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Recent implementations of QSAR modeling software provide the user with 

numerous models and a wealth of information. In this work, we provide some 

guidance on how one should interpret the results of QSAR modeling, compare 

and assess the resulting models and select the best and most consistent ones. Two 

QSAR datasets are applied as case studies for the comparison of model 

performance parameters and model selection methods. We demonstrate the 

capabilities of sum of ranking differences (SRD) in model selection and ranking 

and identify the best performance indicators and models. While the exchange of 

the original training and (external) test sets does not affect the ranking of 

performance parameters, it provides improved models in certain cases (despite 

the lower number of molecules in the training set). Performance parameters for 

external validation are substantially separated from the other merits in SRD 

analyses, highlighting their value in data fusion. 
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1. Introduction 

Model comparison and selection of the best one is an evergreen among scientific 

investigations. The process is contradictory: bias-variance trade-off, local minima, 

searching for robust models, the principle of parsimony, etc.; all ideas consider various 

models inherently. One model is better from one point of view, the other should be 

better from another point of view. Even if one fixes the aim (and algorithm) according 

to various criteria: R
2
, Q

2
, Mallows Cp, Akaike Information criterion, Bayesian 

information criterion, etc., their application on the training, validation and test sets will 

necessarily provide different models for description of existing data and for prediction 

of future samples. The case is even more complicated with the fact that we deal with 

random effects: i.e. it is relatively easy to find conditions where one of the models is 

clearly superior compared to other models. Many authors select instinctively or 

deliberately such datasets, splits, etc. for which their own descriptor selection or model 

building algorithm performs better than the rival approaches. 

Kalivas et al. suggested selecting harmonious models taking into account the 

bias–variance trade-off: it is difficult and not unambiguous to find the ‘best’ model. A 

biased model provides less variance and vice versa. However, harmonious models are 

not necessarily parsimonious [1]. The scope of the methodology has recently been 

extended with the idea of sum of ranking differences (SRD) for partial least squares and 

ridge regression models [2].  

Principal-component analysis (PCA) has been applied by Geladi [3,4] and 

Todeschini et al. [5] to find the best and worst regression and classification models, 

respectively. PCAs were completed on a matrix of regression vectors and dominant 

patterns (grouping, outliers) could be detected among the models. The interpretation of 

PCA results is easy: principal component 1 marks the direction of the best and worst 

regression models. Principal component 2 reflects various behaviors of the regression 

models on various datasets. The models lying in the middle of the plot (scores near 0) 

show a similar behavior for all datasets, while models far away from the center have a 

dissimilar behavior for different datasets.  

While the generalization of the pairwise correlation method (GPCM) [6,7] 

provides the best models for recognition (for description of the existing data), its 

performance for predictive purposes might be weaker. It is presumed to be the reason 

why GPCM could not attain general usage.  

A scientific investigation should be reproducible in any laboratory: hence a kind 

of standardization (algorithms, performance parameters, etc.) would be expected. Even 

in this sense no model selection approach was validated properly: different degrees of 

freedom, different numbers of variables, and different algorithms should and do provide 

different models as the best ones found and no hints are given as to which one should be 

accepted and why. 

Therefore our aim was to rank and group the various modeling approaches and 

performance parameters. The results were compared to the model selection algorithm 

based on multi-criteria optimization as incorporated in the QSARINS approach of 

Gramatica and coworkers [8]. 

 

2. Methods 

2.1 Dataset preparation 

Two published QSAR datasets were used for our study: a toxicology study of benzene 

derivatives by Bertinetto and coworkers (from here on Case study 1) [9] and an SAR 

study of N-substituted maleimides by Matuszak and coworkers (from here on Case 

study 2) [10], for which docking and QSAR modeling has been carried out by Wu and 



coworkers [11]. For Case study 1, toxicity values were expressed as acute toxicities 

(negative base 10 logarithm of 96-h LC50, or pLC50) for fathead minnow (Pimephales 

promelas), while for Case study 2, negative 10-base logarithms of the half-maximal 

inhibitory concentrations (pIC50) were reported for two enzimes, hMGL and fatty acid 

amide hydrolase (FAAH). For Case study 2, QSAR modeling was carried out just for 

the activity data on human monoglyceride lipase, hMGL. For a better comparison, the 

training and (external) test sets reported in [9] and [11] were used without modification: 

for Case study 1, 51 and 18 molecules constituted the training and external test sets 

(compounds 1-51 and 52-69 in [9]), while for Case study 2, 48 and 14 molecules, 

constituted the training and external test sets [11]. The selection of the two case studies 

was purposeful: while reliable models exist for prediction of the toxicities of benzene 

derivatives (Case study 1), the prediction of inhibitory concentrations in Case study 2 is 

not straightforward, at least not with this training-test set split. 

