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Abstract. We consider composition sets of one-dimensional projective mappings and prove that small compo-
sition sets are closely related to Abelian subgroups.
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1. Introduction

Freiman [6] and Ruzsa [11, 12] studied subsets of R for which |A + B| ≤ Cn, where
|A | = | B | = n. They described the structure of A and B in terms of some natural gen-
eralizations of arithmetic progressions. Using their theorems, Balog-Szemerédi [1] and
Laczkovich-Ruzsa [8] found some “statistical” versions. Their results extend to torsion-
free Abelian groups as well.

Generalizations to non-Abelian groups were initiated by the first named author in [4, 5],
where the one-dimensional affine group was considered. The goal of this paper is to find
similar results for the (still one-dimensional) projective group.

Throughout this paper P will denote the group of non-degenerate projective mappings of
P = R ∪ {∞}, i.e. the set of non-constant linear fractions x �→ ax+b

cx+d (where ad − bc �= 0),
with the composition ϕ ◦ ψ : x �→ ϕ(ψ(x)) as the group operation. Finite sets of such
mappings will usually be denoted by � or �.

Definition 1 For �, � ⊂ P , put

� ◦ �
def= {ϕ ◦ ψ; ϕ ∈ �, ψ ∈ �},

and call it a composition set.

Our main result is the following.

Theorem 2 Let C > 0. If |�|, |�| ≥ n and |� ◦ �| ≤ Cn, then there exists an Abelian
subgroup S ⊂P such that � and � are contained in a bounded number of left and right
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cosets of S, respectively. In other words, there is a C∗ = C∗(C) > 0, independent of n, and
some α1, α2, . . . , αC∗ , β1, β2, . . . , βC∗ ∈ P for which

� ⊂
C∗⋃
i=1

αi ◦ S;

� ⊂
C∗⋃
i=1

S ◦ βi .

Finding a strong structure is often easy once we have a weak one. The foregoing theorem
is no exception. It follows immediately from the existence of many ϕ in a coset, stated as
the following lemma.

Lemma 3 (Main Lemma) Let C > 0. If |�|, |�| ≥ n and |� ◦ �| ≤ Cn, then there exists
an Abelian subgroup S ⊂P and an α0 ∈P such that

|� ∩ (α0 ◦ S)| ≥ c∗n,

for some c∗ = c∗(C) > 0 which is independent of n.

This assertion will readily imply Theorem 2. Indeed, � must be contained in at most
C1 = C/c∗ right cosets of S since, using the notation �0 = � ∩ (α0 ◦ S), if ψ1 and ψ2 are in
different cosets then �0 ◦ ψ1 and �0 ◦ ψ2 are disjoint. Moreover, one of these right cosets
must contain at least n/C1 elements of �; therefore, also � can be covered by a bounded
number (≤CC1) of left cosets.

Therefore, the rest of this paper is devoted to finding weak substructures like those in
the Main Lemma. Unfortunately, the assumption |� ◦ � |≤ Cn is not easy to utilize. Our
principal tools that we call “commutator pairs” and “commutator graphs” only work if
we have control over both � ◦ � and � ◦ �. However, the size of these sets can be very
different, since we are working within a non-Abelian group. There exist examples (even
some affine ones, see [4]) with |� ◦ �| ≤ Cn but |� ◦ �| = n2. That is why we must first
study a weaker “symmetric” relative of the Main Lemma, under the assumption that not
just |� ◦ �| ≤ Cn but also |� ◦ �| ≤ Cn (see Lemma 26). Using that and some other tools
as well we shall be able to deduce a slightly more general form of our Main Lemma (see
Lemma 34).

The structure of this paper will be as follows. In Section 2 we review some simple results
concerning graphs, together with a combinatorial geometric theorem of Beck, and some
basic facts from Linear Algebra.

Commutator pairs and commutator graphs are introduced in Section 3 where also the
Commutator Lemma can be found.

Section 4 describes the Symmetric Lemma (the symmetric version of the Main Lemma).
Image sets, to be introduced in Section 5, will be used to reduce the asymmetric version

to the symmetric one. This will be done in Section 6.
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Finally, an equivalent form of the Main Theorem can be found in Section 7 and a stronger
version in Section 8.

Moreover, all our forthcoming results will have a “statistical” character. This notion was
introduced by Balog-Szemerédi in [1].

