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Abstra
t

Sti
k balan
ing on the �ngertip is a 
omplex voluntary motor task that

requires the stabilization of an unstable system. For seated expert sti
k bal-

an
ers the time delay is 0.23s, the shortest sti
k that 
an be balan
ed for

240s is 0.32m and there is an ≈ 0.8
◦
dead zone for the estimation of the ver-

ti
al displa
ement angle in the saggital plane. These observations motivate

a swit
hing-type, pendulum-
art model for balan
e 
ontrol whi
h utilizes an

internal model to 
ompensate for the time delay by predi
ting the sensory


onsequen
es of the sti
k's movements. Numeri
al simulations using the semi-

dis
retization method suggest that the feedba
k gains are tuned near the edge

of stability. For these 
hoi
es of the feedba
k gains the 
ost fun
tion whi
h

takes into a

ount the position of the �ngertip and the 
orre
tive for
es is

minimized. Thus expert sti
k balan
ers optimize 
ontrol with a 
ombination

of qui
k maneuverability and minimum energy expenditures.

Keywords: sti
k balan
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ro
haos

1 Introdu
tion

The importan
e of balan
e 
ontrol for the elderly is unders
ored by the high mor-

tality and morbidity asso
iated with falls. Often the falls 
an not be attributed to

a slip or a trip, but are related to issues asso
iated with weight transfer [1℄ and

the �fear of falling� syndrome [2℄. Consequently it has been suggested that losses of

balan
e in the elderly may be related to failures to properly integrate information

provided by sensory feedba
k with 
orti
al internal models that have been re�ned

through de
ades of balan
ing experien
es [3, 4℄.
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The role of an internal model, or predi
tor feedba
k (PF), is to predi
t the sensory


onsequen
es of movements [5, 6℄. In doing so, the internal model makes it possible

to make 
orre
tive movements faster than the feedba
k delay [7, 8℄ and to possibly

sense when an adverse event su
h as a fall is about to o

ur. Investigations into the

development of an a

urate and robust internal model whi
h underlies expertise are

made di�
ult be
ause typi
ally years of pra
ti
e are required. Consequently 
urrent

resear
h has fo
ussed on a variety of voluntary eye-hand 
oordination tasks in whi
h


ertain individuals are able to rapidly a
quire ex
eptional skill [9, 10℄. As expertise

develops, the a

ura
y and uniformity of task performan
e in
reases, but mus
ular

a
tivations [11℄ and overall brain a
tivation de
rease, ex
ept in those brain regions

most essential for task performan
e [12, 13℄.

Control theoreti
 studies for human balan
ing tasks, in
luding sla
klining [14℄

and sti
k balan
ing on the �ngertip [15℄, asso
iate expert balan
ing with states

that minimize energy expenditure. However, a number of observations suggest that

feedba
k for sti
k balan
ing is tuned towards the edge of instability [15, 16, 17, 18, 19℄

in
luding the presen
e of power-law behaviors [15, 20, 21, 22, 23, 24℄, and Weibull-

type sti
k balan
ing survival statisti
s [25, 26℄. Re
ently, a similar 
on
lusion has

been rea
hed from an analysis of stability radii for a model of human balan
e 
ontrol

during quiet standing [27℄.

Here we provide the �rst eviden
e to show that 
ontrol at the edge of stability

minimizes energeti
 
osts for sti
k balan
ing. Thus expert sti
k balan
ers optimize


ontrol with a 
ombination of qui
k maneuverability and minimum energy expendi-

tures. These observations emphasize the importan
e of investigations into dynami
al

phenomena whi
h o

ur at the edge of stability for understanding both the 
auses

of falls and the development of strategies to minimize their o

uren
e.

2 Ba
kground

During sti
k balan
ing the �ngertip is 
ontinually moving and hen
e mathemati
al

models take the form of a pendulum-
art system (Figure 1) governed by

(

1
3
mℓ2 1

2
mℓ cos θ

1
2
mℓ cos θ m+m0

)(

θ̈
ẍ

)

+

(

−1
2
mgℓ sin θ

−1
2
mℓθ̇2 sin θ

)

=

(

0
f(t)

)

, (1)

where θ is the verti
al displa
ement angle of the sti
k, m,m0 are, respe
tively, the

mass of the sti
k and 
art, ẍ is the a

eleration of the 
art (�ngertip) and f(t)
des
ribes the 
ontrol for
e. If the 
ontrol for
e is zero (f(t) = 0), then elimination

of the 
y
li
 
oordinate x and linearization around the upper �xed point yields

θ̈(t)− ω2
nθ(t) = 0, (2)

where ωn =
√

6g/cℓ is the angular natural frequen
y of the pendulum hung down-

ward.

