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It is unknown whether age-related site-specific muscle loss is associated with areal bone mineral density (aBMD) in
older adults. To examine the relationships between aBMD and whole-body muscle thickness distribution, 97 healthy
adults (46 women and 51 men) aged 50–78 years volunteered. Total and appendicular lean soft tissue mass, aBMD of
the lumbar spine (LS-aBMD) and femoral neck (FN-aBMD) were determined using dual-energy X-ray absorptiom-
etry. Muscle thickness (MT) was measured by ultrasound at nine sites of the body (forearm, upper arm, trunk, upper
leg, and lower leg). Relationships of each co-variate with aBMD were tested partialling out the effect of age. aBMD
was not correlated with either MT of the trunk or anterior lower leg in either sex. In men, significant and relatively
strong correlations were observed between anterior and posterior upper arms, posterior lower leg, and anterior upper
leg MT and LS-aBMD or FN-aBMD. In women, significant correlations were observed between anterior and
posterior upper legs, posterior lower leg, and anterior upper arm MT and FN-aBMD. LS-aBMD was only correlated
with forearm and posterior upper leg MT in women. In conclusion, the site-specific association of MT and aBMD
differs between sexes and may be associated with the participants’ daily physical activity profile.
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Introduction

To prevent osteoporosis, understanding the adaptation of bone to physical activity is
important for developing public health strategies. Based on the current evidence, it
is thought that weight-bearing exercise elicits a positive effect on bone health (9). Bone
is primarily sensitive to: (1) short periods of loading with unusual strain distributions, (2) the
rate and magnitude of high peak strain during loading, and (3) the variation in the way strain
is distributed across a section of the bone (26). Thus, greater strain magnitude and unusual
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strain distributions provide the most effective stimulus for bone adaptation. In line with the
bone, skeletal muscle cells are stimulated under the condition of moderate- to high-load
muscle contractions with high metabolic stress (20) and muscle mass is increased in response
to repeated exercise (15). Furthermore, this muscle mass response is local and only occurs in
the muscle group trained. Therefore, daily physical activity with optimal and unusual loads
should have a positive effect on skeletal structure as well as muscle morphology.

Muscle mass loss associated with aging is greater in the lower limbs than in the upper
limbs (17). Furthermore, there is a greater loss of muscle in the anterior thigh than in the
posterior thigh (1, 13, 21, 23), which is defined as site-specific muscle loss (5, 8). This site-
specific muscle loss is observed not only in Japanese men and women (4), but also in German
and American men and women (2, 7). Evidence exists suggesting that site-specific muscle
loss may occur independently of the age-related muscle loss detected at the whole-body level (7).
Site-specific thigh muscle loss may be associated with the development of physical disability
in older adults (6). Similarly, age-related site-specific muscle loss may be related to bone
density as described above. However, it is unknown whether there are site-specific associa-
tions of muscle thickness with areal bone mineral density (aBMD). Therefore, the purpose of
this study was to examine the relationships between lumbar spine and femoral neck aBMD
and muscle thickness distribution in middle-aged and older men and women.

Methods

Subjects
Approximately 97 Caucasian adults (46 women and 51 men) aged 50–78 years volunteered
for this study (Table I). The participants were recruited from the university campus and
surrounding area via flyers posted on campus. Prior to obtaining informed consent, a written
description of the purpose of this study and its safety was distributed to potential subjects. All
subjects were right-handed and free of overt chronic disease (e.g., neuromuscular, diabetes,
angina, myocardial infarction, cancer, stroke, etc.) as assessed by self-report. The subjects
were not taking any medications known to affect muscle, such as angiotensin II receptor
blockers, steroids, or anti-diabetic drugs. Subjects being treated for mild hypertension with
β-blockers or diuretics were allowed to participate in this study. Approximately 60% of the
subjects (20 women and 40 men) reported participation in regular sports activity (at least
twice a week) including walking, running, and cycling exercise. This study was conducted
according to the Declaration of Helsinki and was approved by the University’s Institutional
Review Board, and written informed consent was obtained from the participants.