Molecular structures and activity data were manually entered using 

ChemAxon’s Instant Jchem [12], then two sets of molecular descriptors were generated 

for each dataset: the complete descriptor set (51 descriptors) of QikProp [13] using 

Schrödinger’s Maestro [14], and the complete descriptor set (117 descriptors) of RDKit 

[15], using KNIME [16], resulting in a total of 168 descriptors. (The two descriptor sets 

were used simultaneously during QSAR modeling.) Detailed descriptions of the 

descriptors are available in Table 1.1 of the QikProp user manual [17] and in the RDKit 

documentation [18], respectively. 

 

2.2 QSAR modeling 

For QSAR model building, Gramatica and coworkers' QSARINS 2.2 software was used 

[8,19]. QSARINS implements a rich toolbox of statistical methods for the generation, 

validation and ranking of QSAR models. Models are calculated by MLR (Multiple 

Linear Regression) with Ordinary Least Squares (OLS) and a Genetic Algorithm (GA) 

[20] procedure is used to explore a large number of descriptor combinations for QSAR 

modeling. (Enumeration of all possible combinations becomes unfeasible in the case of 

a large number of descriptors.) The GA used Q
2

LOO as the fitness function. As output, 

QSARINS provides a rich selection of QSAR models, as well as model performance 

parameters (see Table 1 for the full list of performance parameters calculated by 

QSARINS). The software also provides a way for model ranking: multi-criteria decision 

making (MCDM), based on the work of Keller and coworkers [21], is applied to 

evaluate the models with regards to their performance in fitting and internal and 

external validation. 

 



Table 

Table 1. Description of the performance parameters in QSARINS  

Performance 

parameter 

Calculated 

during
a
 

Formula
b
 Description 

R
2
, R

2
ext 

training, 

external 

validation 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2
𝑛
𝑖=1

= 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

Explained variance; coefficient of determination, square 

of the multiple correlation coefficient 

R
2

adj. training 𝑅𝑎𝑑𝑗.
2 = 𝑅2 − (1 − 𝑅2) ×

𝑝

𝑛 − 𝑝 − 1
 R

2
 corrected with the degree of freedom 

R
2
  – R

2
adj. training see above Difference of the two 

LOF training 

𝐿𝑂𝐹 =
𝑅𝑆𝑆

𝑛

(

 
 
1 −

𝑀 + 𝑑
(𝑀 − 1)

2
⁄

𝑛

)

 
 

2 Friedman lack of fit criteria [40]. M: total number of 

linearly independent bases in the model, d: degrees-of-

freedom cost for each nonlinear basis function 

Kx training Based on PCA, see [41] for details Inter-correlation among descriptors 

ΔK training Based on PCA, see [41] for details Difference of correlation among descriptors (Kx) and the 



descriptors plus responses (Kxy) 

RMSE 
training, int. 

val., ext. val. 
𝑅𝑀𝑆𝐸 = √

∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1

𝑛
 Root mean square error 

MAE 
training, int. 

val., ext. val. 
𝑀𝐴𝐸 =

∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1

𝑛
 Mean absolute error 

RSS training 𝑅𝑆𝑆 =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 Residual sum of squares 

CCC 
training, int. 

val., ext. val. 
𝐶𝐶𝐶 =

2∑ (𝑦𝑖 − 𝑦̅)(𝑦̂𝑖 − 𝑦̂)
𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2 + ∑ (𝑦̂𝑖 − 𝑦̂)2 + 𝑛(𝑦̅ − 𝑦̂)2
𝑛
𝑖=1

𝑛
𝑖=1

 

Coefficient of concordance, concordance correlation 

coefficient [42,43] 

s training 𝑠 = √
1

𝑁 − 1
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 Standard error of the estimate 

F training 𝐹 = (
∑ (𝑦̅ − 𝑦̂𝑖)

2𝑁
𝑖=1

𝑝 − 1
) / (

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1

𝑛 − 𝑝
) Fisher value 



Q
2

LOO 
internal 

validation 
𝑄𝐿𝑂𝑂
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖/𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2
𝑛
𝑖=1

