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Abstract. In this paper, we study the robustness of networks that are
characterized by many-to-one communications (e.g., access networks and
sensor networks) in a game-theoretic model. More specifically, we model
the interactions between a network operator and an adversary as a two
player zero-sum game, where the network operator chooses a spanning
tree in the network, the adversary chooses an edge to be removed from
the network, and the adversary’s payoff is proportional to the number of
nodes that can no longer reach a designated node through the spanning
tree. We show that the payoff in every Nash equilibrium of the game is
equal to the reciprocal of the persistence of the network. We describe op-
timal adversarial and operator strategies and give efficient, polynomial-
time algorithms to compute optimal strategies. We also generalize our
game model to include varying node weights, as well as attacks against
nodes.

Key words: game theory, adversarial games, network robustness, di-
rected graph strength, graph persistence, access networks, sensor net-
works

1 Introduction

Access networks and sensor networks are inherently vulnerable to physical at-
tacks, such as jamming and destruction of nodes and links. From a topological
point of view, the common characteristic of these networks is that the primary
goal of the nodes is to communicate with a designated node; therefore, we will
refer to them as many-to-one networks, as opposed to many-to-many networks,
such as backbone networks. For example, in a mesh network of wireless routers
that provide Internet access to mobile terminals, every router is typically inter-
ested in communicating with a designated gateway router through which the
Internet is reachable, and not with other peer routers of the network (except for
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the purpose of packet forwarding of course). As another example, in a sensor
network, the goal of the network is to collect the sensed data at a designated
central node.

In this paper, we study the robustness of many-to-one networks in a game-
theoretic model. Traditionally, game-theoretic analysis of many-to-one networks
has been focused on resource allocation and routing in order to ensure fairness
and efficiency [1, 2, 3]. To the best of our knowledge, our work is the first that
uses game-theoretic analysis of network robustness in many-to-one networks.

Our work is inspired by [4] and [5], which use game-theoretic analysis of ro-
bustness of many-to-many networks. In [4], the strategic interactions between a
network manager, whose goal is to keep the network connected by choosing a
spanning tree, and an attacker, whose goal is to disconnect the network by at-
tacking a link, were modeled as a zero-sum game. It was shown that the payoff in
every Nash equilibrium of the game is the reciprocal of the (undirected) strength
of the network. Furthermore, an efficient algorithm was provided to compute an
optimal attack. In [5], the game model was generalized to include link attack
costs, which can vary based on the targeted links, resulting in a non-zero-sum
game.

While the definition of our game resembles that of [4] and [5], it is actually
fundamentally different:

– First, our game models many-to-one networks, while [4] and [5] modeled many-
to-many networks. We believe that studying adversarial games in many-to-one
networks is more important as these networks are usually more vulnerable to
attacks.

– Second, our payoff function considers the number of separated nodes, i.e., how
disconnected the network becomes as the result of an attack. This is a more
realistic function for both the operator and the adversary.

– Finally, besides giving an algorithm to compute an optimal adversarial strat-
egy, we also give an algorithm to compute an optimal operator strategy.

Since we believe that a general theory of adversarial network games and
graph robustness metrics is possible, we have kept our notions as similar to that
of [4] and [5] as possible, even though our model and methodology is different.

In [6], a robustness metric for directed graphs with a designated node, called
directed graph strength, was introduced and shown to be computable in poly-
nomial time. Unfortunately, the name “directed strength” is misleading for two
reasons: Firstly, the definition works for undirected graphs as well, without any
modifications. Secondly, the fundamental difference between directed strength
and the similarly named (undirected) strength (which is also introduced in [6]
and used in [4]) is that the former is concerned with reachability between each
node and a designated node, while the latter is concerned with reachability be-
tween every pair of nodes. Therefore, to avoid ambiguity, we renamed directed
graph strength to persistence in [7]. In this paper, we continue to to use the
name persistence.

The main contributions of our paper are the following:
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– We model the interactions between a network operator and an adversary as a
two player, zero-sum game.

– We show that the payoff in every Nash equilibrium of the game is equal to the
reciprocal of the persistence of the network.