Body composition and bone mineral density measurements
The subjects underwent dual-energy X-ray absorptiometry (DXA) scans (Discovery A,
Hologic Inc., Bedford, MA, USA) to determine the percent body fat (%fat), total fat mass
(FM, kg), total (tLM, kg) and appendicular (aLM, kg) lean soft tissue mass, and areal bone
mineral density (aBMD, g/cm2) of the AP lumbar spine (L1–L4) (LS-aBMD) and femoral
neck of right leg’s proximal femur (FN-aBMD). Because ultrasound measurements were
carried out on the right side of the body, the value from the femoral neck of the right leg was
used to make comparisons between aBMD and ultrasound measured muscle thickness.
Quality assurance testing and calibration was performed the morning of data collection days
to ensure that the DXA was operating properly. The subjects were asked to refrain from
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eating for at least 4 h prior to scans and were offered water ad libitum. Furthermore, the
subjects were asked to refrain from moderate/vigorous exercise for at least 48 h prior to the
scans. DXA scans were conducted immediately before or after ultrasound measurements.
Test–retest reliability using intra-class correlation coefficient (ICC3,1), standard error of
measurement (SEM), and minimal difference to be considered real were previously
determined from 17 subjects scanned twice 24 h apart from aLM (0.99, 0.21 kg, and

Table I. Body composition, MT, and aBMD in middle-aged and older
women and men

Variables Women Men p-Value

N 46 51

Age (years) 58 (6) 60 (6) 0.329

Height (m) 1.63 (0.06) 1.77 (0.06) <0.001

Body mass (kg) 67.7 (17.3) 81.3 (12.6) <0.001

Body mass index (kg/m2) 25.5 (5.9) 25.9 (3.2) 0.698

Body fat (%) 31.0 (7.7) 19.5 (4.6) <0.001

Total fat mass (kg) 21.7 (10.5) 16.0 (5.4) <0.001

Total LM (kg) 43.1 (7.6) 61.5 (8.5) <0.001

Appendicular LM (kg) 18.2 (3.4) 27.8 (3.9) <0.001

Legs LM (kg) 14.1 (2.6) 20.5 (2.8) <0.001

aBMD lumbar spine (g/cm2) 0.95 (0.12) 1.04 (0.14) 0.001

aBMD femoral neck (g/cm2) 0.72 (0.10) 0.79 (0.12) 0.003

Muscle thickness (cm)

Sum of nine sites 29.2 (2.6) 35.6 (2.6) <0.001

Lateral forearm 1.82 (0.27) 2.44 (0.37) <0.001

Anterior upper arm 2.42 (0.31) 3.43 (0.37) <0.001

Posterior upper arm 2.76 (0.55) 3.94 (0.51) <0.001

Anterior trunk 0.95 (0.16) 1.32 (0.29) <0.001

Posterior trunk 1.93 (0.43) 2.25 (0.49) 0.002

Anterior upper leg 4.34 (0.66) 5.25 (0.56) <0.001

Posterior upper leg 5.91 (0.68) 6.58 (0.50) <0.001

Anterior lower leg 2.65 (0.26) 3.06 (0.34) <0.001

Posterior lower leg 6.42 (0.53) 7.37 (0.68) <0.001

Values are mean and standard deviation (SD). LM: lean soft tissue mass; aBMD: areal bone mineral density; andMT:
muscle thickness
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0.58 kg), tLM (0.99, 0.26 kg, and 0.71 kg) and %fat (0.99, 0.34%, and 0.95%), LS-aBMD
(0.99, 0.011 g/cm2, and 0.031 g/cm2), and FN-aBMD (0.99, 0.007 g/cm2, and 0.019 g/cm2).

