degradation X X
Glutamine degradation X X
Leucine degradation X X
Lysine degradation X X
Proline degradation X X
Serine degradation X X
Tryptophan degradation X X
Valine degradation X X
Homocysteine degradation X X
Ornithine degradation X X

from the first three MO, all the others are fulfilled both from the WT and from the LoF
model. However, it is a very small amount (16 MO on 50, to be precise) and this is rather
unexpected considering that the verification is not performed at timeout. To exclude any
influence due to the omission of the zero-flux reactions, we verified the first MO of table
7.2 using the whole network with all the reactions and the assert clause without the
timeout. Also in this case, the result was negative, both for the WT and the LoF model.

This is very likely due to the consequences of the mean-fluxes pruning strategy (see
subsection 2.3.4). In fact, fluxes are calculated in each of the FBA problems used to satisfy
a MO. However, the mean of the fluxes among all the MO is used to prune the network:
this corresponds to consider only the mean behaviour of the network. This is a very
good strategy when exploring the network for less constraining properties, but may be
not appropriate when working on a single metabolic objective. Since a different Promela
program is built for each MO, it might be more useful to determine the network pruning
using only the fluxes resulting from the FBA step performed for the corresponding MO,
rather than considering always the same mean-flux pruning for all of them. We will
explore this direction in future works.

Nonetheless, it is interesting to note that some MO objectives are still conserved into
both the WT and LoF networks obtained with the mean-fluxes approach: these MO are
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mainly related with the amino acids catabolism, which includes essential functions that
take place almost exclusively in the liver cell [70].

7.3.4 Monotonic Behaviours

An important feature of a metabolic network is its ability to only produce or only consume
some metabolites or, complementary, to both produce and consume some of them. We will
call “initial” a metabolite that is monotonically consumed by the network, and “final”
one that is monotonically produced. Instead, we will call “intermediate” a metabolite
that is both produced and consumed by the network. After extracting the information
from both the WT and LoF networks, a comparative analysis may be performed that
can be useful in revealing similarities and differences between the two models.

Model Specification

Similarly to what we have done in subsection 7.3.3, we considered the whole network
discarding only the zero-flux reactions, both for the WT and the LoF model. In this
case, the initial value for each metabolite variable was fixed at 5 concentration unit.

Expected Behaviour Specification

The property specification in this case was based on a LTL always formula, as explained
in subsection 5.4.4. To assign a metabolite mi to one of the above defined classes, we
proceed as follows:

1. a verification of mi being monotonically increasing is performed;
2. a verification of mi being monotonically decreasing is performed;
3. a) if a counterexample is found both for the increasing and decreasing verification

steps, then mi is “intermediate”;
b) if a counterexample is found only for the increasing verification step, then mi is

“initial”;
c) if a counterexample is found only for the decreasing verification step, then mi is

“final”;
d) if a counterexample is not found neither for the decreasing verification step neither

for the increasing one, then mi is considered as “never used”.

Please do note that this approach implies that two verification steps should be performed
for each of the 951 WT and each of the 950 LoF compounds, for a total of 3802 generated
and verified Promela programs. Since the monotony increasing (decreasing) property is
checked placing the asserts only immediately after the reactions in which the compound
is consumed (produced), see subsection 5.4.4, if the pruning does not include consuming
(producing) reactions, then is useless to start the program verification. Rather, the prop-
erty is considered to be banally fulfilled and the metabolite mi is assigned to the “final”
(“initial”) or to the “never used” class depending on the results of the complementary
step.

However only 114 out of 3802 compounds fell in this case, and all the remaining
Promela programs had to be executed.

Swarm settings

The swarm search here is aimed at finding a single counterexample, in the lower possible
time. The number of CPU and the assigned RAM were set to values lower than before
due to the large number of Promela program to execute.

