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The thymus develops from an endocrine area of the foregut, and retains
the ancient potencies of this region. However, later it is populated by bone
marrow originated lymphatic elements and forms a combined organ, which is a
central part of the immune system as well as an influential element of the
endocrine orchestra. Thymus produces self-hormones (thymulin, thymosin,
thymopentin, and thymus humoral factor), which are participating in the
regulation of immune cell transformation and selection, and also synthesizes
hormones similar to that of the other endocrine glands such as melatonin,
neuropeptides, and insulin, which are transported by the immune cells to the
sites of requests (packed transport). Thymic (epithelial and immune) cells also
have receptors for hormones which regulate them. This combined organ, which
is continuously changing from birth to senescence seems to be a pacemaker of
life. This function is basically regulated by the selection of self-responsive
thymocytes as their complete destruction helps the development (up to puberty)
and their gradual release in case of weakened control (after puberty) causes the
erosion of cells and intercellular material, named aging. This means that during
aging, self-destructive and non-protective immune activities are manifested
under the guidance of the involuting thymus, causing the continuous irritation
of cells and organs. Possibly the pineal body is the main regulator of the
pacemaker, the neonatal removal of which results in atrophy of thymus and
wasting disease and its later corrosion causes the insufficiency of thymus. The
co-involution of pineal and thymus could determine the aging and the time of
death without external intervention; however, external factors can negatively
influence both of them.
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Introduction

The thymus is an organ, which in adults contains a lot of fat; however, in
infants, it is rich in cells seemingly up to adolescence after which its involution is
gradually taking place. In adults, its largest weight is about 37 g and only 6 g in
75-year-olds. The thymus appeared about 500 million years ago [1] in cartilagi-
nous fishes, together with the adaptive (acquired) immune system.

The human thymus was first observed by Galen of Pergamum (130–200 A.D.),
who believed it as the seat of the soul because its location is near to the heart. He
also observed that the weight of the organ is changing according to the age of a
person. The name “thymus”was given by the ancient Greeks possibly by the name of
a herb, as it is similar to a bunch of thyme.

The function of the thymus remained unknown for centuries. Vesalius (in
1600s) believed it as a thoracic cushion. A century later, it was believed as a
regulator of the respiratory organ in fetal and neonatal stages. In 1777, William
Hewson verified Galen’s observations on the changing weight of the thymus and
listed it among the lymphatic organs. Later, it was believed as an endocrine organ
without knowing its hormone and effects. In 1961, Jacques Miller removed the
thymus from newborn rats, which caused a dramatic effect on the condition and
immunity of the animals [2], as a part of the lymphocyte population (later named T
cells) disappeared and a fatal wasting disease developed. Further experiments
cleared the central role of thymus in the development and function of the immune
system. From this time, the thymus is registered as the most important (central)
lymphoid organ. However, the change of mentality also brought to the front, the
endocrine role of the gland, as the hormones produced by it and their effects on
immune processes were massively studied and also sometimes such thymic
hormones are also produced without primary immune role (atopic hormones).
This means that at present, the thymus is listed as a lymphatic organ as well as an
endocrine gland. Considering the neuroimmunoendocrine inter-relations, it is not
surprising that in our present knowledge, the thymus is the only organ that
performs two functions together.

As a central lymphoid organ, it produces mature T lymphocytes. The cells
originated from the bone marrow reach the thymus, where they are selected and
separated into two groups. One group can recognize self antigens (self-reactive T
cells) and can destroy them; these cells are eliminated. However, some of them can
avoid the negative selection in the thymus, and also thymus-generated T-reg cells
inhibit them in the periphery [3]. The other group recognize foreign antigens and
also can destroy them; these cells remain alive and are participating (together with
the B-cells) in adaptive immunity.
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The epithelial part of the vertebrate thymus has its origin from the branchial
region of the chordates, which is recapitulated during development. From this
region, the thyroid and parathyroid glands as well as the thymus are developed as
endocrine organs, in addition to the respiratory tract. However, the endocrine-like
capacity of this latter is also conserved [4, 5]. This epithelial part is responsible for
self-hormone synthesis of the thymus, which is supplemented by the production of
hormones that are mainly produced by other endocrine organs (atopic hormones).
The two – lymphoid and endocrine – parts (function) of the thymus are in close
connection directly or with the help of mediators [6]. The state and function of the
organ is influenced by sympathetic and parasympathetic nerves as well as by the
hormones of endocrine glands. In the frame of this regulation, the hypothalamo-
pituitary-gonadal axis [7] and first of all the pineal body [8] seem to be the main
regulators.

