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Pávkovics Philip J. Dix Éva Hideg
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Summary 

Leaf peroxidases play a key role in the successful acclimation of plants to low UV-B doses. 

The aim of the present study was to examine whether selective enhancement of alternative 

chloroplast antioxidant pathways achieved by chloroplast transformation affected the need for 

peroxidase defense. Transplastomic tobacco lines expressing glutathione reductase in 

combination with either dehydroascorbate reductase or glutathione-S-transferase in their 

plastids exhibited better tolerance to supplemental UV-B than wild type plants. After 10 days 

UV treatment, both the maximum and effective quantum yields of PSII decreased in the wild 

type by 10% but were unaffected in either of the transformed lines. Activities of total 

peroxidase and ascorbate peroxidase, in addition to dehydroascorbate reductase and 

gluthatione-S-transferase, were increased by UV in all lines. Gluthatione reductase activity was 

unaffected by UV in the transplastomic line engineered to have a higher constitutive level of 

this enzyme, but increased in the two other genotypes. However, the observed more successful 

acclimation required less activation of peroxidases in the doubly transformed plants than in the 

wild type and less increase in non-enzymatic hydroxyl radical neutralization in the 

dehydroascorbate reductase plus glutathione reductase fortified plants than in either of the other 

lines. These results highlight the fundamental role of efficient glutathione, and especially 

ascorbate, recycling in the chloroplast in response to exposure of plants to UV-B. They also 

identify chloroplast localized peroxidases among the large variety of leaf peroxidases as 

essential elements of defense, supporting our earlier hypothesis on hydrogen peroxide UV-B 

photo-cleavage as the primary mechanism behind damage. 

 

Abbreviation 

ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); APX, ascorbate peroxidase; 

AsA, ascorbate; CDNB, 1-chloro-2,4-dinitrobenzene; -C, control plants exposed to PAR only; 

DG, chloroplast transformant tobacco expressing both DHAR and GR; DHAR, 
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dehydroascorbate reductase; F0, minimal fluorescence yield of dark-adapted sample with all 

PS II centers open; Fm, maximal fluorescence yield of dark-adapted sample with all PS II 

centers closed; F́m, maximal fluorescence yield of illuminated sample with all PS II centers 

closed; Fv/Fm, maximum quantum efficiency of PSII; GG, chloroplast transformant tobacco 

expressing both GR and GST; GR, glutathione reductase; GST, glutathione-S-transferase; 

HTPA, hydroxyterephthalate; NBT, nitroblue tetrazolium; PAR, photosynthetically active 

radiation; PH, wild type ‘Petit Havana’ tobacco; POD, total peroxidase; SOD, superoxide 

dismutase; TPA, terephthalic acid; Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid); -UV, plants exposed to PAR and supplemental UV radiation; WT, wild type; 

PSII, light acclimated effective quantum yield of PSII  

 

Keywords:  

UV radiation, chloroplast transformant, reactive oxygen species, glutathione reductase, 

dehydroascorbate reductase, glutathione-S-transferase 

 

Introduction 

Solar ultraviolet (UV) radiation, especially UV-B (280-315 nm), is known to initiate 

oxidative damage in leaves, leading to lower photosynthetic activity. Plant responses to UV 

depend on wavelength, fluence rate, exposure time, and whether plants have been acclimated 

by prior exposure to UV. For example, plants developing outdoors are usually well-acclimated 

to solar UV-B, but plants grown indoors under photosynthetically active radiation (PAR, 400-

700 nm) only experience the same dose of UV-B as the stressor (Jansen et al. 1998, Hideg et 

al. 2013). Extreme light stress induced by UV-B may result in DNA, protein and membrane 

lipid damage. However, even lower doses promote the generation of reactive oxygen species 

(ROS), either due to metabolic disturbance and impairment of photosynthetic electron transport 
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or as a result of increased activity of membrane localized NADPH-oxidases and peroxidases 

(Jenkins, 2009; Hideg et al., 2013, Müller-Xing et al. 2014). Higher H2O2 concentrations were 

detected in Arabidopsis thaliana leaves in response to a short exposure to 308 nm 

monochromatic UV (Czégény et al. 2014). In addition, we have shown that peroxidases and 

efficient hydroxyl radical neutralization are key components of acclimation to supplemental 

UV radiation (Majer et al. 2014) as these lessen oxidative damage caused by H2O2 itself or by 

hydroxyl radicals derived from H2O2 via UV-B photocleavage (Czégény et al. 2014).  

