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Abstract. We propose an autonomous control system for Aerial Service Vehicles
capable of performing inspection tasks in buildings and industrial plants. In this
paper, we present the applicative domain, the high-level control architecture along
with some empirical results. The system is assessed on real-world and simulated
scenarios representing industrial environments.
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We present a high level architecture designed for an Aerial Service Vehicle (ASV)
operating in close interaction with the external environment. This work is framed within
the The AIRobots project [1] whose aim is to develop a new generation of unmanned
service helicopters, equipped with sensors and end-effectors, and capable not only to
fly, but also to achieve robotic tasks in proximity and in contact with the surface (e.g.
site inspections, simple manipulations, etc.).

Fig. 1.Robotic Platform: ducted-fan ASV

In our scenario, the autonomous system should orchestrate anew set of operations
like wall approach, docking, undocking, wall scanning etc.. These operations represent
different operative modes, associated with a different controller with specific control
laws and performance the high-level control system should be aware about. Each switch
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from one operative mode to the other should be suitably prepared and planned to keep
smooth control trajectories. Since the system flies close tothe obstacles in cluttered
and unknown environments, fast planning engine are required to generate (or to adjust)
trajectories in real-time. On the other hand, the system should be able to regulate the
trade off between fast planning and accurateness of the generated trajectories depending
on the operative mode and context. Moreover, since the system operates with the man in
the loop, the planning and executive system should be able tomanage sliding autonomy
from autonomous to teleoperated mode depending on the humans’ interventions. This
applicative domain is challenging and novel and has not beeninvestigated in depth in the
UAV literature; this is mainly focused on free flight tasks and simultaneous localization,
mapping, and path planning problems [4, 8, 17]. Few high-level architectures for UAV
can be found in literature [5], but none of these addresses the complexity of the operative
domain proposed in this paper.

1 System Requirements and Architecture

The applicative scenario described so far requires a high-level control system with fol-
lowing features:

– The air vehicle operates in close interaction with the environment, hence reactive,
adaptive, and flexible planning/replanning capabilities are needed;

– Both autonomous and human-in-the-loop control should be supported to allow hu-
man interventions and teleoperation;

– High-level control strategies should be defined taking intoaccount the low-level
operative modes and constraints.

In particular, the high-level system should orchestrate the activations of a set of low-
level controllers, modeled as hybrid automata [14], switching to the appropriate low-
level controller according to the operative mode and to the desired task (see Fig. 2)
while feeding the selected controller with suitable data (e.g. actual state and references
signals).

Fig. 2. Interaction between the high level system and the low-level controllers (left); the high
level control system is composed of high-level and low-level supervisory systems.

To match these requirements we proposed the layered architecture depicted in Fig. 2
and Fig. 3. Here, two layers are distinguished, the high-level supervisory system is re-
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sponsible for user interaction, task planning, path planning, execution monitoring, while
the low-level supervisory system manages the low-level execution of control primitives
setting the controllers and providing control references.The architecture is detailed in
Fig. 3.

Fig. 3.High Level Architecture: high level, low level, and reactive level modulesare respectively
in blue, green, and gray

The User module (US) allows us to specify high-level goals (e.g.Inspect(p)) or
lower level tasks (e.g.TakeOff) or directly to teleoperate. Each task/goal is delivered
to the TP which expands a task into an abstract plan composed of macro-actions. This
plan is then provided to thePlan Supervisor (PS) for high-level execution. Each task
or macro-action can be interrupted and pre-empted by new tasks provided by the user,
causing to the TP to manage task replanning. The PS generates, for each macro-action
in the high-level plan, a set ofmicro-actions to be executed by thePrimitive Supervisor
(PR). Eachmacro-action is further decomposed into a sequence ofmicro-actions which
are endowed with detailed information about the geometrical paths. The PR exploits the
Control Manager (CM) to select the low-level controller responsible for theexecution
depending on the micro-action. Finally, the PR generates the control trajectory passing
it to theTrajectory Supervisor (TS) to obtain control references at a suitable frequency.
It exploits concatenations of fifth-order polynomials providing smooth trajectories be-
tween waypoints [11] while ensuring the velocity and tolerance constraints. When a
micro-action fails, the PS can either call the PP to generatean alternative path either call
the TP to generate a different plan of macro-actions, furthermore it can be interrupted
by thePath Monitor (PM) which checks for trajectory deviations and unexpectedobsta-
cles. Finally, the operator can always switch to a manual control, in this case TS should
monitor the trajectory provided byTeleman. Once the autonomous control is restored,
a replanning process is needed to recover the previous task.