Self-hormones of the thymus and their effects on immune cells

As it was mentioned, for a long time, the thymus was classified as an
endocrine gland without knowing its hormone. The discovery of its central role in
the immune cell formation led to find the thymus-endogenous factors, which are
responsible, or to help the selection of immune cells and the development of self–
non-self recognition. Numerous factors were prepared with different functions, but
four of them seemed to be real and effective. They are thymulin, thymosin,
thymopoietin (thymopentin), and thymic humoral factor (THF). These thymic
hormones are synthesized and secreted by the epithelial cells [9]. Each hormone is
produced by these cells, which also synthesizes cytokines, as IL-1 and 6, G-CSF,
GM-CSF [9], which also have a role in thymocyte differentiation.

Thymulin

Thymulin, extracted from porcin thymus, is exclusively synthesized by the
thymic epithelial cells. For its action, presence of zinc is necessary, which is
coupled to the nonapeptide (Glu, Ala, Lys, Ser, Gln, Gly, Gly, Ser, Asn) and acts
to the T cell differentiation [10, 11]. It is strongly controlled by the neuroendocrine
system. Binding to the specific receptor requests, residues 5–7 and the triggering
site (residues 8 and 9) are needed for biological activity [10]. Thymulin is able to
induce T-cell markers and normalizes the ratio between the helper and the
suppressor T-cells [12]. There is a feedback control of thymulin secretion by
the thymic epithelial cells [13].
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Thymosin

Thymosins were prepared in 1966 by Goldstein and White [14] from a calf
thymus, as functionally and biochemically distinct polypeptides. Its partially
purified fraction 5 (TF5) was suitable for immunorestoration of pathological
thymus (Di George syndrome and other thymic dysplasias). However, after this
purification, TF5 contained at least 40 small polypeptides and their individual
nature was not determined.

TF5, thymosin alpha 1, and thymosin beta influence the lymphoid elements
of the thymus (intrathymic effects including cyclic nucleotide level, migration
inhibitory factor production, T-dependent antibody production, and cell surface
maturation [15]). Thymosin alpha 1 is a synthetic, amino-acid terminal acetylated
preparation, which has a pleiotropic action [16], enhancing T cell, dendritic cell,
and antibody responses and inhibits steroid induced apoptosis in thymus. It is
participating in the regulation of suppressor T cell development [17].

Other thymosin fractions such as polypeptide beta 1, thymosin alpha 1,
prothymosin alpha, parathymosin, and thymosin beta 4 were also prepared.
However, they were not proved to be real thymic hormones as many other organs
or cells synthesized them and did not influence thymus specific functions [18].

Thymopoietin

It is a polypeptide extracted from bovine thymus, composed of 49 amino
acids. However, its effective part is TP5, which contains five amino acids namely
arginine, lysine, asparagine, valine, and tyrosine (32–36 of thymopoietin). Con-
sequently, instead of thymopoietin, a new name, thymopentin is used and the
effects of it used to be studied. The pentapeptide is produced by the epithelial cells
of the thymus and is participating in the immune regulation as well as T cell
differentiation and influences – as an extrathymic effect – neuromuscular trans-
mission [19]. Its effect seems to be dose dependent [20]. In in vitro conditions, it
enhances T-cell lineage proliferation and differentiation, mimicking thymus
peptide environment in vivo [21]. In in vivo conditions, it induces the proliferation
of lymphocyte precursors and their differentiation to T lymphocytes.