The aim of the present study was to investigate how components of the antioxidant 

network other than peroxidase contribute to defense against UV in a key cellular compartment, 

the chloroplast. Previous investigations in our laboratory (Le Martret et al. 2011, Poage et al. 

2011) have demonstrated in tobacco that chloroplast transformation (ie. integration and 

expression of transgenes into the chloroplast genome) can directly increase the activity of 

several ROS scavenging enzymes in this organelle, resulting in both altered levels and redox 

states of metabolites (ascorbate and glutathione) and modified response to abiotic stresses. 

Poage et al. (2011), also showed a diminished impact of UV-B radiation on relative variable 

fluorescence in transformants expressing either superoxide dismutase (SOD) or glutathione 

reductase (GR) in their chloroplasts. However, the most pronounced effects of abiotic stress 

(chilling, salt and methyl viologen-induced oxidative stress) were observed in double 

transformants (Le Martret et al. 2011) expressing either dehydroascorbate reductase (DHAR) 

and glutathione reductase (GR), or gluathione reductase and glutathione-S-transferase (GST). 

These transplastomic plants therefore provide a powerful source for exploring the extent to 

which chloroplast enzymes contribute to acclimation to UV radiation, and whether 

reinforcement of ascorbate-glutathione recycling provides an alternative to the direct H2O2 – 

•OH neutralizing system. The latter question is relevant to an earlier study of Kubo et al. (1999) 

who proposed that in A. thaliana, environmental stresses may be classified into those which 
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induce DHAR activity and those which induce ascorbate peroxidase (APX) activity, and 

classified UV-B in the latter group.  

 

Materials and methods 

Plant material and UV treatment 

The plants used were Nicotiana tabacum L. wild type ‘Petit Havana’ (PH) and two 

double plastid transformed lines derived from PH, expressing either dehydroascorbate 

reductase (from rice) and glutathione reductase (from E. coli) (DG), or glutathione reductase 

and glutathione-S-transferase (both from E. coli) (GG). In these plants, foreign DNA is 

precisely targeted into the same location in the plastome and thus the inter-line variability 

associated with nuclear transformants can be excluded (Grant et al. 2014) Plants are described 

in detail in Le Martret et al. (2011). Plants were grown in growth chambers (Sanyo MLR-

352H-PE, Panasonic Healthcare Co., Ltd., Oizumi, Japan) at 25/20 oC, at 16 h daily irradiation 

with ca. 200 µmol m-2 s-1 photosynthetically active radiation (PAR). Four-week old plants were 

divided into two groups each containing 12 plants (4 of each genotype) and were kept for an 

additional ten days in two separate Fitotrons (SGC 120 Plant Growth Chamber, Weiss Technik 

UK, Loughborough, UK). The first group (labelled as -UV plants) was kept under 200 µmol 

m-2 s-1 PAR supplemented with UV-B radiation from Q-Panel UVB-313EL tubes (Q-Lab Ltd., 

Bolton, UK) through a cellulose diacetate filter (Courtaulds Chemicals, Derby, UK). The 

second group (-C, control plants) was kept under 200 µmol m-2 s-1 PAR only. The UV radiation 

was applied to the first group for 4 hours daily, centered at noon. Spectral distribution of UV 

irradiance was maximal at 318 nm (Majer and Hideg, 2012) and corresponded to 8.8 kJ m-2 d-

1 global (280-400 nm) or 7.7 kJ m-2 d-1 UV-B (280-315 nm) biologically effective dose, as 

calculated using the Biological Spectral Weighting Function developed by Flint and Caldwell 

(2003). 
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At the end of the ten-day treatment, one fully-developed leaf (node 5) was selected from each 

plant for analysis. Photosynthetic electron transport was measured on intact leaves on plants, 

and then the same leaves were frozen in liquid nitrogen and kept at -20oC until used for 

antioxidant analyses. 

