
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 13, 1–20; doi: 10.14232/ejqtde.2016.1.13 http://www.math.u-szeged.hu/ejqtde/

Global stability and bifurcation analysis of a delayed
predator–prey system with prey immigration

Gang ZhuB 1 and Junjie Wei2

1School of Education Science, Harbin University, Harbin, Heilongjiang, 150086, P.R. China
2Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P.R. China

Received 2 November 2015, appeared 19 March 2016

Communicated by Eduardo Liz

Abstract. A delayed predator–prey system with a constant rate immigration is consid-
ered. Local and global stability of the equilibria are studied, a fixed point bifurcation
appears near the boundary equilibrium and Hopf bifurcation occurs near the positive
equilibrium when the time delay passes some critical values. We also show the exis-
tence of the global Hopf bifurcation, and the properties of the fixed point bifurcation
and the stability and direction of the Hopf bifurcation are determined by applying the
normal form theory and the center manifold theorem.
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1 Introduction

Since the Lotka–Volterra model was first prosed in 1920s, it has been studied in various mod-
els. Furthermore, many ecological concepts such as diffusion, functional responses and time
delays have been added to the Lotka–Volterra equations to gain more accurate description
and better understanding [1, 11, 15–18]. In [19] the author studied a Rosenzweig–MacArthur
model first. In this model the prey has a logistic growth and the predator has a Holling II
functional response. In [12–14, 20, 27] the global stability are discussed. There are also many
researches on the limit cycle of Rosenweig–MacArthur model [6, 21, 26, 28]. Brauer et al. stud-
ied the stability of predator–prey systems with constant rate harvesting and stocking in [2–5].
Sugie et al. discussed the existence and uniqueness of limit cycles in predator–prey systems
with a constant immigration in [23].

In this paper, we study the delayed Rosenweig–MacArthur model with a constant rate
immigration, which has the following form:

ẋ(t) = rx(t)
(

1− x(t)
k

)
− x(t)y(t)

a + x(t)
+ b,

ẏ(t) = −dy(t) +
µx(t− τ)y(t− τ)

a + x(t− τ)
,

(1.1)
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where a, b, d, k, r, µ are all positive constants, and the meaning of them are the same as those in
[23], and τ ≥ 0 is the constant delay due to the gestation of the predator. The initial conditions
for system (1.1) take the form

x(θ) = φ1(θ), y(θ) = φ2(θ),

φ1(θ) ≥ 0, φ2(θ) ≥ 0,

φ1(0) > 0, φ2(0) > 0,

θ ∈ [−τ, 0), (1.2)

where (φ1(θ), φ2(θ)) ∈ C([−τ, 0], R2
+0), the Banach space of continuous functions mapping

the interval [−τ, 0] into R2
+0, where R2

+0 = {(x1, x2) : xi ≥ 0, i = 1, 2}.
Solving the algebraic equation

rx
(

1− x
k

)
− xy

a + x
+ b = 0,

−dy +
µxy

a + x
= 0,

we get that the system (1.1) has equilibria

E0(x0, 0) =

(
k
2
±
√

k2r2 + 4bkr
2r

, 0

)
and

E∗(x∗, y∗) =
(

ad
µ− d

,
µ

d

[
rx∗
(

1− x∗
k

)
+ b
])

.

Combining the biological meaning, we take

x0 =
k
2
+

√
k2r2 + 4bkr

2r
,

then the equilibrium E0(x0, 0) always exists, which means that the predator will extinct.
It is easy to see that if µ < d, then system (1.1) has no positive equilibrium and E0(x0, 0) is

the unique equilibrium of (1.1).
When µ > d, we let

R0 =
bk(µ− d)2 + adkr(µ− d)

a2d2r
,

then system (1.1) has no positive equilibrium and E0(x0, 0) is the unique equilibrium of (1.1)
when R0 ≤ 1; and system (1.1) has a positive equilibrium E∗(x∗, y∗) besides E0(x0, 0) when
R0 > 1, which means that R0 is a critical value.