Thymic humoral factor (THF)

THF gamma 2, extracted from a calf thymus, is an octapeptide, and its amino
acid sequence is Leu-Glu-Asp-Gly-Pro-Lys-Phe-Leu. It has all the biological
activities of THF. This is a specific sequence that does not show homology with

142 CSABA

Acta Microbiologica et Immunologica Hungarica 63, 2016



other thymic or non-thymic hormones [22]. A few nanograms of it enhances the
frequency of mitogen responsive T cells in the thymus or the spleen, and positively
influences T helper cell functions [23], targeting first of all the younger cell
population [24]. After neonatal thymectomy, it stimulates proliferation of lymphoid
cells [25]. Deficient T cell function is restored by it in human cases. Comparing a
synthetic THF gamma 2 with thymosin alpha 1, THF’s effect is 400-fold greater [26].

Effect of thymic self-hormones on non-immune cells and functions

Thymic hormones, in general, inhibit the changes provoked by aging [27],
and helps to maintain the learning and memory capacities in the aging organism.
Thymosin fraction 5 advanced vaginal opening and elevated oestrogen level in
female mouse [28]. Thymic hormones can regulate the release of hormones from
the pituitary gland [29] and thymic deprivation causes dysgenesis of pituitary
anterior lobe [30], and thymic peptides influence hormone production of pituitary
and gonads, e.g., thymulin enhances LH secretion and neonatal thymulin gene
therapy prevents the reduction of circulating gonadotropin levels in athymic mice
[31–33]. The proper functioning of the hypothalamo-pituitary-gonadal axis is
dependent on thymic endocrine influences [34]. Thymosin F5 increased cortico-
tropin, beta-endorphin, and cortisol level in monkeys [35], and thymectomy
decreased the level of these hormones. Increasing thymulin level enhances
pituitary gonadotropin level, acting directly on GnRH neurons [36]. In vitro
conditions, the stimulatory effect of thymosin beta 4 on the production of LHRH
and LH by hypothalamic and pituitary tissues was observed [34, 37]. Thymulin
has a gonadotropin releasing (GnRH) activity. Also studied in suspension of rat
pituitary anterior lobes, thymulin had a dual role in the release of gonadotropins,
which was dependent on the hormonal status of the donor’s pituitary [38]. In
combination with gonadotropin stimulation, thymulin increases testicular ste-
roidogenesis [39, 40]. Thymosin exercises influences on the secretion of beta
endorphin, ACTH, LHRH, LH, and glucocorticoids [41, 42]. In young rats, TF5
inhibits TSH effect. Thymulin treatment in mice resulted in an earlier onset of
puberty [43].

Non-self (atopic) hormones of the thymus

1. Biologically active glucocorticoids are synthesized in the thymus by the
epithelial cells [44, 45] and the thymocytes have glucocorticoid receptors [46].
The receptors are already present in newborns with the same specificity as in
adults. The cells not only produce but also incorporate glucocorticoids [47].
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2. There is an intrathymic expression of some neuropeptides in the thymus
as somatostatin, substance P, vasointestinal peptide, calcitonin gene-related
peptide, and neuropeptide Y [48, 49]. Growth hormone (GH) and prolactin are
also produced by thymic epithelial cells and are present in thymocytes [50, 51],
and the cells also have GH receptors. This latter can explain why is enhanced
thymulin secretion of epithelial cells by it. Pituitary hormones – prolactin,
luteinizing and follicle stimulating hormones, corticotropin releasing factor,
oxytocin, and vasopressin – are also synthesized by the thymus cells [1, 52–55],
and the cells have pituitary hormone receptors [56].

3. In the thymic cells, extrapineal melatonin can be found (synthesized) as
well as melatonin synthesizing enzymes [57–59]. Both the thymic epithelial cells
and thymocytes have MT1 and MT2 melatonin receptors [60].

