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ABSTRACT 11 

The bioavailability of many soil contaminants depends on their interaction with the soil organic 12 

matter. The paper presents a new approach of using stable paramagnetic spin labels for 13 

investigating the kinetics of covalent binding of specific xenobiotic functional groups with humic 14 

acids, a major organic matter fraction. Leonardite humic acid (LHA) was incubated with the 15 

nitroxide spin labels amino-TEMPO (4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl) and anilino-16 

NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl), respectively, which contain an 17 

aliphatic or aromatic functionality susceptible to interaction with LHA. Electron spin resonance 18 
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(ESR) spectra of LHA samples without and with the enzyme laccase were recorded at X-band 19 

frequency (9.43 GHz) at room temperature and neutral pH. Binding was detected by a 20 

pronounced broadening of the spectral lines after incubation of LHA for both spin labels. The 21 

development of a broad signal component in the spectrum of anilino-NO indicated the 22 

immobilization due to strong binding of the aniline group. The reorientational correlation time of 23 

bound anilino-NO is more than two orders of magnitude greater than that of the free label. The 24 

ratio of the amount of bound to the unbound species was used to determine the kinetics of the 25 

covalent bond formation. Reaction rate constants of 0.16 min
-1

 and 0.01 min
-1

 were determined 26 

corresponding to half-times of 4.3 min and 69.3 min, respectively. Treatment of LHA with 27 

laccase enhanced the amount of the reacting anilino-NO species by a factor of 7.6, but left the 28 

reaction rate unaltered. Oxidative radical coupling was excluded by using the spin trap agent n-29 

tert-butyl-alpha-phenylnitrone.  30 

Keywords: 31 

ESR; spin labeling; nitroxide radical; organic xenobiotics; humic acid; covalent binding; bound 32 

residues; aromatic amines 33 
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INTRODUCTION 34 

Human activities, e.g., waste deposition, mining, fertilizing with manure, or application of 35 

chemicals for pest and weed control, have led to contamination of soil systems. Many of these 36 

anthropogenic compounds are synthetic organic chemicals, to which soil has never been 37 

naturally exposed and which are thus called xenobiotics. In biodegradation simulation studies, 38 

many xenobiotic chemicals exhibit a large fraction of residues, which cannot be further extracted 39 

even by harsh methods (non-extractable residues, NER) [1]. Various interaction processes in soil 40 

such as sorption, sequestration (entrapment) or immobilization via binding to soil organic matter 41 

(SOM), clay minerals, and organo-clay complexes [2] govern the extractability and thus their 42 

availability for leaching to groundwater, volatilization, abiotic and biotic degradation, or uptake 43 

by living organisms. NER, also called “bound” residues, have been extensively reviewed, in 44 

particular for pesticides but also for many other organic chemicals [3, 4, 5]. 45 

 Covalent binding of xenobiotics and its metabolites to soil components is of particular interest 46 

because it ultimately withdraws the xenobiotic and its metabolites from any adverse 47 

environmental effect. It is known since many years that functional groups of xenobiotics such as 48 

aromatic amino groups are involved in covalent binding to SOM, in particular to humic 49 

substances (HAs) [6, 7]. Aromatic amines, e.g. aniline (aminobenzene), are the building blocks 50 

of many pesticides, veterinary pharmaceuticals, textile dyes and other classes of synthetic 51 

chemicals and comprise an important class of environmental contaminants [8]. They are also 52 

reductive transformation products of nitro-aromatic explosives such as 2,4,6-trinitrotoluene 53 

(TNT) and received a great deal of attention in remediation of contaminated manufacturing sites 54 

[9 – 11].  55 
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15
N NMR studies with aniline and other aromatic amines have revealed nucleophilic addition of 56 

the aromatic amino group to quinone and other carbonyl groups of humic substances [6, 8, 11 - 57 

14]. A fast, reversible 1,2-nucleophilic addition and a slower irreversible 1,4-nucleophilic 58 

addition of the aromatic amino group to the carbonyl group of quinones have been proposed 59 

resulting in the formation of Schiff base (iminoquinone) and Michael amine-carbonyl adducts 60 

