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Introduction

Ecologists have long distinguished three fundamental 
components of species diversity: alpha diversity (α), which 
measures the species diversity at the local scale, beta diver-
sity (β), which measures the extent of local diversity change 
in a region, and gamma diversity (γ), which measures the total 
diversity of a region (Whittaker 1972). All of these diversity 
components are scale dependent: alpha diversity depends on 
the size of the local scale, gamma diversity depends on the 
size of the regional scale, and beta diversity, which links al-
pha and gamma diversity, depends on both local and regional 
scales (Loreau 2000). However, considerable attention has 
been given primarily to the scale dependency issues of alpha 
(or gamma) diversity.

The species-area relationship (SAR) is well-known for 
describing the scale dependency behavior of alpha or gamma 
diversity components when measured by species richness 
(the species richness and diversity are use synonymously in 
this paper). The most common form of SAR is the power law 
scaling relationship (S=cAz, where S is number of species or 
species richness; A is area measured; parameter z is the scal-
ing exponent with value less than 1, and parameter c is a con-
stant, Arrhenius 1921). This can help determine the minimal 
sampling area for biodiversity surveys, extrapolate species 
richness in response to habitat loss, and plan optimal sizes 

for nature reserves (He and Legendre 1996, Dengler 2009). 
Actually, the power law scaling relationship of SAR is also 
dependent on scale, as it has been shown that its parameters 
(especially the scaling exponent z) vary with spatial scale 
(Crawley and Harral 2001, Drakare et al. 2006). 

Spatial scale can be separated into several components, 
including grain, extent, and lag (Wiens 1989), but grain and 
extent are used primarily for SAR scale dependence studies. 
Grain is the size of the individual units of observation—the 
quadrats of a field ecologist or the sampling units of a statisti-
cian—which correspond to the minimum scale sampled (of-
ten the size of individual quadrats) in a study, and extent is the 
overall area encompassed by a study (Wiens 1989). Palmer 
and White (1994) observed that spatial grain and extent in-
fluence the shape of the SAR curve in a plant community. 
Crawley and Harral (2001) considered the spatial extent ef-
fects on slope of the power SAR of plant communities, and 
found that scaling exponent z has a unimodal pattern which 
shows the peak at intermediate spatial extent sizes with low 
values at small and large spatial extent size. Drakare et al. 
(2006) considered the effects of both spatial grain and spa-
tial extent on SARs and provided evidence of the fact that 
coarse spatial grain follows a steeper slope (z), while spatial 
extent does not show clear pattern on scaling exponent z. The 
inconsistency between these two works on the spatial extent 
effect on the SAR is due partially to the fact that the results 
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of Drakare et al. (2006) were based on 794 SARs from differ-
ent geographical location and taxonomic groups which also 
impact on the slope of SAR. Drakare et al. (2006) found that 
steeper slope of SAR are generated at lower latitudes and by 
larger organisms also. The scale dependency of SAR is still 
an open issue, especially for the extent effects. To our knowl-
edge, there have been surprisingly few attempts to quantify 
both spatial extent and grain dependence of the power law 
SAR in one dataset analytically and systematically. Spatial 
grain and extent exist simultaneously for any dataset. In the 
SAR, the minimum area (Amin) sampled for analysis corre-
sponds to the spatial grain, and the maximum area (Amax) sam-
pled for analysis corresponds to the spatial extent which made 
the spatial grain and spatial extent have been included in an 
implicit way. Therefore, it is hard to explore the scale (spatial 
grain and spatial extent) dependency of SAR analytically and 
systematically in an explicit way. 