Insulin is also synthesized in the thymus [61, 62]. Two-day starvation
(stress) decreases the thymocyte count to 13% in ob/ob mice, which is restored by
leptin treatment [63].

4. Oxytocin and vasopressin as well as insulin-like growth factor are
synthesized by thymic epithelial cells [64].

5. Calcitonin is synthesized by the thymus [65] and also calcitonin receptors
can be found [66]. Nuclear receptors for calcitriol are present in the medullar cells
and Hassal’s bodies [67].

6. The mentioned hormones are localized to different components of the
thymus: (a) thymocytes contain serotonin and melatonin; (b) cortical cells
synthesize only serotonin; and (c) mature medullar cells contain serotonin,
melatonin, beta-endorphin, and gastrin. The expression of serotonin, somatostatin,
and gastrin is localized in thymic epithelial cells, formatting Hassal’s bodies [68].

Studying the hormone content of thymocytes, triiodothyronine (T3, regu-
lated by TSH) [69–71], adrenocorticotropic hormone (ACTH), beta-endorphin
[72], histamine, and serotonin [69] were found. T3 level is changing, and is
dependent on the light–dark cycle [73].

Effect of other (non-thymic-self) hormones on the thymus

Neonatal pinealectomy causes typical wasting disease with the destruction
of thymus [74, 75]. Pinealectomy executed in adult rats decreases thymus weight,
which is restored by melatonin treatment [76]. Long-time analysis also demon-
strated the interrelation of pineal and thymus [77]. The thymic epithelial cells and
thymocytes have melatonin receptors [78]. During aging, pineal peptides have
geroprotective effect on thymus involution [79]. During acute stress, it prevents
involution [80]. Melatonin strongly influences (elevates) the nocturnal thymic and
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serum level of thymosin alpha 1 and thymulin as well as the 24 hr rhythm of them
[81, 82]. Under stress conditions, melatonin prevents thymus involution [80].

GH regulates proliferation of thymic epithelial cells and thymocytes and also
stimulates the secretion of thymic hormones [34, 51]. It also increases replenish-
ment of the thymus, enhances thymocyte release from nurse cells, and increase
thymocyte export as well as thymic hormone production [83]. Prolactin and GH
enhance the extracellular matrix molecules in vitro [84]. Prolactin,
GH, and thyroid hormones enhance the production of thymulin [32, 85–88].
ACTH controls thymic growth [89]. GH, GH-releasing hormone, and luteinizing
hormone releasing hormone enhance the proliferation of thymocytes [84].
Neuropeptides – in general – influences the T cell repertoire [90].

Glucocorticoids are participating in the deterioration of the immune system
and mainly the thymus [91], and at the same time positively influence the
extracellular matrix [84]. In thymus culture, progesterone increases the thymulin
level [92]. Thymulin and thymosin alpha 1 production are inhibited by sex
hormone treatments [93]. Ovariectomy increases thymus weight in mice [94].

Increased thymulin serum level was found in men in case of hyperthyroid-
ism, hiperprolactinemia, and acromegaly. Thyroid hormones upregulate thymulin
production [32, 85]. Hypothyroidism (caused by drugs) provokes the involution of
thymus [95], manifested in enhanced thymocyte development [96] and T3
production by it [71]. Insulin, oxytocin, gonadotropin, and EGF strongly influ-
enced ACTH, endorphin and T3 production by thymocytes, while ACTH
synthesis was reduced [70] in in vitro experiments. Histamine and serotonin
treatments in vitro radically reduced T3 content of thymocytes as well as the amine
content of each other [97]. Insulin in vitro radically decreased the histamine and
T3 synthesis of thymocytes and in vivo halved the amount of hormones [98].
Ghrelin helped the rejuvenation of involuting thymus [99].

Perinatal hormonal imprinting [100, 101] with T3 significantly increased the
density of thymic glucocorticoid receptors in adult age [102]. A late steroid
imprinting (with dexamethasone) decreased thymic glucocorticoid reception [103].