(anilinoquinone), respectively. Reaction kinetics of aromatic amines with humic substances has 61 

been studied using ultrafiltration techniques and HPLC for analytic determination [12, 15]. Fast 62 

and slow reaction rate constants were observed in the order of 10
-2

 and 10
-3

 h
-1

, i.e. half-times of 63 

50 and 500 h, respectively, depending on pH, substitution of the aniline ring, initial aniline 64 

concentration and humic substance [8, 15]. Rapid initial sorption could also be dominated by 65 

irreversibly covalent binding. However, the method applied did not allow determining very fast 66 

reaction kinetics in the first few hours after incubation. Oxidative reaction mechanisms resulting 67 

in the formation of aniline radicals, which couple with radical species, have also been proposed 68 

[16]. Thorn et al. [13] pointed out that radical reactions involving aniline radicals and 69 

semiquinone radicals are possible in the presence of peroxidase or Mn-oxides, as these govern 70 

one-electron oxidation initiated polymerization reactions of aromatic amines and of quinones, 71 

but an open question remained, whether a large pool of quinones is available in soil readily able 72 

to add such a weak nucleophile.  73 

The extractability of sulfonamides, which contain an aniline functional group as part of its 74 

antimicrobial active moiety, decreased rapidly in soil incubation studies, even if harsh extraction 75 

methods were applied [17 – 19]. The strong sorption behavior is attributed to the formation of 76 

non-extractable residues (NER).  Bialk et al. [20, 21] concluded that the rapid NER formation of 77 

sulfonamides in soil may be due to Michael adducts (anilinoquinones) and Schiff base formation 78 
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(iminoquinones) of the aromatic amino group, which can only partially be cleaved during 79 

fractionation and vigorous extraction procedures. Bialk and Pedersen [22] observed fungal 80 

peroxidase-mediated covalent coupling of sulfonamide with HA.  Gulkowska et al. [23] 81 

proposed a two-step process with an initial formation of imine and anilinoquinone followed by 82 

incorporation into the soil polymer structure. They ruled out oxidative radical coupling with 83 

constituents of SOM as an alternative reaction pathway. 84 

ESR spin labeling with stable nitroxide spin labels has successfully been applied since many 85 

years for investigating the structure and dynamics of biological macromolecules and assemblies, 86 

particularly membranes and proteins [24, 25]. Stable nitroxide radicals can also be used for 87 

studying the interaction of xenobiotics in soil and sediment systems. The signal of the 88 

paramagnetic NO group is influenced by its soil microenvironment and can be recorded by ESR 89 

spectroscopy. Using ESR of spin-labelled organic macromolecules such as polysaccharides, 90 

Steen et al. [26] could monitor the sorption to natural sediment surfaces.  Sorption specificity and 91 

sorption mechanisms to SOM have been studied by Lattao et al. [27] with paramagnetic probes, 92 

where nitroxide compounds of different polarity were used as relaxation agents for NMR 93 

spectroscopy.
 
By means of spin relaxation they could show that nitroxide spin labels exhibit 94 

“little or no preferential sorption in SOM based on functional group chemistry or putative micro-95 

domain character”. However, they did not investigate the interaction of nitroxide compounds 96 

containing functional groups such as aniline with SOM.  97 

We applied the method of nitroxide spin labeling to investigate the interaction of the functional 98 

amino group to soil humic acid. Signals of nitroxide spin labels, substituted with a functional 99 

group such as aliphatic or aromatic amine, depend on the molecular environment, e.g. polar or 100 

non-polar, and the binding state, e.g. covalently bond. The property of nitroxide radicals to act as 101 
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good hydrogen bond acceptors [28]
 
does not compromise their use. Moreover, oxidative radical 102 

coupling reaction as a mechanism for covalent binding can be investigated by using a spin 103 

trapping agent [29]. The objectives of our work are to (i) develop the method of nitroxide spin 104 

labeling for the investigation of covalent binding of typical xenobiotic functional groups (here: 105 

aniline) to humic acid as a model for complex soil matrices (proof of concept); (ii) apply the 106 

method for the determination of reaction kinetics of aniline to soil humic acid; (iii) investigate 107 

the influence of phenoloxidase enzyme on the reaction kinetics; and  (iv) verify or falsify the 108 

assumption of a radical reaction for the covalent binding of aniline.    109 

EXPERIMENTAL SECTION 110 

Chemicals. All chemicals were purchased from Sigma-Aldrich (Munich, Germany) if not 111 

otherwise noted. They were analytic grade products and used without further purification. 112 

Humic acid. Leonardite humic acid (LHA) was purchased from the International Humic 113 

Substances Society (http://www.humicsubstances.org). Stock solution of 15 mg/mL was 114 

prepared by dissolution in aqua bidest. and adjusted to pH = 7.0 with 1 M NaOH.  115 