Definition 4 For E ⊂ � × �, or in other words, for any bipartite graph G(�, �, E), we
define

� ◦E �
def= {ϕ ◦ ψ; (ϕ, ψ) ∈ E},

and call it a statistical composition set.

Why introduce this general notion? On the one hand, our techniques will also work for
statistical assumptions as well; on the other hand, e.g. for the proof of the Image Set Theorem
(Theorem 29), we need the full power of the statistical Symmetric Lemma. (No reasonable
assumption can force all pairs to be double-t-adjoining—see the definition below.)

1.1. An open problem

It is natural to ask the following question. Let G be an arbitrary group and �, � ⊂G. What
is the structure of � and � if |�|, |�| ≥ n and |� ◦ �| ≤ Cn? Perhaps the multiplicative
group GL(r) of non-singular r × r matrices could be attacked first. However, even the case
of regular 2×2 matrices may require new ideas (it does not seem to be an easy consequence
of our results).

2. Preparatory observations

2.1. Some graph lemmata

Proposition 5 Every bipartite graph with not more than N + N vertices and at least cN2

edges contains a subgraph with all degrees cN/2 or more.

Proof: Keep on deleting those vertices whose degree is less than cN/2. You cannot drop
everything, since then there had only been less than 2N · cN/2 = cN 2 original edges. What-
ever remains, satisfies the requirement. ✷

Lemma 6 For every c > 0 there is a c′ = c′(c) > 0 with the following property. Every
bipartite graph on vertex sets V and W with not more than N + N vertices and at least
cN 2 edges contains a complete bipartite subgraph with three vertices from V and at least
c′N vertices from W .

Proof: Call a subgraph a claw if it consists of one vertex w ∈ W and three vertices from
V each connected to w.
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First use the previous Proposition to get a subgraph with all degrees at least cN/2. This
subgraph must contain at least

cN

2

(
cN/2

3

)
≥ c′N 4

claws. Therefore, one of the at most N 3 triples in the remaining part of V occurs in c′N or
more claws. ✷

Definition 7 An undirected graph G(V −, V 0, V +, E−, E+) is double-bipartite if its ver-
tices consist of three classes V −, V 0 and V + while each edge has one endpoint in V 0 and
one in either V − or V +. The corresponding edge-sets are E− and E+, respectively. The
degree of vi ∈ V 0 in E− resp. E+ will be denoted by d−(vi ) resp. d+(vi ).

Definition 8 In an arbitrary graph two vertices are called t-adjoining, if they have at
least t common neighbors. Similarly, in a double-bipartite graph, two vertices of V 0 are
double-t-adjoining, if they are t-adjoining both in E− and E+.

It was shown in [4] that in a double-bipartite graph with many edges, many pairs of the
vertices of V 0 are double-highly-adjoining. (The proof consists of a simple double-counting
of the 2-paths and the C4’s, see figure 1.)

Proposition 9 (Double-bipartite Lemma) For every C > 0 there is a c∗ = c∗(C) > 0 with
the following property. Let G(V −, V 0, V +, E−, E+) be a double-bipartite graph with not
more than Cn vertices in each class. Assume that G satisfies the following two requirements:
(i) d+(vi ) = d−(vi ) for each vi ∈ V 0;

(ii) |E−| = |E+| ≥ n2.
Then there exist c∗n2 double-c∗n-adjoining pairs in V 0.

Figure 1. a. A double-bipartite graph with a 2-path and a C4. b. A double-t-adjoining pair.
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2.2. Beck’s Theorem

The following result is (a projective, multidimensional and statistical version of) Theorem
3.1 in [2].

Proposition 10 (Beck’s Theorem [2]) Let A be a set of points in the r-dimensional pro-
jective space with |A| = n and E the edge set of a graph on the vertex set A, with |E | ≥ cn2.
Consider the (not necessarily distinct) straight lines which connect the pairs (a, b) ∈ E.
Then at least one of the following two assertions holds (perhaps both):
(a) some c′n2 of these lines coincide; or
(b) some c′n2 are all distinct,
for some c′ = c′(c), independent of n.

(Beck’s original proof also yields this slightly more general version, see [4], Proposi-
tion 12 for some more details.)

Remark 11 Case (a) above implies that at least c′′n of the a ∈ A are collinear, for some
c′′ = c′′(c) > 0.

2.3. Some linear algebra

Proposition 12 If two 2 × 2 matrices A and B commute and B �= a · id then

A = u · id + v · B,

for some real numbers u, v.

