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Abstract 

Pathological neuronal firing was demonstrated 50 years ago as the hallmark of 

epileptically transformed cortex with the use of implanted microelectrodes. Since then, 

microelectrodes remained only experimental tools in humans to detect unitary neuronal 

activity to reveal physiological and pathological brain functions. This recording 

technique has evolved substantially in the past few decades; however, based on recent 

human data implying their usefulness as diagnostic tools, we expect a substantial 

increase in the development of microelectrodes in the near future. 

Here, we review the technological background and history of microelectrode 

array development for human examinations in epilepsy, including discussions on of 

wire-based and microelectrode arrays fabricated using micro-electro-mechanical 

system (MEMS) techniques and novel future techniques to record neuronal ensemble. 

We give an overview of clinical and surgical considerations, and try to provide a list of 

probes on the market with their availability for human recording.  
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Then finally, we briefly review the literature on modulation of single neuron for 

the treatment of epilepsy, and highlight the current topics under examination that can 

be background for the future development.  
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Introduction 

The demonstration of aberrant neuronal firing was the first experimental 

evidence of the neuronal theory of epilepsies set by Hughlings Jackson in 1873 

(Jackson, 1873; Reynolds, 2001). According to him the origin of seizure disorder is the 

“occasional, sudden, excessive, rapid, and local discharges of grey matter”.  The 

neuronal phenomenon provoked by focal application of penicillin on cat neocortex was 

named paroxysmal depolarizing shift (PDS), which is thought to be analagous to the 

human interictal discharge (Matsumoto and Ajmone-Marsan, 1964). 

The excessive neuronal discharge is considered as the holy grail of epileptology, 

providing a common ground for both basic and clinical research with the goal of an 

ultimate resolution of the nature of the epileptic cortex and a perfect marker to detect 

it.  

Sensors recording neuronal activity 

 

There are two fundamental approaches to detect neuronal activity. The 

intracellular approach enables the recording  intracellular postsynaptic and action 

potentials (AP). Based on the diameter of the glass microelectrode, this approach also 

allows the modulation of the selected neuron by clamping the intracellular voltage at a 

specific level. This technique allows examination of cellular properties including 

input/output relationships, ion channel content, and synaptic behavior. Among several 

electrode configurations, the patch-clamp technique provides the strongest control on 

the recorded neuron (Sakmann and Neher, 1984).  

The extracellular approach, on the other hand, utilizes electrodes that do not 

penetrate the neuron and instead are situated in the extracellular matrix in close 

proximity to the neuron. Based on the size and impedance of the recording contacts we 

can distinguish sensors suitable for field potential and for neuronal recording. Lower 

impedance intracerebral macroelectrodes like deep-brain electrodes are capable to 

record field potentials while higher impedance microelectrodes can record single 

neuronal potentials. Neurons situated close to the recording electrode will generate 

action potentials with large enough amplitude to be identified as originating from one 
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neuron. Often an extracellular recording site captures the APs of more than one neuron. 

In this situation, based on the spatial arrangement of the recording contacts, one neuron 

can be observed in more than one electrode. To avoid the confusion coming from the 

uncertain source of one AP train, the series that is supposed to come from one neuron 

is referred to as “unit” activity.  If many units are firing simultaneously such that it is 

impossible to discriminate them, this phenomenon is termed multiple-unit or multi-unit 

activity (MUA) (Gray et al., 1995). 

The signal quality, topologic relationship of the electrode to the neuron, and the 

electrode’s ability to reliably record unit activity determine the accuracy of the 

recording. The amplitude and waveform of the action potential change as a function of 

the distance from the recording electrode, the shape of the neuron and its ion-channel 

configuration. The relationship of distance and cell density on the quality and number 

of recorded units is shown in Figure 1 of Henze (Fig 6 in (Henze et al., 2000)).  