1.1 Task Planning and Executive Control

The high-level executive system coordinates task decomposition and plan monitoring.
The executive system relies on a PRS engine [9] that manages the BDI-like execu-
tion cycle [15] and hierarchical task decomposition. The high-level executive system
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responds to events generated by US, PS, or TP itself by committing to handle one pend-
ing goal, selecting a method from the library, managing the hierachical decomposition
to extract/update the macro-actions plan. Once a plan is generated, PS should manage
the actual execution of eachmacro-action providing the action result to the TP module.
During this executive process, user interventions are treated in a uniform way: at any
time the user can interrupt/suspend the current task, or by call the execution of alterna-
tive tasks. In this case, the executive system reacts replanning from the current state by
selecting alternative methods, hence generating an alternative plan. This enables mixed
initiative task planning [2].

1.2 Path Planning and Replanning

The Path Planner expands eachmacro-action into a set ofmicro-actions representing
a path that respects geometric and operative constraints. The path generation algorithm
extends the Rapidly-exploring Random Tree (RRT) algorithm[10] which is particularly
suitable in highly unstructured and dynamic domains. In this work, the RRT algorithm
generates collision-free paths composed of sequences of waypoints (x, y, z, θ), where
(x, y, z) is a point andθ is the yaw. More specifically, it generates paths as sequences of
(x, y, z) points in a 3D search space (3D grid map), while the yawθ is obtained as the
direction pointing towards the next waypoint. The generated path should satisfy a set of
additional control, safety, and temporal constraints:Maximum angle for pitch and yaw;
Minimal distance from the obstacles (this parameter is also associated with the oper-
ative mode and the accuracy of the selected controller);Maximum Time for the path
generation processes, if the algorithm cannot find a feasible path before the timeout,
it should provide the best partial path. Moreover, that RRT path planner can generates
several solutions to refine the path, until one of the following conditions are satisfied:
timeout, i.e. the available time for path planning expires;interrupt, i.e. a replanning
request or an exogenous event interrupts plan generation;cost threshold, i.e. as soon
as the current path cost is below a suitable threshold, the generated plan is considered
as satisfactory. The path planning refinement process is illustrated in the Algorithm1
where the path generation process is iterated until the current generated path is not sat-
isfactory. If thetimeout occurs before the generation of the first solution, thesolveRTT

function generates thepath that arrives closer to the target.

Algorithm 1 RefineRRT(qinit,qgoal,threshold,timeout)

initialize(path,time);
while ((time < timeout) ∧ (preempted = false) ∧ (pathCost ≥ threshold)) do

newPath← solveRRT(qinit,qgoal,timeout);
if C(newPath) < path then

path← newPath;
pathCost← C(newPath);

end if
end while
return path
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The path cost is defined as follows:

c(path) =clng(path) · plng + cang(path) · pang+

cway(path) · pway + cobs(path) · pobs + cunk(path) · punk

(1)

where thepi are suitable weights andci are defined as follows.clng(path) is a cost
associated with the path length;cang(path) represents the cost associated with angular
(yaw and pitch) variations, by minimizing this cost a straight path should be preferred to
a path with angular variations;cway(path) keeps track of the generated waypoints and
allows us to minimized the segments in the path;cobs(path) is associated with obstacle
proximity and penalizes paths close to obstacles;cunk(path) penalizes paths through
-or close to- unexplored cells. Once a path is generated, thepath planner defines a set of
constraintscst = (ms,md, et) to each generated segment. Roughtly, for each segment,
we set the maximum speedms directly proportional to the obstacle minimal distance
mo along the corresponding segment;ms is also associated with a proportional erroret,
therefore we setmd asmo-et (if this value is not positive, the speed limit is lowered).
These constraintscst are also accessible by the human operator which can manually
reset them. Note, thatcst are just rough limits used by CM and PR to select the right
controller and to generate the trajectory associated with the path.