Phenoloxidase. Extracellular fungal laccase from Agaricus bisporus with an activity of 5.6 U 116 

mg
-1 

was used without further purification. Stock solutions of 21.4 U/ml were prepared and 117 

stored at 4° C.  Aliquots of 10 μL were added to 60 μL of LHA solution and incubated for three 118 

days at room temperature.  119 

Spin labels. Stock solutions of 3 mM 4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl (amino-120 

TEMPO) and 2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-yloxy (anilino-NO), synthesized 121 

according to Gadanyi et al. [30], were prepared by dissolution in EDTA-phosphate buffer and 122 

stored at – 80 °C.  123 
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ESR Spectroscopy. ESR spectra were recorded at X-band frequency (9.43 GHz) at room 124 

temperature using a Magnettech Mini Scope MS 200 (Magnettech GmbH, Berlin, Germany). 125 

The microwave power was adjusted to 10 mW and the magnetic field modulation amplitude was 126 

set to 0.2 mT. Samples of 15 μL of 15 mg/mL LHA solution were mixed with 5 μL of 3mM spin 127 

label solution to achieve a final concentration of 750 µM and filled into glass capillaries with an 128 

inner diameter of 0.9 mm (Hirschmann Laborgeräte, Germany). Spectra were recorded in 129 

intervals of four minutes for the first half hour after label addition and afterwards at 1, 2,...5 130 

hours after label addition. Three replicates of each experimental setting were made and fitted 131 

with Origin 7 (OriginLab Corp., USA ) to derive the reaction kinetics. All spectra and graphs 132 

were plotted with Origin 7 and CorelDraw X4 (Corel Inc., Canada).  133 

Radical scavenger. N-tert-butyl-alpha-phenylnitrone (PBN) was used as a spin trap agent. Stock 134 

solution of 300 mM PBN was in turn added to aqueous solutions of LHA, LHA plus laccase, 135 

LHA plus aniline, and finally LHA plus laccase and aniline. Mixtures were made for a final PBN 136 

concentration of 50 mM and a volume of 20 µL. For the laccase settings, LHA and laccase were 137 

mixed in a 6:1 ratio (60 µL LHA + 10 µL laccase) and incubated at room temperature for three 138 

days. A 3 mM aniline stock solution was prepared from anilinium-HCl, adjusted to pH 7, and 139 

mixed with LHA in a 1:4 ratio to obtain a concentration of 750 µM. Fenton's reaction was used 140 

for producing oxygen radicals and testing spin trapping by PBN [31]. For the reaction, 8.5 µL of 141 

200 µM iron sulfate solution and 8.5 µL of 40 mM hydrogen peroxide were mixed. ESR 142 

spectrum was recorded immediately after adding 3.3 µL of 300 mM PBN to this mixture 143 

providing a final concentration of 50 mM. 144 

Spectra simulation. To analyze the rotational correlation times of the spin labels and the ratios 145 

of free and bound spin labels in the ESR spectra, experimental spectra were fitted using the 146 
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software Multicomponent774 147 

(http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/software.html). Spectra were 148 

interpolated using Origin 7, to reduce the number of data points from 4.096 to 512 as required by 149 

Multicomponent774. Simulated spectra were fitted to experimental ESR spectra of amino-150 

TEMPO in absence and presence of LHA using a model of isotropic Brownian rotational 151 

diffusion. Fitting parameters were the rotational correlation rate, the hyperfine tensor component 152 

Azz, and a Gaussian line width to account for not resolved hyperfine interaction with the methyl 153 

protons. All other parameters were fixed according to typical values for TEMPO derivatives in 154 

aqueous solution (gxx = 2.0080, gyy = 2.0058, gzz = 2.0023, Axx = Ayy = 0.6 mT). For fitting of the 155 

spectra of anilino-NO axial symmetry of the reorientational diffusion had to be assumed to 156 

achieve reasonable agreement between simulation and experiment. Thus rotational diffusion was 157 

accounted for by using the two values of the rotational correlation rates parallel and 158 

perpendicular to the symmetry axis, IIR  and R  All other parameters were chosen identical to 159 

those given above. For the simulation of a two component spectrum originating from two 160 

fractions of differently immobilized spin labels a superposition of two spectra was calculated 161 

with two different sets of rotational correlation rates. Fittings were performed of such simulated 162 

two component spectra to the experimental ones with the ratio of the two fractions and the 163 

rotational correlation rates as fitting parameters. 164 

RESULTS AND DISCUSSION 165 

Physical-chemical properties of amino spin labels. Amino-TEMPO and anilino-NO represent 166 

molecules with amino moieties typical for organic chemicals, which are susceptible to 167 

interaction with humic substances.
 
