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The vasodilatory effect of angiotensin 1–7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender 
dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and 
AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role 
of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline 
as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), 
renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan 
and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase 
in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this 
was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism 
either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/
KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal 
circulation. 

Keywords: renin angiotensin system (RAS), angiotensin (1–7) receptor, angiotensin type 1 and 2 receptors, renal 
blood flow

The morbidity and progression of many renal diseases are gender related (26, 34). The 
mechanisms underlying this difference are not clearly recognized, but it is at least understood 
that renin-angiotensin system (RAS) is involved (14). RAS has a major role in kidney 
function, and it regulates the body fluid and blood pressure gender dependently (8, 13, 37). 
RAS includes vasoconstriction and vasodilation effects in renal and systematic vascular bed 
depending on the angiotensin converting enzyme 1 and 2 (ACE or ACE1, ACE2) (32, 43). 
ACE hydrolyzes angiotensin (Ang) I to Ang II, while ACE2 disintegrates Ang II to Ang 1–7 
and Ang I to Ang 1–9 (11, 12, 36, 41). It is known that the physiological actions of Ang 1–7 
are exerted via Mas receptor (MasR) (18, 31, 42). The two main receptors of Ang II are Ang 
receptors types 1 and 2 (AT1R and AT2R). AT1R causes vasoconstriction, cell multiplication, 
and sodium retention. It also attenuates glomerular filtration rate as well as it augments 
mesangial cell hypertrophy and renal damage, while AT2R and MasR disagrees with the 
AT1R functions (35, 40). It is reported that MasR is an AT1R antagonist and Ang 1–7  / MasR 

Corresponding author: Mehdi Nematbakhsh, PhD
Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences and Isfahan 
MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
Phone: +98-31-37929019; Fax: +98-31-37929019; E-mails: nematbakhsh@med.mui.ac.ir; nematbakhsh@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42945247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14

Physiology International (Acta Physiologica Hungarica) 103, 2016

Mansoori A et al.14

straightly resists many actions of Ang II (38). The role of Ang 1–7 in cardiovascular system 
has been studied; however, the exact mechanism is not completely understood (17). In 
addition, blockade of AT1R and AT2R also inhibits some actions of Ang 1–7, which indicates 
a crosstalk between MasR and Ang II receptors (4, 6, 20, 45). Moreover, increase in nitric 
oxide (NO), bradykinin, and prostacyclin production complicates the mechanism of Ang 1–7 
action (3). It was also explained that the vasodilator effect of Ang 1–7 complicates the 
interaction of MasR with AT1R and AT2R in perfused mouse heart (7). Females have AT2R/
AT1R ratio higher than males (35), but MasR blockade or knockout of ACE2 can abolish sex 
difference in response to Ang II infusion in rats (38). Administration of MasR antagonist 
(A779) in female rats also equals the blood pressure response to Ang II in both genders (38). 
This shows the complex interactions between the RAS receptors and vascular effect of Ang 
1–7 (23). Recently, it has been explained that expression of renal MasR is higher in adult 
female than male rats (29), and Safari et al. have demonstrated that presence of MasR in 
female rats increases renal blood flow (RBF) following physiological situation and decreases 
renal vasoconstrictor response to exogenous Ang II infusion (27). In the present study, AT1R 
and AT2R were blocked using losartan and PD123319 in male and female rats and the RBF 
and RVR were measured with and without MasR antagonist (A779).

Materials and Methods

Animals
Male (n = 27, 190 ± 2.3 g) and female (n = 22, 180 ± 1.0 g) Wistar rats (Animal Centre, 
Isfahan University of Medical Sciences) were used. The rats were individually housed at a 
temperature of 23–25 °C with a 12 h light/dark cycle (darkness 19.00–07.00 h). The 
experimental procedures were in advance approved by the Isfahan University of Medical 
Sciences (#191066).