– We describe optimal adversarial and operator strategies and give efficient,
polynomial-time algorithms to compute such optimal strategies.

The organization of this paper is the following: In Section 2, we present our
game model. In Section 3, we introduce the concepts and notions used by sub-
sequent sections. In Section 4, we propose an optimal adversarial strategy and
show that the expected payoff of the adversary cannot be smaller than the re-
ciprocal of the persistence of the network if she adopts the optimal strategy. In
Section 5, we propose an optimal operator strategy and show that the expected
payoff of the operator cannot be smaller than minus the reciprocal of the per-
sistence of the network when it follows the optimal strategy. In Section 6, we
combine the results of the preceding sections to describe a class of Nash equi-
libria of the game. In Section 7, we generalize our game model to allow nodes
with non-uniform weights and attacks against nodes. Finally, in Section 8, we
conclude the paper.

2 The Game

The network topology is represented by a connected undirected graphG = (V,E)
with a designated node r ∈ V (G). The goal of the network operator is to keep
the nodes of the network connected to the designated node, while the goal of the
adversary is to separate as many nodes as possible from it.

The interaction between the network operator and the adversary is mod-
eled as a two player, one-shot, zero-sum game. The network operator chooses
a spanning tree to be used for communications. The mixed strategy of the
network operator is a distribution on the set of spanning trees T (G), i.e.,

A := {α ∈ R|T (G)|
≥0 |

∑
T∈T (G) αT = 1}. The adversary chooses an edge to be

attacked. The mixed strategy of the adversary is a distribution on E(G), i.e.,

B := {β ∈ R|E(G)|
≥0 |

∑
e∈E(G) βe = 1}. The payoff for the adversary is the number

of nodes from which there is no path to r in T \ {e}, where T and e are the
spanning tree and edge chosen by the operator and the adversary, respectively.
If e 6∈ T , then the payoff is obviously zero.

Let λ(T, e) denote the number of nodes that are disconnected from r if the
operator uses T and the adversary attacks e. Then, the payoff function of the
game for the adversary can be written as

P (α, β) =
∑

e∈E(G)

∑
T∈T (G)

αTβeλ(T, e) . (1)
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The adversary has to solve max
β

min
α
P (α, β), while the operator has to solve

min
α

max
β

P (α, β). The corresponding solutions, i.e., the optimal adversarial and

operator strategies, are presented in Section 4 and Section 5, respectively.
In this paper, similarly to [4] and [5], we restrict the pure strategies of the

adversary to attacking single edges only. Studying generalized game models, in
which the pure strategies of the adversary consist of subsets of edges, is an open
problem in case of both many-to-many and many-to-one networks.

3 Preliminaries

In this section, we introduce the basic concepts and notions used by subsequent
sections.

For a set of edges A ⊆ E(G), let λ(A) denote the number of nodes from
which there is no path leading to r in the graph when A is removed.

In [6], the persistence of a graph was defined as:

Definition 1 (Persistence). Given a directed graph G with a designated node
r ∈ V (G), the persistence π(G) is defined as

π(G) = min

{
|A|
λ(A)

: A ⊆ E(G), λ(A) > 0

}
. (2)

Since reachability is well-defined in case of undirected graphs as well, the
above definition also works for undirected graphs without any modifications.

Definition 2 (Critical set). A set of edges A ⊆ E(G) is critical, if |A|
λ(A) =

π(G), i.e., if the minimum in Definition 1 is attained.

Definition 3 (Expected loss). The expected loss of an edge e ∈ E(G) in a
given operator strategy α is the expected payoff of the pure adversarial strategy
targeting exclusively e, i.e.,

∑
T∈T αT · λ(T, e).

3.1 Computing persistence

It is shown in [6] that the computation of persistence can be performed using a
maximum flow algorithm 1.