The parameter c = 4 − 3m/(m + m0) is equal to 1 when m = m0 and 4 when

m0 ≫ m. During expert sti
k balan
ing the wrist and �ngers are held rigid and the

movements of the arm o

ur at the elbow and shoulder [15, 20, 28℄. The equivalen
e

between the human armme
hanism and the pendulum-
art model 
an be established
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Figure 1: A, Subje
t balan
ing sti
k on �ngertip. B, Slider 
rank model of the arm

used to estimate the equivalent mass of the 
art for the pendulum-
art model. C,

Pendulum-
art model for sti
k balan
ing with equivalent mass.

by relating the mass m0 of the 
art to the inertia of the arm segments for an average

human arm [29℄. We estimated thatm0 = 1.2kg and hen
e c = 4 (see supplementary

material for details).

The linearized equations of motion for the 
ontrol of a pendulum-
art model are

(

1
3
mℓ2 1

2
mℓ

1
2
mℓ m+m0

)(

θ̈
ẍ

)

+

(

−1
2
mgℓ 0
0 0

)(

θ
x

)

=

(

0
f(t)

)

, (3)

where x is the displa
ement of the �ngertip from the typi
al starting point for

sti
k balan
ing lo
ated ≈ L/2 in front of the subje
t (L being the total length

of the arm). When the subje
t is seated with their ba
k against the 
hair (this

study), the displa
ements in x 
annot be longer than the subje
t's arm, whi
h

yields xmax = 0.335m for an average arm length of L = 0.67m [29℄.

A dependen
e of f(t) on x makes it possible to investigate the role of sensory

un
ertainties and postural e�e
ts on arm movements [21, 30, 28℄ for stabilizing

an inverted pendulum. The maximum 
ontrol for
e is limited by m0ẍmax where

ẍmax is the maximum a

eleration of the �ngertip, while the rate of 
hange of the


ontrol for
e is limited by m0
...

xmax, where
...

xmax is the maximum jerk. Experimental

observations suggest that ẍmax, of the �ngertip is ≈ 50m/s

2
and

...

xmax ≈ 600m/s

3

[31, 32℄.

We 
onsidered two 
andidate 
hoi
es of f(t).

2.1 Delayed state feedba
k

First, it is possible that the feedba
k is dire
tly related to the delayed values of the

position, velo
ity and a

eleration. In 
ontrol theory this 
on
ept is 
alled delayed

state feedba
k. An obvious 
hoi
e is to use the most re
ently available values of

θ(t − τ), θ̇(t − τ), θ̈(t − τ) and x(t − τ), ẋ(t − τ), ẍ(t − τ). Thus we 
onsider a

proportional-derivative (PD) 
ontroller

fPD(t) = kp,θθ(t− τ) + kd,θθ̇(t− τ) + kp,xx(t− τ) + kd,xẋ(t− τ) , (4)
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and a proportional-derivative-a

eleration (PDA) 
ontroller

fPDA(t) = kp,θθ(t− τ) + kd,θθ̇(t− τ) + ka,θθ̈(t− τ)

+ kp,xx(t− τ) + kd,xẋ(t− τ) + ka,xẍ(t− τ) , (5)

where kp,θ, kd,θ, ka,θ, kp,x, kd,x and ka,x are, respe
tively, the proportional, derivative
and a

eleration 
ontrol gains for the angular position θ of the sti
k and for the

lo
ation x of the 
art.

2.2 Predi
tor feedba
k

Se
ond, we 
an assume that f(t) is involved in making a predi
tion of the a
tual

state variables and hen
e we have predi
tor feedba
k (PF) [33℄. It should be noted

that predi
tor feedba
k 
orresponds to an internal model in the neuros
ien
e litera-

ture [34℄ and is often asso
iated with �nite spe
trum assignment in the engineering


ontrol literature [33℄.

In order to give the 
ontrol for
e, it is most 
onvenient to write (3) in the �rst-

order form

ż(t) = Az(t) +Bf(t), (6)

where

z(t) =









θ(t)
x(t)

θ̇(t)
ẋ(t)









, A =









0 0
0 0

1 0
0 1

−M−1K
0 0
0 0









, B =









0
0

M−1

(

0
1

)









(7)

with

M =

(

1
3
mℓ2 1

2
mℓ

1
2
mℓ m+m0

)

, K =

(

−1
2
mgℓ 0
0 0

)