Among others, the two compounds differ in their lipophilicity 168 

expressed as logarithm of the octanol-water partition coefficient, Log KOW, and the acid-base 169 

http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/software.html
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dissociation constant, pKa, of the amino group. Measured Log KOW of amino-TEMPO are 3.50 170 

[32] and 3.64 [33] at pH 12 and 0.04 at pH 7 [32]. pKa values of amino-TEMPO are 8.99 [33] 171 

and 9.10 [33], respectively. No measured Log KOW and pKa were available for anilino-NO. With 172 

KOWWIN of the EPISuite v4.11 package from the U.S. Environmental Protection Agency [34] 173 

only Log KOW values of the hydroxylamine form, i.e. the protonated non-radical N-OH form, 174 

could be calculated.
  

EPISuite provided values for Log KOW of 0.56 for NOH-forms of amino-175 

TEMPO and 1.91 of anilino-NO, respectively. We assumed that the difference of 0.52 between 176 

the measured Log KOW of the radical NO-form and the estimated non-radical NOH-form of 177 

amino-TEMPO represents the fragment of the O-radical and used it to adjust the Log KOW value 178 

of  anilino-NO accordingly, which provided a Log KOW of 1.39 (Table 1). A pKa of the conjugate 179 

acid of the amino group of anilino-NO of 4.73 (Table 1) was estimated with the SPARC Online 180 

Calculator [35]. At pH 7, anilino-NO exist in its neutral form, whereas amino-TEMPO is 181 

protonated at the amino moiety, i.e. it is in the cationic form. This explains the low Log KOW of 182 

amino-TEMPO at pH 7. We thus expect that amino-TEMPO mainly interacts at neutral pH via 183 

ionic interactions with humic acid. On the other hand, the pKa of a non-ionic substance is related 184 

to its nucleophilic reactivity [15]. Thus, anilino-NO is susceptible to covalent binding due to 185 

nucleophilic addition reaction with humic acid.  186 

Table 1. Structure and properties of nitroxide spin labels;  187 

Nitroxide spin 

label 
Amino-TEMPO Anilino-NO 

CAS-No. 14691-88-4 328000-24-4 

IUPAC name 

4-amino-2,2,6,6-

Tetramethylpiperidin-1-

oxyl 

2,5,5-Trimethyl-2-(3-

aminophenyl)pyrrolidin-1-

oxyl 
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Chemical 

structure 

 

 
   

log KOW 

3.50 (pH = 12)
1
  

0.04 (pH=7)
1 

3.64 ± 0.07 (pH=12)
2 

1.39
3
 

pKa of amino 

group 

9.10 ± 0.10
1 

8.99 ± 0.01
2 

4.73
3
 

1
) [32]; 

2
) [33]; 

3
) estimated, see text 188 

LHA incubated with amino-TEMPO. The relationship between the nitroxide reorientational 189 

motion and the line shape of the continuous wave (cw) spectrum recorded at X-band frequencies 190 

(9 GHz, 0.3 T) has been extensively reviewed [36], thus these properties are summarized in 191 

brief. The term “mobility” is used in the following in a general sense and includes effects due to 192 

the rate, anisotropy and amplitude of the nitroxide reorientation. Weak interaction of a nitroxide 193 

with its micro-environment in solution of low viscosity results in a high degree of mobility. In 194 

this case, the anisotropic components of the hyperfine interaction of the electron with the 195 

nitrogen nuclear spin magnetic moment are averaged out and the spectrum consists of three 196 

equally spaced lines of small width in the order of 0.2 mT. The splitting between the lines is 197 

given by the isotropic component of the hyperfine interaction. In turn, strong interaction of the 198 

nitroxide group with the micro-environment, which restricts unhindered reorientation motion, or 199 

high viscosity of the solvent, are characterized by increased apparent hyperfine splitting and line 200 

widths. The effect of line broadening and corresponding amplitude decrease due to motional 201 

restriction is most pronounced for the high field resonance line. In the limiting case of 202 
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completely hindered reorientational dynamics the spectrum shows a so-called powder spectrum 203 

line shape [36]. The ESR spectra of amino-TEMPO in aqueous solution and upon incubation 204 

with LHA are shown in Fig. 1.  205 

Fig. 1 ESR spectra recorded at X-band (9.4 GHz) in the B-field region between 333 and 339 206 

mT: amino-TEMPO in aqueous solution (grey continuous line) and upon incubation with LHA 207 