Body mass and standing height were measured to the nearest 0.1 kg and 0.1 cm,
respectively, using a height scale and an electronic weight scale. Body mass index (BMI) was
defined as body mass (kg)/height2 (m2).

Muscle thickness measurements
Muscle thickness (MT) was measured using B-mode ultrasound (SSD-500, Aloka, Tokyo,
Japan) at nine sites (lateral forearm [at 30% proximal between the styloid process and the
head of the radius], anterior (biceps) and posterior (triceps) upper arms [at 60% distal between
the lateral epicondyle of the humerus and the acromial process of the shoulder], anterior
(quadriceps) and posterior (hamstring) upper legs [midway between the lateral condyle of the
femur and greater trochanter], anterior (tibialis anterior) and posterior (triceps surae) lower
legs [at 30% proximal between the lateral malleolus of the fibula and the lateral condyle of the
tibia], and anterior (rectus abdominis) [about 3 cm lateral to the umbilicus] and posterior
trunks (latissimus dorsi) [about 5 cm below to the inferior angle of the scapula]) on the right
side of the body as previously described (3). After the measurement of limb length using
anatomical landmarks described above, all the measurement sites were marked with a marker
pen. The measurements were taken, while the subjects stood quietly with their elbows and
knees extended and relaxed. A linear transducer with a 5-MHz scanning head was coated with
water-soluble transmission gel to provide acoustic contact and reduce pressure by the
scanning head to achieve a clear image. The scanning head was placed on the skin surface
of the measurement site using the minimum pressure required, and cross-sections of each
muscle were imaged. Images from each site were printed (SONYUP-897MD, Tokyo, Japan),
and the values of each site were used for data analysis. The subcutaneous adipose tissue–
muscle interface and muscle–bone interface were identified from the ultrasonic image, and
the distance between the two interfaces was accepted as MT for limb muscles. For
measurements in trunk, MT was defined as the distance between the adipose tissue–muscle
interface and the deep muscle fascia interface. Summation of MT in measured nine sites (sum
of 9 MT) was calculated as an index of total muscle mass (25). In addition, the ratio of
anterior to posterior (A:P) upper leg MT was calculated as an index of site-specific thigh
muscle loss (8). Test–retest reliability of MT measurements using ICC3,1, SEM, and
minimum difference was previously determined from 15 middle-aged subjects for anterior
(0.88, 0.08 cm, and 0.22 cm) and posterior (0.96, 0.08 cm, and 0.22 cm) upper arm and
anterior (0.98, 0.07 cm, and 0.19 cm) and posterior (0.95, 0.10 cm, and 0.28 cm) thigh. In
addition, the estimated coefficient of variation of this method from test–retest was 0.8% (19).

Statistical analysis
All data are presented as mean and standard deviation. Before comparisons were made,
dependent variables were tested for normality of distribution by the Shapiro–Wilk test. The
difference between women and men was tested for significance using unpaired Student’s
t-test, and if any variables were not normally distributed, then the Mann–Whitney U test was
used. First, Pearson product correlations were performed to assess the relationship between
aBMD and body composition (FM, tLM, and aLM) or MT. As a result, a significant negative
correlation was observed between age and FN-aBMD in both sexes, although age did not
significantly correlate with LS-aBMD. Therefore, relationships of each co-variate with
aBMD were tested partialling out the effect of age. Significance was set at p< 0.05.
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Results

Age and BMI were similar (p> 0.05) between women and men, although men were taller
(p< 0.001) and heavier (p< 0.001) than women. Women had higher (p< 0.001) FM and
lower tLM and aLM than men. Women also had lower aBMD of the lumbar spine (p= 0.001)
and femoral neck (p= 0.003) than men. In addition, MT was higher (p< 0.001) in men than
in women at all measured sites and summation of all the nine sites (Table I).