(8)

being the mass matrix and the sti�ness matrix, respe
tively. We assume that the


ontrol for
e fPF is readily provided by the e�erent 
opies, and matri
es A and B
and the delay τ are also available for the nervous system with high a

ura
y as a

result of a long enough learning pro
ess. We anti
ipate that this is true for expert

sti
k balan
ers. The state is predi
ted by the solution of (6) over the interval [t−τ, t]
as

zpred(t) = eAτz(t− τ) +

∫ t

t−τ

eA(t−s)BfPF(s)ds . (9)

Note that this predi
tion uses the most re
ent available states z(t − τ) and the


ontrol for
e fPF issued over the interval [t− τ, t], whi
h is readily provided by the

e�erent 
opies. The predi
tor feedba
k for
e reads

fPF(t) = Kzpred(t), (10)

with

K =
(

kp,θ kp,x kd,θ kd,x
)

. (11)
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Thus, the 
ontrol for
e 
an be written as

fPF(t) = k̃p,θθ(t− τ) + k̃p,xx(t− τ) + k̃d,θθ̇(t− τ) + k̃d,xẋ(t− τ)

+

∫ t

t−τ

kf(t− s)fPF(s)ds, (12)

where k̃p,θ, k̃d,x, k̃d,θ, k̃d,x are the elements of K̃ = KeAτ
and kf(t− s) = KeA(t−s)B.

The �rst four terms represent the delayed state feedba
k, while the last term is

asso
iated with the weighted integral of the issued 
ontrol for
e over the interval

[t− τ, t].

3 Methods

This study was approved by the institutional review board at Claremont M
Kenna

College in a

ordan
e with the 
urrently appli
able U. S. Publi
 Health Servi
e

Guidelines. All parti
ipants provided informed 
onsent for all resear
h testing.

3.1 Sti
k balan
ing

Data was 
olle
ted from 66 healthy undergraduate students (34 females and 32

males) between the ages of 18 and 24 who were free from balan
e disorders. The

sti
k is an oak dowel with diameter 6.35mm and lengths ranging from 0.2-0.91m. The

training proto
ol was designed to identify subje
ts with ex
eptional sti
k balan
ing

abilities and in
luded �nan
ial in
entives [26℄. Subje
ts were seated in a 
hair and

were required to keep their ba
k against the ba
k of the 
hair at all times while

fa
ing a blank bla
k s
reen. All subje
ts began by balan
ing a 0.56m sti
k. Subje
ts

were required to sti
k balan
e ea
h day in the laboratory for as long as it took to

a

umulate 10-15 minutes of total balan
e time (BT), referred to herein as a pra
ti
e

session. Sin
e the in
rease in the mean BT between two pra
ti
e sessions performed

on 
onse
utive days was typi
ally greater than the in
rease in mean BT between two

pra
ti
e sessions performed on the same day, we des
ribe skill a
quisition in terms

of days of pra
ti
e rather than total a

umulated BT. After 2 days of unsupervised

pra
ti
e, subje
ts whose mean BT for 25 
onse
utive supervised sti
k balan
ing trials

(day 3) was less than 10s were dropped from the study. The remaining 40 subje
ts

(21 females and 19 males) had daily supervised pra
ti
e sessions in the laboratory.

Fourteen subje
ts (14/66) were able to balan
e the sti
k longer than 240s for at

least 1 out of 5 trials by day 7 and by day 16 an additional 10 subje
ts had rea
hed

this milestone (24/66). On
e a subje
t was able to balan
e a 0.56m sti
k for 240s,

they began balan
ing sti
ks of di�erent lengths. Six of the subje
ts from this group

(6/24) are the experts reported in this study (see RESULTS): 3 males: E1 (85 days),

E2 (30 days), E4 (25 days) and 3 females: E3 (40 days), E5 (10 days), E6 (13 days).

Typi
ally these subje
ts 
ould balan
e sti
k longer than 0.56m for 240s without

additional pra
ti
e. Sti
ks shorter than 0.56m required additional days of pra
ti
e:

the shorter the sti
k the greater the number of days of pra
ti
e required to a
hieve

BT > 240s.
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3.2 Motion 
apture

A high speed motion 
apture system (3 Qualisys Oqus 300 
ameras, 500-1024Hz)

was used to measure the position of the re�e
tive markers atta
hed to ea
h end

of the sti
k (total mass of sti
k with markers is 6.3-20.5g). Typi
ally data was

low-pass �ltered with a 
ut-o� frequen
y of 50Hz and then downsampled to 125Hz.