Fig. 4. (left) Brake to avoid collision; (center)Escape path to avoid the obstacle; (right)Replan a
new path generated to reach the target.

Path replanning is managed with different strategies depending on the time available
for path generation. The urgency associated with the replanning activity depends on the
position of the collision pointpobs and the estimated time to collisiontttc. This one is
estimated considering the obstacle distancedobs along the trajectory and the mean ve-
locity vmean along the path. Given the time to collisiontttc, we introduce two thresholds
Tb < Te used to distinguish the following three cases:

– Brake. If tttc ≤ Tb then the obstacle is too close for replanning, hence the PS directly
sends aBrake command to the PR to stop the robot inhovering (Fig. 4 up-left).

– Escape. If Tb < tttc ≤ Te, the PP is invoked by the PS to find an escape path
that allows the robot to avoid the obstacle; the escape trajectory represents fictituos
detour that provides the planner with additional time to generate the new path on-
the-fly (Fig. 4 up-right).

– Replan. If tttc > Te then the time is sufficient for safe replanning, hence the PS
calls the PP to replan, on-the-fly, a trajectory from a suitable deviation point along
the previous path (Fig. 4 down).
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The PP is called in the case ofEscape andReplan. In the case ofEscape, the path
planning task is simple, it is to select a close and safe target point qtarget in the free
space, far enought to allow safe on-the-fly replanning, and generate a path to reach it
(Fig. 4 right). That is,Escape provides a path that not only permits to avoid the obstacle,
but also provides the time for replanning a new path to the goal. The interesting case
is the third one, where the path planning process should find an alternative path that
connects the old trajectory with a new one while the robot is flying. The replanning
algorithm is illustrated in Algorithm2. Given the targetqgoal, the old pathpathold, the
collision point qobs, and thetttc time, the replanning process first estimates the time
needed to replantrp (estimatedRepTime); then it selects a waypointwprp, along the old
pathpathold, from which it is possible to safely calculate the deviationpathnew from
pathold (selectDeviationWP); finally, upon setting a suitable threshold (setThreshold), the
replanning process callsRRT refineto generate the new pathpathnew from the deviation
waypointwprp to the targetqgoal. pathnew should allow PR to generate a new trajectory
connecting the old one with a smooth deviation fromwprp.

Algorithm 2 Replan(qgoal, pathold, qobs, tttc)

qc ← getPosition();
trp ← estimatedRepTime(qc, qgoal, pathold, qobs);
wprp ← selectDeviationWP(qc, qobs, pathold, trp);
threshold← setThreshold(wprp, qgoal, trp, tttc);
pathnew ← RefineRRT(wprp , qgoal, threshold, trp);
return pathnew

To select the deviation waypointwprp we defined the following strategy. Given
the estimated time needed to replantrp, we estimate the robot positionqpr at timetrp
(assuming that it keeps following the old pathpathold during replanning), if there exists
a waypointwp in pathold that followsprp and precedesqobs (keeping a suitable range the
we assume asmaxRange), then we selectwp as the deviation waypointwprp, otherwise,
qrp is on the path segment that intersects the obstacle, hence weselectwprp as the point
qm in the middle of the segment that connectsqrp and a pointq′obs which is atmaxRange

distance fromqobst. In Fig. 4 (center), we find an example of replanning from a waypoint
after the collision detection (left).