= 1 −
𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
 

Leave-one-out cross-validated square of the (multiple) 

correlation coefficient 

R
2
 – Q

2
LOO 

internal 

validation 
see above Difference of the two 

PRESS 

internal, 

external 

validation 

𝑃𝑅𝐸𝑆𝑆 =∑(𝑦𝑖 − 𝑦̂𝑖/𝑖)
2

𝑛

𝑖=1

 

Predicted residual sum of squares (either cross-validated 

or calculated on the external set) 

Q
2

LMO 
internal 

validation 
𝑄𝐿𝑀𝑂
2 = 1 −

∑ ∑ (𝑦𝑖 − 𝑦̂𝑖/𝑗)
2𝑛

𝑖=1
𝑚
𝑗=1

∑ (𝑦𝑖 − 𝑦̅)2
𝑛
𝑖=1

 

Leave-many-out cross-validated square of the (multiple) 

correlation coefficient 

R
2

Y-SCRAMBLE 
internal 

validation 
see above R

2
 of the training set with Y-scrambling [44] 

RMSEAvg, Y-

SCRAMBLE 

internal 

validation 
see above Average RMSE with Y-scrambling [44] 

Q
2

Y-SCRAMBLE 
internal 

validation 
see above Q

2
LOO of the training set with Y-scrambling [44] 



R
2

RND-DESCR 
internal 

validation 
see above R

2
 of the training set with randomized descriptors [44] 

Q
2

RND-DESCR 
internal 

validation 
see above Q

2
LOO of the training set with randomized descriptors [44] 

R
2

RND-RESP 
internal 

validation 
see above R

2
 of the training set with randomized responses [44] 

Q
2

RND-RESP 
internal 

validation 
see above Q

2
LOO of the training set with randomized responses [44] 

Q
2

F1 
external 

validation 

𝑄𝐹1
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛𝐸𝑋𝑇

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑇𝑅)2
𝑛𝐸𝑋𝑇
𝑖=1

 
Definition 1 in [45] for Q

2
 of the external test set [46], 

TR: training set, EXT: external test set 

Q
2

F2 
external 

validation 

𝑄𝐹2
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛𝐸𝑋𝑇

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝐸𝑋𝑇)2
𝑛𝐸𝑋𝑇
𝑖=1

 
Definition 2 in [45] for Q

2
 of the external test set [47], 

EXT: external test set 

Q
2

F3 
external 

validation 

𝑄𝐹3
2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛𝐸𝑋𝑇

𝑖=1 /𝑛𝐸𝑋𝑇

∑ (𝑦𝑖 − 𝑦̅𝑇𝑅)2
𝑛𝑇𝑅
𝑖=1 /𝑛𝑇𝑅

 
Definition 3 in [45] for Q

2
 of the external test set [48], 

TR: training set, EXT: external test set 



r
2

m   
external 

validation 
𝑟𝑚2̅̅ ̅ =  

𝑟𝑚
2 + 𝑟′𝑚

2

2
 

Here, 𝑟𝑚
2 = 𝑅2 × (1 − √𝑅2 − 𝑅0

2), where R0
2
 is the 

squared correlation coefficient without intercept. 𝑟′𝑚
2  is 

the same as 𝑟𝑚
2 , with the x and y axes exchanged. [49,50] 

Δr
2

m 
external 

validation 
∆𝑟𝑚

2 = 𝑟𝑚
2 − 𝑟′𝑚

2  See above. 

a
 Parameters that are calculated for more than one subsets are indexed in the main text: tr for training, cv for cross-validation, ext for external 

validation. 

b
 The following notations are used: 𝑦𝑖: single experimental value, 𝑦̅: mean of experimental values, 𝑦̂𝑖: single predicted value, 𝑦̂: mean of 

predicted values, 𝑦̂𝑖/𝑖: predicted value for the ith sample when the ith sample is left out from the training, 𝑦̂𝑖/𝑗: predicted value for the ith sample 

when the jth part of the dataset is left out from the training (the whole dataset is split into m parts), n: number of samples, i: sample index, p: 

number of variables in the model 

 



 

2.3 Multi-criteria decision making 

Multi-criteria decision making (MCDM) [21] is a multi-parameter optimization 

technique that utilizes desirability functions [22] to evaluate the performances of several 

criteria simultaneously, usually as a single number (score) between 0 (worst) and 1 

(best). The overall score is the geometric average of the values obtained from the 

desirability functions of the various criteria. In QSARINS, MCDM values are calculated 

to assess the QSAR models’ performance with regards to fitting (i.e. how well does the 

model reproduce the data from which it was calculated), cross-validation (i.e. how well 

can the model predict smaller segments of the training set) and external validation (i.e. 

how reliable a prediction can the model make for external data, such as new molecules). 

