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A recent paper by Id Betan and Nazarewicz re-opened the problem of the absolute
width of the α-decay leading to a doubly magic nucleus. I point out a problematic
aspect of this work, and reaffirm the correctness of the classical results.

The α-decay width (Γ = 1.5 × 10−15 MeV) of 212Po was reproduced in a cluster-
configuration shell model [1] as well as in a shell model with a stochastically optimized
Gaussian [2] basis twenty years ago. It looked [3] as though the problem had been set-
tled once and for all. In these models the widths are extracted from the tail of the wave
function in the α-decay channel. The amount of clustering turned out to be compara-
ble with unity (S ≈ 0.3), which shows that even the extreme cluster models are viable
[4, 5]. In the meantime, the applications of the extreme cluster model to heavy nuclei
and radioactive decay have been spectacularly extended (see, e.g., Ref. [6]).

In the paper I am commenting on [7], however, Γ is reproduced in a shell model that
yields S = 0.011, and that is obviously inconsistent with the cluster model and even
with the classical microscopic calculations [1, 2, 8]. This calculation of Γ relies on the
amount of clustering S , thus the correctness of S is crucial. I will argue for the validity
of the classical results.

The conventional α-formation amplitude g(R) and the amplitude G(R) of the
amount of clustering S are defined as the radial factors of

g(R) = 〈A{ΦDΦαδ(R−RαD)}|Φ
P〉, (1)

G(R) = N−1/2g(R), (2)

where ΦP, Φα, and ΦD are the intrinsic wave functions of the parent nucleus, the α-
particle and the daughter, respectively, and N is the α–D norm operator. That is ex-
pressed as N =

∑
ν |ϕν〉nν〈ϕν |, where Nϕν = nνϕν is the eigenvalue equation of

N . The daughter being a heavy closed-shell core, the parent state is expressible as
ΦP = A{ΦDΦval}, with Φval describing the valence nucleons.

The shapes of functions g(R) and G(R) are characteristic: g(R) has 12 nodes [1],
while G(R) has an awkward shape with few nodes or none [1, 8], except for pure clus-
ter models, in which G(R) also has 12 nodes [1, 5, 9]. But the amplitudes in Ref. [7] are
dissimilar: g(R) has no nodes, while G(R) has 11. Expounding a hint made in Ref. [1],
I now show that the functions g(R) andG(R) are bound to behave like in Refs. [1, 8, 9].
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In the heavy-core approximation the daughter degrees of freedom can be elimi-
nated, with the effect ofA incorporated in an operator P that projects off the s.p. states
occupied in ΦD [1]. The amplitude g(R) becomes

g(R) = 〈Φαδ(R−RαD)|P|Φval〉, (3)

and the eigenvalues of N can be expressed as

nν = 〈Φαϕν |P|Φαϕν〉 ≡ (〈Φαϕν |P)(P|Φαϕν〉). (4)

It is useful to introduce the normalized multiparticle state belonging to the eigenfunc-
tion ϕν :

|Ξν〉 = n−1/2
ν P|Φαϕν〉. (5)

To have a feeling for the shapes of g and G, we should expand them in terms of the
complete orthonormal set {ϕν}. In the shell model (Φval = Φsh)

gsh(R) =
∑

ν

ϕν(R)〈Φαϕν |P|Φsh〉

=
∑

ν

n1/2
ν 〈Ξν |Φ

sh〉ϕν(R). (6)

In the cluster model Φval = Φαφrel, with φrel a relative-motion function. Hence

gcl(R) =
∑

ν

ϕν(R)〈Φαϕν |P|Φαφrel〉

=
∑

νν′
ϕν(R)〈Φαϕν |P|Φαϕν′〉〈ϕn′ |φrel〉

=
∑

ν

nν〈ϕν |φ
rel〉ϕν(R). (7)

For G(R) of Eq. (2), we thus have

Gsh(R) =
∑

ν

〈Ξν |Φ
sh〉ϕν(R), (8)