Another detailed analysis of extracellular waveform variance suggested that the 

potassium channel configuration has higher impact than the shape of the neuron on the 

recorded waveform (Gold et al., 2006). Both papers demonstrated that the extracellular 

AP amplitude drops in an exponential manner with a half amplitude distance of about 

40-50μm. This distance contains 100-150 neurons in an average cortical area that can 

theoretically be separated from each other. Typically, MUA is gathered from an average 

radius area of 150μm encompassing more than 1000 neurons.  

Mathematical approaches are used to solve the spatial problem of separating 

multiple units recorded from the same microelectrode. These algorithms are constantly 

evolving, highlighting the importance of the problem, the need for accurate detection 

automats, and the complexity in identifying neurons recorded from the extracellular 

space (Azami et al., 2015; Franke et al., 2015; Kaneko et al., 2007; Paraskevopoulou 

et al., 2014; Rall, 1962).  

While MUA can be recorded with a wider range of electrodes, even at far 

distances including the cortical surface (Fedele et al., 2012), specific considerations are 

for electrode type are necessary to detect single unit activity (SUA). The main factors 

influencing SUA recordings are the diameter and the impedance of the electrode.  The 

relationship between the size of the electrode surface and the impedance is inversely 

proportional, with electrodes with larger area exhibiting lower impedance (Butson et 
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al., 2006; Ludwig et al., 2006). Prasad et al. found that the ideal resistance for SUA 

detection is between 40-150kΩ (Prasad and Sanchez, 2012). 

 

 

Figure 1: Fig 6 in (Henze et al., 2000):  A: black dots: average extracellular 

spike amplitude (±SE) vs. tetrode tip distance from 19 labeled pyramidal cells. White 

squares: estimated number of CA1 pyramidal cells (based on data from (Aika et al., 

1994)). B, top: CA1 pyramidal cell next to a tetrode (12.5μm wires). Bottom: gray area: 

single unit can be separated (extracellular spikes exceeds 60 μV).  



6 
 

Stability of unit recordings 

Several factors influence the ability to obtain high quality unit recordings. The 

implanted material should avoid tissue damage, remain intact, and be resistant to 

corrosion during implantation and recording in order to provide good signal to noise 

ratio (SNR) (Merrill, 2014). Even if the electrode has the ideal biocompatibility and 

impedance characteristics, the tissue reacts to the foreign body and reorganization 

occurs in close proximity to the electrode (He et al., 2006; Polikov et al., 2006; Zhong 

and Bellamkonda, 2005). Microglia and astrocytes grow slowly around the electrode, 

regardless of the electrode material or shape and pushes the neurons away from the 

electrode. This leads to decreasing neuronal signal quality and SNR (Ludwig et al., 

2006; Plenk, 2011; Wang et al., 2005). The microelectrode impedance fluctuates (Ward 

et al., 2009) and increases over time after contacting the biological tissue (Prasad and 

Sanchez, 2012). There are studies however, demonstrating long term biocompatibility 

of microelectrodes. Suner et al reported no evidence of SNR change and a poor 

relationship between impedance and SNR during long term microelectrode recordings 

(Suner et al., 2005). The carrier, or insulating agents encapsulating the wire electrodes 

can be important in this process. 

Materials considerations in  human unit recordings 

Since the 1940s glass micropipettes filled with solution analogous to the 

extracellular matrix was employed to record neural cell function. Unfortunately, using 

this technique allowed a maximum of one or two electrodes to be simultaneously 

inserted into the immobilized brain (Renshaw et al.). In the 1950s, simpler metal wire 

electrodes insulated with platinum, iridium, stainless steel, or tungsten were developed 

and used as bundles. Table 1 contains the materials commonly used in contact with 

neuronal tissue, and Table 2 contains the typical insulator coverings. Currently, the 

most popular electrode metals are platinum-iridium alloy (Pt/Ir), stainless steel and 

tungsten. These are corrosion resistant, mechanically durable metals (Merrill, 2014). 

The impedance of the electrode depends on the surface area that comes into contact 

with the biological tissue, but for the typical 12.5-200µm diameter the impedance of 

Pt/Ir electrodes are in the 0.1-5MΩ range (Prasad, 2014) and tungsten electrodes in the 

30–400kΩ range (Prasad and Sanchez, 2012).  