 

Photosynthetic electron transport measurements 

Chlorophyll fluorescence measurements were carried out using the MAXI-version of 

the Imaging-PAM (Heinz Walz GmbH, Effeltrich, Germany). After 30 min dark adaptation, 

minimum and maximum fluorescence yields Fo and Fm were measured before and after a 

saturating light pulse, respectively. This was followed by exposure to 55 µmol m-2 s-1 blue 

actinic light for 3 min and light acclimated minimum and maximum fluorescence yields F́ and 

F́m were obtained using a saturating pulse. Maximal PS II quantum yield was calculated 

according to Schreiber et al. (1986) as Fv/Fm = (Fm – Fo) / Fm and the light acclimated effective 

PS II quantum yield (PSII) was characterized as PSII = (F́m – F́) / F́m (Genty et al. 1989). 

 

Sample preparation for antioxidant measurements 

Tobacco leaves were ground in liquid nitrogen into a fine powder, then samples were 

homogenized in ice cold Na-phosphate buffer (50 mM, pH 7.0) containing 1 mM EDTA. When 

making samples for the ascorbate peroxidase assay 5 mM ascorbate was also included in the 

grinding buffer. Leaf extracts were centrifuged (24.400 x g, 30 min, 4°C) and supernatants 

were used for antioxidant capacity measurements. Protein contents were determined according 

to Bradford (1976). 

 

Photometric determination of antioxidant enzyme activities 
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All reactions were carried out at room temperature, in 1 mL cuvettes and absorption 

changes were detected for 90 s using a Shimadzu UV-1800 spectrophotometer in kinetic mode. 

Straight lines were fitted on absorption vs. time data sets and absorption change per minute 

slopes were used for calculating enzyme activities with corresponding molar extinction 

coefficients of substrates. 

Superoxide dismutase (SOD, EC 1.15.1.1) activity measurement was carried out according to 

Sun et al. 1988 with slight modifications, based on the inhibition of nitroblue tetrazolium 

(NBT) reduction by xanthine – xanthine-oxidase generated superoxide anions. 50 mM 

Potassium phosphate buffer contained the leaf sample, 0.3 mM EDTA, 0.37 mM xanthine and 

1.15 mM NBT, and the reaction was started by adding 5 µunit xanthine-oxidase. NBT 

reduction was followed at 540 nm. Calibration was done with purified SOD (Sigma-Aldrich 

Kft., Hungary) and enzyme activities were given as µmol SOD min-1 g-1 protein. 

Total peroxidase (POD, EC 1.11.1.7) activity was measured via the ABTS (2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid)) method (Childs and Bardsley, 1975) using 10% 

ABTS, 400 µM H2O2 in phosphate-citrate buffer (50 mM, pH 5.0). ABTS oxidation was 

followed at 735 nm. The assay was calibrated with purified horseradish peroxidase enzyme 

(Sigma-Aldrich Kft., Hungary) and activities in leaf samples were expressed as µmol POD 

min-1 g-1protein. 

Ascorbate peroxidase (APX, EC 1.11.1.11) activities were measured according to Nakano and 

Asada (1981). The reagent solution contained 0.5 mM ascorbic acid and 1 mM H2O2 and 1 mM 

EDTA in a Na-phosphate buffer (50 mM, pH 7.0) and leaf extracts. APX activities were 

followed as a decrease in absorption at 295 nm as ascorbate was oxidised. Values were 

corrected for the APX unrelated, direct oxidation of H2O2 by the added ascorbate and other 

non-enzymatic antioxidants contained in samples. The applied detection wavelength was 

slightly higher than the 290 nm used in the original procedure, in order to lessen background 
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UV absorption of high leaf polyphenol concentrations present in leaf samples. Accordingly, 

changes in ascorbate concentrations were calculated using the molar extinction coefficient 

ε295nm=1.47 mM-1 cm-1 to express enzyme activities. 

Dehydroascorbate reductase (DHAR, EC 1.8.5.1) activity was determined by GSH mediated 

increase in ascorbate absorption at 295 nm according to Hossain and Asada (1984) with the 

above modification in the applied wavelength. The assay contained 0.25 mM dehydroascorbate 

and 2 mM GSH in the above buffer and enzyme activities were given as µmol DHAR min-1 g-

1 protein. The reaction rate was corrected for the non-enzymatic direct reduction of 

dehydroascorbate by GSH, which was below 5% of enzymatic rates typically found in PH-C 

leaf samples. 