Gcl(R) =
∑

ν

n1/2
ν 〈ϕν |φ

rel〉ϕν(R). (9)

Both 〈Ξν |Φ
sh〉 and 〈ϕν |φ

rel〉 are overlaps between normalized functions, and, for small
ν values, both the bra and the ket functions are appreciable in the nuclear volume. The
eigenvalues, if ordered conventionally, start with n0 ≈ 10−9–10−7 [7, 1] and tend to 1
monotonously. Since ϕν have ν = 0, 1, 2, . . . nodes and nν < 0.1 for ν ≤ 11, the functions
gsh, gcl and Gcl are approximately orthogonal to all ϕν up to ν = 11, hence they are
bound to have at least 12 nodes. No such statement holds for Gsh, whose expansion
contains no nν . That agrees with the classical results and contradicts Ref. [7].

The situation becomes more clear-cut in a harmonic oscillator model. The valence
protons in 212Po would carry 5h̄ω each, while the neutrons 6h̄ω each, altogether 22h̄ω.
In evaluating g(R) = 〈Φαδ(R − RαD)|P|Φval〉 the oscillator functions in Φval have to
be transformed into a series of products of an intrinsic-motion function and a relative
function. The overlap of the intrinsic motion with Φα is only non-zero if this factor car-
ries 0h̄ω, hence all 22h̄ω excitation must be carried by the relative-motion factor. The
g(R) being an L = 0 function, all 22h̄ω excitation must be concentrated in the radial
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motion, i.e., the node number must be at least 11. (Since the asymptotic α-cluster is
formed mostly by protons lying as high as the valence neutrons, node number 12 has
turned out to be favored.) For realistic models these considerations only hold approxi-
mately.

It would be important to understand why the amplitudes in Ref. [7] look so un-
usual. One problem is obvious. The small eigenvalues (nν < 10−3) are discarded with-
out good reason. In Ref. [7] it is stated that “a significant fraction of them accumulate
at zero.” This is incorrect as is well-known [10], for a two-cluster system there is an ac-
cumulation point at 1, but there is none at 0. This property represents the Pauli effects:
a finite number of low-lying relative-motion states are strongly suppressed, while the
suppression peters out as the node number increases. The finite number of small eigen-
values are those which belong to the “almost Pauli-forbidden” relative-motion states,
which are strictly Pauli-forbidden in a single-h̄ω harmonic-oscillator model. For the
L = 0 motion of the 208Pb+α system there are about 11 such states, which is borne out
in all other works on α decay.

The authors omit the norm-operator eigenstates belonging to small eigenvalues be-
cause they consider them to be spurious. But that is not justifiable even though they
might cause slight numerical inaccuracies [8]. The almost forbidden states are not
forbidden; they give rise to well-defined Pauli-allowed multinucleon configurations
[10], which must mix into the ground state. In calculating the amount of clustering
S = 〈G|G〉 their inclusion is crucial since the terms of the amplitudeG(R) of S are mul-
tiplied by n−1/2

ν (implicit in Ξν), which is large if nν is small. (It is quite another matter
that in Ref. [7] the eigenvalues nν are very inaccurate, especially the small ones.) The
enhancement by n−1/2

ν is to compensate for the “oversuppression” of these components
in the conventional formation amplitude g(R) [cf. Eqs. (6), (7)].

The omission of the components with small nν only influences the inner region of
the amplitudes and, especially, the amount of clustering. It is worth mentioning that
the tail of G(R) actually produces 36 times smaller value for the width than experi-
ment, which is more or less what one can expect from such a model. (The result of
using single-nucleon resonance states may not be expected to improve the α-width
very much without a much more extensive basis.)

The idea, proposed in Ref. [7], of using Γ = SΓsp to determine the width is sound
since S = 〈G|G〉, being an integrated quantity, is indeed less sensitive to the degree of
completeness of the model state space than the tail of g(R) or G(R). This viable idea
deserves confirmation with a more reliable calculation.
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