Assume that the task is to decide if π(G) ≥ π0 holds, where π0 is a given
constant. For any set X ⊆ V (G), denote by δ(X) the set of edges leaving X. It
is easy to see that the minimum in Definition 1 is attained at a set A = δ(X)
for a suitable X ⊆ V (G) \ {r}. (Indeed, “spare” edges could be deleted from A
without increasing the ratio |A|/λ(A).) Of course, A = δ(X) implies λ(A) = |X|.
Therefore, π(G) ≥ π0 is equivalent to saying that |δ(X)| − π0 · |X| ≥ 0 holds for

1 In this subsection we build on the basics of network flow theory; the required back-
ground can be found in most introductory graph theory textbooks.
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all X ⊆ V (G)\{r}. Adding π0 · (|V (G)|−1) to both sides we get that π(G) ≥ π0
is equivalent to

|δ(X)|+ π0 · (|X| − 1) ≥ π0 · (|V (G)| − 1) , (3)

for all X ⊆ V (G) \ {r} (where X = V (G) \X).
Consider the following maximum network flow problem. Add a new node s

to G; for each v ∈ V (G) \ {r} add a new arc from s to v and set its capacity to
π0; finally, set the capacity of each original arc of G to 1. Denote the obtained
network by G∗. According to the well-known “max-flow-min-cut” theorem of
Ford and Fulkerson, the maximum flow in the obtained network from s to r is
equal to the minimum cut capacity, that is, the minimum of the sum of capacities
on arcs leaving a set X, where minimum is taken over all subsets X ⊆ V (G∗)
for which s ∈ X and r /∈ X. Obviously, the capacity of the cut X is |δ(X)| +
π0 · (|X| − 1). Comparing this with Equation 3 above, we get that π(G) ≥ π0
is equivalent to the existence of a flow of value π0 · (|V (G)| − 1) from s to r in
the above constructed network; or, in other words, a flow that satures all arcs
leaving s.

Consequently, the question of π(G) ≥ π0 can be answered by a maximum
flow algorithm. From this, the actual value of π(G) (that is, the maximum π0
for which the above described flow exists) can be determined by binary search
(which yields a polynomial time algorithm if all input numerical data is assumed
to be integer). In [6] a refinement of this approach is also given: it is shown that
π(G) can be determined by at most |V (G)| maximum flow computations (even
for arbitrary input data).

Furthermore, if π(G) is known, the above described reduction to maximum
flow can be also used to find a critical set: Construct a G∗ in the above manner
with π0 = π(G). A minimum cut in G∗ is a critical set in G.

4 Adversary strategy

In this section, we describe an adversarial strategy, which achieves an expected
payoff of 1

π(G) , regardless of the strategy of the operator. Later, in Section 5, we

show that this strategy is optimal by proving that this is the highest attainable
expected payoff for the attacker if the operator is rational.

Theorem 1. If an adversary targets exclusively the edges of a critical set A with
uniform probability, then her expected payoff is at least 1

π(G) .

Proof. For any given spanning tree T ∈ T and set of edges B ⊆ E(G),∑
e∈B λ(T, e) ≥ λ(B), since every node cut off by removing B has to increase

λ(T, e) by one for at least one e ∈ B. Therefore, the expected payoff for the
adversary is
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e∈E(G)

∑
T∈T

αTβeλ(T, e) =
∑
e∈A

∑
T∈T

αT
1

|A|
λ(T, e)

=
1

|A|
∑
T∈T

αT
∑
e∈A

λ(T, e)

≥ 1

|A|
∑
T∈T

αTλ(A)

=
λ(A)

|A|
∑
T∈T

αT

=
λ(A)

|A|
=

1

π(G)
.

ut

As seen before in Subsection 3.1, a critical set can be computed in polynomial
time, which implies that the same holds for the adversary strategy described in
Theorem 1.

5 Operator strategy

In this section, we propose an efficient algorithm that computes an optimal oper-
ator strategy, which achieves 1

π(G) expected payoff, regardless of the strategy of

the operator. We have already shown in Section 4 that this is the best attainable
expected payoff for the operator if the adversary is rational.

The following lemma is required by the proof of our main theorem:

Lemma 1. Let G be a graph with a designated sink node r. Let G′ denote the
graph obtained from G in the following way: Add a source node s to the graph.
For each v ∈ V (G)\{r}, add an arc from s to v and set its capacity to 1. Finally,
set the capacity of every original edge of the graph to 1

π(G) . The maximum flow

in G′ from s to r is |V (G)| − 1.