Advanced electrode materials and techniques 
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Recently research is directed toward reducing the electrode impedance with 

different contact coatings (S. Zhang et al., 2014), (H. Zhang et al., 2012) in order to 

eliminate electrode-dependent long term tissue irritation (Nemani et al., 2013; Yoshida 

Kozai et al., 2012),(Fadiga, 2014; Forcelli et al., 2012) and decrease damage of the 

tissue due to the implant (Kozai et al., 2014)  

 

Typical electrode contact 

materials 

 Platinum 

Platinum/Iridium (Pt/Ir) 

Pure Iridium 

Iridium oxide 

Stainless steel 

Tungsten 

Carbon fiber 

Electrolyte - glass micropipette 

  

Table 1. A summary of the typical 

electrode contact materials, commonly 

used by the manufacturers. 

 

 

 

 

 

 

Electrode insulating materials 

 
Silicon 

Ceramic 

Teflon 

Silicone 

Polyurethane 

Silicone/polyurethane copolymer 

Polyethylene 

Polypropylene 

Parylene, Parylene-C 

Polyether ether ketone 

Polyimide 

Silicon carbide 

SU-8 

Borosilicate glass 

Epoxy 

 

Table 2. Electrode insulating materials 

table (Merrill, 2014). 
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Electrode arrays (probes) to record neuronal ensembles 

Local neuronal ensembles can be recorded using one electrode contact; however, 

limited information can be obtained this way.  Larger numbers of units can be separated 

by increasing the number of recording contacts (Buzsáki, 2004). Since the 1960s, this 

understanding has resulted in different types of multielectrode wire-array layouts, 

termed electrophysiological probes. These probes are fabricated from different types 

of wires with insulating and encapsulating materials (Moxon, 1999). 

Figure 2 summarizes the typical arrangement of the electrodes in different 

probes. We grouped the existing electrode configurations in the Table 3 regarding their 

spatial arrangements. Table 4 contains the electrode manufacturer list, with their 

electrode types, and applicability area.  

The desire for more and more precise multi-electrode probes pushed the 

manufacturing technology to its limits. Difficulties of the fabricating in the µm range 

required another solution, and with the improvement of the microelectromechanical 

systems (MEMS) the expectations were met. MEMS technology is analogue to the 

microprocessor fabricating silicon technology (Prohaska et al., 1977) (Figure 2F). 

MEMS based probes have been available since the 1980s (Drake et al., 1988; Prohaska 

et al., 1986) however,  until recently wire probes were used because of their better 

availability. These types of probes contain a higher number of electrodes with the 

ability to co-register more than 100 units (Csicsvari et al., 2003).  
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Figure 2. Typical probe configurations.  

A) Behnke-Fried- deep brain electrode microwires. Picture from (Misra et al., 2014),  

B) Tetrode (picture from Thomas Recordings web; 

http://www.thomasrecording.com/neuroscience-products/metal-

microelectrodes/tetrodes/ )  

C-D) Laminar (pictures from Plexon and Neuronelektrod; 

http://www.plexon.com/products/plexon-electrodes-probes-and-arrays; 

http://www.neuronelektrod.hu/elektrod-tipusok/thumbtack-elektrodok.html ),  

E) Utah (pictures from Blackrock web; 

http://www.blackrockmicro.com/content.aspx?id=50 ) 

F) MEMS (picture from NeuroNexus web; http://neuronexus.com/products/neural-

probes ) 

  

http://www.thomasrecording.com/neuroscience-products/metal-microelectrodes/tetrodes/
http://www.thomasrecording.com/neuroscience-products/metal-microelectrodes/tetrodes/
http://www.plexon.com/products/plexon-electrodes-probes-and-arrays
http://www.neuronelektrod.hu/elektrod-tipusok/thumbtack-elektrodok.html
http://www.blackrockmicro.com/content.aspx?id=50
http://neuronexus.com/products/neural-probes
http://neuronexus.com/products/neural-probes
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Microelectrode types µm surface Example 

1 point wire, capillary 

2 1D vertical laminar 

3 2D planar Utah 

4 
Multi-point (high 

density local) 
tetrode 

5 micro mixture layer technology, MEMS 

Macroelectrode type mm surface  

6 1D linear deep brain 

7 2D planar surface electrodes 

8 micro-macro mixture Behnke-Fried in DB, micro 

between macro grid 

 

Table 3. Typical micro,- and macroelectrode spatial arrangements considering 

the neuron cell-contact. 