Max search depth: 35000
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Max trail: 1
Cpu Number: 4
RAM amount: 16 Gigabytes
Time: 2 hours
Hash function range: 3 – 8
Search modes: 12 random ordering

Results

Despite the very high number of Promela programs to elaborate, the specification of
properties as LTL formulae allowed to speed up the whole verification process, that
terminated in about a month. The results are shown in tables 7.4 and 7.5. In table 7.4

Table 7.4. Results of the classification for the WT and LoF models: the number of compounds
falling in each category is shown, together with the total number of compounds belonging to
each model.

Initial Final Intermediate Never used Total
number

WT 90 51 800 10 951
LoF 90 52 798 10 950

the number of compounds falling into each category is shown. Despite the differences in
the pruning, the compound classification is quite the same for both the models. The only
two differences are due to the compounds dCTP(c), that has a different classification in
the two models, see table 7.5 and Cys-Gly(c) that is only present in the WT model (due to
the pruning). A small number of compounds is never used: this happens to the species that

Table 7.5. A list of some interesting metabolites, together with their classification as interme-
diate, final,initial or never used, for both the WT and LoF models.

Metabolite WT LoF
Name Classification Classification

Cys-Gly(c) intermediate �
dCTP(c) intermediate final
Oxalate(c) final final
Bilirubin(c) intermediate intermediate
Bilirubin(s) initial initial
Bilirubin-bisglucuronoside(b) final final
Cholesterol(b) final final
Urea(s) final final
Tryptophan(s) initial initial
Isoleucine(s) initial initial
Arginine(m) never used never used
Cholesterol-ester-pool(l) never used never used

are involved only in the so-called abstract reactions (see subsection 7.3). Some of them are
listed in table 7.5. Oxalate is considered a final compound, in perfect agreement with the
biological knowledge. Several other interesting information can be deduced from this list:
for instance bilirubin is imported from the sinusoidal space (Bilirubin(s) is initial) then it
moves into the cytoplasm and there is converted (Bilirubin(c) is indeed intermediate) to
the water-soluble compound Bilirubin-bisglucuronoside(b) that is a final product found
in the bile canaliculi. Similarly, urea is a final product released into the sinusoidal space.
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Lastly, several amino acids in the sinusoidal spaces are initial, and will be then moved
to other compartments (in which they results as intermediate) to perform a wide range
of hepatic functions. These behaviours are in agreement with the known liver functions,
thus demonstrating the validity of the model and the usefulness of the method.

7.4 Exploiting the Dynamics

Until now we have used only the information on the used reactions and the final values
of the metabolites. However, the methodology developed in this thesis may be used to
investigate on the temporal features of the changes in metabolite concentrations over
time. The behaviours representing the maximum and minimum producible oxalate were

Table 7.6. Final concentration values (in generic units) of five compounds involved in PH1
for both the WT and the LoF models, and for the maximum and minimum producible oxalate
properties. The minimum final value, the maximum final value, and the mean of the final value
across the extracted counterexamples together with its dispersion are shown.

Property Model Compound Minimum Maximum Mean ±
type Name final value final value dispersion

Maximum
oxalate

WT

oxalate(c) 230 248 233.07 ± 5.16
glycolate(c) 0 0 0 ± 0
glyoxylate(c) 0 0 0 ± 0
glycine(p) 0 5 0.49 ± 1.08
glyoxylate(p) 0 0 0 ± 0

LoF

oxalate(c) 230 263 235.7 ± 7.74
glycolate(c) 0 0 0 ± 0
glyoxylate(c) 0 0 0 ± 0
glycine(p) 0 28 3.89 ± 9.28
glyoxylate(p) 0 0 0 ± 0

Minimum
oxalate

WT

oxalate(c) 27 41 36.8 ± 3.55
glycolate(c) 0 0 0 ± 0
glyoxylate(c) 0 0 0 ± 0
glycine(p) 116 203 160.56 ± 16.94
glyoxylate(p) 0 0 0 ± 0

LoF

oxalate(c) 40 41 40.67 ± 0.48
glycolate(c) 0 0 0 ± 0
glyoxylate(c) 0 0 0 ± 0
glycine(p) 143 172 168.5 ± 3.54
glyoxylate(p) 0 0 0 ± 0

extracted at timeout for both the WT and LoF models (as described in 5.4.3. About 350
counterexamples were collected for the maximum WT, 500 for the maximum LoF, 800
for the minimum WT, 200 for the minimum LoF.