Proposition 13 Let A, B �= a · id be 2 × 2 matrices. Then

det A = det B; and

tr A = tr B,

iff A and B are conjugates (i.e. A = C−1 BC for some regular C).

Proof: If the minimal polynomial of a matrix M is linear then M = a · id. Otherwise
its canonic λ-matrix is (1 0

0 chpolyM(λ)) which is in one-to-one correspondence with the pair
(detM, trM). ✷

To every 2 × 2 matrix A = (a b
c d), we assign two four dimensional vectors vA and v−

A as

follows.

vA
def= (a, b, c, d);

v−
A

def= (d, −c, −b, a).
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Proposition 14 If B is regular then

tr(AB−1) = vA · v−
B

det(B)
.

Proposition 15 det(id + B) = 1 + trB + detB.

Let ϕ ∈P be a mapping of the form x �→ ax+b
cx+d (where ad − bc is either 1 or −1). We

assign the matrix (a b
c d) to it. We need not distinguish between a mapping and its matrix,

since the matrix of ϕψ is the product of the corresponding matrices. Thus we can also speak
about the trace, determinant and characteristic polynomial of such a transform.

We shall even consider the foregoing ϕ as a point (a, b, c, d) ∈ P
3 of the 3-dimensional

projective space, written in homogeneous coordinates. In the other direction, for every point
in P

3 we fix a representation (a, b, c, d) where ad − bc is either 1, −1 or 0. (The latter is
not unique, but we just fix one such representation arbitrarily.) This naturally corresponds
to a possibly singular matrix (a b

c d) and a possibly degenerate mapping x �→ ax+b
cx+d . Of these

types (vector, matrix and mapping), the principal representation we shall usually think of,
will be the matrix form. Determinant, trace and characteristic polynomial of any point in
P

3 become meaningful this way as well as products of two such points.
The points of the straight line through ϕ, ψ ∈ P

3 are written as {aϕ + bψ; a, b ∈ R}.
In this expression, for the previously fixed representations of ϕ and ψ , the linear combina-
tion is evaluated first, and the resulting matrix—or a scalar multiple thereof—will be the
representation we assigned to an element of P

3. That is the point we mean by aϕ + bψ .

Proposition 16 A collinear subset of type S = {u · id + v · β; u, v ∈ R} ∩P is an Abelian
subgroup of P , for every β ∈ P

3.

Proof: The degree of the minimal polynomial of β is at most two. Hence, all powers of
β can be expressed as linear combinations of id and β. Of course, these expressions also
commute. ✷

Proposition 17 Let ϕ �= ψ ∈ P
3, where ϕ is non-degenerate. Then the collinear subset

S = {ϕ + a · ψ; a ∈ R} ∩ P—possibly with the exception of one element—is contained in
a one parameter family of the following three types:

{x �→ f (g(x) + t); t ∈ R}; or

{x �→ f (g(x) · t); t ∈ R}; or (1){
x �→ f

(
g(x) + t

1 − g(x) · t

)
; t ∈ R

}
,

for two ( fixed ) linear fractions f , g. (See also Corollary 35.)

Proof: Put ξ
def= ϕ−1ψ �= id and δ

def= ξ − 1
2 tr(ξ) · id. Then, obviously, tr δ = 0. Moreover,

S is contained in ϕ{id + bδ; b ∈ R}, except for ϕδ which can only be expressed without
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id. We distinguish the three cases: det δ = 0, −1, or 1. Now, since δ is neither the zero
matrix nor a multiple of the identity, Proposition 13 implies that δ = η−1δ0η for a suitable η

where δ0 is represented by one of the three matrices (0 1
0 0), (1 0

0 −1), or (0 1
−1 0). If we consider

projective transforms as functions R → R then, writing

f : x �→ ϕη−1(x);
g : x �→ η(x),

we get the required types, with t = b in the first and third cases while t = 1+b
1−b in the second

one. ✷

3. Commutator pairs and commutator graphs

In this section we introduce our main tools: commutator graphs.
Since we are studying a non-Abelian group, it is quite natural to define some notions that

can be considered as relatives of the usual commutators.

Definition 18 For projective mappings ϕ, ψ , the ordered pair 〈ϕ ◦ ψ−1, ψ−1 ◦ ϕ〉 is called
the commutator pair defined by ϕ and ψ . (This name originates from M . Simonovits.)

