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Abstract. We propose an autonomous control system for Aerial Service Vehicles
capable of performing inspection tasks in buildings and industrial plamtkig
paper, we present the applicative domain, the high-level contratecttre along

with some empirical results. The system is assessed on real-world anlétsich
scenarios representing industrial environments.
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We present a high level architecture designed for an Aegali€e Vehicle (ASV)
operating in close interaction with the external environt&his work is framed within
the The AlRobots project [1] whose aim is to develop a new gaitn of unmanned
service helicopters, equipped with sensors and end-effgcind capable not only to
fly, but also to achieve robotic tasks in proximity and in @mtwith the surface (e.g.
site inspections, simple manipulations, etc.).

Fig. 1. Robotic Platform: ducted-fan ASV

In our scenario, the autonomous system should orchestrae aet of operations
like wall approach, docking, undocking, wall scanning .€ftiese operations represent
different operative modes, associated with a differentrodler with specific control
laws and performance the high-level control system shoeilaare about. Each switch
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from one operative mode to the other should be suitably peepand planned to keep
smooth control trajectories. Since the system flies clostha@oobstacles in cluttered
and unknown environments, fast planning engine are redjtirgenerate (or to adjust)
trajectories in real-time. On the other hand, the systenulghioe able to regulate the
trade off between fast planning and accurateness of theaeddrajectories depending
on the operative mode and context. Moreover, since thersygperates with the man in
the loop, the planning and executive system should be alhatage sliding autonomy
from autonomous to teleoperated mode depending on the Hiinégrventions. This
applicative domain is challenging and novel and has not eestigated in depth in the
UAV literature; this is mainly focused on free flight taskslaimultaneous localization,
mapping, and path planning problems [4, 8, 17]. Few higlellavchitectures for UAV
can be found in literature [5], but none of these addressesaimplexity of the operative
domain proposed in this paper.

1 System Requirements and Architecture

The applicative scenario described so far requires a td@ghlcontrol system with fol-
lowing features:

— The air vehicle operates in close interaction with the emrinent, hence reactive,
adaptive, and flexible planning/replanning capabilitiesreeeded,;

— Both autonomous and human-in-the-loop control should peated to allow hu-
man interventions and teleoperation;

— High-level control strategies should be defined taking mtoount the low-level
operative modes and constraints.

In particular, the high-level system should orchestrageattivations of a set of low-
level controllers, modeled as hybrid automata [14], svititghto the appropriate low-
level controller according to the operative mode and to theirdd task (see Fig. 2)
while feeding the selected controller with suitable datg.(actual state and references
signals).
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Fig. 2. Interaction between the high level system and the low-level controller3; {eé high
level control system is composed of high-level and low-level supenryisystems.
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To match these requirements we proposed the layered arthiedepicted in Fig. 2
and Fig. 3. Here, two layers are distinguished, the higktlsupervisory system is re-
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sponsible for user interaction, task planning, path plagyrexecution monitoring, while
the low-level supervisory system manages the low-levet@en of control primitives
setting the controllers and providing control referenddse architecture is detailed in
Fig. 3.

Fig. 3. High Level Architecture: high level, low level, and reactive level modalesrespectively
in blue, green, and gray

The User module (US) allows us to specify high-level goals (€.gspect(p)) or
lower level tasks (e.dl'akeOf f) or directly to teleoperate. Each task/goal is delivered
to the TP which expands a task into an abstract plan compdsadooo-actions. This
plan is then provided to thBlan Supervisor (PS) for high-level execution. Each task
or macro-action can be interrupted and pre-empted by néws tasvided by the user,
causing to the TP to manage task replanning. The PS gendmateach macro-action
in the high-level plan, a set oficro-actions to be executed by therimitive Supervisor
(PR). Eachmacro-action is further decomposed into a sequencenfro-actions which
are endowed with detailed information about the geoméipatis. The PR exploits the
Control Manager (CM) to select the low-level controller responsible for ghescution
depending on the micro-action. Finally, the PR generatesdntrol trajectory passing
it to the Trajectory Supervisor (TS) to obtain control references at a suitable frequency.
It exploits concatenations of fifth-order polynomials gchng smooth trajectories be-
tween waypoints [11] while ensuring the velocity and tohem constraints. When a
micro-action fails, the PS can either call the PP to generatdternative path either call
the TP to generate a different plan of macro-actions, funtioee it can be interrupted
by thePath Monitor (PM) which checks for trajectory deviations and unexpeotesta-
cles. Finally, the operator can always switch to a manuatrobrin this case TS should
monitor the trajectory provided bieleman. Once the autonomous control is restored,
a replanning process is needed to recover the previous task.