Beta diversity, which is considered as important as alpha 
diversity in understanding ecosystem functions and man-
agement and biodiversity conservation (Wilson and Shmida 
1984; Legendre et al. 2005), has the potential to include the 
spatial grain and extent explicitly when dealing with scale de-
pendency issues. Although diverse definitions and measures 
for beta diversity have been reviewed, discussed, and recom-
mended extensively (see papers of Wilson and Schmida 1984, 
Vellend 2001, Koleff et al. 2003, Tuomisto 2010a, 2010b, 
Anderson et al. 2011), the beta diversity in our work refers 
to that which is related directly to alpha and gamma diversity 
components. It is well known that two different perspectives 
exist for relating beta diversity components directly with al-
pha and gamma diversity components: the multiplicative per-
spective (betamul=gamma/alpha-1; Whittaker 1972) and the 
additive perspective (betaadd=gamma-alpha; MacArthur et al. 
1966). There have been extensive discussions with respect 
to which perspective is better in partitioning an “independ-
ent” beta diversity (Jost 2007, Ricotta and Marignani 2007, 
Ricotta 2008, de Bello et al. 2010, Chao et al. 2012, c.f. a 
recent Forum in Ecology [2010] edited by Ellison, and papers 
in it). However, there is no perfect metric for measuring beta 
diversity (Ricotta 2010) and both additive and multiplicative 
partitioning can be extremely useful in studies focusing on 
species diversity (Veech and Crist 2010). Kiflawi and Spencer 
(2004) found that the perspectives for partitioning beta diver-
sity are directly related to each other (betamul=betaadd/alpha). 
For either decomposition approach, beta diversity is deter-
mined by alpha diversity, which corresponds to spatial grain, 
and gamma diversity, which corresponds to spatial extent; 
this means that beta diversity explicitly includes spatial grain 
and extent simultaneously, hence lending itself naturally to 
the study of its scale dependency issues.

However, it is surprising that few works explore the scale 
dependency of beta diversity. Recently, Barton el al. (2013) 
proposed a framework for spatial scaling of beta diversity, 
but case studies on quantification of the scaling relationship 
between beta diversity and area are needed. As beta diversity 
includes both spatial grain and extent, Barton et al. (2013) 
suggested that three ways could been used in exploring the 
beta diversity and area scaling relationship: 1) fixing grain 

while varying extent, 2) fixing extent while varying grain, and 
3) co-varying extent and grain. The main purpose of our work 
is to explore whether scale dependence properties exist for 
scaling relationship between beta diversity and scale (spatial 
extent and spatial grain). Specifically, we want to analyze the 
spatial grain effects on the scaling relationship between beta 
diversity and spatial extent and the spatial extent effects on 
the scaling relationship between beta diversity and spatial 
grain. Therefore, the first two ways suggested by Barton et 
al. (2013) for spatial scaling of beta diversity were used in 
our work. The scaling relationship between beta diversity and 
scale is assumed in power law form. This assumption is based 
on the fact that alpha diversity and gamma diversity could 
be scaling up by power law. As previously stated that beta 
diversity is a function of alpha diversity and gamma diversity, 
when exploring beta diversity and extent scaling relationship, 
namely fixing alpha diversity but changing gamma diversity, 
and given the power law scaling of gamma diversity, it is 
reasonable to assume beta and extent may have power law 
scaling relationship. Similarly, when exploring beta diversity 
and grain scaling relationship, namely fixing gamma diver-
sity but changing alpha diversity, and given the power law 
scaling of alpha diversity, it is reasonable to assume beta and 
extent may have power law scaling relationship also. Based 
on this power law scaling relationship assumption between 
beta diversity and scale, we explored the scale dependency 
of this relationship by the mathematical inference. The power 
law beta diversity scaling assumption and mathematical pre-
dictions on the scale dependency of this scaling relationship 
were also verified through the analysis of forest community 
data from an elevational transect of warm, temperate de-
ciduous broadleaf oak (Quercus liaotungensis Koidz) forest 
in Beijing, North China and a 20-ha subtropical, evergreen 
broadleaf forest plot in Guangdong province, South China.