The verti
al displa
ement angles were 
al
ulated as sin θAP = (APt − APb)/ℓm and

sin θML = (MLt −MLb)/ℓm where θAP and θML are the displa
ement angle in the

AP (anterior-posterior) and the ML (medial-lateral) dire
tion, respe
tively, the sub-

s
ripts b, t indi
ate the bottom and top markers atta
hed to the sti
k and ℓm is

the distan
e between the two markers. The power spe
tral density (PSD) of the

�u
tuations in θAP and θML was determined using MATLAB.

3.3 Time delay measurement

The time delay for sti
k balan
ing was measured from the responses to a sensory

blank out [34℄. Subje
ts were required to balan
e a 0.91m sti
k on the surfa
e of a

table tennis ra
ket while wearing LC glasses (Figure 2A). The purpose of the table

tennis ra
ket is to minimize sensory inputs from 
utaneous me
hanore
eptors lo
ated

in the �ngertip. The LC glasses are equipped with liquid 
rystal (LC) opti
al beam

shutters: two LC shutters (VX series, 0.03m×0.03m, Boulder Nonlinear Systems,

Boulder, Colorado) were 
rossed and taped over ea
h lens of the safety glasses (4 LC

shutters in total). The remainder of the viewing area of the laboratory glasses was


overed by bla
k ele
tri
al tape and the experiment was performed in a dimly lit

room to ensure that during a visual blank out the subje
t 
ould not see the position

of the sti
k. A signal generator (Grass S-8800) sent a square-wave timing signal

to ea
h lens so that visual blank outs lasting 0.5-0.8s are produ
ed syn
hronously

for both eyes (transparent → opaque LC shutter laten
y is < 0.001s; opaque →
transparent laten
y is < 0.005s). During a visual blank out the subje
t is instru
ted
to �keep balan
ing�. Provided that the length of the blank out is longer than τ ,
but not so long that the subje
t 
annot re
over balan
e after the blank out is over,

τ 
an be estimated as the time between the o�set of the blank out and the �rst


orre
tive movement. Trials in whi
h eye blinks o
urred were not used for the

determination of τ . In order to minimize the e�e
ts of 
hanges in the position of

the table tennis ra
ket whi
h are un
orrelated to the blank out, we averaged trials

(see supplementary material). The �rst 
orre
tive movement after the blank out is

identi�ed from the 
hanges in the velo
ity ẋ(t) of the �ngertip (Figure 2B).

3.4 Numeri
al simulations

Numeri
al simulations were written in MATLAB using the semidis
retization te
h-

nique [35℄ where τ = r∆t with ∆t = 0.01s being the dis
rete time step and r being

an integer. Sin
e the 
ontrol problems for sti
k balan
ing mainly arise in the AP

plane (see RESULTS) we identi�ed θ in the model with θAP. Sti
k falls were identi-

�ed when either θ ex
eeded ±20◦ or x ex
eeded ±0.335m. The dis
rete-time version

6



Figure 2: Sti
k balan
ing in response to a sensory blank out. A, The sti
k balan
er's

view of the tip of the balan
ed sti
k is 
ontrolled by LC opti
al shutters. B, The

time delay, measured as the time between the o�set of the blank out and the �rst

dete
table 
orre
tive 
hange in velo
ity of the bottom marker. The solid lines show

the average of 25 
onse
utive trials (E1, E3) and 24 
onse
utive trials (E4).

of (12) with sampling period ∆t = τ/r, r ∈ Z
+
given by

fPF,disc(t) = k̃p,θθ(ti−r) + k̃p,xx(ti−r) + k̃d,θθ̇(ti−r) + k̃d,xẋ(ti−r)

+ k̃f,1fPF(ti−1) + k̃f,2fPF(ti−2) + · · ·+ k̃f,rfPF(ti−r),

t ∈ [ti, ti+1), ti = i∆t, (13)

with

k̃f,j =

∫ t−(j−1)∆t

t−j∆t

kf(t− s)ds, j = 1, 2, . . . , r , (14)


orresponds to the tapped delay-line 
ontrol proposed by Mehta and S
haal [34℄.

4 Results

Here we des
ribe the experimental observations that support the model for sti
k

balan
ing des
ribed in Se
tion 2.

4.1 Time delay

Figure 2B shows that for a 0.5s blank out we obtain τ ≈ 0.23s (range 0.22−0.24s for
subje
ts E1, E3, E4). When the blank out was longer than 0.5s, 2/3 subje
ts (E3,

E4) 
ould not re-establish sti
k balan
ing after the visual blank out. Subje
t E1

was able to keep the sti
k balan
ed even when the blank out lasted as long as 0.8s.