1.1 Task Planning and Executive Control

The high-level executive system coordinates task decoitigogind plan monitoring.
The executive system relies on a PRS engine [9] that manhgeBDI-like execu-
tion cycle [15] and hierarchical task decomposition. ThghHievel executive system
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responds to events generated by US, PS, or TP itself by caimgiid handle one pend-
ing goal, selecting a method from the library, managing fieeachical decomposition
to extract/update the macro-actions plan. Once a plan isrgid, PS should manage
the actual execution of eachacro-action providing the action result to the TP module.
During this executive process, user interventions ardedeim a uniform way: at any
time the user can interrupt/suspend the current task, oalbyhe execution of alterna-
tive tasks. In this case, the executive system reacts neiplgufrom the current state by
selecting alternative methods, hence generating an atteerplan. This enables mixed
initiative task planning [2].

1.2 Path Planning and Replanning

The Path Planner expands eachacro-action into a set ofmicro-actions representing
a path that respects geometric and operative constraimspdth generation algorithm
extends the Rapidly-exploring Random Tree (RRT) algorifh@} which is particularly
suitable in highly unstructured and dynamic domains. 1a Work, the RRT algorithm
generates collision-free paths composed of sequencesygoives (z, y, z, 0), where
(z,y, 2) is a point and is the yaw. More specifically, it generates paths as seqsafce
(z,y,2) points in a 3D search space (3D grid map), while the yawobtained as the
direction pointing towards the next waypoint. The genetat@th should satisfy a set of
additional control, safety, and temporal constraiiMaximum angle for pitch and yaw;
Minimal distance from the obstacles (this parameter is also associated hatloper-
ative mode and the accuracy of the selected controlMaximum Time for the path
generation processes, if the algorithm cannot find a feagiath before the timeout,
it should provide the best partial path. Moreover, that RRihplanner can generates
several solutions to refine the path, until one of the follmyvconditions are satisfied:
timeout, i.e. the available time for path planning expirésterrupt, i.e. a replanning
request or an exogenous event interrupts plan generatisnthreshold, i.e. as soon
as the current path cost is below a suitable threshold, thergted plan is considered
as satisfactory. The path planning refinement procesaistrisited in the Algorithm
where the path generation process is iterated until theotigenerated path is not sat-
isfactory. If thetimeout occurs before the generation of the first solution sdiee RT'T
function generates theith that arrives closer to the target.

Algorithm 1 RefineRRT (ginit,qgoal thresholdtimeout)
initialize(path,time);
while ((time < timeout) A (preempted = false) A (pathCost > threshold)) do
newPath < SOIVeRRT{init,qgoal,timeout);
if C(newPath) < path then
path < newPath,;
pathCost < C(newPath);
end if
end while
return path
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The path cost is defined as follows:

c(path) =cing(path) - ping + Cang(path) - pang+ 1)
Cway (Path) - Pway + Cobs(Path) - Pobs + Cunk (Path) « Punk
where thep; are suitable weights angl are defined as follows:;,.,(path) is a cost
associated with the path lengi#,,.,(path) represents the cost associated with angular
(yaw and pitch) variations, by minimizing this cost a sthaigath should be preferred to
a path with angular variations;,., (path) keeps track of the generated waypoints and
allows us to minimized the segments in the path; (path) is associated with obstacle
proximity and penalizes paths close to obstaalges;. (path) penalizes paths through
-or close to- unexplored cells. Once a path is generateggtieplanner defines a set of
constraintg:st = (ms, md, et) to each generated segment. Roughtly, for each segment,
we set the maximum speeds directly proportional to the obstacle minimal distance
mo along the corresponding segments is also associated with a proportional erer
therefore we setnd asmo-et (if this value is not positive, the speed limit is lowered).
These constraintgst are also accessible by the human operator which can manually
reset them. Note, thatst are just rough limits used by CM and PR to select the right
controller and to generate the trajectory associated Wwélpath.