Discussion

The data mentioned above clearly demonstrate that the thymus has impor-
tant hormonal regulatory roles, though one can forget this, because of the bright
light of its central immune function. The thymus gland has self-hormones, which
regulates T cell development as well as functions of other organs, and other
hormones which are mainly produced by other endocrine glands. It has also
receptors for both types of hormones. The lymphatic part of the organ is in the
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front of research presently as this is almost completely cleared and very important.
In addition, it can be more easily studied. Whereas, the epithelial part of the organ
develops earlier phylo- and ontogenetically, and the migration of lymphatic
elements is taking place later under the effect of chemoattractants produced by
the epithelium [104], as T cell precursors have receptors for them [105, 106]. The
epithelial cells also produce factors (hormones), which help to select, differentiate,
and mature the lymphatic cells and control apoptosis. They are also producing the
non-self hormones, which are participating in the regulation, done by the endo-
crine system. When thymectomy is executed at neonatal age, wasting disease
develops [74, 75] in which not only the thymus and the directly thymus-influenced
lymphatic organs are touched but also the whole organism and the normal state can
be partially restored by cell-free thymus extracts (hormones) [107]. Considering
these facts, the thymus is a special organ in which both primarily endocrine
elements and secondarily lymphatic elements are present cooperating with
another, and from this aspect thymus is unique.

The thymus develops from the 3rd and 4th pharyngeal pouches, together with
the parathyroids, and thyroid also have a branchial origin, with calcitonin
producing C cells inside it and also the palatine tonsils, which similarly have
some endocrine functions [108–110]. This part of the primitive gut, can be named
with good reason to an endocrine area in which many overlapping specificities are
present. The foregut-originated rat larynx, trachea, and oesophagus transplanted
into the spleen incorporate 3H tyrosine and accumulate iodine similar to thyroid
[111, 112], and thymus is taking up iodine [113, 114]. In cultures of rat thymus,
the proliferating cells take up iodine, as it is done by thyroid cells [114].

The “atopic” hormones, insulin, pituitary hormones, neurohormones, etc.,
are synthesized in the thymus and these hormones are transported by the
emigrating T cells to different parts of the body. This is a special form of
transport, named “packed transport,” when the hormone is not circulated freely
in the blood, but finds the target addressed and together with the hormone also
transports the factory, which can also produce it locally [115, 116]. From this
aspect, the hormone containing cells are similar to their mates formed in the bone
marrow or somewhere in the organism in lymphatic tissues. However, the thymus
is a site, where lymphocytes are selected “to be or not to be” and the self-
responsive cells are eliminated. Experiments demonstrate [62] that selective
decrease or absence of insulin in the thymus leads to autoimmune (type 1)
diabetes [117]. However, theoretically the loss or absence of other peptide
hormones (e.g., ACTH, somatostatin, glucagon, LH, FSH, etc.) could cause
autoimmune processes, though the effect of these have not been studied (except
somatostatin, where in somatostatin receptor ablated mice also diabetes devel-
oped, similar to the insulin loss in thymus [118]). In this case, the primary role of
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the synthesis and the presence of these hormones in the thymus is the protection
from self-aggression and the secondary is the hormone transport.

The lymphoid precursors are migrating from the bone marrow to the blood
circulation reaching the thymus, where they will be selected. The function of selection
is done by the nurse cells in the thymus, where more than 95% of the cells will be
supplied with receptor which is the kiss of death [119], as they will be destroyed by
the nurse cells themselves, in the thymus, or by the Treg-cells in the periphery.