The rest of the present paper is organized as follows: in Section 2, we show the positiveness
and boundedness of the solutions of (1.1). In Section 3, we analyze the local stability of E0 and
E∗, and the existence of Hopf bifurcation at E∗. In Section 4, we study the global stability of
the equilibria E0 and E∗. In Section 5, we determine the properties of the bifurcating periodic
solution and discuss the existence of the global Hopf bifurcation. In Section 6, some numerical
simulations are carried out to illustrate the analytic results.

2 Positiveness and boundedness of the solutions

In this section, we study the positiveness and boundedness of the solutions of system (1.1).
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Theorem 2.1. All the solutions of system (1.1) through initial conditions (1.2) are positive for t ≥ 0.

Proof. Solving the following ordinary differential equation

ẋ(t) = rx(t)
(

1− x(t)
k

)
− x(t)y(t)

a + x(t)
,

we can get the following solution

x(t) = φ1(0) exp
(∫ t

0

[
r(1− x(s)

k
)− y(s)

a + x(s)

]
ds
)

.

Obviously the solution is positive for all t > 0, furthermore, by the comparison theorem, we
know that the solution x(t) of system (1.1) is positive.

Based on the theory of Hale [9], we know that y(t) is well defined on [−τ,+∞) with the
following form

y(t) = φ2(0)e−td +
∫ t

0
e−d(t−s) µx(s− τ)y(s− τ)

a + x(s− τ)
ds,

since φ2(0) > 0, we have y(t) > 0 when t ∈ [0, τ], therefore y(t) > 0 for all t ∈ [0,+∞).

Theorem 2.2. All the solutions of system (1.1) through initial conditions (1.2) are uniformly ultimately
bounded.

Proof. Consider the following ordinary differential equation

ẋ(t) = rx(t)
(

1− x(t)
k

)
+ b, (2.1)

then all the solutions of equation (2.1) with positive initial conditions are positive, and

x0 =
k
2
+

√
k2r2 + 4bkr

2r

is a positive equilibrium of equation (2.1).
Let

V(t) =
1
2
(x− x0)

2,

then
V̇(t) = (x− x0)ẋ = (x− x0)

[
rx
(

1− x
k

)
+ b
]

= (x− x0)
[
rx
(

1− x
k

)
− rx0

(
1− x0

k

)]
= r(x− x0)

2
(

1− x + x0

k

)
.

Since x0 > k and all the solutions of (2.1) are positive, we have

V̇(t) ≤ 0

and V̇(t) = 0 if and only if x = x0, so the equilibrium x0 of equation (2.1) is global asymptot-
ically stable.

Basing on the comparison theorem, we know that the solution x(t) of system (1.1) with
initial conditions (1.2) satisfies

lim sup
t→∞

x(t) ≤ x0,



4 G. Zhu and J. Wei

then for ε > 0, we have x(t) ≤ x0 + ε when t is sufficiently big.
Let

W(t) = µx(t) + y(t + τ),

then

Ẇ(t) = bµ + µrx(t)
(

1− x(t)
k

)
− dy(t + τ)

= bµ + 2µrx(t)− µrx(t)− µrx2(t)
k

− dy(t + τ)

= bµ + 2µrx(t)− µrx(t)
(

1 +
x(t)

k

)
− dy(t + τ)

≤ bµ + 2µr(x0 + ε)−min{r, d}[µx(t) + y(t + τ)]

= bµ + 2µr(x0 + ε)−min{r, d}W(t),

which implies

W(t) ≤ bµ + 2µr(x0 + ε)

min{r, d} .

This completes the proof.

3 Local stability analysis

3.1 Local stability of the boundary equilibrium

Linearizing system (1.1) near the boundary equilibrium E0(x0, 0), we get

ẋ(t) = r
(

1− 2x0

k

)
x(t)− x0

a + x0
y(t),

ẏ(t) = −dy(t) +
µx0

a + x0
y(t− τ).