(broken line). 208 

 209 

Three sharp hyperfine lines of nearly equal amplitude reveal unrestricted fast reorientational 210 

motion of amino-TEMPO in aqueous solution. Fitting of simulated ESR spectra to the 211 

experimental ones using the model of isotropic Brownian rotational diffusion yields the value of 212 

the rotational correlation time of 20 ± 5 ps. Upon incubation with LHA the amplitude of the high 213 

field hyperfine absorption signal is significantly reduced (Fig. 1) revealing a decreased mobility 214 

of the nitroxide. Fitting of a simulated spectrum yields a value of the rotational correlation time 215 

of 95 ± 10 ps. Since the viscosity of the used LHA solution is approximately 1.3 times the 216 

viscosity of pure water [37] the observed fivefold increase of the rotational correlation time of 217 

amino-TEMPO must be due to an interaction of the spin label with components of LHA which 218 

restrict its mobility. Possible mechanisms include transient bonding of the amino group via an 219 

ionic interaction to LHA, e.g. cation-exchange sorption
38

 or hydrogen bonding of the nitroxide 220 

group to hydrogen donors
39

. Since the experimental spectra do not provide any indication for two 221 

components the weakly bounded and free nitroxide fractions may be in fast equilibrium resulting 222 

in a spectrum with average rotational correlation time.  223 

LHA incubated with anilino-NO. A different picture evolves for anilino-NO (Fig. 2). 224 

Compared to the EPR spectrum of anilino-NO in aqueous solution (Fig. 2, upper panel) the 225 
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reduction of the amplitudes of the low field and high field hyperfine absorption signals with 226 

respect to the center line reveal a decreased mobility of anilino-NO in the presence of LHA (Fig. 227 

2, middle panel).  228 

Fig. 2 ESR spectra recorded at X-band (9.4 GHz) in the B-field region between 332 and 340 229 

mT: Anilino-NO in aqueous solution (upper panel) and upon incubation with LHA (measured, 230 

middle panel and simulated, lower panel). The inset in the middle panel highlights the low field 231 

resonance line of the signal of the bound label. For comparison with the experimental spectrum 232 

the simulated spectra for the free and bound components are superimposed in the lower panel. 233 

The concentration of the immobilized component was enhanced by a factor of 2.7 compared to 234 

the experimental case for better visibility. 235 

 236 

Reasonable fitting of simulated spectra to the experimental ones required a model of axial 237 

symmetry of the rotational diffusion with the symmetry axis being parallel to the nitroxide y-238 

axis. From the reorientational rates parallel and perpendicular to this axis, IIR  and R ,  an 239 

effective reorientational correlation time  240 

IIRR


6

1
       (1)   241 

was calculated. For anilino-NO in aqueous solution and in the presence of LHA we determined 242 

correlation times of 50 ± 23 ps and 219 ± 53 ps, respectively. Similar to the finding with amino-243 

TEMPO the increase of the rotational correlation time by a factor of four cannot be explained by 244 

the increase of the viscosity of the solution upon incubation with LHA. Thus, we conclude that a 245 

transient weak interaction of anilino-NO with components of LHA, e.g., hydrogen bonding to the 246 

nitroxide group or hydrophobic interaction, is responsible for the decrease of reorientational 247 

motion. Axial symmetry of rotational diffusion with the symmetry axis parallel to the y-axis of 248 
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the nitroxide can be readily explained by the shape of the molecule with its longest axis oriented 249 

nearly parallel to the nitroxide y-axis (Fig. 3).  250 

Fig. 3 Structure of anilino-NO with orthogonal coordinate system 251 

In addition to this weakly immobilized spin label, a broad spectral component is present which 252 

indicates strongly immobilized anilino-NO. This component is most clearly resolved in the low 253 

and high field regions of the spectrum (see Fig. 2, insert for the low field region). Thus, a 254 

fraction of anilino-NO is immobilized due to strong bonding to LHA, which restricts the 255 

reorientational dynamics of the nitroxide moiety. A simulated spectrum with two components of 256 

weakly and strongly immobilized spin labels is shown in Fig. 2, lower panel, with the component 257 

for the strongly immobilized spin label enlarged compared to the experiment spectrum for 258 

clarity. Reorientational correlation times of weakly and strongly immobilized anilino-NO 259 

determined from fittings of simulated two component spectra to the experimental ones  yielded 260 