In table 7.6 some information on the final values of five metabolites relevant for
the PH1 disease are shown. However, while for oxalate and peroxisomal glycine some
information may be immediately extracted from the table, for all other compounds not so
much information is obtained nor from the final values nor from the mean and dispersion
values. For instance, the peroxisomal glycine has very low initial and final values in the
maximum, both for the WT and LoF models. However, from these file we can not infer
its behaviour between the initial and final values.

In figure 7.7 the mean dynamics (across all the extracted counterexamples) of the
same five compounds are shown. together with the dispersion measure (i.e. the variance)
that represents the variability of a metabolite concentration over the time steps. Since the
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Fig. 7.7. The mean dynamics of five compounds are shown (red lines), together with their
dispersion measures (shadowed areas). Mean and dispersion of the metabolite concentrations
were calculated across several counterexamples obtained for the maximum and minimum pro-
ducible oxalate behaviours, both for the WT and the LoF models. The concentrations (y axes)
are expressed as usual in generic units, and the time steps (x axes) are given by the sequences
of the elaboration steps.

single reactions may be in principle executed in very distant time steps, unless they are
indispensable for other reactions to take place, this dispersion measure is only indicative
on how much constrained is the dynamic of a metabolite over the time. For instance,
in the first row of figure 7.7 the oxalate dynamics are shown for both the models and
the behaviours. The dispersion of this metabolite is quite small (as the shadowed area
indicates), since it increases monotonically during time, and the requested behaviours
filter out only the traces in which oxalate is accumulating. Instead, for citosolic glycolate
(second row) the dispersion measure indicates that the consumption of this metabolite
may take place at very different time steps. Since the dynamics of each compound may
have different lengths (i.e. different timings) in distinct counterexamples, to permit their
comparison the maximum possible time step was determined across all the counterex-
amples, and the dynamics was extended setting the newly added point to the final value
reached by the metabolite.
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Is interesting to note that the WT and LoF models present very similar dynamics
for all the metabolites, both for the minimum and for the maximum behaviour. This is
expected, since we are extracting from both the models the behaviours in which oxalate is
overproduced. In fact, we are extracting from the WT model the behaviours correspond-
ing to the PH1: indeed the WT model contains both the behaviours corresponding to
the disease (obtained when the AGT reaction takes place few times or is not executed at
all) and the ”normal” ones, where the detoxification reaction functionality is untouched.
However, the presence of the detoxification reaction in the WT model influences the lev-
els of both the minimum and maximum oxalate obtained, that is always lower than the
LoF counterpart (WT=27 g.u., Lof=41 g.u.) and the maximum (WT=248 g.u., LoF=263
g.u.).

On the contrary, differences arise when comparing the minimum and maximum be-
haviours, for both the models: for instance the peroxisomal glycine (fourth row) has an
accumulating behaviour in the minima, and falls down to zero when the maximum ox-
alate is searched. Similarly, the dynamics of citosolic glycolate and glyoxylate (second and
third row), and of peroxisomal glyoxylate (fifth row) show that these three compounds
are rapidly consumed in the minima, whereas they oscillate a lot in the maxima.

Concluding, the dynamics are a very useful tool to reason about the metabolite be-
haviours, and to infer qualitative properties of the model at study.