Proof. This readily follows from Subsection 3.1 by scaling the capacity of each
edge with 1

π(G) .

The proof of the following theorem is a constructive proof, where we describe
our efficient algorithm for obtaining optimal operator strategies:

Theorem 2. Let G be a graph with a designated node r. There is an operator
strategy in which the expected loss of every edge is at most 1

π(G) .

Proof. Our proof is constructive and it is based on the following algorithm:

1. Let G′ be the graph obtained from G in the way described in Lemma 1 with
the designated node used as the sink node. Find a maximum flow f in G′

from the source node s to the designated node r.
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2. Find a spanning reverse arborescence 2 T rooted at r in G such that
– T only includes edges to which f assigns a positive flow amount and
– every edge is directed in the same way as the flow.

3. Calculate λ(T, e) for every e ∈ T .

4. Let αT := mine∈T
f(e)
λ(T,e) .

5. For every e ∈ E(G), let f(e) := f(e)− αT · λ(T, e).
6. For every v ∈ V (G) \ {r}, let f((s, v)) := f((s, v))− αT .
7. If the flow assigned by f from s to r is greater than zero, then continue from

Step 2.
8. Let αT := 0 for every other spanning tree.

Before proving the correctness of the algorithm, we have to prove that Step
2 can be executed in each iteration, otherwise the algorithm would terminate
incorrectly. Obviously, if f is a network flow and the amount of flow along every
(s, v), v ∈ V (G)\{r} edge is positive, there has to be a directed path from every
v ∈ V (G) \ {r} to r consisting of edges with positive flow amounts. Thus, we
have to show that if f is a network flow carrying γ from s to r before Step 5,
then it is a network flow carrying γ − αT (|V (G)| − 1) from s to r after Step 6.

For a v ∈ V (G)\{r}, let λv denote λ(T, eout), where eout is the outgoing edge
of v in T . Clearly, the sum of λ(T, ein) over all incoming edges ein ∈ E(G) of v
is λv − 1. Since the flow along every edge e is decreased by αT · λ(T, e), the sum
of outgoing flows is decreased by αT ·λv. Similarly, the sum of incoming flows is
decreased by αT · (λv − 1) +αT = αT · λv, which takes the αT decrease on (s, v)
into account as well. Clearly, the net flow at v remains zero. Since this is true
for every node, except s and r, f remains a network flow. The flow from s to r
is decreased by αT (|V (G)| − 1), since the flow on every (s, v), v ∈ V (G) \ {r},
edge is decreased by αT .

Now, we can prove the correctness of the algorithm. First, we have to prove
that α is indeed a distribution, i.e.,

∑
T∈T αT = 1 and αT ≥ 0,∀T ∈ T . This

is evident, as the amount of flow from s to r is decreased by αT (|V (G)| − 1) at
every assignment, and the amount is |V (G)| − 1 after Step 1 and zero after the
algorithm has finished.

Second, we have to prove that the expected loss of every edge in E(G) is at
most 1

π(G) . After Step 1, the amount of flow along every edge is at most 1
π(G) . At

every αT assignment, the flow along every edge is decreased by αT · λ(T, e) and
it is never decreased to a negative value. Therefore

∑
T∈T αT · λ(T, e) ≤ 1

π(G) .

Finally, we have to prove that the algorithm terminates after a finite number
of iterations. In every iteration, the flow along at least on edge (i.e., along every

edge for which f(e)
λ(T,e) is minimal) is decreased from a positive amount to zero.

Since there are a finite number of edges, the algorithm terminates after a finite
number of iterations. ut

Theorem 3. The above algorithm runs in polynomial time.