For this sti
k balan
er, τ determined using blank outs in the range of 0.5-0.8s was

approximately the same. The time delay of 0.23s is equal to that for the response

of sti
k balan
ing to me
hani
al perturbations [34℄.
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Figure 3: A, Comparison of the amplitude of the �u
tuations of θ in the AP (bla
k)

and ML (red) dire
tions for subje
t E1 balan
ing a 0.56m sti
k. B, The standard

deviation (SD) for the �u
tuations in the AP and ML dire
tion as a fun
tion of ℓ for
subje
ts E1-4. C, Estimation of Π when ℓ = 0.56m for E1-E4 using the sweeping

window method (see text) and D, The PSD for θAP (bla
k line) and θML (red line)

for E3.

4.2 Sensory dead zone

Three observations indi
ate that the major 
ontrol problems for sti
k balan
ing on

the �ngertip are in the saggital (AP) plane: (1) BT <5s when expert sti
k balan
ers

pla
e an eye pat
h over one eye; (2) the standard deviation for θAP is larger than

for θML (Figure 3A) and this di�eren
e in
reases as ℓ de
reases (Figure 3B); and

(3) for novi
e sti
k balan
ers with mean BT ≈ 40-60s, 72% of 246 sti
k falls while

balan
ing a 0.56m sti
k o

ur in the AP dire
tion and for experts, 84% of 51 sti
k

falls while balan
ing a 0.26m sti
k o

ur in the AP dire
tion.

We interpreted these observations in terms of a sensory dead zone, [−Π,Π ], for
the dete
tion of θAP, where Π is the sensory threshold. Our estimation pro
edure

for Π is motivated by the observation that the time history of θAP shows irregular

peaks at irregular time instan
es. We assumed that these peaks were the result of a

free fall for time period τ after leaving the dead zone. The solution over the free-fall

period 
an be given as z(tdz + τ) = eAτz(tdz), where tdz is the time instant when

the sti
k is on the edge of the dead zone, i.e., θ(tdz) = z1(tdz) = Π . Substitution of

8



the parameters into the system matrix A a

ording to (7) using ℓ = 0.56m gives the

ratio θ(tdz + τ)/θ(tdz) = 1.78. Thus, before starting 
orre
tive motions, θ in
reases

by a fa
tor of 1.78 after leaving the dead zone.

A sweeping window of length tw over the history of θAP was used to 
he
k for

the maximum peaks in ea
h interval (ts, ts+ tw), where ts goes from t0 = 0 to t1− tw
with t1 = 300s being the length of the data. The minimum value of these maximum

values is taken as an upper estimate for θ(tdz + τ). Figure 3C shows the estimated

θ(tdz) for di�erent window sizes tw. For subje
ts E1-E4 there is a plateau between

tw = 3s and 6s. The more skilled expert sti
k balan
ers had the lower Π , 0.8◦ and
1◦, respe
tively, for E1 and E2. We used the 
orresponding values of θ(tdz) as an
estimate of Π for these subje
ts.

The presen
e of the dead zone means that there is swit
hing feedba
k, namely

the feedba
k is turned on or o� depending on whether θAP is larger or smaller than

Π . This means that the angular position per
eived by the neural system is

θperceived(t− τ) =

{

0 if |θa(t− τ)| < Π

θa(t− τ) if |θa(t− τ)| ≥ Π .
(15)

where θa is the sti
k's a
tual angle and Π is the fun
tional sensory threshold. We

assume that information related to θ̇ and θ̈ remains available [36℄.

4.3 Power spe
tral density

A 
onsequen
e of swit
hing feedba
k is that it generates os
illations [37, 38, 39, 40℄.

Figure 3D shows that there is a peak in the PSD for the �u
tuations in θAP between

≈ 0.6 − 0.8Hz (Figure 3D). This peak was observed for subje
ts E1-E6 and 
ould

also be readily observed for less skilled subje
ts. A peak in this frequen
y range 
an

also be seen for θML; however, it is less prominent.

4.4 Feedba
k identi�
ation

A ne
essary 
ondition for the stabilization of the upright position of an inverted

pendulum by time-delayed feedba
k is that the length of the pendulum must be

longer than a 
riti
al length, ℓcrit [41℄. When τ is known, ℓcrit 
orresponds to the

shortest pendulum that 
an be stabilized by the given feedba
k. Thus by measuring

ℓcrit it is possible to experimentally ex
lude some of the 
ontrol 
on
epts.