It is generally believed that the involution of thymus starts at the age of
puberty, whereas in man it starts from the first year of life [120, 121], and the first
signs can be seen when 9 months old [122], followed by rapid (under 10 years and
between 25 and 40 years) and slow (between 10 and 25 years and over 40 years)
regressions. However, it becomes more conspicuous at the onset of puberty, and
the organ almost disappears in the adult age (at age of 70 years only 10% remains).
Nevertheless, the appearance and velocity of the process is individual. As this type
of involution cannot be observed in case of other organs, it has to be suggested that
thymus is the endogeneous determinator of the general (species) and individual
life span. It is obvious that something is needed for the regulation of lifespan, as
individual life cannot be infinite. The best solution for the problem if the regulator
is in an organ, which is responsible for the healthy life and the same cells are
involved in the extermination, which have been the helpers of life. Healthy life
cannot be imagined without the selection of self-aggressive T lymphocytes, the
marking and destruction of which is mainly taking place in the thymus, and it must
be an endogenous regulator, which gradually reduces or later extinguishes the life,
also without external interventions. The decrease, or later the loss of destruction of
self-aggressive T cells seems to be suitable for this process, allowing the increase
of the number and severity of autoimmune and infectious as well as degenerative
diseases. This process is taking place during the aging. It is likely that the thymus is
not alone in the regulatory process; it is influenced first of all by the pineal gland
[74, 75] and secondarily by the hypothalamo-pituitary system [122]. The pineal
seems to be the primary regulator, as it also has age-dependent degenerative
alterations, and its removal in neonatal age completely destroys the thymus, and
the thymus-dependent immune system [74, 75, 77, 123, 124]. Later removal of the
pineal also has aging promoting and delaying effects, giving life and death signals
with the participation of thymus [125, 126]. The effect of pineal to thymus could
be done by pineal peptides [127] or melatonin. It seems likely a functional unity of
pineal and thymus involution [79, 124, 128]. The functional unity is also
supported by human experiments, when durable combined treatment with pineal
and thymus peptides prolonged the lifespan [129].

Puberty is a phase of life in which the sexual apparatus becomes mature and
this gives the possibility for reproduction; the propagation of genes for the
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following generation which is the most biologically crucial event. After that, the
individual life is not so important from biological point of view. From evolution-
ary (biological) aspect, in wild conditions, 30 years of lifespan is enough for man
to propagate genes and rear children, the extra 50 years, possible today in
developed countries only a product of cultural evolution, and it is not reckoning
biologically in the function of thymus [130, 131]. It does not seem to be a chance
event that thymic involution is coming into sight at puberty, as the involution is
enhanced by sexual steroids, the enrichment of which also happens in puberty, so
the life-span-influencing events are in a close connection with another.

The release of self-aggressive cells from the thymus runs parallel with the
less efficient T-cell development and reduced emigration of naive T cells
[132, 133]. However, thymus cell production and hormone synthesis are present
up to death in traces [134]. This means that aging is a complex process in which
self-destructive and non-protective immune activities are manifested to a greater
extent combined with the rest of the normal thymic activity. Gender also
intervenes, as immunosenescence is accelerated in men, related to women [135].

Considering the above mentioned possibilities, the thymus – under the
control of pineal body – could work indeed as a pacemaker, which from birth to
the onset of puberty gradually increases and adapts its weight and functions to the
needs of the growing organism. This latter requests the highest destruction of self-
aggressive cells. However, the normal development leads to the active function of
testis and ovary, which produces sex-steroid hormones. From this time, the thymus
gradually loses epithelial and lymphatic cells, and nurse cells are not able to select
so efficiently the autoaggressive T lymphocytes; than earlier, the amount of thymic
self-hormones and cytokines [136, 137] diminishes and less apoptosis will be
executed. The graduality seems to be very important, as the quick release of self-
aggressive T cells could cause the sudden collapse of the whole organism. The
“dosing” of self-aggressive cells can wear down the organs and mechanisms,
which could be named aging. The quantity of released self-aggressive cells could
regulate the velocity of aging process, as down-running sand in the sand-glass.

The objective signals of immunosenescence are the qualitative and quanti-
tative alterations (dysregulation) of immune cells [138, 139] and especially the
decrease of naive T cells [139–143]. It is sometimes supposed as a consequence of
recurrent antigenic stimulation and oxidative stress [144]; however, the central
(thymic pacemaker) problem is more likely. Treg cell’s insufficiency also can
cause problems, as too much actions provoke the decrease of immunity, and the
decrease of Treg functions results in the risk of autoimmunity [145].