(3.1)

and the characteristic equation(
λ− r

(
1− 2x0

k

))(
λ + d− µx0

a + x0
e−λτ

)
= 0. (3.2)

Obviously,

λ = r(1− 2x0

k
) = −

√
k2r2 + 4bkr

k
is always a negative root of equation (3.2), so in the following we study the second factor of
equation (3.2).

We denote
f (λ) = λ + d− µx0

a + x0
e−λτ.

If condition µx0/(a + x0) > d holds, then it is easy to show that

f (0) = d− µx0

a + x0
< 0, lim

λ→+∞
f (λ) = +∞.

Hence f (λ) = 0 has at least one positive real root. Therefore, equilibrium E0(x0, 0) is unstable.
If condition µx0/(a + x0) < d holds, we need to consider the effect of the delay τ.
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When τ = 0, we get

λ =
µx0

a + x0
− d < 0,

which implies that the equilibrium E0(x0, 0) is locally asymptotically stable when τ = 0.
If λ = iω (ω > 0) be a root of (3.2) when τ > 0, substituting λ = iω into (3.2) and

separating the real and the imaginary parts, we have

d =
µx0

a + x0
cos ωτ, −ω =

µx0

a + x0
sin ωτ,

and furthermore,

ω2 =
µ2x2

0
(a + x0)2 − d2 < 0,

which implies that Eq. (3.2) has no purely imaginary root. Then by theorem in [22], we
know that all roots of Eq. (3.2) have negative real part, and the equilibrium E0(x0, 0) is locally
asymptotically stable for all τ ≥ 0.

If condition µx0/(a + x0) = d holds, then λ = 0 is a simple root of (3.2). So to determine
the stability of E0, we need to compute the restriction of system (1.1) on the center manifold.
Here we use the center manifold theorem by [24], and the normal form method from [7, 8]

Let Λ = {0} and B = 0, clearly the non-resonance conditions relative to Λ are satisfied.
Therefore there exists a 1-dimensional ODE which governs the dynamics of system (1.1) near
E0.

For convenience, we denote d0 = µx0/(a + x0). Firstly, we re-scale the time delay by
t 7→ (t/τ) to normalize the delay and let d = d0 + ε, then ε = 0 is the critical value for the
fixed point bifurcation, so system (1.1) can be written in the form:

ẋ(t) = τ

(
r− 2rx0

k

)
x(t)− τx0

a + x0
y(t)− rτ

k
x2(t)− aτ

(a + x0)2 x(t)y(t) + O(3),

ẏ(t) = −τ(d0 + ε)y(t) + τd0y(t− 1) +
aτµ

(a + x0)2 x(t− 1)y(t− 1) + O(3).
(3.3)

Clearly, the phase space for Eq. (3.3) is C := C([−1, 0], R2). For ϕ ∈ C, define

L(ε)ϕ = τB1ϕ(0) + τB2ϕ(−1),

where

B1 =

r
(

1− 2x0

k

)
− x0

a + x0
0 −(d0 + ε)

 , B2 =

(
0 0
0 d0

)
.

Choosing

η(θ, ε) =


τB1, θ = 0,

0, θ ∈ (−1, 0),

−τB2, θ = −1,

then by the Riesz representation theorem, we obtain

L(ε)ϕ =
∫ 0

−1
dη(θ, ε)ϕ(θ).
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Furthermore, we choose

F(ε, ϕ) = τ

−
r
k

ϕ2
1(0)−

a
(a + x0)2 ϕ1(0)ϕ2(0) + O(3)

aµ

(a + x0)2 ϕ1(−1)ϕ2(−1) + O(3)

 .