Figure 4 
ompares BT determined from �ve 
onse
utive sti
k balan
ing trials as

a fun
tion of ℓ for subje
ts E1-E6. If BT ex
eeded 240s, the balan
ing trial was

terminated and the subje
t was then asked to balan
e a shorter sti
k. All of these

subje
ts 
ould balan
e sti
ks when ℓ ≥ 0.39m and no subje
t 
ould a

omplish this

task when ℓ < 0.2m: subje
ts E1 and E2 
ould balan
e sti
ks as short as 0.32m for

240s. A sharp drop o� of BT for ℓ ≤ 0.3m has also been observed for pole balan
ing

in 1-D [42℄. Although we 
annot determine with pre
ision ℓcrit it is 
ertainly no

longer than 0.32m and no smaller than 0.2m.

The verti
al dashed lines in Figure 4 show ℓcrit determined using (3) with (15)

when f(t) for PD, PDA and PF is given respe
tively by (4), (5), and (12). The

ℓcrit were estimated using numeri
al simulations with �ve initial 
onditions: θ(s) =

9
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Figure 4: Comparison of the maximum BT (•) obtained for 5 
onse
utive balan
ing

trials as a fun
tion of ℓ for E1-E6 to ℓcrit (dashed verti
al lines) predi
ted for PD,

PDA and PF 
ontrol. Balan
e trials were stopped when BT = 240s. The ⋄ markers

show the mean balan
e times when an eye shield is pla
ed over one eye.

0.15◦, 0.3◦, 0.45◦, 0.6◦, 0.75◦, θ̇(s) = 0 for s ∈ [−τ, 0]) over a 10× 10× 10× 10 (four-

dimensional) grid of the 
ontrol gains kp,θ, kd,θ, kp,x, kd,x. For the PDA 
ontrol, the

a

eleration gains were �xed as ka,θ = 0.9, ka,x = 0. If at least one simulations out
of 5 × 104 lasted for 240s without falling, then the balan
ing task was assessed to

be su

essful, and the length of the sti
k was de
reased. The 
riti
al length was

sele
ted to be the one, for whi
h the balan
ing task was su

essful, but for a sti
k

0.01m shorter falling was observed for all the possible 
ombinations of the 
ontrol

gains and for all initial 
onditions.

The measured ℓcrit appears to agree best with the ℓcrit determined for PDA 
ontrol

(Figure 4). However, the human visual system is not very sensitive for dete
ting


hanges in a

eleration [43℄. This un
ertainty will 
ertainly shift the estimate of ℓcrit
very mu
h to the right [41℄. Thus it is more likely that the nervous system uses PF.

For PF the di�eren
e between the estimated and measured values of ℓcrit is in large

part due to un
ertainties in the internal model and the unmodeled un
ertainties in

the sensory inputs (likely of the order of 5 % [41℄).

10



5 Model

The experimental observations suggest that the model for sti
k balan
ing is given

by (3) where f(t) is given by (12), and θ(t − τ) is given by (15) subje
t to the


onstraints imposed on x, ẍ,
...

x
and θAP. Here we illustrate the 
ardinal features of

this model when ℓ = 0.56m, Π = 0.8◦ and 
hoi
es of z0(s) of the form

(θ0(s), θ̇0(s), x0(s), ẋ0(s)) ≡ (θ0, 0, 0, 0) for s ∈ [t0 − τ, t0] ,

where θ0 is an initial angle (a more 
omplete des
ription will be given elsewhere).

These 
hoi
es of z0(s) re�e
t two observations: 1) all sti
k balan
ing trials begin with
the sti
k held stationary for a few se
onds, and 2) the subje
t 
annot reprodu
e a

given θAP(t0) be
ause of the presen
e of the sensory dead zone.

There are four 
ontrol gains: two for the 
ontrol of θ, (kp,θ, kd,θ) and two for

the 
ontrol of the position x of the �ngertip, (kp,x, kd,x). If Π = 0 and there are

no 
onstraints on x, ẍ,
...

x
and θAP, then the 
orresponding linear stability region

in the plane (kp,θ, kd,θ) has a roughly re
tangular shape (see dashed red 
urve in

Figure 5A). The longer BT for the nonlinear model with movement 
onstraints and

sensory threshold Π = 0.8◦ o

ur in the left portion of the linear stability region.

The position of the dominant peak in the PSD depends on the values 
hosen for

the gains (Figure 5B). Peaks in the range of 0.6-0.8 Hz (Figure 3D) are asso
iated

with values of the gains lo
ated in the lower left 
orner of the linear stability region.

For the 
hoi
es of the gains indi
ated by the point A, the time series (Figure 5B)

and the PSD (Figure 5C) generated by the model are qualitatively similar to those

observed experimentally for E1 (respe
tively Figures 5D and E).