Methods

Mathematical inference

We first assumed that beta diversity is related to spatial 
grain or extent in a power law form and then demonstrated 
through mathematical inference the scale dependence of 
these power law relationships. For this purpose, we intro-
duced mathematical formulations to express changing extent 
(E) and grain (G): Let γ[i] be the number of species for extent 
size E[i], where i=[1,2,…,n] represents a series of increasing 
extent sizes, such that E[i+1]>E[i] and γ[i+1]>γ[i]. Similarly, 
let α [j] (where α [j]<γ[i]) be the average species number 
for grain size G[j] (j=1,2,…,m, represents a series of increas-
ing grain sizes), such that G[j+1]>G[j] andα [j+1]>α [j]. 
Through straightforward reinterpretations of the power law 
SAR, the relationship between γ and spatial extent, and be-
tween α and spatial grain are both in the form of a power 
law when diversity is measured using species richness [but 
see Zhang et al. (2006) for a demonstration that this extends 
to most diversity indices (e.g., Shannon, Simpson)].
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Beta diversity and spatial scale: the power-law scaling  
relationship

We used two directly correlated beta diversity measures 
from the multiplicative and additive perspectives of diversity 
partitioning to explore the beta diversity and area scaling re-
lationship. For the additive perspective, the beta diversity can 
be measured by:
βadd=γ-α  	  (1)

For the multiplicative perspective, we used the modified 
beta diversity measure to detect the “full changes” among lo-
cal sites (Whittaker 1972):
βmul=γ /α -1 	 (2)

Because these measures are related directly with βmul=βadd/
α (Kiflawi & Spencer 2004), we only present the mathemati-
cal inference and data tests of additive approach for beta di-
versity (βadd) (the results of beta diversity (βmul) partitioned 
by multiplicative approach were provide in Supplemental 
Materials), but our criticism applies to both.

As suggested by Barton et al. (2013), the beta diversity 
and area scaling relationship can be explored either by fix-
ing spatial grain, but changing spatial extent or fixing spatial 
extent, but changing spatial grain. This means that the beta 
diversity and area relationship can be expressed by the beta 
diversity and spatial extent relationship or the beta diversity 
and spatial grain relationship. For the former, the relationship 
between beta diversity and extent takes the following form:
βadd= cE[i]z - α   	  (3)
where cE[i]z is γ at extent size E[i] when gamma diversity 
and spatial extent have a power law scaling relationship. We 
assumed that the beta diversity and spatial extent curve also 
could be described by a power law curve also:

eaddz
eaddadd iEc −

−∝ ][b       	   (4)
where cadd-e is the intercept and zadd-e is the scaling exponent 
of power law beta diversity and spatial extent relationship re-
spectively. For the latter, the relationship between beta diver-
sity and grain takes the following form:
βadd=γ-cG[j]z 	   (5)
where cG[j]z is α  at grain size G[j] when alpha diversity and 
spatial grain have a power law scaling relationship. We also 
assumed that the relationship between beta diversity and spa-
tial grain could be described by a power law curve:

gaddz
gaddadd jGc −

−∝ -][b    	    (6)
where cadd-g is the intercept and -zadd-g is the scaling exponent 
of power law beta diversity and spatial extent relationship re-
spectively. As the scaling exponent is negative, we only using 
the absolute value to compare the extent effects on the slope 
of this power law scaling relationship.

Scale dependence of power-law beta diversity and spatial 
scaling relationships

The scale dependence of the scaling relationship between 
beta diversity and area (spatial grain or extent) are based on 
the assumed equations above. We began with the observation 

that the linear form of equation (3) and (5) can be general-
ized as:
log(yk)=log(c)+zlog(xk)    	 (7)
where yk represents beta diversity (βadd), xk represents spatial 
scale (spatial extent E[i] or spatial grain G[j]) (k=i when deal-
ing with beta diversity and extent relationship, k=j for beta 
diversity and grain relationship), z and c correspond to the 
scaling exponent (zadd-e, -zadd-g) and intercept (cadd-e, cadd-g), 
respectively in equation (4) and (6). According to equation 
(6), z and c can be simplified as: 
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and
log(c)=log(yBkB)-zlog(xBkB)    	    (9)
Equation (9) can be written as:
c=ykxk

-z    	    (10)
Therefore, the scaling exponents (zadd-e, -zadd-g) and inter-

cepts (cadd-e, cadd-g) can be quantified by formulas (8), (10). 
Now, we will show the grain scale dependence of the power 
law beta diversity and extent relationship and the extent scale 
dependence of power law beta diversity and grain relation-
ship.