Then Eq. (3.3) can be rewritten in the form:

d
dt

u(t) = L(ε)ut + F(ut, ε).

where u = (u1, u2), and ut = ut(θ) = u(t + θ), − 1 ≤ θ ≤ 0.
Let operator A0, which satifies

A0 : D(A0) 7→ C, A0ϕ = ϕ̇,

be the infinitesimal generator for the semigroup defined by the solutions of the following
equation

d
dt

x(t) = L0(xt), (3.4)

where L0 = L(0), and D(A0) = {ϕ ∈ C1, ϕ̇ = L0ϕ}
For C∗ =: C([0, 1], R2∗), here R2∗ denotes the space of row vectors, we consider the adjoint

bilinear form on C∗ × C defined by

(ψ, ϕ) = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ, 0)ϕ(ξ)dξ.

For the eigenvalue of A0, Λ = 0, we use the formal adjoint theory for FDEs to decompose
the phase space C by Λ = {0}. Let P be the center space of equation (3.4), the generalized
eigenspace for A0 associated with the eigenvalue zero, and P∗ the center space of the adjoint
equation of (3.4), then the phase space C can be decomposed by Λ = {0} as C = P⊕Q, where
Q = {ϕ ∈ C : (ψ, ϕ) = 0 forall ψ ∈ P∗}.

In fact, letting L0Φ(θ) = Φ̇(θ) = (0, 0)T, which implies that we can choose Φ(θ) = (c1, c2)T

(here c1, c2 are constants), then we can get

τ

r
(

1− 2x0

k

)
− x0

a + x0
0 −d0

(c1

c2

)
+ τ

(
0 0
0 d0

)(
c1

c2

)
=

(
0
0

)
,

which equals

r
(

1− 2x0

k

)
c1 −

x0

a + x0
c2 = 0,

−d0c2 + d0c2 = 0.

Thus, we can choose

Φ(θ) = (φ1, φ2)
T =

(
kd0

rµ(k− 2x0)
, 1
)T

.

Similarly, let us choose

Ψ(s) = (ψ1, ψ2) =

(
0,

1
1 + τd0

)
,
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and we can verify that they are the bases of P and P∗, respectively, satisfying (Ψ, Φ) = 1. Thus
the dual bases satisfy Φ̇ = ΦB and Ψ̇ = −BΨ, where B = 0.

Taking the enlarged phase space

BC =

{
ϕ : [−1, 0) 7→ R, ϕ is continuous on [−1, 0) and lim

θ→0
ϕ(θ) exists

}
,

we obtain the abstract ODE with the form:

d
dt

ut = Aut + X0G(ut, ε), (3.5)

where
G(ϕ(θ), ε) = [L(ε)− L0]ϕ(θ) + F(ϕ(θ), ε)

= τ

 − r
k

ϕ2
1(0)−

a
a + x0

ϕ1(0)ϕ2(0) + O(3)

−εϕ2(0) +
aµ

(a + x0)2 ϕ1(−1)ϕ2(−1) + O(3)


and A is an extension of the infinitesimal generator A0, defined by A : C1 → BC,

(Aϕ)(θ) = ϕ̇(θ) + X0(θ)[L0ϕ− ϕ̇(0)] =

{
ϕ̇(θ), −1 ≤ θ < 0,

L0ϕ, θ = 0.

and X0(θ) is given by

X0(θ) =

{
I, θ = 0,

0, θ ∈ [−1, 0).

The definition of the continuous projection

π : BC 7→ P, π(ϕ + X0α) = Φ[(Ψ, ϕ) + Ψ(0)α]

allows us to decompose the enlarged space by Λ as BC = C ⊕ Ker π. Since π commutes
with A in C1, and using the decomposition ut = Φx + y, the abstract ODE (3.5) is therefore
decomposed as the system

ẋ = Bx + Ψ(0)G(Φx + y, ε),

ẏ = AQ1 y + (I − π)X0G(Φx + y, ε).
(3.6)

For x ∈ R, y ∈ Q1 = Q ∩ C1 ⊂ Ker π, where AQ1 is the restriction of A as an operator from
Q1 to the Banach space Ker π. And by the expressions of Φ(θ), we get

u1(θ) =
kd0

rµ(k− 2x0)
x + y1(θ), u2(θ) = x + y2(θ).