The solutions of the model are mi
ro
haoti
 and exhibit a sensitivity to initial


onditions (not shown). Mi
ro
hoas is a phenomenon produ
ed by deterministi


time-delayed dynami
al systems with a swit
hing feedba
k [44, 45℄ and hen
e is not

observed when Π = 0◦. It is remarkable that a deterministi
 model generates a

time series and PSD that qualitatively resembles those generated by a human sti
k

balan
er (see DISCUSSION).

Figure 6 shows a set of stability diagrams representing the dynami
 behavior

of balan
ing a 0.56m sti
k in the four-dimensional parameter spa
e of the 
ontrol

gains. It is observed that high BT 
an be a
hieved outside of the linearly stable

region. This property is attributed to the intriguing interplay between the sensory

dead zone, the movements 
onstraints and the time delay as suggested previously

by a simpli�ed s
alar dis
rete map model of balan
ing [38℄.

The yellow dots in Figure 6 indi
ate the parameter points where the balan
e

time was 240s. The size of the yellow dots shows the 
ontrol 
ost [46℄

C = wx

∫ t1

t0

x2(t)dt + wf

∫ t1

t0

f 2(t)dt, (16)

where the �rst term measures the varian
e of the 
art displa
ement, the se
ond

term measures the varian
e of the 
ontrol e�ort, t0 = 0s, t1 = 240s and wx and wf

are the 
orresponding weights. The weight wf was set to 1 and the weight wx was

adjusted su
h that, at the parameter point where the 
ontrol 
ost is minimum, the


ontribution of the two terms in (16) are equal, i.e., wx

∫ t1

t0
x2(t)dt = wf

∫ t1

t0
f 2(t)dt.
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Figure 5: A, Red dashed 
urve shows the linear stability boundary for the model

as a fun
tion of (kd,θ, kp,θ) with kp,x = 10 N/m and kd,x = 20 Ns/m for a 0.56m

sti
k when Π = 0.8◦ for a 0.56m sti
k. The gray s
ale shows the maximum BT for

the nonlinear model with movement 
onstraints and Π = 0.8◦ (values longer than
240s are re
orded as 240s). B, The same as A ex
ept that the gray s
ale shows the

peak in the PSD at the parameter points where BT=240 s. B,C and D,E show,

respe
tively, the �u
tuations in θ and the PSD for the model with kp,θ = 55 N/rad

and kd,θ = 20 Ns/rad (point A in panel A) and for subje
t E1.

This 
ondition gives wx = 1200. The smaller the size of the yellow dots, the smaller

the 
ontrol 
ost.

Comparison to experiments is performed based on three fa
tors: (1) the peak of

the PSD of θ, the standard deviation of θ and the standard deviation of x. Light

blue 
ir
les indi
ates the parameter points, where these three fa
tors are 
lose to the

measured ones within ±10% deviation. Figure 6 shows that these points 
oin
ides

to the points where the 
ost C is minimal. This suggests that the nervous system

minimizes both the 
ontrol e�ort and the �ngertip displa
ement by tuning 
ontrol

at the edge of stability.

DISCUSSION

The most important 
ontrol problems for sti
k balan
ing on the �ngertip in three

dimensions are related to the long time delay, the presen
e of a sensory dead zone

for the estimation of θAP and the 
apabilities of the �ngertip to make su�
iently

qui
k movements. The dead zone arises be
ause the human visual system is not

able to measure the depth of a moving target to the same a

ura
y that it 
an

12
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Figure 6: Comparison of the 
ontrol gains, BT (grey s
ale) and the 
ontrol 
ost

(yellow dots) determined for the model when ℓ = 0.56m. Gray shading indi
ates the

BT's for the swit
hed system. The size of the yellow dots is dire
tly proportional

to the 
ontrol 
ost when BT = 240s. The light blue 
ir
le indi
ate the points when

the model reprodu
es the peak in the PSD for E1.

measure its azimuth and elevation [47, 48℄. Consequently there are errors in the

estimation of θAP whose magnitude 
ontinually 
hanges as the movements of the

sti
k 
hanges. The state dependent nature of the θAP errors arises, in part, be
ause

the a

ommodative re�ex has a long laten
y, a slow response time and utilizes a dual

mode type of feedba
k whi
h 
ombines both open and 
losed loop 
omponents [49℄.

In our model we assumed thatΠ was 
onstant. The advantage of this approximation

is that the resulting model for sti
k balan
ing 
aptures many of the experimental

observations while remaining tra
table. Thus it is possible to 
ompare observations

with predi
tions.