1.3 3D Mapping

The environment for mapping and path planning is a3D grid-map of cells run-time gen-
erated given the robot pose and3D point clouds extracted from the cameras. We deploy
the well known pin-hole camera model [7]. Pose estimation ofthe UAV is needed to
identify the3D position of the projected camera points in the world reference frame.
Our pose is either obtained by using libviso2 [6] coupled with a Kalman filter or, al-
ternalively, by directly deploying an optitrack motion capture system. Given the pose,
the associated point cloud map should be suitable processedinto a3D occupancy grid.
This is obtained by discretizing the vehicle’s workspace with elementary cubes of equal
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size. In our case, we employed a vehicle of50 × 50 × 20 cm hence, we used cubes of
10 cm. For each cube we stored: number of inliers (3D triangulated points) fell into
the cube volume, last camera position which an inlier had been collected and finally
the state of the cube. The number of inliers represents the number of different points
from which the same obstacle has been detected. The last camera position is required
in case of hovering to avoid that the same image features could generate dome wrong
inliers, while it is possible that the same outlier is achieved from different points of
view. Finally, the state of the cube is used by the path planner to decide to replan the
map and choose a safety distance of navigation from the occupied cell. Each cell can be
associated with one of the following values:free, occupied, obstacle, target, ignored
or unknown. Initially each cube is set tofree. When a3D point is detected to belong to
a given cube, the value of the corresponding cube is set tooccupied. When the number
of points internal to a cube reaches a given treshold, the state is set toobstacle. On the
other hand, when a target is identified the corresponding cube is set totarget. Moreover,
since the camera can observe directly the target from each position that had generated a
valid target view point, all the cubes laying along these optical rays are set toignored.
For wide environments, a sparse representation of the occupancy grid map is consid-
ered together with a spatial/temporal vanishing criterion. This last determines whether
an occupancy cube is reliable yet or if it has to be discarded based on the distance trav-
elled by the vehicle or on the time interval spent after its last update. In fact, due to
the drift of the vehicle pose estimation, obstacles which have been observed far from
the current position or from long time cannot be considered reliable in the current map
representation, and they have to be refreshed again. With these solutions the reliability
and scalability of the map representation can be tuned with respect to any environment.

2 Experimental Results

In this section, we present experimental results on planning, replanning, and obstacle
avoidance, both in real-world scenarios and in simulated environments.

Real-world planning and execution. Our architecture has been tested in a real scenario
of dimension400 × 400 × 300 cm3 considering the two environments depicted in Fig.
5 (up and down). In the two tests, the task was the following: inspect a target point in
pose(380, 350, 50, 90) from the pose(40, 40, 50, 0) with maximal and minimal speed set
at0.3m/s and0.1m/s respectively. The obstacles are detected on the fly and this can
provoke task/path replanning, escape, or brake. For each scenario, we tested10 times
collecting mean, max, min, and standard deviation (STD) of:time spent during planning
(Tp), time spent in replanning (Tr), number of replanning episodes (Nr), length of the
executed path (Lp), and total time for execution (includingreplanning time) (Te). For
computation and simulation we used an Intel Core Duo, 1.40GHz, 3GB ram, Ubuntu
10.04. The high-level architecture was developed in ROS. For 3D mapping, we used
cameras ueye with hardware synchronized images, compressed on-board using atom
1.6 GHz, and sent to a ground station. The stereo images are streamed at around15 Hz
at the ground station. The vision algorithm can track around120 image features cor-
respondences on4 images working at the streaming frequency. Each camera provides
images with resolution of752× 480 and an angle of view of around50◦.
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Fig. 5.Replanning: generated and executed path (left) real platform during plan execution (right).

Test 1 Test 2
Mean STD Max Min Mean STD Max Min

Tp 0.075 0.014 0.08 0.04 0.017 0.002 0.03 0.01

Tr 0.614 0.41 1.20 0.01 0.067 0.04 0.11 0.005

Te 60.5 10.12 75 42 49.9 8.18 60 40

Lp 14.4 1.54 18 12 13.18 1.11 15 11
Table 1.Planning and execution results (in seconds) in the real scenario.

Tab. 2 reports the results for the two scenarios (Test 1 and Test 2 in Fig. 5). For
both these settings, initially the obstacles are not visible, hence we have a low time for
planning associated with a simple generated plan (Fig. 5 (left)). Then, replanning is
needed to adjust on-line the trajectory once the obstacles are discovered. Replanning
and execution time are slightly higher in the first scenario which is more complex.
Instead, Tr seems negligible if compared with Te. The final trajectory length (Te) is
similar in both the settings and comparable with the distance between the starting and
target point, hence the final trajectory seems not affected by continuous replanning. In
these tests, Tp and Tr are mainly due to path and trajectory planning (task planning
is negligible). We never experienced brake or escape. Overall, the system task/path
planning performance seems compatible with the operative scenario requirements.