 

Microelectrode 

manufacturer 

Microelectrode 

types 

Research or clinical 

usage  CE mark 

Alpha Omega 1,2,5,6,8 both have 

NeuroNexus 2,5 research none 

Kation Scientific 1 research none 

FHC 1,2,3,6,8? both N/A 

Blackrock 

Microsystems 
3 both have 

BASi 1 research none 

inomed 1,8,7? both have 

World Precision 

Instruments 
1,7 research N/A  

MicroProbes 1,3 research N/A  

Science Products 

GmbH 
1 research N/A 
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A-M SYSTEMS 1,7 research none 

ripple 1,3 both have 

Stoelting 1 research none 

AD-TECH 6,7,8 both have 

INTEGRA 6,7 both N/A 

IN VIVO 

METRICS 

1,7 research N/A 

Thomas 

RECORDING 
1,4,5 research none 

Warner 

Instruments 
1,7 both have 

Technomed 

Europe 
1 clinical have 

Plexon 2,3 both have 

Neuro Biological  

Laboratories 
1,3 research N/A 

DIXI medical 6,7 clinical have 

Medtronic 6,7,8 clinical have 

Tucker-Davies 

Technologies 
1,3 research N/A 

BrainGate 1,3 research N/A 

PMT Corporation 6,7,8 both have 

Neuronelektród 1,2,4,5 both N/A 

 

Table 4. Currently online available microelectrode manufacturers without 

exhaustive claim, their microelectrode types (details in table 3.) and CE mark providing 

features. N/A – information not available.  
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Probes to record unit ensembles in humans 

Table 5 summarizes the most commonly used microprobes in the literature.   

Tetrode 

Microelectrode probes are most commonly designed in the tetrode 

configuration. This technique allows the separation of units based on the different 

appearance on neighboring electrodes (Harris et al., 2000). Originally, the tetrode 

configuration consisted of twisted isolated wires (M. Wilson and McNaughton, 1993), 

while with the new MEMS-based tetrode configurations precisely planed 3D coverage 

can be obtained.  

The main advantage of the tetrode configuration lies in the concentration of 

recording contacts. The ability to record a single unit on more than one contact  allows 

the reconstruction of the unit in space (Blanche, 2005; Dombovári et al., 2014). This 

arrangement limits the spatial coverage of neurons by concentrating the 

microelectrodes to a local region.  

Figure 2B illustrates an advanced version of tetrode configuration.  

Microwire bundles within Behnke-Fried depth macroelectrode  

In humans, wire microelectrodes have been paired with clinical depth macro 

electrodes for a long time. These microwires consist of isolated tungsten (Fried et al., 

1999) or Pt/Ir (Babb et al., 1973) wires that are inserted into the internal lumen of the 

stereotactically implanted macroelectrode array. Typically 4-8 wires are inserted (Fried 

et al., 1999; Misra et al., 2014) in the mesial temporal lobe. This approach is 

advantageous with regard to the ease of implantation and the relatively high success 

rate to record unit activity. In contrast, the disadvantage of microarrays placed within 

macroarrays lies in the difficulty to control the implantation depth and therefore the 

cortical (or subcortical) layer it probes. This type of paired micro/macroelectrode is 

typically to study activity from deep structures such as the mesial temporal lobe (Jacobs 

et al., 2007; Kreiman et al., 2002; Ogren et al., 2009; Quiroga et al., 2005) or fronto-

parieto-medial surfaces (Halgren et al., 2015). Due to the nature of its design, 

neocortical sites cannot be approached by this technique. 