Glutathione S-transferase (GST, EC 2.5.1.18) activity was assessed using 1 mM 1-chloro-2,4-

dinitrobenzene (CDNB, Sigma-Aldrich Kft., Hungary) as substrate, 5 mM GSH and 1 mM 

EDTA in 50 mM Na-phosphate buffer (Veal et al. 2002). Enzyme activities were given as nmol 

GST min-1 g-1 protein, based on the ε340nm=9.6 mM-1 cm-1 extinction coefficient of CDNB. 

Glutathione reductase (GR, EC 1.6.4.2) activity assay was carried out according to Kwon et 

al. (2003). The reaction was followed as decrease in NADPH absorption at 340 nm for 1 min 

in a Na-phosphate buffer (50 mM, pH 7.0) containing 1 mM EDTA, 1 mM GSSG and 0.2 mM 

NADPH. Activities as µmol GR min-1 g-1protein were calculated using the ε340nm=6.22 mM-1 

cm-1 extinction coefficient of NADPH. 

 

Determination of hydroxyl radical neutralizing capacity 

For determination of hydroxyl radical scavenging capacity TPA (terephthalic acid) 

method was used (Šnyrychová and Hideg, 2007), which is based on the fact that antioxidants 

contained in plant extracts can partly inhibit the oxidation of TPA to hydroxyterephthalate 

(HTPA) by •OH generated in the assay. Hydroxyl radical antioxidant capacities were 



9 
 

characterized by amounts of plant samples needed to decrease HTPA fluorescence (315 nm 

excitation, 420 nm emission) by 50% as described earlier (Stoyanova et al. 2011) and were 

given as µM ethanol equivalent mg-1 leaf fresh weight.  

 

Statistics 

All data are presented as mean averages and standard deviation of the mean. 

Photosynthetic yield data are averages of four measurements using four leaves from four 

different plants treated under identical conditions. Photometric assays were done in four repeats 

with samples from four different plants of the same treatment and genotype. In this way, each 

data point is an average of 16 values per sample representing both biological variability and 

technical repetitions. Student’s t-test was used to calculate P-values, and differences at P < 

0.05 were considered as significant. All calculations were carried out using Microsoft Excel 

for Windows (v11.0 2003). 

 

Results  

In order to test acclimation to UV radiation, both wild type (Petit Havana: PH) and 

double transplastomic (DHAR plus GR = DG; GR plus GST = GG) tobacco plants (as 

described by Le Martret et al. 2011) were exposed to daily doses of 7.7 kJ m-2 biologically 

active UV-B radiation. UV supplemented 200 µmol m-2 s-1 PAR and control plants of each 

genotype were kept under PAR only. A comparison of leaf photosynthesis at the end of the 10-

day treatment showed that UV exposed PH (PH-UV) plants had significantly lower 

photochemical electron transport than control plants (PH-C). Both maximum efficiency (Fv/Fm) 

and actual quantum yield of PSII electron transport measured in a PAR adapted state (PSII) 

decreased in PH in response to UV (Table 1.). On the other hand, neither DG-UV nor GG-UV 

leaves had lower photochemical yields than corresponding controls. In the absence of the UV 
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treatment, all measured photosynthesis parameters were similar in PH-C, DG-C, and GG-C 

leaves. Pair wise statistical comparisons of data sets are provided as Supplementary material. 

These results show that the observed changes were caused by exposure to supplemental UV 

and suggest that observed UV tolerance of the DG and GG plants relative to PH was due to the 

antioxidants expressed in them.  

As shown in Fig.1., control (not exposed to supplemental UV) transplastomic plants 

exhibited the expected higher enzyme activities of dehydroascorbate reductase (DHAR), 

glutathione-S-transferase (GST) and glutathione reductase (GR), compared to those in PH-C. 