Remark 19 Of course, the two terms of a commutator pair are identical if (and only if) ϕ

and ψ commute.

Definition 20 For any �, � and E ⊂ � × �, the (bipartite) commutator graph G ′
E

(V ′
1, V ′

2, E ′) defined by E is

V ′
1 corresponds to � ◦E �−1;

V ′
2 corresponds to �−1 ◦E �;

E ′ = {(ϕ ◦ ψ−1, ψ−1 ◦ ϕ); (ϕ, ψ) ∈ E}.

Remark 21 Though E is a directed graph on � ∪ �, the edge set E ′ of the commutator
graph will always be undirected. Moreover, in what follows we will use simple parentheses
for ordered pairs, too.

Proposition 22 Two compositions connected by an edge of the commutator graph are
always conjugates.

Lemma 23 If the ordered commutator pair defined by ϕ1, ψ1 ∈ P
3 coincides with the one

defined by ϕ2, ψ2 ∈ P
3 then all four are collinear (in P

3).

Proof: By assumption

ϕ1ψ
−1
1 = ϕ2ψ

−1
2 and (2)

ψ−1
1 ϕ1 = ψ−1

2 ϕ2. (3)
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If ϕ1 = ψ1 then also ϕ2 = ψ2, so we are done. Otherwise denote α
def= ϕ−1

1 ϕ2, then

ϕ2 = ϕ1α.

Moreover, (2) implies

ψ2 = ψ1α.

Hence by (3)

ψ−1
1 ϕ1 = α−1ψ−1

1 ϕ1α,

i.e. α and ψ−1
1 ϕ1 commute, and so do α and ϕ−1

1 ψ1 as well. Thus, by Proposition 12, there
are real numbers u1, u2, v1 and v2 such that

α = u1 id + v1(ψ
−1
1 ϕ1); and

α = u2 id + v2(ϕ
−1
1 ψ1),

which immediately implies that

ψ2 = ψ1α = u1ψ1 + v1ϕ1; and

ϕ2 = ϕ1α = u2ϕ1 + v2ψ1.

Therefore ϕ2 and ψ2 really lie on the straight line determined by ϕ1, ψ1. ✷

We also state the contrapositive as follows.

Corollary 24 Let E ⊂ P
3 × P

3 be a set of pairs of points. If all straight lines determined
by these pairs are distinct, then all the ordered commutator pairs defined by E are also
distinct.

3.1. The Commutator Lemma

Lemma 25 (Commutator Lemma) For every C there is a c∗ = c∗(C) > 0 with the following
property.

Let n ≤ |�|, |�|, |(� ◦E �−1) ∪ (�−1 ◦E �)| ≤ Cn for an E ⊂ � × � with |E | ≥ n2.
Assume, moreover, that the ordered commutator pairs (ϕ ◦ ψ−1, ψ−1 ◦ ϕ) are distinct for
all (ϕ, ψ) ∈ E.

Then there is an E∗ ⊂ E with E∗ ≥ c∗n2 such that the transforms ϕ ◦ ψ−1 are conjugates
of each other for all (ϕ, ψ) ∈ E∗ (and, of course, also the ψ−1 ◦ ϕ are conjugates of these).

Proof: Consider the commutator graph G ′
E (V ′

1, V ′
2, E ′) defined by E . By assumption,

V ′
i ≤ Cn and |E ′| ≥ n2.
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Use Proposition 5 to find a subgraph with all degrees large. The edge set E ′′ of any
connected component of this subgraph has |E ′′| ≥ c∗n2 edges.

Observe that all the vertices of this component are conjugates by Proposition 22.
Let E∗ be the set of the corresponding edges between � and �, i.e. define the graph

G∗(�, �, E∗) by

E∗ def= {(ϕ, ψ); (ϕ ◦ ψ−1, ψ−1 ◦ ϕ) ∈ E ′′}.

Obviously, |E∗| = |E ′′| ≥ c∗n2. ✷

4. The Symmetric Lemma

The following is a weaker relative of the Main Lemma to be proven. Its assumption is sym-
metric and, therefore, the “commutator graph” techniques will work well for it. Then, from
that, a result on image sets will be deduced. Finally, the Image Set Theorem (Theorem 29)
will imply the Main Lemma.

Lemma 26 (Symmetric Lemma) For every C > 0 there exists a c∗∗ = c∗∗(C) with the
following property.