Simulated planning and execution. We tested our planning and execution system in
simulated environments. To test continuous replanning, weconsidered a larger space
of dimension100 × 100 × 50 m3 with 4 and9 obstacles. To test replanning decoupled
from map bulding, we assumed a know map associated with a visibility horizon (not
visible obstacles are detected on the fly causing replanning). For each test, the task
was to inspect a target point in pose(90, 90, 5, 90) starting fromhovering in the pose
(5, 5, 5, 0) (in meters); the robot maximal and minimal velocity was set at 0.5m/s and
0.1m/s respectively. By changing the visibility horizon (green cells in Fig. 5) of the
planner (15 or 25 m) and the complexity of the environment (4 or 9 obstacles) we
obtained4 scenarios.

Tab. 2 collects means and STD of 10 tests for each entry (time and length are insec.
andm, LL, HL, etc. are for Low complexity and Low visibility, Highcomplexity and
Low visibility). We can see that Tp increases with the obstacles (HL,HH) and decreases
with short visibility (LL,HL). Indeed, in these cases the planning problem is simpler,
however, short visibility is associated with additional replanning time which, in turn,
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Res/Env LL LH HL HH

Mean STD Mean STD Mean STD Mean STD
Tp 0.21 0.11 0.39 0.03 0.25 0.10 0.31 0.14

Tr 0.12 0.03 0.07 0.01 0.20 0.04 0.23 0.03

Te 308.39 3.1 211.88 2.4 718.57 5.2 720.45 7.6

Lp 79.09 13.76 78.04 9.63 86.79 12.65 85.24 13.12

Nr 0.9 0.21 0.3 0.12 3.4 1.71 2.5 1.10
Table 2.Planning and execution results(time in seconds, length in meters)

decreases with the number of obstacles. The lower the replanning time, the lower is
the execution time and the shorter the executed path. A similar effect is due to visibil-
ity: short visibility causes frequent replanning events (Nr) and longer paths (Lp) and
execution times (Te). Furthermore, the variance is enhanced with short visibility that
enhances the uncertainty. In these tests task planning timeis usually negligible (Tp and
Tr mainly due to path and trajectory). Also in this case, we never experienced brakes or
escapes.

Simulated inspection. As for operations closer to the surface, we considered two typical
inspection scenarios: physical (Pi) and visual inspection(Vi). In both these cases the
system has to move in a pose which faces a vertical surface hovering at a close and
fixed distance (approach), in this case50 cm. As for Pi (see Fig. 6, left), the robot
executes a docking maneuver (docking) and slides (keeping the contact) along a linear
trajectory (p-inspect) of225 cm. In the case of Vi an inspection trajectory (v-inspect)
should be planned and executed. Here, the goal is to scan a150 × 100 cm2 surface
with step50 cm distant50 cm from the wall (see Fig. 6, right). In Tab. 2, we collect the
results of10 tests for each scenario considering planning time (Tp) divided in trajectory
(Tm) and path planning (Tpp) time (task planning is negligible).

Physical Inspection Visual Inspection
Mean STD Max Min Mean STD Max Min

Tp 0.798 0.012 0.019 0.009 0.734 0.47 1.25 0.42

Tm 0.324 0.17 1.07 0.12 0.329 0.22 0.57 0.3

Tpp 0.473 0.27 0.71 0.14 0.405 0.07 0.49 0.39
Table 3.Physical inspection and visual inspection

For each test and scenario, both path and task planning timesare compatible with
the operative scenario requirements.

3 Conclusions

Aerial Service Robotics is a challenging and novel application for autonomous systems.
The close and physical interaction with the environment andthe frequent user interven-
tions requires a high-level control system which integrates fast and reactive planning
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Fig. 6.Physical inspection (left) and visual inspection (right)

engines working at different levels of abstraction and sensitive to low-level operative
mode constraints. In this paper, we proposed a system that combines a set of methods
showing its performance and feasibility in a industrial plant inspection case study.
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