Laminar recording technique 
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Laminar multielectrode probes record electrical activity throughout the depth of the 

cortex and provide layer specific activity. Various types of laminar wire probes have 

been designed for acute and chronic recordings in humans and animals.  

The overall advantage of the laminar multiprobe technique is obtaining 

measurements from all layers in a cortical column, thus allowing the recording of layer-

specific multiple unit activity (MUA) and producing current source density (CSD) plots. 

CSD analysis provides an approximation of summed transmembrane currents in 

vertically arranged structures (Freeman and Nicholson, 1975; Nicholson and Freeman, 

1975), including the hippocampus and neocortex. The general disadvantage of this 

approach compared to electrodes with a sharp tip is that the recording contacts are 

located on the shaft formed by the cut end of the wire electrodes. Thus, only a 180° 

hemisphere of volume is reached instead of the typical 360° spherical volume from a 

freestanding tip. Additionally, the laminar multiprove penetrates parallel to the neurons, 

resulting in a low probability for neurons to remain within the crucial 50μm distance 

required for unit separation. 

Cortical-laminar, “Thumbtack” probe 

Chronic neocortical recordings are obtained from a thumb-tack like shape with 

a short shaft (4mm), ending in a small flat silicone head (Figure 2D).  This probe was 

designed to be implanted beneath subdural grid electrode arrays by a neurosurgeon with 

microsurgical skills in order to avoid electrode damage. The probe is introduced 

manually through a small hole on the pia mater, with special care taken to avoid any 

cortical damage or bleeding in the penetration track, as this could result in a decrement 

in signal quality. The laminar technique allows for layer-specific representation of the 

neocortex and is relatively easy to implant; however, this probe is not implantable into 

sulci or any deep brain structures.  See supplementary online material for demonstration 

of the implantation procedure. Note the needle puncture of pia mater before the 

electrode penetrates the cortex. 

Depth-laminar 

To overcome challenges of implanting a laminar probe into deep structures, the 

depth-laminar electrode was created. This probe consists of a long shaft of the 

thumbtack without the flat head, designed to insert into the lumen of the depth macro-
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electrode, allowing the laminar probe to reach hippocampal, parahippocampal, 

frontobasal, and cingular surfaces (Halgren et al., 2015).  

Hippocampal-laminar  

A third type of laminar probe was designed for acute, intraoperative recordings 

from the hippocampus without the use of additional macroelectrode. This probe 

combines the depth-laminar technology with a 10cm long, 350μm diameter, stainless 

steel needle shaft. The 24 contacts near the tip of the needle are formed by the cut ends 

of linearly arranged 25μm diameter Pt/Ir wires (resistance 500 kOhm at 1 kHz). The 

first contact is positioned 5 mm above the tip (Figure 2C).  

This design allowed intraoperative hippocampus recordings (Ulbert, 

Maglóczky, et al., 2004) with accurate histological reconstruction of the electrode 

trajectory (Fabó et al., 2008). Recordings from this probe can be linked off-line to 

specific layers of the hippocampus based on histological verification of the penetration 

track following en block resection of the hippocampus. Future improvements to the 

laminar electrode probe includes the incorporation of MEMS technology, allowing 

simultaneous vertical and horizontal recordings (Berényi et al., 2014). 

Utah array, Neuroport 

The other widely used electrode system, the Utah array, consists of 96 silicon 

electrode shafts arranged horizontally in a grid (Jones et al., 1992; Maynard et al., 1997; 

Nordhausen et al., 1994). (Figure 2E)  This array records on average 178 units (1.85 

units / contact). This 2D arrangement samples a larger number of cortical columns. 