Let �, � ⊂ P with n ≤ |�|, |�| ≤ Cn and E ⊂ � × � with |E | ≥ n2. Assume that

|(� ◦E �−1) ∪ (�−1 ◦E �)| ≤ Cn.

Then there exist collinear subsets �∗∗ ⊂ �, �∗∗ ⊂ � such that |�∗∗|, |�∗∗| ≥ c∗∗n.

Proof: As before, represent the ϕ ∈ � and the ψ ∈ � as points of P
3. Given �, � and

E ⊂ � × �, connect each pair (ϕ, ψ) ∈ E by a straight line and use Beck’s Theorem
(Proposition 10) to find at least one of the following two substructures:

(i) c∗n2 pairs, all located on a common line;
(ii) or c∗n2 pairs which determine all distinct lines.

In case (i) we are done; at least c∗∗n of the ϕ as well as that many of the ψ are collinear.
In case (ii), Corollary 24 implies that the commutator graph has c∗n2 or more distinct

edges. Then use the Commutator Lemma (Lemma 25) and get a subgraph |E1| ⊂ E with
|E1| ≥ c1n2 such that the ϕ ◦ ψ−1 are conjugates of each other for all (ϕ, ψ) ∈ E1. We need
one more fact.

Lemma 27 (Conjugate Quotients Lemma) For every C there is a c∗ = c∗(C) > 0 with the
following property.

Let �, � ⊂ P with n ≤ |�|, |�| ≤ Cn and |E | ⊂ �×� with E ≥ n2. Assume, moreover,
that the ϕ ◦ ψ−1 are conjugates of each other for all (ϕ, ψ) ∈ E. Then there exist collinear
subsets �∗ ⊂ �, �∗ ⊂ � such that |�∗|, |�∗| ≥ c∗n.
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Proof:
1. During the proof, we shall be working in R

4—instead of P
3—in order to avoid study-

ing quadratic surfaces of type tr2ϕ/det ϕ = constant. In these terms, we want to find a
sufficiently large � ′ (considered as a subset of R

4) that can be covered with at most two
2–dimensional linear subspaces. The case of � is symmetric.

2. Use Lemma 6 to find a complete subgraph G(�′, � ′, E∗) where �′ = {ϕ1, ϕ2, ϕ3} and
� ′ = {ψ1, ψ2, . . .} where |� ′| > c′n. If � ′ spans a two dimensional subspace then we
are done. Otherwise we pick three linearly independent elements from it, say ψ1, ψ2 and
ψ3.

3. Multiply all the ϕi as well as all the ψ j by ϕ−1
1 (from, say, the right); this does not affect

the property that the ϕ ◦ ψ−1 remain conjugates. Thus, in what follows, we may assume
that ϕ1 = id. This, together with Proposition 13, also implies that for all j , det ψ j = d,
where d is either +1 or −1 (but, anyway, a common value). Moreover, detϕi = 1 for
i = 1, 2, 3. Also, similarly, tr(ϕiψ

−1
j ) = t , for all i , j , with another common value t .

4. Consider the vectors vϕ and v−
ψ . By Proposition 14, for all i = 1, 2, 3 and ψ ∈ � ′, we

have

vϕi v
−
ψ = tr(ϕiψ

−1) · det(ψ) = td = T ;

yet another common value. Hence

(vϕi − vϕk )v
−
ψ = 0, for 1 ≤ i < k ≤ 3 and ψ ∈ � ′. (4)

5. Using this and the linear independence of ψ1, ψ2 and ψ3, we conclude that the ϕi are
collinear. Put

δ
def= ϕ2 − ϕ1 = ϕ2 − id.

Using this notation,

ϕ2 = id + δ;
ϕ3 = id + a · δ;

for a suitable real number a �= 0, 1.
6. We show that

tr δ = det δ = 0.

By Proposition 15,

1 = det(id + s · δ) = 1 + s · tr δ + s2 · det δ,

for three distinct values s = 0, 1, a. Thus the coefficients of s and s2 must, indeed, vanish.
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7. By Proposition 1.3, it is possible to conjugate everything (i.e. all the ϕ and the ψ) such
a way that δ is transformed into

δ =
(

0 1

0 0

)
.