7.5 Chapter summary

In this Chapter we tested our methodology on a genome–scale metabolic network model
of human hepatocyte. In particular we addressed the study of a monogenic disorder
called Primary Hyperoxaluria Type 1 (PH1). The functional deficiency of AGT results
in a failure to detoxify glyoxylate within the peroxisomes of the liver cells. Instead of
being transaminated to glycine, glyoxylate is oxidized to oxalate and/or reduced to gly-
colate, resulting in greatly increased urinary excretion of oxalate and glycolate (that may
be directly converted to oxalate). Oxalate in mammals can not be further metabolized
and its overproduction results in the deposition of calcium oxalate (CaOx) crystals and
stone formation almost everywhere in the body. We performed different test on the hep-
atocyte network. The first was aimed at verifying the congruence of the model with the
known biologic evidences of the disease. Here we demonstrated that the model was not
compliant with the expected behaviours, and was hence revised and corrected. After we
compared the wild type (WT) model with a Loss Of Function (LoF) one, extracting
relevant information from the obtained results. Afterwards, we used the developed tech-
niques to verify the satisfaction of a set of Metabolic Objectives. Lastly we performed
an analysis to determine the initial, final and intermediate metabolite of both the WT
and LoF models. In all of the tests, the results of a FBA analysis step were considered
to both decide directions and lower the model size. The last section described how the
results of the dynamics may be exploited to extract interesting qualitative knowledge
about the temporal behaviour of the underlying network model.
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Conclusions

Biological network models are crucial in the context of Systems Biology. Their reconstruc-
tion, propelled by the availability of large amounts of genome-scale omics data coming
from high–throughput sequencing technologies, is challenging as much as their analysis
and simulation.

However, the simple organization of data into networks and the study of their topo-
logical properties are not enough to gain insight on the features of the system as a whole.
A system-level understanding of an organism should address both the system structure
(i.e. its components and the way in which they are related), and the system dynamics
(i.e. how it behaves over time under various conditions). This is an essential step to
unravel the relationships intercurring between the genotype and the phenotype of living
organisms.

To this aim, the biological information should be necessarily complemented by math-
ematical and/or computational models that may be executed or simulated to reveal the
adequacy of the biological assumptions and hypotheses on which they were based, in
case leading to a refinement of the model and/or to new biological experiments. This
hypothesis-driven research approach, together with the cyclic process of information in-
tegration and in silico model building, is essential in the Systems Biology paradigm.

Mathematical approaches are limited by the large size that biological networks typi-
cally exhibit, and by the availability of precise biological data to build the model. Com-
putational models may go beyond these limitations and work also on partial data, and
on more complex systems with a qualitative approach that relies on the goodness of
the underlying abstraction, rather than on the faithfulness of the mathematical imple-
mentation. The obtained results, although not precise, may be essential in unraveling
the complexity of the modeled biological systems. The differences between the compu-
tational and the biological models may be used to build new hypotheses, to refine the
model, and even suggest new experiments that can help in validate or reject the model.
This executable biology methodology is based on the close interplay between in silico
simulations and biological validation of the data.

Model checking techniques may be successfully used to built executable models of
biological systems, since their formal languages allow to describe both the constituent
components and the way in which they interact, with the overall behaviour emerging from
the interplay of the components, in a perspective that is very similar to the Systems
Biology paradigm. Moreover, these formal techniques enforce abstraction, an essential
feature for dealing with large models. Lastly, they can give partial information on a
biological systems through simulations of the model, i.e. a partial exploration of the
execution space.