All three enzymes were present at higher activities in UV treated leaves than in corresponding 

controls. DHAR activities in GG-C leaves were similar to those in PH-C but the enzyme was 

activated to a larger extent in the GG-UV than in PH-UV samples. Therefore, both DG-UV 

and GG-UV leaves had higher DHAR activities than those of PH-UV. UV-enhanced DHAR 

in PH-UV leaves reached the activity which was found in the DHAR expressing plants in the 

absence of UV treatment (in DG-C). This was not the case with the two other enzymes, GST 

and GR. The largest, ca 10-fold, increase in GST activity was observed in PH-UV leaves as 

compared to PH-C, but even this enhanced activity was below the levels in GG-C. DG plants 

were not reinforced in GST and accordingly, GST activities found in DG-C leaves were not 

statistically different from those measured in PH-C. However, UV treatment resulted in a 

smaller, ca. 6-fold, increase in GST activity in DG plants than the 10-fold increase in PH. GR 

was expressed in both DG and GG plants and enzyme activities in the absence of UV were 52- 

and 19-times higher in DG-C and in GG-C leaves respectively than in PH-C. UV-induced 

higher GR activity in PH-UV leaves was significantly lower, than base levels in either 

transplastomic plant and reached only 4-times the activity found in PH-C. Pair wise statistical 

comparisons of data sets are provided as Supplementary material. 
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In addition to enzymes involved in recycling of the two key non-enzymatic 

antioxidants, AsA and GSH, we also examined how UV affected direct ROS neutralizing 

pathways. Following the sequence of ROS production via electron transfer O2
•– → H2O2 → 

•OH, SOD, peroxidases and •OH neutralizing were measured (Fig.1). In terms of peroxidase 

defense, there were no significant differences between the two chloroplast transformants, but 

these plants had distinct antioxidant patterns from wild type plants, during both normal growth 

and acclimation to UV. Base levels of POD were about half in DG-C and GG-C compared to 

PH-C, and DG and GG leaves increased their activity in response to UV about 4-times, while 

this activation was more than 9-fold in PH. On the other hand, both DG-C and GG-C leaves 

had higher APX and SOD activities than PH-C. Hydroxyl radical neutralizing capacities were 

not affected by the expression of chloroplast antioxidant enzymes: extracts from GG-C and 

DG-C leaves were not significantly different from those of PH-C. Capacities increased in all 

plants in response to UV-B, although to different extents in different genotypes (Fig. 1, see 

Supplementary material for pair wise comparisons). 

 

Discussion 

Enzyme activities in the transplastomic lines, under PAR only, broadly confirm the 

increases over wild type reported by Le Martret et al. (2011), with an even greater fold elevation 

of GR (in DG and GG lines) and GST (in the GG line) than was found previously. Activities 

of all the engineered enzymes are further induced (in both wild type and transformed lines) by 

UV-B acclimation, so these enzyme activities remain far higher in the transplastomic lines. The 

implications of the higher absolute values achieved in the transplastomic lines need to be 

considered in relation to the perceived roles of these enzymes in ROS amelioration, and the 

probable interactions between them as they influence the flux of oxidized vs. reduced forms of 

key antioxidants ascorbate and glutathione. The interplay between these enzymes, the 
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antioxidants, and ROS levels is complex and further complicated by the conflicting role of the 

latter as stressor and signaling molecules (Mittler et al. 2011).  

However, some predictions can be made. DHAR and GR catalyse consecutive steps in 

the ascorbate-glutathione cycle (Mittler 2002). Their dual enhancement should therefore 

improve the efficiency of regeneration of ascorbate (AsA) as GR reduces glutathione so it 

remains available as substrate for DHAR. The net effect would be greater availability of AsA 

and more efficient scavenging of H2O2 as the whole cycle is stimulated. Elevated levels of AsA 

in DG lines were reported by Le Martret et al. (2011). The importance of ascorbate recycling 

in responding to environmental stresses is well established and has been extensively reviewed 

(Gallie 2013).  

GG lines exhibit the predicted increases in GR and GST activity, compared to wild type 

plants, but this E. coli GST enzyme also exhibits glutathione peroxidase (GPX) activity, as has 

been clearly demonstrated in the GG plants (Le Martret et al. 2011). It is possible that this 

activity is more important than the GST activity in ROS scavenging as GPX and GR are the 

two enzymes involved in the glutathione peroxidase cycle, another route for the dissociation of 

H2O2. Both pairs of enzymes therefore contribute to cellular protection against abiotic stresses, 

accounting for the improved tolerance to chilling, salinity and methyl viologen in both the DG 

and the GG lines (Le Martret et al. 2011). Since both the pathways in which the engineered 

enzymes are major players involve the neutralization of H2O2, and neutralization of H2O2 has 

been shown to be central to antioxidant defense upon UV-irradiation (Majer et al. 2014), it is 

reasonable to expect these transformed lines to be altered in their response to UV in comparison 

to wild type plants. 