There were significant positive correlations between FM and LS-aBMD in women and
men, although FN-aBMD did not correlate with FM. Both LS-aBMD and FN-aBMD were
positively correlated to tLM and aLM in men. In women, tLM and aLM were only correlated
with FN-aBMD, but not LS-aBMD. Sum of 9 MT was significantly correlated with both
LS-aBMD and FN-aBMD in men. In women, sum of 9 MT was correlated with FN-aBMD,
but not LS-aBMD (Table II).

No significant correlations were observed between LS-aBMD or FN-aBMD and MT at
the anterior and posterior trunks and anterior lower leg in both sexes. In men, there were
significant correlations between anterior upper leg MT and aBMD at the lumbar spine and
femoral neck. Posterior lower leg MT was also correlated with both LS-aBMD and FN-
aBMD. Surprisingly, upper arm anterior and posterior MTs were significantly correlated with
aBMD at both sites (Table III). In women, significant correlations were observed between
posterior upper leg MT and both LS-aBMD and FN-aBMD. There were significant
correlations between FN-aBMD and MT at the anterior upper leg, posterior lower leg, and
anterior upper arm. A:P upper leg MT ratio was only correlated with LS-aBMD in men. In
addition, forearm MT was correlated with LS-aBMD (Table III).

Discussion

The primary findings of this study were that (1) FMwas correlated with LS-aBMD in middle-
aged and older men and women, (2) tLM and sum of 9 MT were correlated with both
LS-aBMD and FN-aBMD in men but only FN-aBMD in women, and (3) site-specific
associations of MT with aBMD were observed in both sexes.

Cross-sectional studies have reported that body mass correlates with aBMD in men and
women, such that individuals with greater body mass have higher aBMD at weight-bearing

Table II. Age-adjusted partial correlation between aBMD and body composition

Women (n= 46) Men (n= 51)

LS-aBMD FN-aBMD LS-aBMD FN-aBMD

Total fat mass 0.354* 0.216 0.317* 0.178

Total LM 0.262 0.368** 0.479*** 0.338*

Appendicular LM 0.217 0.362* 0.462*** 0.351*

Sum of 9 MT 0.179 0.407** 0.479*** 0.444**

LM: lean mass; MT: muscle thickness; LS-aBMD: areal bone mineral density at lumbar spine; and FN-aBMD: areal
bone mineral density at femoral neck. *p< 0.05. **p< 0.01. ***p< 0.001
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sites (10, 11). Body mass consists of two major components: fat mass and fat-free mass (or
tLM). A recent meta-analysis has demonstrated that both tLM and FM are significantly
associated with aBMD, but tLM is more important than FM (14). In this study, the
relationship between aBMD and sum of 9 MT, an index of whole-body muscle mass
(25), is stronger than the relationship between aBMD and FM. Thus, our findings agree with
previous research (14) that whole-body muscle mass has a greater influence on aBMD than
FM, suggesting that physical activity is an important component for preventing bone loss in
middle-aged and older adults.

In addition, we also found significant associations between site-specific MT and
aBMD measurements in middle-aged and older men and women. Specifically, our results
revealed that anterior upper arm (biceps) MT as well as anterior upper leg (quadriceps) MT
is associated with both LS-aBMD and FN-aBMD in men, but only FN-aBMD in women.
In a typical pattern of daily life, the anterior upper leg muscle is active for only a short
period of time (1–3 h) and at relatively low intensities (3–11% of maximum voluntary
isometric contraction) (18). Previously, we have shown that the duration of vigorous daily
physical activity is positively correlated with anterior upper leg MT, but not with light or
moderate physical activity (22). These results support our findings as well as our previous
studies (12, 28) that greater strain magnitude via vigorous daily activity may provide an
effective osteoanabolic stimulus for men and women. On the other hand, it is unclear
whether there are direct or indirect relationships between the upper extremity MT and
aBMD. However, it is expected that the anterior upper arm (elbow flexor) MT is probably
related to lifting and holding/carrying load during normal activities of daily living, which
may differ between men and women. Thus, the tentative gained body mass from the
external load may be acutely producing greater strain magnitude or unaccustomed strain