219 ± 53 ps and  6.2 ± 0.9 ns, respectively.  261 

The ESR spectrum of LHA incubated with anilino-NO leads to the conclusion that humic acids 262 

play a significant role in binding of aromatic amino-groups of xenobiotics. It is known, that 263 

oxidizing catalyst, e.g. phenoloxidase enzymes or metal oxides, enhance the covalent binding of 264 

functional aniline group to humic acids [20, 22]. Therefore, we additionally used laccase as an 265 

oxidizing enzyme to investigate the activating effect on the reaction kinetics (see below). 266 

Spin number ratio. For sake of simplicity the weakly and strongly immobilized spin labels will 267 

be labeled “free” and “bound” in the following. The ratio of the spin number of the bound to that 268 

of the free species, Nbound/Nfree , is used for the determination of the reaction kinetics. It is 269 
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calculated from the corresponding ratio of the peak height (amplitude) of the low field resonance 270 

line of the signal of the bound to that of the free, unbound label according to:  271 

        (2) 272 

The factor 45.9, which relates the ratio of spin numbers to that of spectral amplitudes, was 273 

determined from the simulated spectrum shown in Fig. 2, lower panel. Here, the ratio of the spin 274 

numbers was calculated from the ratio of the double integrals of the spectra of the two 275 

components, the ratio of the amplitudes was determined from their values at 330.0 and 334.0 276 

mT.  277 

Kinetic studies. Spectra were recorded immediately after mixing of the spin labelled molecules 278 

with LHA and repeated every few minutes. Intervals were increased with reaction time. Fig. 4 279 

shows the peak of the strongly bound anilino-NO within the first five hours.  280 

 281 

Fig. 4 ESR signal of the bound species of anilino-NO incubated with LHA 282 

 283 

The spin number ratio is plotted against time in Fig. 5. The narrow variance of the three 284 

replicates demonstrates complete mixing and the precision and reproducibility of the 285 

measurements. Note that the right amplitude axis belongs to the data recorded without laccase. 286 

The first data point, measured after a few minutes mixing time, was set to zero although the 287 

signal of the bound species was already visible. This was done for all settings because the 288 

starting point of the reaction is undefined. A mono-exponential (2) and a bi-exponential model 289 

(3) were tested for fitting the experimental data:  290 
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        (3) 291 

       (4) 292 

The coefficients ai denote the relative amount of anilino-NO reacting with LHA and bi are the 293 

pseudo-first-order reaction rate constants. Table 2 shows the fitted model parameters for both 294 

models. The mono-exponential model reveals values of 0.18 ± 0.004 for a1 and 0.03 ± 0.002 295 

min
-1

 for b1, corresponding to a half-time of 24 min.  However, a better fit was achieved with 296 

two parallel first-order reactions. The two reactions have pseudo-first-order rate constants b1 and 297 

b2 of 0.01 ± 0.001 and 0.16 ± 0.017 min
-1

, which corresponds to half-times of 69.3 and 4.3 min, 298 

respectively. The relative amount of the reacting species a1 is 0.14 ± 0.002 and thus 2.8 times 299 

greater than a2, which is 0.05 ± 0.003. Thus, the very fast reaction determines the overall 300 

increase of the bound anilino-NO label only at the very beginning. Colon et al. 2002
15

 301 

determined kinetic data for the reaction of ortho-, meta- and para-substituted anilines with 302 

sediment and found two pseudo-first-order rate constants depending on the substitution pattern. 303 

Corresponding half-times were around 20 h and 500 h and thus larger than those found with the 304 

spin labeling method. After t = 4 h incubation time of aniline in a pond sediment, Weber et al. 305 

2001
8
 found sorbed aniline fractions of 0.18 and 0.16 at pH = 6.82 and 7.37, respectively. They 306 

attributed them to rapid covalent binding of the neutral form of aniline but could not determine 307 

the rate constants. They observed a longer term sorption rate (t > 4 h) with pseudo-first-order rate 308 

constants of around 0.005 h
-1

, which correspond to the findings of Colon et al. [15]. Hennecke 309 

(personal communication) investigated the aerobic and anaerobic transformation of aniline in the 310 

water-sediment simulation system according the OECD Test Guideline 308 [40] and found very 311 

rapid formation of NER in sediment with high organic carbon content up to 62 % of the applied 312 

radioactivity immediately after adding. However, they could not determine the rate constant of 313 

the very rapid NER formation.    314 
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 315 