In interpreting the data on POD and SOD levels in these lines it is reasonable to assume 

that none of the plants grown under PAR only were subject to strong oxidative stress (as 

indicated by their high photochemical yields) and thus the observed data are to be explained in 
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the context of normal metabolism. Higher APX may be necessary to keep cellular H2O2 

concentrations low despite the observed high SOD activities. 

In our experiment, peroxidases (both total peroxidase assessed with the synthetic 

cofactor ABTS, and APX) were activated by the UV treatment in all genotypes. This is in 

agreement with the results reported by Kubo et al. (1999) using A. thaliana leaves and other 

authors working with several species (Willekens et al. 1994, Yannarelli et al. 2006; Agrawal 

and Rathore 2007; Berli et al. 2010). In contrast to the observations of Kubo et al. (1999), UV 

treatment activated both DHAR and APX in our plants. This is less likely to be caused by a 

difference in the studied species than by a difference in experimental conditions. While the UV 

irradiation applied by Kubo et al. (1999) resulted in chlorotic spots on leaves after 6 days, 

plants in our experiment were acclimated to UV, UV exposed leaves had the same chlorophyll 

content as control ones and only 10% lower steady state photosynthetic electron transport. 

Exposure to UV markedly increased •OH scavenging capacity of the wild type, in 

accordance with our earlier report (Majer et al. 2014). In the present study we found that DG 

and GG leaves also increased their •OH antioxidant capacity, although it was lower in DG-UV 

and GG-UV than in PH-UV (Fig.1). Due to high reactivity of alcohols to •OH radicals (Billany 

et al. 1996), antioxidant capacities can only be assessed using leaf extract made with water-

based buffers. Consequently, polyphenols with limited water solubility, such as flavonoids or 

carotenes are not expected to dominate •OH antioxidant capacities. Both ascorbate and GSH 

are abundant water soluble antioxidants which are reactive to •OH (Foyer and Noctor 2011) 

and are expected to influence •OH specific antioxidant capacities of leaf extracts strongly. 

In an earlier study using PH tobacco leaves and a supplemental UV treatment which 

caused 30% decrease in photosynthetic electron transport, we have shown that in UV treated 

leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > 

hydroxyl-radical neutralization > SOD order (Majer et al. 2014). The experiment presented 
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here employed a UV source with the same spectral distribution as the previous one. However, 

during the present work daily UV-B doses were 44% lower and were applied together with an 

approximately 4-times higher PAR intensity than in the previous experiment. This allowed a 

better acclimation to UV during the ten days of exposure and consequently PH-UV plants lost 

only 10% of their photosynthetic electron transport as compared to PH-C. Nevertheless, the 

extent of antioxidant activation followed a similar order to that in the previous experiment 

involving a stronger UV stress. As shown in Fig.1, peroxidases were activated to the largest 

extent and UV-induced increases in ROS scavenging capacities followed a POD (948%) > 

APX (727%) > •OH neutralization (313%) > SOD (151%) order in PH plants. 

This was somewhat different in DG and GG plants, which both featured a lower relative 

increase in POD and APX in response to UV than PH. This may be explained by assuming 

more effective non-enzymatic neutralization of H2O2 in the transplastomic plants due to 

increased recycling of ascorbate and GSH. In DG-UV leaves we measured a POD (448%) > 

APX (241%) > •OH neutralization (185%) ≈ SOD (173%) activation relative to DG-C, 

suggesting less emphasis on defense against H2O2 and •OH than in PH-UV, and about the same 

or slightly enhanced protection from O2
•–. GG-UV leaves had similar peroxidase activation to 

that of DG-UV, both being lower than PH-UV. A marked difference between UV-responses of 

the two chloroplast transformants was in the extent of UV-induced activation of •OH 

neutralization. As opposed to the 185% activation in DG-UV compared to DG-C, GG-UV 

plants showed much higher, 381% •OH neutralization relative to GG-C. A possible explanation 

is to assume that efficient ascorbate regeneration is more important in defence against •OH than 