MCDM of fitting is calculated by maximizing R
2
, R

2
adj. and CCCTR, while minimizing 

R
2
 – R

2
adj,, while MCDM of cross validation by maximizing Q

2
LOO, Q

2
LMO and CCCcv 

and minimizing R
2

Y-SCRAMBLE, and MCDM of external validation by maximizing Q
2

F1, 

Q
2

F2, Q
2

F3 and CCCEXT. From these three, MCDMall is calculated as a consensus. For 

visualization, MCDMfit can be plotted against MCDMext. 

A useful and proven approach for multi-criteria optimization is the use of 

desirability functions (also applied during the calculation of MCDM values) as defined 

by Harrington and later by Derringer and Suich [22,23]. However, they inherently 

involve some subjectivity. In her PhD thesis Manuela Pavan compares total ranking 

methods and states: ‘All the methods are based on a first level of subjectivity, 

concerning the criteria selected as representative of the system under investigation. 

Another level of subjectivity is added when the criteria are weighted, as this requires the 

identification of the more important criteria and the results are strictly influenced by the 

weight setting’ [24]. By contrast, SRD, see below does not introduce such opportunities 

for subjectivity. Among other investigations, we have assessed the similarities and 

differences between the results of the two methods. 

 

2.4 Sum of ranking differences (SRD) 

SRD is a novel, simple and entirely general procedure for the quick and reliable 

comparison of models/methods/techniques etc. [25–27]. For an input matrix with n 

columns (methods or models, in this work typically QSAR models or performance 

parameters) and m rows (samples, in this work typically molecules or QSAR models), 

SRD is calculated according to the following steps: i) add a reference column to the 

input matrix (this can be a ‘golden standard’: a set of known reference values, such as 

experimental data; or a consensus of the n methods/models can be calculated with a 

suitable data fusion rule: typically average, minimum or maximum depending on the 

application), ii) rank the m samples in order of magnitude according to each of the n 

methods and the reference method; iii) calculate the absolute difference of ranks for 

each sample between each method and the reference; iv) sum up the ranking differences 

for each method to calculate the SRD values. (An animation to illustrate how SRD is 

calculated is published as a supplement to our recent article on similarity metrics [28].) 

SRD values are identical to the Manhattan distances between the given method 

vector (in the space spanned by the samples) and the reference vector: a smaller SRD 

value means proximity to the reference: the smaller the better. To enable the 

comparison of different SRD calculations, SRD values are usually normalized: 

SRDnor = 100SRD / SRDmax,  (1) 

where SRDmax is the maximum attainable SRD value. 



SRD is validated in two ways: Comparison of ranks with random numbers 

(CRRN) is a randomization test that results in a distribution of SRD values when using 

randomized ranks for the same SRD calculation (see the Gaussian curves on Figures 2 

and 4-10). A model/method/technique is more reliable than random ranking as long as it 

does not overlap with this Gaussian curve. It also tests, whether the SRD values of the 

different methods are distinguishable from each other (significantly different): to that 

end, a bootstrap-like cross-validation is carried out (leave-one-out cross-validation for 

13 or fewer samples and sevenfold cross-validation for 14 or more samples). 

 

3. Results and discussion 

In this work two QSAR datasets – a toxicology study of benzene derivatives (Case 

study 1) [9] and an SAR dataset of N-substituted maleimides (Case study 2) [10,11] – 

were used to build multilinear regression models (with the application of pLC50 and 

pIC50 values as the dependent variable, y) and the created models and performance 

parameters were ranked and grouped with the SRD method. 

The aim of the research was to answer the following questions about the models: 

1) Can we complement the MCDM method with SRD, which gives consistent results in 

an easy way in the case of model comparison and selection? 2) Is there any difference in 

the selection of the best model(s) if we use the predicted y values instead of the 

performance parameters of the created models? 3) Which model performance parameter 

is the most predictive? 4) How does the consideration of an alternative training-test set 

split affect the outcome of the previous question? 