By Taylor’s theorem, we expand the nonlinear terms in Eq. (3.6) at (x, y, ε) = (0, 0, 0) as

ẋ(t) = Bx +
1
2!

f 1
2 (x, y, ε) + h.o.t.,

ẏ(t) = AQ1 y +
1
2!

f 2
2 (x, y, ε) + h.o.t.,
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where

1
2!

f 1
2 = τψ2[−ε(φ2x + y2(0)) +

aµ

(a + x0)2 (φ1x + y1(−1))(φ2x + y2(−1))],

1
2!

f 2
2 = (I − π)X0τ

 − r
k
(φ1x + y1(0))2 − a

a + x0
(φ1x + y1(0))(φ2x + y2(0))

−ε(φ2x + y2(0)) +
aµ

(a + x0)2 (φ1x + y1(−1))(φ2x + y2(−1))

 .

Then the ordinary differential equation for the flow of Eq. (3.6) on the center manifold
which is given in normal form up to second order terms by letting y = 0 has the form

ẋ(t) =
τ

1 + τd0

[
−εx +

akd0

r(a + x0)2(k− 2x0)
x2
]
=: f (x, ε),

and it is easy to check that

f (0, 0) = 0,
∂ f
∂x

(0, 0) = 0,
∂ f
∂ε

(0, 0) = 0,

∂2 f
∂x∂ε

(0, 0) = − τ

1 + τd0
,

∂2 f
∂2x

(0, 0) =
2akτd0

r(1 + τd0)(a + x0)2(k− 2x0)
.

Summarizing the analysis above and basing on the bifurcation theory [24], we have the
following theorem.

Theorem 3.1. For system (1.1)

{i} when (µ− d)x0 < ad, E0(x0, 0) is asymptotically stable;

{ii} when (µ− d)x0 > ad, E0(x0, 0) is unstable;

{iii} when (µ− d)x0 = ad, E0(x0, 0) is unstable. Furthermore, system (1.1) undergoes a transcritical
bifurcation at the critical value.

3.2 Local stability of the positive equilibrium and the existence of Hopf bifurca-
tion

Linearizing system (1.1) near the positive equilibrium E∗(x∗, y∗), we get

ẋ(t) =
(

r− 2rx∗
k
− ay∗

(a + x∗)2

)
x(t)− x∗

a + x∗
y(t),

ẏ(t) = −dy(t) +
aµy∗

(a + x∗)2 x(t− τ) +
µx∗

a + x∗
y(t− τ),

(3.7)

and the characteristic equation

λ2 + p1λ + p0 + (q1λ + q0)e−λτ = 0, (3.8)

where

p0 = −d
(

r− 2rx∗
k
− ay∗

(a + x∗)2

)
, q0 =

(
r− 2rx∗

k

)
µx∗

a + x∗
,

p1 = d−
(

r− 2rx∗
k
− ay∗

(a + x∗)2

)
, q1 = − µx∗

a + x∗
.
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When τ = 0, Eq. (3.8) becomes

λ2 + (p1 + q1)λ + (p0 + q0) = 0, (3.9)

notice that
µx∗

a + x∗
= d and p0 + q0 =

ady∗
(a + x∗)2 > 0,

so we know that both roots of Eq. (3.9) have negative real parts when p1 + q1 > 0.
When τ > 0, let iω (ω > 0) be a root of Eq. (3.8), substituting iω into (3.8) and separating

the real and the imaginary part, we get

ω2 − p0 = q0 cos ωτ + q1ω sin ωτ,

p1ω = q0 sin ωτ − q1ω cos ωτ,

which implies that

sin ωτ =
q1ω3 + (p1q0 − p0q1)ω

q2
0 + q2

1ω
, cos ωτ =

(q0 − p1q1)ω
2 − p0q0

q2
0 + q2

1ω
,

and

ω4 + (p2
1 − q2

1 − 2p0)ω
2 + (p2

0 − q2
0) = 0. (3.10)

Moreover, it is easy to get that

p2
1 − q2

1 − 2p0 =

(
r− 2rx∗

k
− ay∗

(a + x∗)2

)2

> 0.