GSH recycling, and thus GG-UV leaves needed to activate more •OH antioxidant capacity than 

DG-UV. On the other hand, a comparison of GG-UV and PH-UV leaves illustrates that 

activation of •OH scavenging by itself is not sufficient to protect photosynthesis, as the two 

genotypes had similar capacities but photochemical yields were affected in PH but not in GG. 
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In summary, results presented here show that control of cellular H2O2 and •OH 

concentrations is a key factor in successful acclimation to supplemental UV radiation, even in 

chloroplast transformant plants with enhanced ascorbate and GSH recycling. Both DG and GG 

plants avoided ROS-induced loss of photosynthetic activity. However, in comparison with wild 

type plants, these transplastomic lines require less activation of peroxidases (both in DG and 

GG), and a smaller relative increase in •OH neutralizing capacity (in DG but not in GG), to 

achieve successful acclimation. The importance and multi-faceted role of ascorbate in UV 

responses has already been shown under strong oxidative stress conditions achieved by short 

term high dose UV exposure of ascorbate deficient Arabidopsis plants (Gao and Zhang 2008). 

The novelty of our work lies in showing that while ascorbate is also an important factor under 

more realistic lower UV-B doses, the key element of long term acclimation to UV-B is 

enzymatic hydrogen peroxide neutralization in chloroplasts. 
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Figure caption 

 

Figure 1. 

Changes in antioxidant enzyme activities and hydroxyl radical scavenging capacities of 

tobacco leaves in response to UV-B.  

PH, ‘Petit Havana’ wild type tobacco; DG, chloroplast transformant tobacco expressing both 

DHAR and GR; GG, chloroplast transformant tobacco expressing both GR and GST; -C, 

control plants exposed to PAR only; -UV, plants exposed to PAR and supplemental UV 

radiation. 

Data are expressed as % of those measured in PH plants kept under PAR only (PH-C plants). 

Bar lengths correspond to means and error bars represent standard deviations (n=4 for SOD 

and =16 for all other data). Light grey parts of bars represent values measured in plants kept 

under PAR only and full bar lengths (light + dark grey) correspond to data measured in UV-

acclimated plants (PAR+ UV). In this way, dark grey parts of each bar correspond to UV-

induced changes.  

With the exception of GR in GG-C and GG-UV, all studied antioxidant capacities were 

significantly (P < 0.05) higher in UV-treated plants than in untreated ones of the same 

genotype. Asterisks mark data sets where GG-UV or DG-UV plants were different from PH-

UV. Pair wise comparisons of all data with statistical analyses and P values are given as 

Supplementary material. 

100% SOD = 480 µmol min-1 g-1 protein, 100 % POD = 258.8 µmol min-1 g-1 protein, 100 % 

APX = 192.8 µmol min-1 g-1 protein, 100% hydroxyl radical scavenging (•OH scav) = 273.52 

µM ethanol equivalent g-1 fresh leaf weight, 100% DHAR = 4.4 µmol min-1 g-1 protein, 100% 

GR = 10.8 µmol min-1 g-1 protein, 100% GST = 0.654 nmol min-1 g-1 protein.  
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Table 1: Effects of supplemental UV radiation on maximum (Fv/Fm) and 55 μmol m-2 s-1 PAR 

acclimated effective (ΦPSII) quantum yields of PSII. 
 

Genotype and treatment Fv/Fm PSII 

PH-C 0.854 ± 0.013 0.729 ± 0.02 

PH-UV 0.821 ± 0.02 * 0.663 ± 0.039 * 

DG-C 0.849 ± 0.02 0.714 ± 0.02 

DG-UV 0.83 ± 0.019 0.701 ± 0.027 

GG-C 0.844 ± 0.014 0.716 ± 0.014 

DG-UV 0.822 ± 0.017 0.698 ± 0.021 

* Significant difference between control (-C) and UV-exposed (-UV) leaves of the same 

genotype (P < 0.05, n=4) 
 