QSARINS 2.2 of Gramatica et al. [7] was applied for MLR-based QSAR 

modeling. Variable selection was based on filtering out the constant variables (based on 

the standard deviation) and those that correlated with another variable with a correlation 

coefficient of 1.000000. Thus, the final numbers of variables for MLR analysis were 69 

in Case study 1 and 62 in Case study 2, respectively. Furthermore in the modeling 

section GA was used as another variable selection method for the creation of better 

regression models. In Case study 1 the maximum number of descriptors (for the GA) 

was six and in Case study 2 it was seven. The final dataset contained the best ten 

models for every possible descriptor number (1 to 6 and 1 to 7), thus the number of 

models was 60 in Case study 1 and 70 in Case study 2. In the following part the 

calculated performance parameters and the predicted y values for each sample will be 

used for the analysis to answer the four main questions that were posed. 

 

3.1 Comparison of MCDM and SRD methods  

How does SRD compare with MCDM in model selection? In the first part of our work 

MCDM (which is included in QSARINS 2.2) and SRD were used for the selection of 

the best models. We wanted to compare the usefulness of these methods in model 

selection. In Case study 1 twelve performance parameters were used for MCDM 

analysis, and the best models can be seen in Figure 1, where the MCDM values of 

external prediction are plotted against the MCDM fitting values. Figure 1 shows that 

there are six models, which have good score values (close to one) for both MCDM 

parameters. 

 



 
Figure 1 Multi-criteria optimization for model selection in Case study 1. MCDM values 

of external prediction are plotted against the MCDM values of fitting. 

 

For SRD analysis 35 performance parameters were used as ‘samples’ and the sixty 

models as ‘variables’ in the input matrix. The reference value was the maximum or 

minimum value depending on which is the best for each of the performance parameters 

(to remain comparable with MCDM). Figure 2 shows that in Case study 1, the SRD 

method gave very similar results to the MCDM method, thus we can conclude that SRD 

is another good choice for model selection. As we can see, there are a lot of similar 

models among the examined ones, but all of them are better than the randomly 

generated numbers (they are located before the XX1 line, which corresponds to the 5 % 

error limit). 

 

  



 
Figure 2 SRD gave the same best model selection as MCDM in Case study 1. Scaled 

SRD values (between 0 and 100) are plotted on the x axis and left y axis. The right y 

axis shows the relative frequencies for the black (fitted) Gauss curve (XX1 = 5 % limit, 

med = median, XX19 = 95 % limit). 

 

In Case study 2 the same numbers of performance parameters were used for 

MCDM and SRD analysis as in the previous case. Here the models were still 

acceptable, but not as good as before. Figure 3 shows that in the MCDM analysis most 

of the models have a good MCDM value for the model fitting but worse for the external 

prediction, or vice versa. The ‘best’ models are located in the lower part of the plot and 

their MCDM fitting values are not higher than 0.436. 

 

 
Figure 3: Multi-criteria optimization for model selection in Case study 2. MCDM 

values of external prediction are plotted against the MCDM values of fitting. 

 



Although the final results are not as attractive as in Case study 1, Figure 4 

shows that the SRD method found the same models except for model 70, which is also 

an acceptable one. All of the models are shifted a little in the direction of bigger SRD 

values (in comparison with Case study 1), but none of them overlaps with the Gaussian 

curve of random numbers. 

 

 
Figure 4: SRD gave similar model selection as MCDM in Case study 2 – except for 

model 70. Scaled SRD values (between 0 and 100) are plotted on the x axis and left y 

axis. The right y axis shows the relative frequencies for the black (fitted) Gauss curve 

(XX1 = 5 % limit, med = median, XX19 = 95 % limit). 

 

In the first part of the research, the results confirmed that SRD can be a good 

choice for QSAR model comparison and selection, because it is an easy and fast 

technique; moreover, the goodness of the results was proven by a comparison with the 

MCDM method (see Figures 3 and 4). In addition, SRD found one ‘new’ good model in 

Case study 2, which was not in the group of the best models in the MCDM analysis.  

 

3.2 Usage of predicted y values 

Is there any difference in the selection of the best model(s) if we use the predicted y 

values instead of the performance parameters of the created models? 