Thus, as p0 + q0 > 0, we know that (3.10) has no positive real root when p0 > q0, and has
one real root when p0 < q0.

Lemma 3.2. Suppose p0 < q0, then Eq. (3.8) has a pair of conjugate purely imaginary root ±iω0,
where

ω0 =
1
2

[
(q2

1 − p2
1 + 2p0) +

√
(q2

1 − p2
1 + 2p0)2 − 4(p2

0 − q2
0)

] 1
2

,

when τ = τj, j = 0, 1, 2, . . .,

τj =



1
ω0

(
arcsin

a∗

c∗
+ 2jπ

)
, a∗ > 0, b∗ > 0,

1
ω0

(
π − arcsin

a∗

c∗
+ 2jπ

)
, a∗ > 0, b∗ < 0,

1
ω0

(
π + arcsin

a∗

c∗
+ 2jπ

)
, a∗ < 0, b∗ < 0,

1
ω0

(
2π − arcsin

a∗

c∗
+ 2jπ

)
, a∗ < 0, b∗ > 0,

j = 0, 1, 2, . . . , (3.11)

where a∗ = q1ω3
0 + (p1q0 − p0q1)ω0, b∗ = (q0 − p1q1)ω

2
0 − p0q0, c∗ = q2

0 + q2
1ω2

0.
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Furthermore, since(
dλ

dτ

)−1

=
2λ + p1 + q1e−λτ − τ(q1λ + q0)e−λτ

λ(q1λ + q0)e−λτ

=
2λ + p1

−λ(λ2 + p1λ + p0)
+

q1

λ(q1λ + q0)
− τ

λ
,

we can get that

Sgn

{
Re
(

dλ

dτ

)−1
}

λ=iω0

= Sgn
{

Re
(

p1 + 2iω0

p1ω2
0 − iω0(p0 −ω2

0)
+

q1

−q1ω2
0 + iq0ω0

− τ

iω0

)}

= Sgn
{

p2
1 − 2(p0 −ω2

0)

p2
1ω2

0 + (p0 −ω2
0)

2
− q2

1

q2
1ω2

0 + q2
0

}
= Sgn

{
2ω2

0 + p2
1 − q2

1 − 2p0

q2
1ω2

0 + q2
0

}
> 0,

which implies that the transversal condition holds.
In conclusion, we have the following results.

Theorem 3.3. For system (1.1), let condition p1 + q1 > 0 hold, then we have the following:

{i} if p0 > q0, then the coexistence equilibrium E∗(x∗, y∗) is locally asymptotically stable for all
τ ≥ 0;

{ii} if p0 < q0, then E∗(x∗, y∗) is asymptotically stable when τ ∈ [0, τ0) and unstable when τ > τ0.
Furthermore, system (1.1) undergoes a Hopf bifurcation near E∗ when τ = τj, j = 0, 1, 2, . . . .

4 Global stability analysis

In this section, we investigate the global stability of equilibria E0 and E∗.

Theorem 4.1. If R0 < 1, then E0(x0, 0) is globally asymptotically stable.

Proof. From Section 1, we know that system (1.1) has no positive equilibrium when R0 < 1,
and E0(x0, 0) is the unique equilibrium.

Let

V11(t) = x(t)− x0 − x0 ln
x(t)
x0

+ c1y(t),

where c1 = x0/(ad), then we get the derivative of V11(t) along solutions of system (1.1)

V̇11(t) =
(

1− x0

x(t)

) [
rx(t)

(
1− x(t)

k

)
− x(t)y(t)

a + x(t)
+ b
]
+ c1

[
−dy(t) +

µx(t− τ)y(t− τ)

a + x(t− τ)

]
=

(
1− x0

x(t)

) [
rx(t)