2 A directed, rooted spanning tree in which all edges point to the root.
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Proof. In Step 8, the assignment does not have to be actually performed for
every spanning tree, since it is enough to output the probabilities of only the
trees in the support of the distribution. Therefore, every step of the algorithm
can be performed in polynomial time. Furthermore, the number of iterations is
less than or equal to the number of edges |E(G)|, since the flow along at least
one edge is decreased from a positive amount to zero in every iteration. ut

Corollary 1. An operator strategy that achieves at least − 1
π(G) expected payoff

for the operator can be found in polynomial time.

Proof. The claim of this corollary follows from Theorem 2 and 3. Suppose that
the strategy of the operator is constructed using the proposed algorithm. Then,
the expected payoff of every pure adversarial strategy is at most 1

π(G) , since

∀e ∈ E(G) :
∑
T∈T αT · λ(T, e) ≤ 1

π(G) . Therefore, the expected payoff of every

mixed adversarial strategy is at most 1
π(G) as well. ut

6 Nash-equilibrium

Based on the above results, we can describe a class of Nash equilibria:

Corollary 2. The adversarial strategies presented in Section 4 and the operator
strategies presented in Section 5 form Nash equilibria of the game. The expected
payoffs for the adversary and the operator are 1

π(G) and − 1
π(G) , respectively.

Since the game is zero-sum, all Nash equilibria have the same expected payoff.
Consequently, graph persistence is a sensible measure of network robustness.

7 Generalizations

In this section, we present various generalizations to our basic game model intro-
duced in Section 2, which make our model more realistic and practical. We show
that all of these generalized models can be traced back to the basic game model,
i.e., with minor modifications, the previously presented theorems and algorithms
apply to these generalized models as well.

7.1 Directed graphs

Recall that, in Section 3, graph persistence was defined for directed graphs, even
though it was applied only to undirected graphs so far. We have restricted the
topologies of the studied networks to undirected graphs only to simplify our
basic model. Now, we relax this restriction, and use directed graphs to represent
network topologies. This is clearly a generalization, since undirected networks
can be also represented in this model by replacing each undirected edge with
two arcs facing opposite directions. The generalization is very straightforward,
since all steps and arguments of the previously presented algorithms and proofs
work with directed graphs as well, without any modifications.
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7.2 Non-uniform node weights

It is possible to generalize our results to the case where nodes have non-uniform
weight or importance. Let dv be the weight of node v: by disconnecting each
node v from r, the adversary gains and the operator loses dv (instead of 1, as
in the original model). Let λ(T, e) denote the total weight of the nodes that
are disconnected from r when the operator uses T and the adversary attacks e.
Similarly, let λ(A) denote the total weight of the nodes that are disconnected
when A is removed. It is easy to see that the definition of graph persistence and
the proposed adversarial strategy do not have to be modified to accommodate
the changes in the definitions of λ(T, e) and λ(A).

In case of the operator strategy, the following modifications have to be made
to the proposed algorithm and the proof:

– In Step 1, the capacity of each (s, v), v ∈ V (G) \ {r} arc has to be dv, instead
of 1.

– In Step 6, the capacity of each (s, v), v ∈ V (G) \ {r} arc has to be decreased
by dv · αT , instead of αT .

– Consequently,
– the sum of λ(T, ein) over all incoming edges ein ∈ E(G) of v is λv − dv,

instead of λv − 1,
– the flow from s to r is decreased by αT

∑
v∈V (G)\{r} dv, instead of αT (|V (G)|−

1).

7.3 Node attacks

Based on the generalization presented in the previous subsection, our results
can be further generalized to the case where the adversary is not only able
to target edges, but it is able to target nodes as well. In this case, the mixed
strategy of the adversary is a distribution on (V (G) ∪ E(G)), i.e., B := {β ∈
R|V (G)|+|E(G)|
≥0 |

∑
e∈(V (G)∪E(G)) βe = 1}.

For an arbitrary subset A ⊆ (V (G) ∪E(G)), let λ(A) denote total weight of
the nodes which are either elements of A or from which there is no path leading
to r in the graph when A is removed.