Scale dependence of power law beta diversity and extent 
relationship

In this case, the grain size G[j] will change to determine 
the behavior of the beta diversity and spatial extent relation-
ship in formula (4). The scaling exponent is determined by 
substituting the additive beta diversity β BaddB=γ[i]-α [j] and ex-
tent E[i] into formula (8):
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where zadd-e[j] and zadd-e[j+1] are the scaling exponent of pow-
er law additive beta diversity and extent relationship at grain 
size G[j] and G[j+1], respectively. Comparing the right part 
of formula (11) and (12) for all i and j, because α [j+1] > α
[j], γ[i+1] > γ[i], γ[i] > α [j],we can confirm that zadd-e[j+1] > 
zadd-e[j].

The corresponding intercepts is determined by substitut-
ing scaling exponent z Badd-e, extent E[i] and the multiplicative 
beta diversity βadd=γ[i]-α [j] into formula (10):
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where cadd-e[j] and cadd-e[j+1] are the intercept of power law 
additive beta diversity and extent relationship at grain size 
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G[j] and G[j+1] respectively. Comparing the right part of for-
mula (13) and (14), and because α [j+1]>α [j], γ[i] >α [j], 
zadd-e[j+1]>zadd-e[j], we can conclude that cadd-e[j+1]<cadd-e[j]. 

Scale dependence of power law beta diversity and grain 
relationship

In this case, the extent size E[i] will change to determine 
the behavior of the beta diversity and spatial grain relation-
ship in formula (6). The scaling exponent is determined by 
substituting the additive beta diversity βadd=γ[i]-α [j] and 
grain G[j] into formula (8):
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where zadd-g[i] and zadd-g[i+1] are the scaling exponent of 
power law additive beta diversity and grain relationship at 
extent size E[i] and E[i+1], respectively. Comparing the right 
part of  formula (15) and (16) for all i and j, and because  α
[j+1] > α [j], γ[i+1] > γ[i], γ[i] > α [j],we can confirm that 
zadd-g[i+1]<zadd-g[i]. 

The corresponding intercept is determined by sub-
stituting scaling exponent zadd-g, grain G[j] and the addi-
tive beta diversity βadd=γ[i]-α [j] into formula (10):     	  
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where cadd-g[i] and cadd-g[i+1] are the intercept of power law 
additive beta diversity and grain relationship at extent size 
E[i] and E[i+1] respectively.   When G[j]=1, cadd-g[i] =γ[i] 
– α [j], cadd-g[i+1] =γ[i+1]-α [j], and because γ[i+1]>γ[i], we 
can conclude that cadd-g[i+1]>cadd-g[i]. 

According to predictions above, for the power law re-
lationship between beta diversity (βadd) and extent, we can 
predict that, for a given system, large grain size will result 
in a larger slope z (zadd-g) and smaller intercept c (cadd-g). In 
contrast, a smaller extent size will result in steeper slope z 
(zadd-e) and smaller intercept c (cadd-e) for the power law beta 
diversity (βadd) and grain relationship.

Application

We tested our assumptions and analytical results with two 
data tests. First, we verified that the relationship between beta 
diversity and scale [either E or G; formula (4) and (6)]) has a 
power law form. Next, we verified our theoretical predictions 
of the scale dependency of the power law beta diversity and 
that of the scale relationship. For the spatial grain depend-
ence, we plotted the power law scaling exponent (zadd-e) and 
intercept (cadd-e, cadd-g), which were determined by the first 
data tests, against grain size, respectively. For the spatial ex-

tent dependence, we plotted the power law scaling exponents 
(zadd-g) and intercepts (cadd-g) against extent size. The power 
law was selected for data fitting.