Furthermore, as the electrode consists of sharp tips (in contrast with the mid-shaft 

contact), there is a high probability of measuring single unit activity. On the other hand, 

this recording approach lacks laminar information and the sampled layer depends partly 

on the design of the probe. As for the Utah array, histology following resection 

confirmed the electrode tips to be located in the lower portion of layer III in 66% of 

recordings (Truccolo et al., 2011). However, due to incomplete penetration, the probe 

reached the cortical layers in a variable manner. Additionally, implanting these arrays 

are not trivial. A designated pneumatic device is inserted in order to “shoot” the probe 

into the cortex for the densely placed needles to penetrate the pia mater (Rousche and 

Normann, 1992). This procedure may cause additional damage to the tissue during 

implantation. Moreover the implantation device containing a rod hitting the surface of 
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the electrode is heavy and may cause additional severe injuries if used in an 

inappropriate way.  
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electrode arrays 

probe type wire type impedance 

contact 

diameter 

[µm] 

contact 

spacig 

[µm] 

contact 

number 

shank 

length 

shank 

diameter 

[µm] isolation 

Laminar **; 

cortical, depth  
Pt/Ir 

1 MOhm 

±10% at 

100 Hz 

40 75-200 22-24 
5mm-

20cm 
350 Polyimide 

Laminar **; 

hippocampus 
Pt/Ir 

500 kΩ at 1 

kHz 
25 

100- 

200 
24 10 cm 350 Polyimide 

Tetrode 

Pt/Ir, 

nickel-

chromium 

0.5-2 MΩ at 

1 kHz 
12.7 4*-10  4 variable 

wire type 

dependent 
Polyimide 

Utah 

Titanium, 

tungsten, 

platinum 

80-150 kΩ 

(80 to 800 

kΩ) at  1 

kHz 

Sharp (80 

at the 

base) 

400  96 
0.5-1.5 

mm 
80 

Polyimide 

prolene, 

glass 

Wires in Behnke-

Fried depth 

macroelectrode 

Pt/Ir 

50-500 kΩ 

+20-30 kΩ 

at 1 kHz in 

vivo 

40  random 8 1-5 mm N/A teflon 

Table 5. Probe types, Pt/Ir – platinum-iridium alloy, N/A – information not 

available. 

* only the insulation around wires; **manufactured by Laszlo Papp 

(Neuronelektród Kft, Budapest, Hungary). 
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Neuronal firing patterns in epileptic cortex 

According to the early reports, the paroxysmal depolarizing shift (PDS) consists 

of a 200 – 500Hz high frequency burst of action potentials superimposed on a slow 

intracellular depolarizing potential. This phenomenon was validated using various 

experimental models including acute and subacute slice and whole brain preparations 

(de Curtis and Avanzini, 2001; Steriade and Amzica, 1999),(de Curtis et al., 2012; 

Matsumoto and Ajmone-Marsan, 1964), (de Curtis and Avanzini, 2001; Karlócai et al., 

2014).  

Recent studies from slice preparations demonstrated that various hippocampal 

cell types exhibit different firing patterns during PDS events. The authors of these 

studies postulated a dynamic change in the network behavior during the transition from 

normal to epileptic states (Karlócai et al., 2014). In this hypothesis, increasing 

excitation in the hippocampus results in increasing activity in inhibitory circuitry, 

leading to acute and selective breakdown of the parvalbuminergic perisomatic 

inhibition. As a result, pyramidal cells become dysinhibited, resulting in abundant, 

burst-type firing that leads to a depolarization blockade and cessation of the paroxysmal 

event.   

Based on field potential synchronization in in vivo human studies 

hypersynchronous unit activity was hypothesized (Chatrian et al., 1974). Several early 

studies using microelectrodes indeed showed increased multi - (Altafullah et al., 1986; 

Ulbert, Heit, et al., 2004), and single unit activity (Babb and Crandall, 1976; Isokawa-

Akesson et al., 1989; Wyler et al., 1982) during IID generation. Other studies however, 

found no or limited correlation (Babb et al., 1973; Rayport and Waller, 1967; Thomas 

et al., 1955; Wyler et al., 1982). 