In the second part of our research, the models were compared by the predicted 

pLC50 and pIC50 values of the compounds. SRD was used for the analysis here, where 

the compounds were included in the rows of the input matrix and the predicted values of 

each model were placed in the columns (as variables). The comparison was carried out 

in two ways: first the average was used as the reference (or ‘golden standard’), and 

second the experimental pLC50 (or pIC50) values were used as the reference vector.  

Average can be a good choice, because it shows us, which models are better or 

worse than the experimental values. Though the models have systematic and random 

errors, they eliminate a large portion of experimental error, i.e. the error of the modeled 

values can be less, than the experimental ones. Using average as the reference can be 

thought of as a consensus in accordance with the ‘maximum likelihood principle, which 

yields a choice of the estimator as the value for the parameter that makes the observed 

data most probable’ (the average) [29]. 

In the second case, when the experimental values were used as the reference, we 

wanted to know which model gives the most ‘similar’ results to the experimental 

values, and if there is any difference between the usage of the predicted y values and the 



usage of performance parameters. It is well known that the selection of the reference 

vector greatly influences the ranking results [30]. 

In Case study 1 the dataset contained 51 samples, 60 predicted value columns 

(for each of the created QSAR models) and the experimental values as the 61st one if 

average was used as reference. In this latter case the results can be seen in Figure 5(a) 

and (b), where the experimental ‘model’ is far away from the most consistent ones 

(closest to the average), which means that the average prediction of the models is quite 

far from the experimental values. (Note that in the context of this article, and 

particularly for SRD results, consistency is defined as the closeness/similarity of the 

given model’s ranking to the reference ranking.) 

 

 
Figure 5(a) and (b): SRD ranking of the model selection with the use of predicted 

biological activity values. Average was used as the reference. Figure 5b is the magnified 

version of 5a. Figure 5 can be interpreted in the same way as Figure 4. 

 

As we can see models 255 and 261 were the most consistent ones, their SRD 

values were under 10 %. An interesting observation is that some of the models, which 

were mediocre based on the MCDM analysis, were located closer to the Experimental 

variable, at SRD values of 20-25 %. 

If we use the experimental values as reference, the results are somewhat 

different. Figures 6(a) and (b) show that here the best models were 346, 347 and 348. 

Although the SRD values of these models are higher than 20 %, they have the closest 

proximity to the experimental y values. In this case the mediocre models (based on the 

MCDM analysis) were located at the end of the line. 

 
Figure 6(a) and (b): Comparison of the models with the experimental values as 

reference in Case study 1. Figure 6(b) is the magnified version of 6(a). Figure 6 can be 

interpreted in the same way as Figure 4. 

In Case study 2 we carried out the same analysis, but here the dataset contained 

48 rows (samples) and 70 columns (models). When average was the reference, the 

experimental y variable was added as the 71st column. In the latter case the results can 



be seen in Figure 7, where the experimental ‘model’ was also in the end of the line. All 

of the models were better than random rankings, but here models 18, 30 and 8 were the 

most consistent ones. 

 
Figure 7: SRD ranking in Case study 2, where average was the reference. Figure 7 can 

be interpreted in the same way as Figure 4. 

 

If we used experimental values as reference, the results were also very 

interesting, because the model selection differed from the MCDM analysis. Figures 8a 

and b show that in this case models 69 and 70 were the best, so they could best 

approximate the experimental values. Model 69 was also a good one based on MCDM 

analysis and SRD analysis of the performance parameters, but the model 70 is a new 

one, which was already identified once by SRD, using performance parameters. Most of 

the models that have been selected by MCDM analysis were not verified by SRD, 

except for model 69 in Case study 2. We have to admit that the model parameters and 

all the original values of Case study 2 are far from being optimal for a straightforward 

prediction. 

 
Figure 8(a) and (b): Comparison of the models with the experimental values as 

reference in Case study 2. Figure 8(b) is the magnified version of 8(a). Figure 8 can be 

interpreted in the same way as Figure 4. 

 

Thus, in the second part, we can conclude that the use of predicted values for 

SRD opens a new way to model selection, because it can reveal good models other than 

those identified by MCDM. This alternative is also a valuable approach, as it better 

accounts for the predictive capability of the regression models, while the calculation of 

performance parameters unavoidably leads to some information loss. Primarily fitted 

(modeled) and experimental values have the full information content of the data. 