Fig. 5 Plot of the spin number ratio versus time of the bound species of anilino-NO incubated 316 

with LHA without (black, right y-axis) and upon incubation with (red, left y-axis) laccase; bold 317 

and dashed lines are fitted curves according to the bi- and mono-exponential kinetic model.  318 

 319 

 320 

Table 2  Fitted model parameters for mono- and bi-exponential reaction kinetics of 321 

anilino-NO with LHA and with LHA incubated with laccase. 322 

Setting Relative 
amount of fast 
reacting 
species a1 

Rate constant 
fast reaction 
b1 [min-1] 

Relative 
amount of very 
fast reacting 
species a2 

Rate constant 
of very fast 
reaction b2 
[min-1] 

Coefficient of 
determination,  

r2 

LHA (bi-
exp) 

0.14 ± 0.002 0.01 ± 0.001 0.05 ± 0.003 0.16 ± 0.017 0.999 

LHA 
(mono-

exp) 
0.18 ± 0.004 0.03 ± 0.002 - - 0.988 

LHA+ 
Laccase 
(bi-exp) 

1.07 ± 0.015 0.01 ± 0.001 0.06 ± 0.016 0.27 ± 0.29 0.998 

LHA + 
Laccase 
(mono-

exp) 

1.09 ± 0.022 0.01 ± 0.001 - - 0.999 

 323 

Laccase is known to catalyze the formation of covalent bonds by oxidizing unreactive 324 

hydroquinone moieties in humic substances to electrophilic quinone moieties [6, 8, 23]. We thus 325 

incubated LHA with extracellular fungal laccase from Agaricus bisporus for three days at room 326 

temperature and mixed it with anilino-NO. Fig. 4 5 shows the spin number ratio plotted against 327 

time. Note that the left y-axis belongs to the setting with laccase. A larger amount of anilino-NO 328 

reacting with LHA was observed than in the experiments without laccase. Again, a mono- and 329 

bi-exponential model was used for fitting. Obviously, both models give almost the same data fit. 330 
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The kinetic model parameters a1 and b1 are thus also almost identical, i.e. 1.09 ± 0.022 and 0.01 331 

± 0.001 min
-1

 for the mono-exponential and 1.07 ± 0.015 and 0.01 ± 0.001 min
-1

 for the bi-332 

exponential model, respectively (Table 2). The very fast reaction with b2 = 0.27 ± 0.29 min
-1

 has 333 

a neglecting influence on the covalent binding of anilino-NO to LHA due to the low value of a2 334 

= 0.06 ± 0.016, which is 17.8 lower than a1.  The treatment with laccase has obviously activated 335 

only the slower reacting LHA sites. The rate constants for the reaction are identical for the 336 

settings with and without laccase, whereas the relative amount of reacting species is considerably 337 

enhanced from 0.14 to 1.07, which is factor of 7.6. This finding is in line with the observations 338 

of other authors [10, 21, 23], who showed the increase of reactive sites of humic substances 339 

mediated by the phenoloxidase enzyme laccase. We conclude from our kinetic study with laccase 340 

that the broadened signal of anilino-NO can be attributed to covalent binding to LHA, 341 

presumably a nucleophilic addition to quinones or other carbonyl moieties. 342 

Radical coupling reaction. Radical reactions involving free radical intermediates and 343 

semiquinone radicals have also been proposed as covalent binding mechanism [2]. We thus 344 

added the spin trap agent PBN, which displays a characteristic ESR spectrum if free radicals are 345 

present in a sample. For comparison, Fenton's reaction was used to produce free radicals, which 346 

react with PBN to stable spin adducts. Fig. 6 shows ESR spectra of PBN incubated with LHA 347 

and 750 µM aniline (bottom), with laccase and 750 µM aniline (middle), and with Fenton’s 348 

reagent (top). ESR spectra of LHA without and with laccase show the unchanged broad signal of 349 

the organic radicals, which are typical for humic acids [41] but no additional peaks from free 350 

radicals or spin adducts with PBN. If free radicals would have been produced in the LHA 351 

experiments, i.e. radicals intermediates or/and radical semiquinones, similar spectra as with 352 