The definition of persistence has to be generalized to allow targeting nodes:

Definition 4 (Edge-node-persistence). Given a directed graph G with a des-
ignated node r ∈ V (G), the edge-node-persistence πn(G) is defined as

πn(G) = min

{
|A|
λ(A)

: A ⊆ (V (G) ∪ E(G)), λ(A) > 0

}
. (4)

In [7], we have shown that computing edge-node-persistence can easily be
reduced to computing persistence by vertex splitting, a well-known trick in graph
theory: replace each node v by two nodes v1 and v2, add the arc (v1, v2) to G,
let d(v1) = d(v), d(v2) = 0; finally, replace each original arc (u, v) by (u2, v1). It
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is fairly easy to see that the persistence of the obtained graph is the same as the
edge-vertex-persistence of the original one.

This trick can be also used to obtain adversarial and operator strategies that
achieve 1

πn(G) payoff in the generalized model on any given graph G. Let G′ be

the graph obtained from G in the above manner. Find an optimal adversarial
strategy on G′ as it has been described in Section 4, which achieves 1

π(G′) = 1
πn(G)

payoff on G′. The support of the resulting distribution consists of edges in E(G)
and edges corresponding to nodes in V (G). It is easy to see that if we replace
edges corresponding to nodes with the nodes in the support of the distribution,
the resulting strategy achieves 1

πn(G) payoff on G. An optimal operator strategy,

which achieves 1
πn(G) payoff on G, can be obtained in a similar manner.

Please note that we could define a model in which an adversary is only able
to target nodes, but this is unnecessary. For every optimal adversarial strategy
targeting both nodes and edges, we can construct a corresponding optimal ad-
versarial strategy that targets only nodes: simply replace each arc in the strategy
with its source node. It is easy to see, that the payoff of the resulting strategy
is at least as large as the payoff of the original strategy.

8 Conclusions

In this paper, we introduced a game-theoretic model of the interactions between
the operator of a many-to-one network and an adversary. We showed that the
payoff in every Nash equilibrium of the game is equal to the reciprocal of the
persistence of the network. One of our main contributions is to link the graph-
theoretic robustness of a network, measured in persistence, to game theory, which
gives a better understanding of robustness and an argument for the soundness
of the notion of graph persistence. We also gave efficient, polynomial-time algo-
rithms to compute optimal strategies for the adversary and the operator. The
optimal operator strategy gives a baseline for the design of robust many-to-one
routing algorithms.
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Nr. OTKA 103985 of the Hungarian National Science Fund. The work is also
related to the internal project of the authors’ hosting institution on “Talent care
and cultivation in the scientific workshops of BME”, which is supported by the
grant TÁMOP - 4.2.2.B-10/1–2010-0009.



Game-theoretic Robustness of Many-to-one Networks 11

References

1. E. Altman, T. Boulogne, R. El-Azouzi, T. Jimenez, and L. Wynter. A survey
on networking games in telecommunications. Computers & Operations Research,
33(2):286–311, 2006.

2. M. Felegyhazi and J.P. Hubaux. Game theory in wireless networks: A tutorial. Tech-
nical Report LCA-REPORT-2006-002, EPFL, Lausanne, Switzerland, June 2007.

3. D.E. Charilas and A.D. Panagopoulos. A survey on game theory applications in
wireless networks. Computer Networks, 54(18):3421–3430, 2010.

4. Assane Gueye, Jean C. Walrand, and Venkat Anantharam. Design of network topol-
ogy in an adversarial environment. In Proc. of the 1st International Conference on
Decision and Game Theory for Security, GameSec’10, pages 1–20, Berlin, Germany,
November 2010.

5. Assane Gueye, Jean C. Walrand, and Venkat Anantharam. A network topology
design game: How to choose communication links in an adversarial environment?
In Proc. of the 2nd International ICST Conference on Game Theory for Networks,
GameNets’11, Shanghai, China, April 2011.

6. William H. Cunningham. Optimal attack and reinforcement of a network. Journal
of the ACM, 32(3):549–561, 1985.

7. A. Laszka, L. Buttyán, and D. Szeszlér. Optimal selection of sink nodes in wireless
sensor networks in adversarial environments. In Proc. of the 12th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia, WoWMoM’11, pages
1–6, Lucca, Italy, June 2011.