Data sets

The first dataset was an elevational transect (1000-
1770m) of warm-temperate deciduous broadleaf Oak (Q. 
liaotungensis Koidz) forest in Beijing, North China. The 
data were collected in the Donglingshan Mountains, 100 
km northwest of Beijing City, in 2003, hereinafter referred 
to as the DLS transect. Ten transects were established from 
the foot to the top of every western slope in the study area 
to compose a continuous altitude gradient (1020m-1770m) 
that overlapped the distribution range of Q. liaotungensis 
in the study area completely. The width of each transect is 
10 m, and the length range of each transect is from 80 m to 
200 m, depending on the altitude range and slope degree of 
each slope. We however ignored the insignificant slope and 
slope degree effects on the spatial distribution of species, so 
all transects merged into a single transect 1190 meters long 
and consisting of 119 quadrats, each 10 m × 10 m. In each 
quadrat, all woody species (trees and shrubs) and herb spe-
cies were identified. Fifty-three families, 137 genera, and 251 
species were recorded (See Zhang et al. 2006 for more details 
on this data set). The second dataset was a 20 ha (500 m × 400 
m) permanent subtropical, evergreen broadleaf forest plot in 
Guangdong province, South China. The plot was established 
in the Dinghushan reserve in November 2004, hereinafter re-
ferred to as the DHS plot. The survey consisted of enumerat-
ing all free standing trees and shrubs at least 1 cm in diameter 
at breast height (DBH), positioning each one by geographic 
coordinates on a reference map and identifying them by spe-
cies. Fifty-six families, 119 genera, 210 species and 71617 
individuals with DBH >1 cm were recorded in this dataset 
(See Li et al. 2009, for more details on this data set). For both 
datasets, we used presence/absence data only. 

Beta diversity calculation

For the DLS transect dataset, we selected 960m (altitude 
range between 1110m to 1730m) in length for calculation of 
beta diversity. This is convenient in partitioning the transect 
with grain size 10 m × 10 mP, 20 m × 10 m P

P, 30 m × 10 m P, 40 
m × 10 mP, and 60 m × 10 mP

 P. For example, the grain size 
in 10 m × 10 m encompassed size ranges from 20 m × 10 
m (minimum value) to 960 m × 10 m (maximum value) as 
the transect was 960 m in length. All possible samples for 
each extent size were analyzed, resulting in 95 samples with 
a minimum extent size of 20 m × 10 m, 94 samples for extent 
size of 30 m × 10 m, and so on, ending in 1 sample for extent 
size of 960 m × 10 m. The same process was completed for 
the four other grain sizes. We then examined the grain effects 
of the power law beta diversity and its relationship to extent. 
We selected seven extent sizes (240 m × 10 m, 360 m × 10 m, 
480 m × 10 m, 600 m × 10 m, 720 m × 10 m, 840 m × 10 m, 
960 m × 10 m) to analyze the extent effects of the power law 
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beta diversity and grain relationships. Woody species (trees 
and shrubs) and herb species were analyzed separately.

For the DHS plot data set, we selected a subplot size of 
480 m × 360 m to calculate beta diversity of the woody spe-
cies. This is convenient in partitioning the plot with grain size 
10 m × 10 m, 20 m × 20 m, 30 m × 30 m, 40 m × 40 m, and 
60 m × 60 m.We also calculated beta diversity for all possible 
samples for all potential extent sizes, as described previously. 
The five grain sizes selected were used for grain effect analy-
sis. For the extent effect analysis, we selected seven extent 
sizes (120 m × 240 m, 120 m × 360 m, 240 m × 240 m (and 
120 m × 480 m), 240 m × 360 m, 240 m × 480 m, 360 m × 
360 m, 360 m × 480 m).

Data fitting

The power laws in biology data could be fitted by linear 
regression on log-transformed data or nonlinear regression 

directly. Which one is selected for power law fitting should be 
based on a combination of biological plausibility and analy-
sis of the error distribution (Xiao et al. 2011). We used the 
method developed by Xiao et al. (2011) to judge which way is 
used for the parameter estimation of our data and find that our 
data are suitable for using nonlinear regression method for 
power law fitting. So the nonlinear regression was used for 
power law parameter estimation (Ritz and Streibig 2008). All 
calculation and data fitting work were taken under R package 
(R Development Core Team, 2011).