Recall that vϕi v
−
ψ is the product of a trace and a determinant, both invariant under

conjugation. Thus, by identity (4), we still have vδv
−
ψ = 0. This implies that every ψ

becomes an affine transform, since they will be of type (u1 u2
0 u3

).
8. All the ψ are conjugates, since so are the ϕ1ψ

−1 = idψ−1 = ψ−1. Thus we have

u1 + u3 = t;
u1u3 = d,

for the common values t of their traces and d of their determinants. Solving this quadratic
system leaves at most two possibilities for the main diagonal of (u1 u2

0 u3
), both families

being collinear.

This finishes the proof of the Conjugate Quotients Lemma. ✷

Now we return to the proof of the Symmetric Lemma. The graph with edge set E1

defined there satisfies the conditions of Lemma 27, applying that also finishes the proof of
Lemma 26. ✷

5. Image sets

Definition 28 For H ⊂ R and � ⊂P , we put

�(H)
def= {ϕ(h); ϕ ∈ � , h ∈ H}

and call it an image set. Similarly, the statistical image set defined by �, H and E ⊂ �× H
is

�E (H)
def= {ϕ(h); (ϕ, h) ∈ E}.

Theorem 29 (Image Set Theorem) If n ≤ |�|, |H |, |�E (H)| ≤ Cn for an E ⊂ � × H
with |E | ≥ n2 then there exists a collinear �∗ ⊂ � with |�∗| ≥ c∗n.

It is a remarkable interaction between composition sets and image sets that, while the
proof of the Main Lemma will use the above Image Set Theorem, this one can be reduced
to the symmetric version of the former one—the “Symmetric Lemma” Lemma 26.

For the proof of the Image Set Theorem, we need a geometric result of Pach and Sharir
on algebraic curves [10] (see also [9]).
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5.1. The Curve Lemma

Following Pach and Sharir [10], we define regular classes of curves (in purely combinatorial
terms).

Definition 30 A class � of continuous simple curves in the plane (i.e. none of them
intersects itself) is a regular class of curves of k degrees of freedom if there is a constant
s = s� such that

1. for any k points, at most s elements of � pass through all of them;
2. any two elements of � intersect in not more than s points.

Remark 31 Note that the class of all hyperbolae and straight lines (the latter neither
vertical nor horizontal), which appear as graphs of mappings in P , form a regular class with
k = 3 degrees of freedom.

Proposition 32 (Pach–Sharir Theorem [10] ) For every positive integer k and every regular
class � of curves of k degrees of freedom, there is a constant C = C� with the following
property.

If � ⊂ � and A ⊂ R
2 is an arbitrary point set (both finite), then, for the number I of

incidences between � and A,

I (A, �) ≤ C max
{
|A| k

2k−1 · |�| 2k−2
2k−1 ; |A|; |�|

}

This immediately implies the following observation (where we identify projective mappings
and the curves arising as their graphs).

Lemma 33 (Curve Lemma) For every c > 0 there is a Ĉ = Ĉ(c) with the following
property.

Let A ⊂ R
2 with |A| ≤ N 2 and assume that a set � of hyperbolae and straight lines

(which, according to Remark 31, have 3 degrees of freedom) has the property that every
γ ∈ � intersects A in at least

|γ ∩ A| ≥ cN

points. Then |�| ≤ Ĉ N .

5.2. Proof of the Image Set Theorem

Define a double-bipartite graph as follows.

V 0 = �;
V − = H ;
V + = �E (H);
E− = E;
E+ def= {(ϕ, ϕ(h)); (ϕ, h) ∈ E}.
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Apply Proposition 9 and get a set E∗ ⊂ � × � with the two properties that |E∗| ≥ c∗n2

and its pairs are double–c∗n–adjoining. Let (ϕ1, ϕ2) ∈ E∗ be such a pair. If we denote their
common neighbors in e.g. H by X then ϕ1ϕ

−1
2 maps ϕ2(X) ⊂ V + to ϕ1(X) ⊂ V +. Thus

we have

∣∣ϕ1ϕ
−1
2 (V +) ∩ V +∣∣ ≥ c∗n; and similarly∣∣ϕ−1

2 ϕ1(V −) ∩ V −∣∣ ≥ c∗n,

for all (ϕ1, ϕ2) ∈ E∗.
We conclude that |V −| = |H | ≤ Cn and |V +| = |�E (H)| ≤ Cn. Thus we can apply

Lemma 33 twice, once toA= V + × V + and the graphs of the ϕ1ϕ
−1
2 , and once toA= V −×

V − and the graphs of the ϕ−1
2 ϕ1. This results in a linear bound on the number of distinct

compositions of type ϕ1ϕ
−1
2 (as well as on those of type ϕ−1

2 ϕ1), for (ϕ1, ϕ2) ∈ E∗. Hence

|(� ◦E∗ �−1) ∪ (�−1 ◦E∗ �)| ≤C∗n

for an E∗ of size at least c∗n2—thus we have reduced the Image Set Theorem to the
Symmetric Lemma (Lemma 26). ✷

6. Proof of the Main Lemma

Actually, we show a (stronger) statistical version.