The involution of thymus is only a part of the general involution taking place
during aging. However, the involution of thymus not only a well observed aging
phenomenon, but also – as it was mentioned – it could be a causing factor or

148 CSABA

Acta Microbiologica et Immunologica Hungarica 63, 2016



regulator of the aging process. During aging starting with the end of adolescence, the
thymus gradually loses its earlier character and with the progress of aging it becomes
empty, filled with adipose tissue. In the periphery, the B cells are present in normal
number, producing antibodies; however, these antibodies have weaker affinity (to
antigens) and less protecting than that of younger animals. There is a strong loss of
naive T cells [146, 147], and parallel with these changes, the lifespan of mature B
cells is prolonged. The decreased thymic output of mature T cells results in the
compensatory overproduction and gush of premature T cells, the senescence of
which is taking place soon [147]. There is a remodeling of the whole immune
system, with the decline of the T-cell branch [146] parallel with the increase of NK
cells. Immune memory remains untouched, however, self-aggressivity increases
[148]. Mass of molecular aberrations is manifested both in the self-hormone
producing epithelial cells and thymocytes [149]. Because of the failures of immunity
and appearance of proinflammatory cytokines [122] chronic systemic inflammation
appears. If these changes are strongly expressed, autoimmune diseases develop as
lupus, Sjögren syndrome, etc.; however, coronary diseases, stroke, diabetes,
Alzheimer’s disease also occur. It is conceivable that the weak but continuous
irritation by the self-aggressive immune cells cause the process, which is named
aging. With the progressing age, the selective control of the thymus is gradually
weakened and more and more self-recognizing cells are releasing. They attack their
target cells, however do not kill them, but senselessly inhibit their function. This
working, however, weakened function is manifested during aging, and the strength-
ening of the process in special direction is manifested in the mentioned autoimmune
diseases. Considering this, thymus involution could be a pacemaker indeed, of the
whole aging process and not a consequence of aging, but an initiator and regulator of
it. However, external factors, as bad life conditions, overloading, poisoning, etc., can
negatively influence the “physiological” aging, positively influencing factors are not
known, only those which are able to prevent negative ones.

Epigenetic processes, methylation of cytosins in DNA, and methylation,
acetylation, and phosphorylation of histones play an important role in the
development and function of immune cells. Hormonal imprinting [100, 101] is
an epigenetic process, when perinatally the receptor binding capacity and hormone
synthesis is adjusted for life. This basically influences the behavior of immune
cells. However, in comparison with other cells, immune cells are imprinted in the
whole life [115, 116], as the imprinting is not age, but developmental stage
dependent and these cells are developing during the whole life. Hormonal
imprinting is able to interfere into the aging process, as there is a progressive
loss of methylcytosine content, primarily within DNA-repeated sequences and in
potential gene regulatory areas [150], and this is manifested in the change of gene
expression of DNA methyltransferases as well, as in the alterations of the aging

IMMUNOENDOCRINE DETERMINATION OF LIFESPAN 149

Acta Microbiologica et Immunologica Hungarica 63, 2016



immune system [151, 152]. As the loss of epigenetic control is two magnitude
greater than that of somatic mutations [153], it could be a rather important factor in
the aging of the immune system and consequently of the whole organism.

On the basis of the above mentioned facts and theories, the immunoendo-
crine role of thymus is unquestionable. However, it seems to be difficult to include
the role of endocrine part into the pacemaker theory. During the involution of
thymus, the loss of lymphatic part is prominent; however, the decrease of
epithelial part is also obvious. Parallel with this, the production of self-hormones
(thymulin, thymosin, thymopoietin, and THF) decreases and this could have an
important role in the reduction of the lymphatic part. However, extrathymic
actions of these hormones are also decreased, less participating in the complex
endocrine regulation [154].
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