-— T
<
/ f

Fig. 4. (left) Brake to avoid collision; (centerEscape path to avoid the obstacle; (righReplan a
new path generated to reach the target.

Path replanning is managed with different strategies d#ipgron the time available
for path generation. The urgency associated with the repigractivity depends on the
position of the collision poinp,,s and the estimated time to collisian.. This one is
estimated considering the obstacle distage along the trajectory and the mean ve-
locity vimeqr @along the path. Given the time to collisieg., we introduce two thresholds
T, < T. used to distinguish the following three cases:

— Brake. If t,.. < T} then the obstacle is too close for replanning, hence there&tlyi
sends aBrake command to the PR to stop the robotiowvering (Fig. 4 up-left).

— Escape. If T, < tu. < T., the PP is invoked by the PS to find an escape path
that allows the robot to avoid the obstacle; the escapectajerepresents fictituos
detour that provides the planner with additional time toegate the new path on-
the-fly (Fig. 4 up-right).

— Replan. If t,;. > T. then the time is sufficient for safe replanning, hence the PS
calls the PP to replan, on-the-fly, a trajectory from a siétaleviation point along
the previous path (Fig. 4 down).



6 Lecture Notes in Computer Science: Authors’ Instructions

The PP is called in the case Bfcape andReplan. In the case oEscape, the path
planning task is simple, it is to select a close and safe targi@t g:.-4.: in the free
space, far enought to allow safe on-the-fly replanning, amkrate a path to reach it
(Fig. 4 right). That isEscape provides a path that not only permits to avoid the obstacle,
but also provides the time for replanning a new path to thé. Jdee interesting case
is the third one, where the path planning process should findlitarnative path that
connects the old trajectory with a new one while the robotyi;d@. The replanning
algorithm is illustrated in Algorithn2. Given the target,..:, the old pathpath,iq, the
collision pointq.ss, and thet,.. time, the replanning process first estimates the time
needed to replan., (estimatedRepTime); then it selects a waypointp,,,, along the old
pathpath.q, from which it is possible to safely calculate the deviatj@ith,,.., from
path.iq (selectDeviationWP); finally, upon setting a suitable threshokdt{hreshold), the
replanning process calRRT._refineto generate the new paghth.,... from the deviation
waypointwp,, to the targetyoq.. path,., Should allow PR to generate a new trajectory
connecting the old one with a smooth deviation from.,.

Algorlthm 2 Replanégoal, pathord, Qobs, tttc)
qc < getPosition();
t,p < estimatedRepTime(, qgoal, Pathoid, Gobs);
wprp < SelectDeviationWRL., Gobs, pathoid, trp);
threshold < setThreshold(p,p, ¢goai, trp, titc);
Pathnew < RefiNERRT(Wprp , ggoat, threshold, trp);
return pathpew

To select the deviation waypointp., we defined the following strategy. Given
the estimated time needed to reptap we estimate the robot positiap, at timet,.,
(assuming that it keeps following the old paitih,., during replanning), if there exists
a waypointwp in path,iq that followsp,., and precedeg,.s (keeping a suitable range the
we assume asaz Range), then we seleabp as the deviation waypoinip.,, otherwise,
q-p IS on the path segment that intersects the obstacle, hensel@atwp,, as the point
g in the middle of the segment that connegtsand a point.,, which is atmaz Range
distance frong.ss:. In Fig. 4 (center), we find an example of replanning from apaagt
after the collision detection (left).