Fenton’s reagent would have been recorded. From the absence of the characteristic PBN spin 353 
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adduct spectrum we conclude that oxidative radical coupling can be excluded as a mechanism of 354 

the covalent binding of anilino-NO to LHA, even in the presence of laccase.   355 

 356 

Fig. 6 Plot of experimental spectra of LHA with aniline (bottom), aniline and laccase (middle) 357 

and Fenton's reaction (top) in presence of 50 mM PBN. Top spectrum displays characteristic 358 

PBN spectral lines produced by radical reaction. Ordinate axis of top spectrum is enhanced by 359 

1.8 relative to the other two spectra. 360 

 361 

CONCLUSION 362 

Our ESR experiments with labelled aniline as a model compound have shown in a proof-of-363 

concept approach that the method can be used to identify strong binding of aromatic amines and 364 

determine its reaction kinetics to humic acid, an important soil constituent. Derivatives of 365 

nitroxide radicals are stable enough to study the interaction of specific functional groups to 366 

isolated humic substances as model compounds. We conclude from the spectral differences of 367 

the two amine substituted nitroxide radicals that the aromatic amino group covalently binds to 368 

humic substances at neutral pH, while aliphatic amines presumably interact via cation exchange 369 

or hydrogen bonding of the nitroxide group to hydrogen donors of LHA.  Covalent binding of 370 

labelled aniline was evidenced by adding laccase. Oxidative radical coupling could be excluded 371 

by using the spin trapping agent PBN. 372 

 Our experiments demonstrated the suitability of nitroxide labels to investigate the interaction of 373 

xenobiotic chemicals with humic acids. In particular, the fast reaction of aniline with HA could 374 

not yet be revealed with other methods so far. It could explain the rapid loss of the extractability 375 

of sulfonamides after application to natural soil [17 – 19]. Humic acids have a wide distribution 376 

of potential reaction sites, which might be activated by treatment with laccase or other oxidizing 377 
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enzymes. The fast reaction of aniline with LHA observed with the nitroxide spin label might be a 378 

first step in a series of subsequent binding processes [23].  Covalent binding can unambiguously 379 

distinguished from other sorption processes such as sequestration, which would less restrict 380 

mobility of the spin labelled molecule. The specificity of the interaction process coupled with the 381 

sensitivity of the spin label signals make the method also suitable for more complex systems like 382 

soil and sediment.  Recently, nitroxide spin probing experiments with natural soil [42] have 383 

demonstrated the potential of the method for investigating the interaction of xenobiotic 384 

functional groups with complex soil systems.  385 
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 460 

Figure captions 461 

 462 

Fig. 1 ESR spectra recorded at X-band (9.4 GHz) in the B-field region between 333 and 339 463 

mT: amino-TEMPO in aqueous solution (grey continuous line) and upon incubation with LHA 464 

(broken line). 465 

Fig. 2 ESR spectra recorded at X-band (9.4 GHz) in the B-field region between 330 and 340 466 

mT: Anilino-NO in aqueous solution (upper panel) and upon incubation with LHA (measured, 467 

middle panel and simulated, lower panel). The inset in the middle panel highlights the low field 468 

resonance line of the signal of the bound label. For comparison with the experimental spectrum 469 

the simulated spectra for the free and bound components are superimposed in the lower panel. 470 

The concentration of the immobilized component was enhanced by a factor of 2.7 compared to 471 

the experimental case for better visibility.  472 

Fig. 3 Structure of anilino-NO with orthogonal coordinate system  473 

Fig. 4 ESR signal of the bound species of anilino-NO incubated with LHA 474 

Fig. 5 Plot of the spin number ratio versus time of the bound species of anilino-NO incubated 475 

with LHA without (black, right y-axis) and upon incubation with (red, left y-axis) laccase; bold 476 

and dashed lines are fitted curves according to the bi- and mono-exponential kinetic model.  477 

Fig. 6 Plot of experimental spectra of LHA with aniline (bottom), aniline and laccase (middle) 478 

and Fenton's reaction (top) in presence of 50 mM PBN. Top spectrum displays characteristic 479 

PBN spectral lines produced by radical reaction. Ordinate axis of top spectrum is enhanced by 480 

1.8 relative to the other two spectra. 481 

482 
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Fig. 4 504 
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Fig. 5 509 

 510 

 511 

 512 
513 



 

 28 

 514 

Fig. 6 515 

 516 

 517 
 518 