Lemma 34 (Statistical Main Lemma) For every C > 0 there is a c∗ = c∗(C) with the
following property.

Let �, � ⊂P with n ≤ |�|, |�| ≤ Cn and |E | ⊂ � × � with |E | ≥ n2. If |� ◦E �| ≤ Cn,

then there exists an Abelian subgroup S ⊂P and an α ∈P , such that

|� ∩ α S| ≥ c∗n.

Proof: Pick an s ∈ R such that the elements of the set

H
def= �(s) = {ψ(s); ψ ∈ �}

are all distinct (i.e. ψ(s) �= ψ ′(s) if ψ �= ψ ′) and use the Image Set Theorem (Theorem 29)
to find a collinear �0 ⊂ �; say �0 ⊂ {α+tβ; t ∈ R}∩P , where α ∈ �0 is a non-degenerate
mapping (while the non-zero β may be degenerate). Then

S
def= {x · id + y · (α−1β); x, y ∈ R} ∩ P

is an Abelian subgroup by Proposition 16 and �0 ⊂ αS. ✷

This clearly implies the Main Lemma (Lemma 3).
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7. Cartesian products

We also rephrase the Image Set Theorem (Theorem 29) in terms of incidences between pla-
nar point sets and curves. Two examples of statements of this character are the Pach–Sharir
Theorem (Proposition 32) and the Curve Lemma 33. Here we consider Cartesian products
X × Y ⊂ R

2 for X, Y ⊂ R.

Corollary 35 For every C > 0 there is a c∗ = c∗(C) > 0 with the following property.
Let X, Y ⊂ R with n ≤ |X |, |Y | ≤ Cn and � = {ϕ1, . . . , ϕn} ⊂P . If the graph of each ϕi

contains n or more points of X × Y (or, equivalently, each ϕi maps at least n elements of
X to elements of Y ), then there are f, g ∈ P such that at least c∗n of the graphs are from
one of the following three one–parameter families:

{x �→ f (g(x) + t); t ∈ R}; or

{x �→ f (g(x) · t); t ∈ R}; or (5){
x �→ f

(
g(x) + t

1 − g(x) · t

)
; t ∈ R

}
.

Proof: Use Theorem 29 for H = X , E = {(ϕi , x); ϕi ∈ �, x ∈ X, ϕi (x) ∈ Y } and
Proposition 17. ✷

Remark 36 Here the second and the third types of functions need not have been distin-
guished, had we worked over the field of complex numbers. Unfortunately, the tool from
Combinatorial Geometry that we used (the Curve Lemma 33) has not been developed in
that generality so far.†

8. Concluding remarks

Our Main Theorem (Theorem 2) can also be considered as a “front–end” to sum–set theo-
rems.

In P we have three types of Abelian subgroups whose cosets were listed in function form
in (5). The basic types are x �→ x + t , x �→ x · t and x �→ (x + t)/(1 − t x)—all others
are conjugates thereof. In these subgroups typical examples of small composition sets arise
from certain “natural progressions”: {x �→ x + i · d; i = 1 . . . n}, {x �→ x · qi ; i = 1 . . . n},
and {[x �→ x + tan(iα)]/[1 − x tan(iα)]; i = 1 . . . n}, where the last example is a special
case of the second one if we use complex parameters.

Now our Theorem 2 can be combined with the Sum-set Theorems (see 3, 6, 11, 12)
and we can formulate the following corollary, though we did not define generalized natural
progressions formally.

†Added in Proof: E. Siabo’ has recently extended Lemma 33 to complex algebraic curves. Thus all our results
hold for complex projective mappings, as well.
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Corollary 37 Under the assumptions of Theorem 2, there also exists a linear size “gen-
eralized natural progression” L in the Abelian subgroup S found there, for which even
� ⊂ ⋃k

i = 1 αi ◦ L and � ⊂ ⋃k
i = 1 L ◦ βi hold.
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for stimulating discussions on the topic.

References
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