Results

Beta diversity and extent showed a power law relation-
ship for all data sets for all grain sizes [Fig. 1 (a), (b), (c)], 
two grain sizes were selected as examples for each data]. Beta 
diversity and extent size were related positively. The power 
law relationship also existed for the beta diversity and grain 
relationship under varying spatial extent size [Fig. 1 (d), (e), 

Figure 1. Examples of beta diversity and scale relationship plots using the power law for data fitting. (a), (b), and (c) show the beta 
diversity and spatial extent (e) relationship for two selected grain sizes (f). Figures (d), (e), and (f) show the beta diversity and spatial 
grain relationship for two selected extent sizes. Logarithmic scale was used for each axis of the plots.
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(f)], two extent sizes were selected as examples for each data 
also]. In contrast to the beta diversity and extent relationship, 
beta diversity was correlated negatively with grain size. 

The intercept c and scaling exponent z of the beta diver-
sity and extent power law relationship and grain size had 
power law relationship (Fig. 2). Larger grain size had smaller 
intercept c, but steeper scaling exponent z. The intercept c and 
scaling exponent z of the beta diversity and grain power law 
relationship and grain size also had power law relationship 
(Fig. 3). In contrast to the grain effect on the scaling relation-
ship of beta diversity and extent, small extent size had smaller 
intercept c, but steeper scaling exponent z. 

Discussion 

The power law relationship between the number of spe-
cies, the alpha or gamma diversity component, and scale is 
one of the oldest and best-documented patterns in ecology 
(Arrhenius 1921), and is considered as one of the few robust 
laws of ecology (Lawton 1999, Lomolino 2000, Martín and 

Goldenfeld 2006). It is easy to predict that increasing spatial 
extent and fixing spatial grain will increase beta diversity, 
and increasing spatial grain while fixing spatial extent will 
decrease beta diversity (c.f. the expected trend proposed by 
Barton et al. (2013) for beta diversity scaling), this is due to 
the fact that a larger spatial extent will increase environmen-
tal heterogeneity in space which in turn increase beta diver-
sity and coarse grain size for sampling will miss fine-scale 
environmental heterogeneity (MacNally et al. 2004) which 
in turn decrease beta diversity. Our work firstly verified that, 
in our datasets, the beta diversity component and scale had a 
power law relationship. However, the most intriguing result 
in our work is that the power law beta diversity and scale 
(spatial grain or spatial extent) relationship is itself scale de-
pendent, especially on the results that the parameters of the 
power law beta diversity and scale in our data sets showed 
power law relationship with scale. 

Our work predicted and verified that coarse grain size 
produces a steeper slope of power law beta diversity and 
spatial extent relationship. The power law beta diversity and 
extent relationship in our work is analogy to power law SAR, 

Figure 2. Scale dependency of the intercept c and slope z of the power law beta diversity and spatial extent relationship. Power law was 
used to fit the relationship between the parameters (intercept c or slope z) and spatial grain relationship. 
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but they differed in that the former explicitly includes grain 
while the later includes the grain in an implicit way. In SAR 
studies, the theoretical works (Rosenzweig 1995, Hubbell 
2001) and meta-analysis (Drakare et al. 2006) also found that 
large grain size have steeper slopes. However, in our work, 
smaller extent size will have steeper slope of the power law 
beta diversity and grain relationship. The extent effects on the 
slope of SAR are not consistent in previous studies. Crawley 
and Harral (2001) showed that the intermediate spatial ex-
tent size produces the steepest slope of SAR. While in the 
work of Drakare et al. (2006), the slope of SAR does not 
show any trend with spatial extent size. Turner and Tjørve 
(2005) suggested that habitat heterogeneity, sampling method 
and taxonomic differences, which ultimately effect the scale 
dependence of SAR, this might, in part, explain the differ-
ence between the results of Drakare et al. (2006) and those 
of Crawley and Harral (2001) on the extent effects of SAR. 
In our work, the data sets differed in habitat heterogeneity, 
sampling methods and taxonomic, but the scale dependency 
pattern of the slope z (and intercept c) of power law beta di-
versity and scale relationship all consistent with our theoreti-

cal predictions. This implies that the trend of the parameters 
showed in our work might be the general pattern for describ-
ing the scale dependency of power law beta diversity and 
scale relationship; thus, further tests on it are recommended