Surgery
Rats were anaesthetised (Inactin; thiobutabarbital, 175 mg kg−1i.p. Sigma, St. Louis, MO, 
USA) and the trachea was subjected to insert air ventilation tube. Catheters were implanted 
into the jugular vein, and carotid and femoral arteries. Renal perfusion pressure (RPP) was 
measured from the femoral artery. The left kidney was placed in a stable cup. The flow probe 
was placed and fixed around the left renal artery, and renal blood flow (RBF) was measured 
by transit-time ultrasound flowmetry (Type 2SB; transonic system, Itaca, NY, USA). Body 
temperature was continuously monitored through the experiment. 30–60 minutes was allowed 
for equilibration period.

Experimental protocol
Losartan (Darou Pakhsh Pharma Co., Tehran, Iran), PD123319 (Sigma, St. Louis, MO, 
USA), and A779 (Bachem Bioscience Inc., King of Prussia, PA, USA) were used as blocking 
agents for AT1R, AT2R, and MasR, respectively. After the equilibration period (30–60 min), 
male or female rats received losartan (10 mg kg–1 plus 10 mg kg–1 h–1) (17), PD123319 
(1 mg kg−1 plus 1 mg kg−1 h−1), and A779 (50 µg kg–1plus 50 µg kg–1 h–1) (33), and they were 
compared with the groups that received the same antagonists except vehicle (2 ml kg−1 plus 
2 ml kg−1 h−1 154 mmol l−1 NaCl) instead of A779. Therefore for each gender, two main 
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groups were assigned; group 1 treated with losartan, PD123319, and A779, and group 2 
treated with losartan, PD123319, and vehicle. The time before commencing the vehicle or 
antagonist administration was considered as the control time, and the time 30 min after 
commencing vehicle or antagonist administration was considered as the treatment time. 
Mean arterial pressure (MAP), RPP, and RBF were measured for 5 min at the control or treat 
times. Renal vascular resistance (RVR) was calculated as the RPP/RBF ratio. The rats were 
sacrificed by the end of the experiments, and the kidney was removed and weighed 
immediately.

Statistical analysis
Data are expressed as mean ± SEM. For baseline data, the parameters were compared between 
each group using t-Student test. For each individual gender, the MAP, RPP and RBF responses 
(the difference between control and 30 min after commencing vehicle or antagonist) to A779 
(group 1) or vehicle (group 2) when AT1R and AT2R were blocked were compared using 
repeated measures ANOVA. The urine volumes between the two groups were compared 
using t-Student test. P values <0.05 were considered statistically significant.

Results

Baseline measurements (equilibrium or control stage)
MAP, RPP, RBF, and RBF/wet kidney tissue weight (RBF/KW) at the baseline measurement 
is shown in Table I. There were no significant differences between the two genders.

Table I: Mean baseline levels of systematic pressure and renal variables before vehicle  
or antagonist treatment in anaesthetised rats

Group Losartan + PD123319 + A779 Losartan + PD123319 + vehicle
Variable Male (n = 13) Female (n = 10) Male (n = 14) Female (n = 12)

MAP (mmHg) 115.3 ± 1.5 109.6 ± 2.6 113.5 ± 1.9 113.5 ± 1.9

RPP (ml min−1) 109.7 ± 1.5 102.8 ± 2.7 108.7 ± 2.1 107.5 ± 2.7

RBF (ml min−1) 2.1 ± 0.1 2.2 ± 0.1 2.1 ± 0.1 2.0 ± 0.1

RBF/W (ml min−1 g−1 wet kidney wt) 3.0 ± 0.2 3.1 ± 0.2 2.9 ± 0.1 2.8 ± 0.1

Data are the mean ± SEM. MAP, mean arterial pressure; RBF, renal blood flow; RBF/W, renal blood flow per gram 
wet kidney weight; RPP, renal perfusion pressures.

Responses to Mas receptor antagonist and vehicle when AT1R and AT2R were blocked
Co-administration of losartan and PD123319 decreased MAP, RPP, and RVR significantly in 
both genders (P < 0.0001) while RBF/KW increased statistically (P < 0.01) (Fig. 1). These 
results were not altered when A779 was added to losartan and PD123319 infusion. However, 
in male rats, there was a tendency to an increase in RBF/KW by infusion of A779 as compared 
to the vehicle (P = 0.08). At the same time such finding in female rats was not observed 
(Fig. 1). The data for the urine volume during 30 min of antagonist (A779) or vehicle 
administration (when both Ang II receptors were blocked) is shown in Fig 2. A779 
administration reduced the urine volume non-significantly.