More recent studies consisting of larger numbers of recorded units in humans 

demonstrated that ~50% of units during an interictal discharge demonstrated 

modulation in their firing rate, and 8% showed an observed decrease in firing rate 

(Keller et al., 2010). These units showed heterogeneous and complex behavior during 

interictal discharges than had been predicted from previous experimental settings. SUA 

activities during ictal events were also less hypersynchronous as was previously 

hypothesized (Babb et al., 1987; Truccolo et al., 2011). Detailed analysis of ictal unit 

firing revealed the presence of an inhibitory wave local to the seizure onset zone , 
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suggesting that inhibitory input may prevent the spread of the seizure (Schevon et al., 

2012). The real high frequency unit response occurred in a delayed manner during 

seizure spread without apparent change in the low frequency signal, implying that the 

typical oscillatory phenomena recorded in the classical EEG reflect only the inhibitory 

synaptic barrages.  

The unit response of frontal lobe neurons to single shock electrical stimuli also 

showed heterogeneous firing patterns (Alarcón et al., 2012). 

Ripples and high frequency oscillations 

High frequency ripples has recently been established as an essential measure of 

epileptic cortex (Bragin et al., 1999). In the temporal lobe, slow ripples (central 

frequency bellow 150 or 200Hz) predominate in the non-epileptic hemisphere while 

fast ripples (above 200Hz) were observed more frequently in the seizure-generating 

hemisphere (Staba et al., 2004). Furthermore, evidence of ripples correlate with the 

epileptogenic or seizure onset zone (Jacobs et al., 2009; Staba, C. L. Wilson, Bragin, 

Fried and Engel, 2002b; Urrestarazu et al., 2007), histopathological alterations (Staba 

et al., 2007), and surgical outcome (Jacobs et al., 2010).  

Studying hippocampal ripples in animals models and human brain slices 

provided evidence that fast ripples may emerge from the unreliable burst firing from 

neuronal ensembles (Alvarado-Rojas et al., 2014; Foffani et al., 2007). It has been 

suggested that fast ripple oscillations may act as an interference pattern within the brain. 

This observation was further validated with combined micro-and macroelectrode 

recordings in humans showing that many of the fast ripple events observed by 

microwires were missed with macroelectrodes (Worrell et al., 2008). Single unit 

analysis during ripple oscillation revealed that interneurons fired earlier than pyramidal 

cells in the hippocampus (Le Van Quyen et al., 2008).  

Micro-spike/Macro-spike 

Creating a probe that combines several of the discussed techniques may provide 

complementary and additional information regarding the nature of neuronal ensembles. 

Using intermediate-size electrodes, microdischarges have been observed, suggesting 

that that epileptically active microdomains are present in the cortex not visible on 

macroelectrodes (Stead et al., 2010; Schevon et al., 2008). Interestingly, a similar 
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observation was made in rodent hippocampal slices (Hofer et al., 2014) where micro-

spikes or synchronized discharges were interpreted as normal phenomena of the cortex.  

Deep brain stimulation possibilities   

Deep brain stimulation (DBS) is an upcoming method targeting various 

psychiatric and neurological diseases including epilepsy (Temel et al., 2015). During 

the clinical procedure of therapeutic lead implantation for patients with Parkinson’s 

disease (PD) and other movement disorders, microelectrode recording is routinely 

performed intraoperatively (Starr, 2002). Analysis of unit activity coregistered with 

cortical EEG markers could be identified underlying the effect of DBS on PD 

symptoms (de Hemptinne et al., 2015; Shimamoto et al., 2013). Since DBS therapy is 

available for epilepsy patients (Fisher et al., 2010), the widespread use of DBS in the 

clinical setting will provide detailed information about subcortical control of epileptic 

cortex. 

Testing normal functions in epileptic patients 

The need for recording single neuronal activities in epilepsy patients offers a 

possibility to test physiological processes. Due to the frequent seizure involvement of 

the temporal lobe, numerous studies have been performed to understand emotional and 

memory processes.  Human hippocampal neurons respond in a highly specific manner 

to complex stimulus features and categories (Fried et al., 1997), and are selective for 

the novelty of the stimulus (Rutishauser et al., 2006). In a free recall task, individual 

neurons are able to reactivate the pattern shown in the preceding learning period 

(Gelbard-Sagiv et al., 2008). Amygdala neurons do participate mostly in fear processes. 