1.3 3D Mapping

The environment for mapping and path planning 3®&egrid-map of cells run-time gen-
erated given the robot pose asild point clouds extracted from the cameras. We deploy
the well known pin-hole camera model [7]. Pose estimatiothefUAV is needed to
identify the 3D position of the projected camera points in the world refeseframe.
Our pose is either obtained by using libviso2 [6] couplechvatKalman filter or, al-
ternalively, by directly deploying an optitrack motion ¢age system. Given the pose,
the associated point cloud map should be suitable procéstgea3D occupancy grid.
This is obtained by discretizing the vehicle's workspacthwsiementary cubes of equal
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size. In our case, we employed a vehicles0fx 50 x 20 cm hence, we used cubes of
10 cm. For each cube we stored: number of inlie3® (riangulated points) fell into
the cube volume, last camera position which an inlier had lmedlected and finally
the state of the cube. The number of inliers represents thebauof different points
from which the same obstacle has been detected. The lastazg@mstion is required
in case of hovering to avoid that the same image featuresl gmrerate dome wrong
inliers, while it is possible that the same outlier is achit¥rom different points of
view. Finally, the state of the cube is used by the path platmédecide to replan the
map and choose a safety distance of havigation from the gxtepll. Each cell can be
associated with one of the following valugiee, occupied, obstacle, target, ignored
or unknown. Initially each cube is set tpree. When a3D point is detected to belong to
a given cube, the value of the corresponding cube is sett@ied. When the number
of points internal to a cube reaches a given treshold, the staet towbstacle. On the
other hand, when a target is identified the corresponding et tadarget. Moreover,
since the camera can observe directly the target from eagitigpothat had generated a
valid target view point, all the cubes laying along thesdagptays are set tegnored.
For wide environments, a sparse representation of the aocypgrid map is consid-
ered together with a spatial/temporal vanishing criteribimis last determines whether
an occupancy cube is reliable yet or if it has to be discardeed on the distance trav-
elled by the vehicle or on the time interval spent after it lapdate. In fact, due to
the drift of the vehicle pose estimation, obstacles whickehaeen observed far from
the current position or from long time cannot be consideedidlole in the current map
representation, and they have to be refreshed again. Witie tholutions the reliability
and scalability of the map representation can be tuned wthect to any environment.

2 Experimental Results

In this section, we present experimental results on plapnmigplanning, and obstacle
avoidance, both in real-world scenarios and in simulatett@mments.

Real-world planning and execution. Our architecture has been tested in a real scenario
of dimension400 x 400 x 300 cm® considering the two environments depicted in Fig.
5 (up and down). In the two tests, the task was the followingpéct a target point in
pose(380, 350, 50, 90) from the pos€40, 40, 50, 0) with maximal and minimal speed set
at0.3m/s and0.1 m/s respectively. The obstacles are detected on the fly andahis ¢
provoke task/path replanning, escape, or brake. For easfago, we tested0 times
collecting mean, max, min, and standard deviation (STDjmf spent during planning
(Tp), time spent in replanning (Tr), number of replanningseges (Nr), length of the
executed path (Lp), and total time for execution (includiaglanning time) (Te). For
computation and simulation we used an Intel Core Duo, 1.40@&B ram, Ubuntu
10.04. The high-level architecture was developed in RO$%.3Bomapping, we used
cameras ueye with hardware synchronized images, compressboard using atom
1.6 GHz, and sent to a ground station. The stereo images arenstdezt around5 Hz

at the ground station. The vision algorithm can track arol@image features cor-
respondences ofiimages working at the streaming frequency. Each cameradasv
images with resolution af52 x 480 and an angle of view of arourid°.
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Fig. 5. Replanning: generated and executed path (left) real platform duringegéution (right).

Test1 Test 2
Mean| STD |Max|Min ||Mean| STD |Max| Min
Tp||{0.075[0.014/0.08|0.04|(0.017]0.002{0.03| 0.01
Tr{|0.614| 0.41 {1.20]0.01}[0.067| 0.04 [0.11]0.005
Te|| 60.5 [10.12] 75 | 42 || 49.9 | 8.18 | 60 | 40
Lp|| 14.4 |1.54| 18 | 12 ||13.18]1.11| 15 | 11
Table 1. Planning and execution results (in seconds) in the real scenario.

Tab. 2 reports the results for the two scenarios (Test 1 astdZ'an Fig. 5). For
both these settings, initially the obstacles are not wsibénce we have a low time for
planning associated with a simple generated plan (Fig.f§)(I@hen, replanning is
needed to adjust on-line the trajectory once the obstactesdiacovered. Replanning
and execution time are slightly higher in the first scenarticl is more complex.
Instead, Tr seems negligible if compared with Te. The finajetitory length (Te) is
similar in both the settings and comparable with the distdretween the starting and
target point, hence the final trajectory seems not affecyecbbtinuous replanning. In
these tests, Tp and Tr are mainly due to path and trajectamnynpig (task planning
is negligible). We never experienced brake or escape. @v#ra system task/path
planning performance seems compatible with the operateragio requirements.