In this thesis we proposed the use of model checking techniques for building, simulat-
ing and verifying executable models of genome–scale metabolic networks. Several original
contributions were given, and in particular:
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• we proposed a strategy to translate a metabolic network into an executable model on
which the checking phase can be performed. This approach is based on considering
the reactions as parallel running processes that try to access concurrently to shared
variables representing metabolite concentrations. Reactions may take place only if all
the needed metabolites are available. To select between different executable reactions
a non–determinism choice was considered;

• we identified interesting biological properties that can be checked on a metabolic
network model once expressed in a suitable property specification language;

• we devised a non–standard use of the model checker as a behaviour filter, i.e. as
generator of witnesses confirming that a model is able to exhibit a certain property.
Using the negation of the property of interest, the model may be queried to extract
relevant information on the executions (i.e. the used reactions and the metabolite
concentrations) that led to the satisfaction of the required property;

• we choose a model checker to implement the above described operations. In partic-
ular, we selected Spin (instead of NuSMV) since its model specification language,
Promela, allowed a very simple translation of a metabolic network into an executable
model. Moreover Spin permits the generation of more than a single counterexample,
condition that is essential to our behaviour filtering strategy. Lastly, Spin allows for
approximated search strategies, that were widely used in this thesis.

• we presented abstraction strategies, both for the model and for the property speci-
fication phases, that are essential in reducing the complexity of the overall verifica-
tion/behaviour filtering process;

• we proposed a novel approach in which the results of a Flux Balance Analysis step
are used to decide the reaction directions or to prune the network obtaining a smaller
model, in a biologically sound manner;

• we designed control strategies which permit to steer the checking process only on
interesting portions of the computation space;

• we discussed in detail the strengths and limits of the proposed methodology, address-
ing also the problem of the results coming from approximated searches;

• we implemented a complete workflow, based on Perl modules and bash scripting, that
allows to import a metabolic network, either in SBML format or as a stoichiometric
matrix, and translate it into a Promela model, that can be executed using the model
checker Spin. The extracted counterexamples are processed, and useful information
are extracted from them and saved in textual files. Moreover, we discussed how the
parameter tuning of the approximated searches may influence the obtained results;

• we tested this novel methodology on a real biological model, i.e. a human hepatocyte
metabolic network. In particular, we focused on a mendelian disease called Primary
Hyperoxaluria Type I, showing that interesting information may be deduced from the
application of the proposed methodology.

8.1 Perspectives

Although the work here presented is complete and self–contained, still other things may
be done in the future. We will give here a brief description of the possible directions that
in our opinion may deserve further efforts.

At first, we are planning to further investigate the hepatocyte model of chapter 7 to
elucidate the pathway that links the oxalate production to the tryptophan metabolism.
The existence of a relation between this essential aminoacid and the oxalate metabolism
has been postulated in some literature, but is still not completely understood. Hence
we plan to modify the metabolic network model, extending it with all the reactions
supposed to be in the pathway. After, the new model will be explored and simulated,
and the resulting data compared with the known biological evidences of the PH1 disease.

At the same time, we want to further improve our methodology. In fact, we are
planning to implement new control strategies. We would like to introduce enzimatic
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control by modeling priorities among the executable reactions. A simple mechanism based
on priority levels has been already implemented, as described in chapter 5. However, in the
proposed approach, if a reaction with higher priority may be executed, the one at lower
priority will be always skipped. We would like to change this behaviour, permitting the
execution of the lower priority reactions in a rate that should be based on the Michaelis
KM enzymatic constant. This will have two beneficial effects: first, it would permit a
more fine-grained representation of the modeled system. Second, it will allow for the
presence of interesting bidirectional reactions, whose execution will be regulated by the
strenght of the correspoding catalizing enzymes;

Another direction we would like to explore takes into account the introduction in
the network model of a process producing metabolites at finite rates. This would per-
mit to study the network taking into account a more dynamical representation of the
intake/export fluxes within the external environment. Of course, this will also imply the
definition of more complex properties than the simple reachability ones we have already
implemented here.

Lastly, we would like to design a user–friendly interface that should permit a smooth
use of the methodology also to people that are not skilled in formal techniques. In partic-
ular, we are thinking to develop a meta-language that should permit an easy definition
of the properties to check on the metabolic network; moreover a database may be ben-
eficial to store and make more easily accessible the extracted data, and it will provide a
knowledge base on top of which it will be possible to build more complex data mining
procedures.
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