For review see (Guillory and Bujarski, 2014). 

The observation of strong interactions between different types of epilepsies and 

sleep processes led to the deeper understanding of sleep rhythms in implanted epilepsy 

patients. Thalamocortical unit activity underlies the generation of slow oscillation, one 

of the most important brain processes participating in generation of sleep (Crunelli et 

al., 2015). Slow wave activity in humans showed alternating neuronal excitation and 

inhibition patterns identified previously in animal models as upstates and downstates 

(Cash et al., 2009; Csercsa et al., 2010; Nobili et al., 2012; Peyrache et al., 2012; Staba, 

C. L. Wilson, Bragin, Fried and Engel, 2002a).  

Unit recordings in epileptic patients will be important to develop a deeper 
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understanding of different kinds of multisensory integration processes such as visual, 

both in motion detection (Ulbert, Karmos, et al., 2001) or emotional reactions 

(Kawasaki et al., 2001), and auditory and speech functions (Halgren et al., 2015). 

Limitations 

While there is much to be learned from unit recordings in human cortex, there 

exists several limitations to the technique. First, information regarding characteristics  

of the neuron is missing besides some clues on excitatory or inhibitory nature based on 

AP morphology and spike repetition rate (Csicsvári et al., 1999; Le Van Quyen et al., 

2008; Ylinen et al., 1995). Second, neurons that do not fire or have low firing rate are 

not likely to be picked up by extracellular recordings. Third, only a small patch of cortex 

is sampled and information regarding the other units in the ensemble is an important 

component that is lacking. If the goal is to use single units  as a predictor of seizures, it 

would be difficult with the recording from only one brain region. Finally, wires between 

the electrodes and amplifiers necessitate computers to be in the vicinity of the recording 

system. Recent approaches have developed wireless technology with portable 

preamplifiers (Wise et al., 2004) and biofuel cell applications (Andoralov et al., 2013) 

reducing the need of recharging the portable amplifier’s battery.  

Future development  

There are several limitations that prevent unit recording from more widespread 

use in clinical settings. These are the difficulty of microelectrode implantation and the 

extreme down sampling of the brain in space. To incorporate these methods into clinical 

diagnostics, clinicians would need more robust, less vulnerable sensors and wider 

spatial coverage. The invasive nature of the microelectrodes limits the number of 

recording spots. The future may be the utilization of non-invasive techniques like 2-

photon microscopy. This method allows recording of multiple units by a scanning laser 

light beam. The visible changes during the activity arises from injected (Jay, 1988) or 

genetically expressed light sensitive proteins (Baratta, 2012; Pastrana, 2010). The usage 

of light instead of electrodes opens the horizon of wider brain areas without entering 

the cortex by the sensor. However, the need of special dyes or genetic modification 

exert another limitation for human application. Injection of labeled proteins may change 

the behavior of the neuronal network (Peron et al., 2015) and be toxic (Jacobson et al., 

2008; Reiners et al., 2014), preventing the translation of the method into clinical work.  
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Promising alternatives include the intrinsic optical signal (IOS) imaging 

technique. In this technique, the visible signal arises from the slight refractive index 

change of firing neurons where the cellular water content changes due to ionic currents 

during action potentials (Kim and Jun, 2013).  

Combination of electrophysiological and imaging data requires special probes 

with integrated optodes in them (Keller et al., 2009). The formerly mentioned meso-

scale electrodes, like brain surface microcontacts may be capable to record unit activites 

from the surface as shown by the NeuroGrid project (Khodagholy et al., 2014). Finally, 

when having the activity of hundred thousands of neurons together the problem of 

analysis will need faster data processing techniques than we have already.  

In conclusion unitary activity has been the hallmark of normal and abnormal 

‘brain function’. The need to record units in both research and clinical realms across 

multiple specialties will likely persist in the near future. The practical methods fulfilling 

these criteria are the matter of future research and innovation. 
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