 

3.3 Choice of merit of performance  

Which is the most predictive model performance parameter? In this section, our goal 

was to choose the most appropriate performance parameter(s) for our datasets. We have 

selected the following, more commonly used parameters for the comparison: R
2
, R

2
ext, 

R
2

adj, r
2

m  , CCCext, CCCcv, CCCtr, MAEext, MAEcv, MAEtr, RMSEext, RMSEcv, RMSEtr, 

Q
2

LOO, s, F, Q
2

F1, Q
2

F2, Q
2

F3 and Q
2

LMO. The dataset in Case study 1 contained these 20 

parameters in the columns and the 60 models in the rows. Row-average was used as 

reference. Sevenfold cross-validation was used for the verification of the analysis. 

Figure 9 (a box and whisker plot) shows that there are a few performance parameters 

(Q
2

F1, Q
2
F2, Q

2
F3 and RMSEext) that overlap with random ranking, but most of the 

parameters are located between zero and the 5 % limit for random ranking. The first 

twelve parameters are indistinguishable according to the Wilcoxon matched pair test. 

To conclude whether the position of CCCext is a consequence of the peculiar character 

of the coefficient of concordance, or merely a random effect, we need to make further 

investigations. Above the horizontal dotted line the performance parameters are 

indistinguishable from random ranking (at 5 % error level). 

 

Figure 9: Comparison of performance parameters using sevenfold cross-validation of 

scaled SRD values. On the box and whisker plot horizontal dotted line shows the 5 % 

error limit for random ranking. Vertical dotted line shows the 5 % error limit for 

Wilcoxon matched pair test. 

 

The same examination was carried out for Case study 2, where the number of 

the columns was 20 with the same performance parameters, but the number of the rows 

was 70 (since here the number of created models is 70).  

According to Figure 10, quite the same performance parameters have the lowest 

SRD values for Case study 2 as well, in a somewhat (not significantly) different order. 

Here, the most consistent one was RMSEcv and the following ones in order were Q
2

LOO, 

MAEtr, CCCcv, and MAEcv, (but their ordering lacks significance by Wilcoxon matched 

pair test and at the 5 % level). In this case external validation metrics were the farthest 

merits from the average, overlapping with the distribution of random rankings. These 



differ significantly from the others at the 5 % level (marked with a dotted line). This 

does not mean that these measures are not useful; on the contrary, as they provide an 

ordering that is dissimilar from the reference, they present valuable information that can 

be utilized for e.g. for data fusion. Other investigations also support the view that 

external validation provides comparable results to a single split in many cases. 

 
Figure 10: Comparison of performance parameters using sevenfold cross-validation of 

scaled SRD values. On the box and whisker plot horizontal dotted line shows the 5 % 

error limit for random ranking. 

 

In Case study 2 the SRD values were considerably smaller than in Case study 1, 

but in both cases RMSEcv, CCCcv and Q
2

LOO were among the first group of ranked 

parameters. The coincidence is striking as two different datasets; two qualitatively 

different model performances were compared. In Case study 1 the first twelve 

parameters are indistinguishable by the Wilcoxon matched pair test, while in Case study 

2, the first ten parameters are indistinguishable. Two distinct groups of performance 

parameters can also be seen in Figure 10, as well. 

A comparison of several performance parameters has already been done 

applying extensive simulations in refs. [51] and [52]. In ref. [51] ‘CCC [coefficient of 

concordance] was broadly in agreement … with other validation measures in accepting 

models as predictive, and … it was the most precautionary.’ Therefore it was proposed 

as an external validation parameter for use in QSAR studies. Our findings are in 

agreement with the cited papers, as we have also identified CCCcv as one of the most 

consistent performance parameters. 

 

3.4 Use of alternative training-test set splits 

Both modeling studies have used the training-test set split from the original 

publications. To assess the effect of the dataset splitting on the outcome, we repeated 

the calculations using the external sets for training and the training sets for external 

validation. Thus, the validation became ‘crossed’: each element of the left-out part of 

the data was used in the modeling (training) phase. It is interesting to know, whether 

such splits are representative for the whole distribution or carry different information. 

Many authors favor cross-validation as it ‘gives a reliable picture with no 

apparent systematic over- or underestimation’ [31]; ‘overfitting is avoided by the 



repeated double cross-validation approach’ [32]; ‘LOO gives too small a perturbation to 

the data, so that Q
2
 approaches the properties of R

2
 asymptotically’ [33]; ‘The cross-

validation estimate of prediction error is nearly unbiased but can be highly variable.’ 