Smulated planning and execution. We tested our planning and execution system in
simulated environments. To test continuous replanningceresidered a larger space
of dimension100 x 100 x 50 m® with 4 and9 obstacles. To test replanning decoupled
from map bulding, we assumed a know map associated with filitisihorizon (not
visible obstacles are detected on the fly causing replahnkay each test, the task
was to inspect a target point in pog®, 90, 5,90) starting fromhovering in the pose
(5,5,5,0) (in meters); the robot maximal and minimal velocity was sét.am/s and
0.1m/s respectively. By changing the visibility horizon (greerigén Fig. 5) of the
planner {5 or 25 m) and the complexity of the environment ¢r 9 obstacles) we
obtained4 scenarios.

Tab. 2 collects means and STD of 10 tests for each entry (thdéesgth are iec.
andm, LL, HL, etc. are for Low complexity and Low visibility, Higlkomplexity and
Low visibility). We can see that Tp increases with the ohss¢(HL,HH) and decreases
with short visibility (LL,HL). Indeed, in these cases thaphing problem is simpler,
however, short visibility is associated with additiongblemning time which, in turn,
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[Res/Eny]  LL [ tH [ HL [ HH ]

Mean | STD | Mean [STD| Mean | STD | Mean | STD
Tp 0.21 |0.11] 0.39 |0.03| 0.25 | 0.10| 0.31 |0.14
Tr 0.12 [ 0.03| 0.07 [0.01| 0.20 | 0.04| 0.23 | 0.03
Te [|308.39 3.1 (211.88| 2.4 |718.57| 5.2 |720.45| 7.6
Lp 79.09 |13.76| 78.04 |9.63| 86.79 |12.65| 85.24 |13.12
Nr 09 |10.21| 0.3 |0.12] 34 |1.71| 2.5 |1.10
Table 2. Planning and execution results(time in seconds, length in meters)

decreases with the number of obstacles. The lower the neipigtime, the lower is
the execution time and the shorter the executed path. Aaireifect is due to visibil-
ity: short visibility causes frequent replanning events)(ahd longer paths (Lp) and
execution times (Te). Furthermore, the variance is entthmngth short visibility that
enhances the uncertainty. In these tests task planningdiosaially negligible (Tp and
Tr mainly due to path and trajectory). Also in this case, weenexperienced brakes or
escapes.

Smulated inspection. As for operations closer to the surface, we considered tpiody
inspection scenarios: physical (Pi) and visual inspecfidh In both these cases the
system has to move in a pose which faces a vertical surfaceringvat a close and
fixed distance (approach), in this cas@cm. As for Pi (see Fig. 6, left), the robot
executes a docking maneuver (docking) and slides (keepagdntact) along a linear
trajectory (p-inspect) 0225 ¢m. In the case of Vi an inspection trajectory (v-inspect)
should be planned and executed. Here, the goal is to sdaf a 100 cm? surface
with step50 em distant50 cm from the wall (see Fig. 6, right). In Tab. 2, we collect the
results of10 tests for each scenario considering planning time (Tp}diiin trajectory
(Tm) and path planning (Tpp) time (task planning is negligib

Physical Inspection Visual Inspection
Mean| STD | Max | Min [|[Mean|STD|Max|Min
Tp(/0.798]0.012]0.019(0.009(|0.734|0.47|1.25|0.42
Tm|[0.324| 0.17 | 1.07 | 0.12 ||0.329|0.22|0.57| 0.3
Tpp||0.473]0.27 | 0.71 | 0.14 |]0.405|0.07|0.49(0.39

Table 3. Physical inspection and visual inspection

For each test and scenario, both path and task planning inreesompatible with
the operative scenario requirements.

3 Conclusions

Aerial Service Robotics is a challenging and novel applicefor autonomous systems.
The close and physical interaction with the environmenttaedrequent user interven-
tions requires a high-level control system which integgdtest and reactive planning
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Fig. 6. Physical inspection (left) and visual inspection (right)

engines working at different levels of abstraction and geesto low-level operative
mode constraints. In this paper, we proposed a system thatines a set of methods
showing its performance and feasibility in a industrialplespection case study.
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