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Abstract 

Prediction of machine tool chatter requires a dynamic characterization of the machine-tool-workpiece system by means of frequency response 

functions (FRFs). Stability lobe diagrams are sensitive to the uncertainties of the measured FRF, which reduces the reliability of their industrial 

application. In this paper, a frequency-domain method is presented to determine robust stability boundaries with respect to the uncertainties of 

the FRF. The method is based on an envelope fitting around the measured FRFs combined with some considerations of the single-frequency 

method. The application of the method is validated on a turning operation characterized by a series of FRF measurements. It is shown that stability 

analysis using the averaged FRF may considerably overestimate the region of robust stability. 
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1. Introduction 

Reliable prediction of machining parameters without 

producing machine tool chatter is a highly important task for 

machine tool centers. One of the most accepted explanation for 

machine tool chatter is the surface regeneration: the vibrations 

of the tool are copied onto the surface of the workpiece, which 

modifies the chip thickness and induces variation in the cutting 

force one revolution later [1], [2]. From dynamic systems point 

of view, chatter is associated with the loss of stability of the 

steady-state (chatter-free) machining process followed by a 

large amplitude self-excited vibration between the tool and the 

workpiece usually involving intermittent loss of contact. 

Stability properties of machining processes are depicted by the 

so-called stability lobe diagrams, which plot the maximum 

stable depths of cut versus the spindle speed. These diagrams 

provide a guide to the machinist to select the optimal 

technological parameters in order to achieve maximum material 

removal rate without chatter. 

Stability lobe diagrams can be calculated using frequency 

domain techniques, such as the single frequency solution, the 

multi-frequency solution [3] [4], and the extended multi-

frequency solution [5]. These methods apply the measured 

frequency response functions (FRFs) directly. In contrast, time-

domain solutions, such as the semi-discretization method [6], 

full-discretization method [7], spectral element method [8] or 

the implicit subspace iteration method [9], just to mention a 

few, require fitted modal parameters as input. In spite of the 

available efficient numerical techniques, experimental cutting 

tests do not always match the predicted stability lobe diagrams 

[10]. One reason for these differences is the uncertainties of the 

measured FRFs. For frequency-domain methods, these 

uncertainties directly affect the generated stability lobe 

diagrams. For time-domain methods, the uncertainties of the 

FRF are manifested as uncertainties of the fitted modal 

parameters, which, again, affect stability lobe diagrams. In this 

latter case, the number of modes to be involved in the fitting 

and the properties of the mechanical model used for the fitting 

(e.g., proportional vs. non-proportional damping, symmetric vs. 

non-symmetric FRF matrix) also strongly affect the structure of 

the stability lobe diagrams [5], [11]. These cases demonstrate 
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that robustness of the generated stability lobe diagrams is an 

important issue for practical applications.  

A robust method called Edge Theorem combined with Zero 

Exclusion condition is presented in [12], [13], which can be 

applied for low number of uncertain parameters. The algorithm, 

however, leads to intensive numerical computation with many 

limitations, hence the „robust formulation cannot accommodate 

more than two varying parameters due to increasing model 

complexity” [13]. 

In this paper, a frequency-domain technique is presented for 

the calculation of the robust stability boundaries in case of 

uncertain FRFs. The method is based on an envelope fitting 

around the measured FRF combined with the concept of the 

single frequency solution, which essentially reduces the 

computational effort. 

2. Mechanical model of turning operations 

The dynamical model of an orthogonal cutting operation 

with multiple vibration modes is shown in Fig. 1. The modes 

are projected to direction z, which is the direction of the surface 

regeneration. A multiple-degree-of-freedom model is 

considered with n number of modes and with the generalized 

coordinates .))()(),(()( T

21 tztztzt nz  The cutting force acting 

on the tool tip assuming a nonlinear characteristics can be given 

as 

),()( twhKtF q

zz                                  (1) 

where Kz is the cutting-force coefficient in direction z, w is the 

depth of cut, h(t) is the instantaneous chip thickness and q is 

the cutting-force exponent. The chip thickness is affected by 

the current tool position and the previous position of the tool 

one revolution before. The regenerative time delay is  = 60/ 

where  is the workpiece revolution given in rpm. The 

instantaneous chip thickness then can be calculated as 

),()()( 11f tztzvth                                   (2) 

where fv  is the feed velocity and )(1 tz  indicates the position of 

the tool tip in direction z. The linearized forcing vector )(tf  is 
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3. The single-frequency method 

In order to obtain a frequency-domain estimation of the 

robust stability boundaries, the main steps of the single-

frequency method is summarized for the stability analysis of 

the systems with fixed FRF [14]. The definition of the FRF 

matrix H() gives 

)()()(  ZFH  ,                                (4) 

 

Fig. 1. Surface regeneration in turning process with multiple vibration modes. 

where F() and Z() are the Fourier transforms of the forcing 

vector f(t) and displacement vector z(t), respectively. The 

Fourier transform of the linearized parametric forcing f(t) is 

given as  

),()1e()( -i  
ZκF                                  (5) 
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is the specific cutting-force coefficient. Substitution of Eq. (4) 

into Eq. (5), and simplification yield 

  ,)()()1e( -i
0FκHI                                   (7) 

where I is the identity matrix. The existence of the nontrivial 

solution implies 

  ,0)()1e(det -i  
κHI                                 (8) 

which, considering the structure of κ , can be expressed as 

.0)( )1e(1)( -i    HD                                 (9) 

Here, H() := H11() is the measured tip-to-tip FRF. If the 

inverse FRF is written as H() = Re()+iIm(), then the 

analytic solution for the stability lobe diagrams, where Eq. (9) 

is satisfied, can be given as [4] 
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where  ,,2,1 j  and ),0[  . These parametric curves 

gives the stability lobes in the parameter plane ().  