Our data sets also verified the predictions of our theo-
retical analysis that parameter c varies with scale. This pa-
rameter has been virtually ignored as one deserving biologi-
cal or statistical explanation in SAR studies. MacArthur and 
Wilson (1967) considered it solely as a fitted constant relat-
ing to local environmental conditions. Connor and McCoy 
(1979), however, argued that this parameter represents the 
possible species richness when a sample of one unit of area 
is examined. We believe both views are important, because 
local environmental conditions will determine the possible 
value of species richness per unit of area. The parameter c 
in our work represents the possible value of beta diversity in 
one unit of scale (grain or extent), which can reflect the en-
vironmental conditions of the scale examined. If the extent is 
considered, then in the beta diversity and spatial extent rela-
tionship, a larger grain would cause the loss of environmental 
heterogeneity at smaller grain size and decrease the value of 

Figure 3. Scale dependency of the intercept c and slope z of the power law beta diversity and spatial grain relationship. Power law was 
used to fit the relationship between the parameters (intercept c or slope z) and spatial extent relationship.
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beta diversity, thereby decreasing c as well. Similarly, for the 
beta diversity and spatial grain relationship, a larger extent in-
creases environmental heterogeneity and increases the value 
of beta diversity; hence, c will increase.

Connor and McCoy (1979) suggested that the power law 
SAR is purely a sampling phenomenon and that values of pa-
rameters must be considered simple fitted constants devoid of 
biological meaning. While our work does not pretend to un-
ravel any particular ecological process, we showed that scale-
determined patterns should be closely tied to spatial scale, 
which is a lurking factor (Sandel and Smith 2009). We also 
found that alpha, beta, and gamma diversity relationships all 
exist within a unifying scaling framework, which has been 
suggested as the greatest challenge to ecologists (Loreau 
2000). The beta diversity and spatial extent relationship re-
flects the fact that changing beta diversity is comparable to 
gamma diversity change under a constant alpha diversity, 
while the beta diversity and spatial grain relationship reflects 
the fact that changing beta diversity is comparable to alpha 
diversity change under a specified gamma diversity. In our 
work, alpha diversity fully determines beta diversity for a 
given extent, while gamma diversity fully determines beta 
diversity for a given grain. Similarly, the scale dependence 
of the beta diversity and scale relationship implies that the 
relationship between alpha, beta and gamma diversity may 
also be scale dependent. 

Scale occupies a central role in ecological research, as it 
links patterns on the one hand and process on the other (Levin 
1992). Therefore, considering how results vary as a function 
of scale is a necessary first step to putting our knowledge 
regarding patterns and processes into perspective (Rahbek 
2005). Using beta diversity to study scale effects is ideal, as 
it incorporates two important aspects of spatial scale (grain 
and extent). Our work shows the role of spatial scale on beta 
diversity in two ways: we verified that a power law scaling 
relationship exists for beta diversity, and we found that this 
scaling relationship is itself scale dependent with a power law 
form. For the former, it provides a quantitative way for beta 
diversity extrapolation (either up scaling or down scaling). 
Theoretically, any SAR curve could be used in beta diver-
sity scaling. He and Legendre (1996) found that the curves in 
describing SAR are also dependent on scale. Our work only 
consider the most frequent used power law curve, but other 
curves are suggested to be used as alternatives when explor-
ing beta diversity scaling at variable scales. For the later, 
it makes the scale dependency of power law beta diversity 
scaling relationship predictable. This allows us to put into 
theoretical context varying observations of scale-dependent 
behavior of beta diversity observed in empirical studies and 
gives a more precise form to the scale dependence of pow-
er law beta diversity-area relationships. However, the scale 
dependency property of beta diversity scaling also arise the 
issue on the selection of spatial scale for the accurate beta di-
versity extrapolation, cause any small deviation to the proper 
scale for extrapolation will cause large overestimation or un-
derestimation. More attention had focused on the curve selec-
tion for proper extrapolation of diversity (He and Legendre 
1996, Scheiner 2003, Whittaker and Matthews 2014). Our 

work highlights the importance of developing new method 
and designing new experiment on the selection of proper 
scale for diversity extrapolation in future.
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