16

Physiology International (Acta Physiologica Hungarica) 103, 2016

Mansoori A et al.16

Fig. 1: Male and female rats’ data.
Legend: Effect of vehicle and A779 accompanied with co-blockade of angiontensin II receptors type 1 and 2 on 
mean arterial and renal perfusion pressures (MAP and RPP), renal blood flow (RBF), RBF per g kidney weight 

(RBF/g tissue) and renal vascular resistance (RVR). Data are presented as mean ± SEM. The data were compared 
between the groups using repeated measure ANOVA with factor group, time (control and treat)  

and their interaction
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Fig. 2: The collected urine volume during 30 min of antagonist (A779) or vehicle administration  
when both Ang II receptors were blocked.

Legend: L and PD stand for losartan and PD123319, respectively.  
Two groups were compared using t-Student test. 

Discussion

The present study had two major findings. First, it was shown that in absence of AT1R and 
AT2R; MAP, RPP, and RVR decreased significantly in both genders, and no alteration by 
MasR antagonist could be recorded. Second, dual blockade of AT1R and AT2R increased 
RBF in male and female rats, but in male rats, there was a tendency to increase RBF/KW by 
A779 as compared with the vehicle. 

Chronic treatment with either ACE inhibitors or AT1R blockers increases plasma levels 
of Ang 1–7 (5–25-fold), Ang I and ACE2 activity (19, 43). However, increase in Ang 1–7 
leads to vasodilatory effects due to production of nitric oxide (NO) (28), potentiation of 
endogenous bradykinin (39) and binding Ang 1–7 to ACE that facilities the crosstalk between 
ACE and bradykinin B2 receptor (10, 25, 39). Furthermore, bradykinin receptor participates 
in Ang 1–7 effect (15, 30). Infusion of AT2R antagonist; PD123319 at 1, 10, and 100 mg/kg/
min does not significantly affect either blood pressure or any parameter of renal hemodynamics 
measured (21). The dose of PD123319 in our study was 1 mg/kg/h, therefore, it was assumed 
that decrease in MAP, RPP, and RVR was not related to the PD123319. When Ang 1–7 and 
A779 were used at equimolar doses, Ang 1–7 antagonist failed to block Ang 1–7-induced 
depressor response against AT1R blockade; suggesting that Ang 1–7 may act via the AT2R 
(43). Therefore, there is a complex interaction between RAS receptors (4, 6), and some 
actions of Ang 1–7 may also be blocked by AT1R (1, 5) or AT2R antagonists (9); suggesting 
a crosstalk between the MasR and Ang II receptors (20). Other data indicated that the 
antidiuretic effect of AVE0991 that mimics the effects of Ang 1–7 was completely blocked 
by PD123319 and partially blocked by losartan (43). Safari et al. showed that simultaneous 
administration of A779 and PD123319 did not significantly change the basal MAP, RBF, or 
RVR values in either sex, while A779 alone significantly reduced RBF in female but not in 
male (27). In a previous study, we found that impact of MasR on pressure natriuresis and 
diuresis was gender related, and in presence of MasR while AT1R and AT2R were blocked, 
pressure natriuresis and diuresis was augmented in male but not in female rats (22). Many 
putative mechanisms could participate in this interaction; including functional antagonism, 



18

Physiology International (Acta Physiologica Hungarica) 103, 2016

Mansoori A et al.18

crosstalk, or oligomerization (44), and other studies have explained the formation of 
heterodimers among different receptors (2, 35). There are static heterodimers between the 
AT1R and bradykinin B2 receptor, and between the AT1R and MasR that may increase 
activation of G protein (4, 16, 24, 35). Therefore, it is not possible to explain the exact 
mechanism related to the tendency to an increase in RBF/KW by A779 in male rats.

Conclusion

In the absence of Ang II receptors; MAP, RPP, and RVR decreased gender and MasR 
independently. However, RBF/KW increased in both genders, and in male rats, there was a 
tendency for the increase in RBF/KW by A779 as compared to vehicle. These results suggest 
a complex crosstalk between RAS receptors.
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