4. Robust stability analysis 

The FRFs obtained from measurements are always loaded 

by noise and uncertainties, which can be represented as an 

uncertain envelope around the averaged FRF. In this paper it  
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Fig. 2. Uncertainties in the frequency response function. )(H  is the average 

FRF and )(H  is the perturbation around )(H  with radius )(R . 

is assumed that the uncertainty can be given as an additive 

complex perturbation as  

),()()(  HHH                                  (11) 

where )(H  is the averaged FRF and )(H  is the 

perturbation around it. It is assumed that )()(  RH  where 

)(R is the radius of the complex perturbation (see Fig. 2). 

Substitution of Eq. (11) into the characteristic equation (9) and 

separation to real and imaginary parts give 
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If there is a perturbation ),(i)()( ImRe  HHH   which 

satisfies Eqs. (12)-(13) for some  , then the system is not 

robustly stable. If Eqs. (12)-(13) cannot be satisfied by the 

possible/allowed perturbations for any  , then the system is 

robustly stable or robustly unstable depending on whether the 

averaged system is stable or unstable.  

A bound for the uncertainties of the FRF can be given by an 

envelope about the averaged FRF. A possible envelope can be 

a tube obtained by centering discs of radius )(R  at )(H  (see 

Fig. 2). In this case, a safety factor can be defined as  
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where HRe() and HIm() are calculated according to Eqs. 

(12) and (13), respectively. If SF < 1 then the system is not 

robustly stable, i.e., there exists a perturbation |H()| < R(), 

for which the system is unstable. If SF > 1 then the system is 

robustly stable if the averaged model is stable or robustly 

unstable if the averaged model is unstable. The robust stability 

boundary is given by the contour curves SF = 1. Note that the 

envelope can be constructed in other ways, for instance based 

on the standard deviation of the measured FRFs. 

5. Case study 

In practical applications, the uncertainties are filtered by 

averaging the measured FRFs. Typically, five to ten 

measurements are performed and their average is used for the 

stability calculation [10].  

In this case study, the FRF of the tip of a turning tool was 

measured fifty times, which provided fifty different (uncertain) 

FRFs due to imperfect excitation and due to noise. The 

individual FRFs are shown in Fig. 3 by dark gray lines, while 

their average is indicated by thick black line. The envelope of 

uncertainty radius R() about the average is shown by light 

gray shading. This envelope compasses all the measured FRFs. 

It can be seen that the uncertainty envelope is considerable, 

especially around the first natural frequency (around 

650~750Hz).  

Figure 4 presents the case when the FRFs were averaged 

after every fifth measurement. Ten different FRFs are shown 

by dark gray lines, each being an average of five individual 

measurements. In this case the uncertainty envelope is 

narrower, which reflects the filtering effect of averaging the 

FRFs. The uncertainty around 700Hz is still remarkable.  

 

 

Fig. 3. Measured FRFs (solid dark gray lines), averaged FRF (solid black 

line) and uncertainty envelope (light gray shaded area). 

 

Fig. 4. Measured FRFs as an average of five measurements (solid gray lines), 

averaged FRF (solid black line) and uncertainty envelope (gray shaded area). 
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Fig. 5. Stability lobes corresponding to the individual FRFs (dark gray lines), 

to the averaged FRF (solid black line) and the robust stable domain obtained 

by the proposed method (light gray shaded area).  

The stability boundaries corresponding to the fifty 

individually measured FRFs are presented in Fig. 5 by dark 

gray lines. The stability lobes associated with the averaged FRF 

is shown by thick black line. Light gray shaded area represents 

the region of robust stability determined according to the 

method presented in Sec. 4. It can be seen that the boundary of 

robust stability (SF=1) is located at lower specific cutting-force 

coefficient values ( ) than that of the averaged FRF. Still, the 

lobe-like structure of the two boundaries is similar. The region 

between the robust and the averaged stability boundaries is the 

uncertain region: stable machining operation cannot be 

guaranteed in this region.  

Figure 6 presents the robust and the averaged stability 

boundaries associated with the fifty FRF measurements 

(without averaging) for low (left) and for higher (right) spindle 

speeds. It can be seen that about 40% of the stable region 

predicted by the averaged model is actually uncertain.  

Figure 7 presents the stability charts for the case when the 

FRFs were averaged after every fifth measurements. The 

uncertainty region is still significant, it occupies about 20~25% 

of the stable region predicted by the averaged model.  

6. Conclusion 

Prediction of the stability of machining operations always 

involves several uncertainties. Dynamic behavior of the 

machine-tool-workpiece system is a typical uncertain 

component, which is usually overcome by averaging a series of 

FRFs. In this paper, a frequency-domain method was presented 

to calculate the robust stability analysis of turning operations 

using directly the measured FRFs. The method is based on an 

envelope fitting around the measured FRFs combined with 

some considerations of the single-frequency method.  

Application of the method to a series of FRF measurements 

of a turning tool showed that the robust stability boundaries can 

significantly be smaller than the stability boundaries 

corresponding to the averaged FRF. The analysis demonstrated 

that the actual robust stability boundary can well be 

approximated by the proposed method. It was also 

demonstrated that using the average of five FRF measurements 

still overestimates the region of robust stability. This 

observation may explain the disagreement between stability 

lobe predictions and actual cutting tests, which is often 

experienced in machine tool chatter research. 

 

Fig. 6. Stability lobe diagrams at different spindle speeds obtained from fifty 

FRFs (no averaging during the measurement). 

 

Fig. 7. Stability lobe diagram at different spindle speeds obtained from ten 

FRFs, each being an average of five individual measurements. 
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