[34]. Others rigidly adhere to external validation as ‘External figures of merit are the 

gold standard…’ [35]; an external validation set is necessary for obtaining honest 

validation results after parameter estimation [36]; ‘… only models that have been 

validated externally, after their internal validation, can be considered reliable and 

applicable for both external prediction and regulatory purposes’ [37] and ‘there is only 

one valid paradigm, formulated as the test set validation imperative’ [38].  

SRD is a particularly suitable technique to decide whether cross-validation is 

appropriate to evaluate the models’ predictive performance. SRD is based on the 

assumption that errors cancel each other and a consensus reference is suitable for 

ranking and grouping the performance parameters.  

Case study 1: Previously, the 12 candidates to substitute all performance 

parameters were located ahead and now a new modeling of the 20 compounds, variable 

selection (best subset and GA), and range scaling of 30 models produced 13 

performance parameters with the smallest SRD values. (Only a small number of 

changes was observed.) 

Similarly, the least consistent merits were RMSEext, Q
2

F1, Q
2
F2, and Q

2
F3 earlier 

(each of them are comparable with the random ranking) and now all merits based on 

external validation have proven to be the least consistent ones. The agreement is fairly 

and surprisingly good. (We note that exactly the same ranking cannot be expected as for 

model building, and consequently, the calculation of performance parameters are 

subjects to biases and random errors. Moreover, the model building set was 

considerably smaller, and different models were built and considered.) Unexpectedly, 

even better models were built with these 18 compounds, suggesting that these 

compounds are more characteristic of the substituted benzene derivatives than the larger 

training set (51).  

Case study No 2: A very similar pattern can be observed for the performance 

parameters with the smaller SRD values. Similarly, seven of the most dissimilar merits 

were kept for the modeling with the external set: RMSEext, Q
2

F1, Q
2
F2, and Q

2
F3, MAEext, 

CCCext and R
2

ext. The agreement is astonishingly good, given that the training set was 

considerably smaller, and different models were built. (The box and whisker plots of the 

alternative training-test splits can be seen in the supplementary material as Figure S1 

for Case study 1 and Figure S2 for Case study 2.) 

Some general conclusions can be drawn: leave-one-out and cross-validated 

merits are among the most representative group. Coefficient of concordance can be 

favorably used instead of (or beside) the (multiple) correlation coefficient. The most 

dissimilar results were obtained with the external validation indicators. This section 

suggests that the property distributions of the training and test sets were similar enough 

so that mostly the same results were acquired upon their exchange (e.g. for the 

comparison of performance parameters); and yet for Case study 1, even better QSAR 

models could be developed with the use of the (original) test sets. In accordance with 

the recent work of Roy and coworkers [39], these results highlight the importance and 

usefulness of considering more than one training-test set splits for QSAR modeling. 

 

4. Conclusion 

The procedure based on sum of ranking differences (SRD) agrees well with 

multi-criteria decision making as it provides very similar rankings for models if the 

performance merits are used for SRD-based comparison (particularly when considering 



good models, as in Case study 1).  

However, if the primary experimental and predicted data are used, the ranking 

and clustering of the models are different from the case when performance merits are 

used for ranking and data fusion. The use of performance parameters leads to a kind of 

information loss, thus we suggest selecting consistent models using primary data and 

SRD.  

Coefficient of concordance can be favorably used instead of (or beside) the 

(multiple) correlation coefficient. Performance parameters based on external validation 

were the most dissimilar from the consensus: this can mean that they provide 

complementary information and their use can be beneficial for e.g. for data fusion. 

SRD can also be applied to check the consistency of training and (external) test 

splits. The distributions of the training and test sets in both cases were similar enough, 

but we suggest using more than one training-test set split for QSAR modeling, as it can 

provide even better QSAR models in some cases. 

 

 Abbreviations 

FAAH, fatty acid amide hydrolase; GA, genetic algorithm; MCDM, multi-criteria 

decision making; hMGL, human monoglyceride lipase; MLR, multiple linear 

regression; OLS, ordinary least squares; PCA, principal component analysis; SRD, sum 

of ranking differences. 
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Supplementary figures 

 

 
Supplementary Figure S1: Box and whisker plots of the alternative training-test splits 

for Case study 1 (c.f. figure 9) 

 

  



 
Supplementary Figure S2: Box and whisker plots of the alternative training-test splits 

for Case study 2 (c.f. figure 10) 

 

 