It is likely that all sensory re
eptors possess a dead zone, namely a threshold

below whi
h 
hanges in input are not re�e
ted by 
hanges in output [50℄. Usually

the dead zone is very small and hen
e the presen
e of low amplitude os
illations

and mi
ro
haos is buried within the intrinsi
 noisy variability. However, for sti
k

balan
ing the size of the dead zone is of the order of the magnitude of the observed

�u
tuations and hen
e its e�e
ts on balan
e 
ontrol must be taken into a

ount.

The existen
e of sensory thresholds for balan
e 
ontrol is supported by the bene�
ial

e�e
ts of perturbations on sti
k balan
ing [51℄, postural sway [52℄, and gait stability

13



[53, 54℄. From a mathemati
al point of view, the most important e�e
t of the

deadzone is that it eliminates the possibility of an equilibrium solution of (3). Thus

su

essful sti
k balan
ing is related to a 
omplex bounded time-dependent state [51℄

whi
h in our model is manifested as mi
ro
haos. Sin
e the position of the �ngetrip


annot be stabilized, physi
al 
onstraints su
h as the length of the arm and the

maximum a

eleration and jerk of its movements be
ome important determinants

of the su

ess of sti
k balan
ing. Indeed sti
k balan
ing is more easily performed

while standing than sitting for many subje
ts [21℄. The in
rease in BT with standing

is likely related to the in
rease in the arm's rea
h, but may also arise be
ause this

posture enables 
ontrol me
hanisms related to the arm's torque to be implemented

[28, 55, 56℄.

There are two sour
es of un
ertainty in our model. First, sin
e the internal

model is 
ontinually re�ned with pra
ti
e, it always 
ontains some ina

ura
ies. As

we mentioned in Se
tion 4.4 the result of un
ertainties in the internal model is to

in
rease ℓcrit. The se
ond sour
e of un
ertainty arises be
ause of un
ertainties in

the per
eption of the angular displa
ement of the sti
k. A bene�
ial e�e
t of the

sensory dead zone is that it operates as a �noise gate� to redu
e the e�e
ts of the

noise [57℄.

The small amplitude and 
omplex noise-like dynami
s are generated by the model

are due to mi
ro
haos and arise even though the model 
ontains no noisy inputs.

It is generated by intera
tions between the long time delay and the sensory dead

zone [44, 45, 38℄ and is observed whether the feedba
k is PD, PDA or PF. The sen-

sitive dependen
e of mi
ro
haos on initial 
onditions may play a role in sti
k falling

(Milton, et al., in preparation). In 
ontrast, there is a large literature on the e�e
ts

of noise on balan
e and motor 
ontrol (see, for example, [6, 15, 18, 24, 46, 58℄). Is

noise of deterministi
 
haoti
 or sto
hasti
 origin? This question 
annot be answered

experimentally sin
e it is well established that deterministi
 
haoti
 dynami
al sys-

tems 
an generate the same statisti
al properties that are typi
ally asso
iated with

sto
hasti
 dynami
al systems [59, 60, 61℄. Thus it should not be surprising that

our 
on
lusions obtained with a deterministi
 model of balan
e 
ontrol 
an also be

inferred from sto
hasti
 models of balan
e 
ontrol [15, 24℄. However, our observa-

tions go one step further and suggest that variability in motor 
ontrol may simply

be the 
onsequen
e of the presen
e of a time delay and a sensory dead zone. In

other words, it is not ne
essary to hypothesize the existen
e of sto
hasti
 for
es.

Our observations shed no light onto the nature of the 
ontrol me
hanisms used

by less skilled sti
k balan
ers. The power law behaviors des
ribed previously [15,

20, 21, 23℄ are not observed when an expert (E1, E2) balan
es a 0.58m sti
k (data

not shown). However, we have observed that when the same experts balan
e a

0.28m sti
k the distribution of a

elerative movements made by the �ngertip ex-

hibits �broad shoulders�. Thus it is possible that subje
ts use other types of 
ontrol

strategies to provide some 
ontrol for sti
k balan
ing while an internal model is be-

ing learned, su
h as delayed state feedba
k [62℄, 
lo
k-driven swit
hed feedba
k [55℄,

noise-assisted 
ontrol [15, 24℄ or nonlinear types of 
ontrollers [16, 17, 23℄.

The sear
h for optimality prin
iples that either maximize or minimize some quan-

tity related to sensorimotor 
ontrol has a long history (for a review see [58℄). Our

observations strongly support the 
on
ept that organisms are able to minimize en-

14



ergy expenditures and maximize maneuverability by moving about an unstable po-

sition. The surprising observation is that this 
ontrol is a
hieved by tuning the

internal model towards instability. We anti
ipate that our �ndings will have many

impli
ations for balan
ing 
ontrol in
luding the nature of falling in the elderly.
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