Table III. Age-adjusted partial correlation between aBMD and MT distribution

Women (n= 46) Men (n= 51)

LS-aBMD FN-aBMD LS-aBMD FN-aBMD

Lateral forearm MT 0.332** 0.161 0.251 0.210

Anterior upper arm MT 0.180 0.384** 0.447*** 0.384**

Posterior upper arm MT 0.010 0.262 0.369** 0.396**

Anterior trunk MT −0.257 −0.097 0.097 0.166

Posterior trunk MT 0.045 0.264 0.220 0.213

Anterior upper leg MT 0.052 0.347** 0.441*** 0.349**

Posterior upper leg MT 0.308* 0.404** 0.038 0.116

Anterior lower leg MT 0.153 0.160 0.204 0.158

Posterior lower leg MT 0.184 0.366** 0.448*** 0.364**

A:P upper leg MT ratio 0.203 0.061 0.377** 0.257

MT: muscle thickness; LS-aBMD: areal bone mineral density at lumbar spine; FN-aBMD: areal bone mineral density
at femoral neck; and A:P: anterior to posterior. *p< 0.05. **p< 0.01. ***p< 0.001
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distribution in the load-bearing lumbar spine and hip, which may stimulate bone in those
regions. This type of physical work (including isometric contraction) may also stimulate
working muscles in the upper extremity (27). A five-year longitudinal follow-up study
reported that the rate of decline in elbow flexion strength was greater in subjects who
decreased the overall physical activity compared to those who remained active or increased
activity (24). In men, our findings showed that posterior upper arm MT was also associated
with both LS-aBMD and FN-aBMD. On average, anterior to posterior upper arm MT ratio
is relatively constant among middle-aged and older groups in men and women (4) and there
is a significant correlation between anterior and posterior upper arm MTs in both sexes
(men; r = 0.358, women; r = 0.204, both p < 0.001) (4). In this study, however, anterior
upper arm MT was significantly correlated to posterior upper arm MT in men, but not in
women (data not shown). These results suggest that concurrent muscle adaptations in the
anterior and posterior upper arm muscles may be observed in men, but not in women.
These muscle adaptations may be a reflection of the correlations between upper arm MT
and aBMD.

Our results indicate that posterior upper leg MT did not significantly correlate to
LS-aBMD and FN-aBMD in men, although anterior upper leg MT correlated to both
aBMD. As a result, the anterior to posterior upper leg MT ratio was significantly associated
with LS-aBMD, but not FN-aBMD. In women, on the other hand, both anterior and posterior
upper leg MTs were significantly correlated to LS-aBMD and FN-aBMD, except for the
relationship between anterior upper leg MT and LS-aBMD (Table III). Therefore, there was
no significant correlation between the ratio of anterior to posterior upper leg MT and aBMD
in women (r= 0.203 and r= 0.061, respectively). In addition, a significant correlation was
observed between forearm MT and LS-aBMD in women only. These apparent sex differ-
ences are unexplained but may be due to physical activity profiles in daily life. Similarly, a
previous longitudinal study investigating the relationships between the changes in BMD and
physical fitness in middle-aged and older women reported that physical fitness and local
muscle strength may be associated with BMD reduction at each body site (16). Therefore, the
difference in physical fitness and local muscular strength may relate to the differences in
BMD-MT relationships between men and women.

It is expected that muscle activation patterns in each muscle during daytime activity may
support our present results. However, we did not measure exercise intensity and duration
during daily life using electromyography and/or an accelerometer. In addition, the sample
size of this study is relatively small, although this phenomenon may be similar when the
sample size is increased. An additional study is needed to address these potential issues.

In conclusion, our results indicate that aBMD was significantly associated with MT of
the upper and lower extremities but not the trunk, and site-specific associations of MT with
aBMD differ between men and women, which may be related to the participants’ daily
physical activity profile.
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