(
1− x(t)

k

)
− x(t)y(t)

a + x(t)
− rx0

(
1− x0

k

)]
+ c1

[
−dy(t) +

µx(t− τ)y(t− τ)

a + x(t− τ)

]
=

r
x(t)

(x(t)− x0)
2
[

1− x(t) + x0

k

]
−
(

1 +
x0

a

) x(t)y(t)
a + x(t)

+
( x0

a
− c1d

)
y(t)

+
c1µx(t− τ)y(t− τ)

a + x(t− τ)
.
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Defining

V1(t) = V11(t) + c1µ
∫ t

t−τ

x(s)y(s)
a + x(s)

ds,

then

V̇1(t) =
r

x(t)
(x(t)− x0)

2
[

1− x(t) + x0

k

]
+

1
ad

[µx0 − (a + x0)d]
x(t)y(t)
a + x(t)

.

From the positiveness of x(t) and x0 > k, combined with the condition

R0 < 1⇔ µx0

a + x0
< d,

we have V̇1(t) ≤ 0, and V̇1(t) = 0⇔ (x(t), y(t)) = (x0, 0). By LaSalle’s invariant set principle
we know that E0 is global asymptotically stable.

Theorem 4.2. When µ > d, R0 > 1, if condition

x∗ > k⇔ ad
µ− d

> k

holds, then E∗(x∗, y∗) is globally asymptotically stable.

Proof. System (1.1) has a positive equilibrium E∗(x∗, y∗) when µ > d, R0 > 1.
Let

V21(t) = x(t)− x∗ − x∗ ln
x(t)
x∗

+ c2

(
y(t)− y∗ − y∗ ln

y(t)
y∗

)
,

where c2 = x∗/(ad), then we get the derivative of V21(t) along solutions of system (1.1)

V̇21(t) =
(

1− x∗
x(t)

) [
rx(t)

(
1− x(t)

k

)
− x(t)y(t)

a + x(t)
+ b
]

+ c2

(
1− y∗

y(t)

) [
−dy(t) +

µx(t− τ)y(t− τ)

a + x(t− τ)

]
=

r
x(t)

[x(t)− x∗]2
[

1− x(t) + x∗
k

]
−
(

1− x∗
x(t)

)
x(t)y(t)
a + x(t)

+

(
1− x∗

x(t)

)
x∗y∗

a + x∗

+ c2

[
−dy(t) +

µx(t− τ)y(t− τ)

a + x(t− τ)
+ dy∗ −

y∗µx(t− τ)y(t− τ)

y(t)[a + x(t− τ)]

]
=

r
x(t)

[x(t)− x∗]2
[

1− x(t) + x∗
k

]
− (a + x∗)x(t)y(t)

a[a + x(t)]
+

x∗
a

y(t)− c2dy(t)

+

(
1− x∗

x(t)

)
x∗y∗

a + x∗
+ c2dy∗ +

c2µx(t− τ)y(t− τ)

a + x(t− τ)
− c2y∗µx(t− τ)y(t− τ)

y(t)[a + x(t− τ)]
.

Defining

V2(t) = V21(t) + c2µ
∫ t

t−τ

[
x(s)y(s)
a + x(s)

− x∗y∗
a + x∗

− x∗y∗
a + x∗

ln
(a + x∗)x(s)y(s)

x∗y∗[a + x(s)]

]
ds,

then

V̇2(t) =
r

x(t)
[x(t)− x∗]2

[
1− x(t) + x∗

k

]
− (a + x∗)x(t)y(t)

a[a + x(t)]
+

(
1− x∗

x(t)

)
x∗y∗

a + x∗

+
c2µx∗y∗
a + x∗

+
c2µx(t− τ)y(t− τ)

a + x(t− τ)
− c2y∗µx(t− τ)y(t− τ)

y(t)[a + x(t− τ)]

+ c2µ

[
x(t)y(t)
a + x(t)

− x∗y∗
a + x∗

ln
(a + x∗)x(t)y(t)

x∗y∗[a + x(t)]

]
− c2µ

[
x(t− τ)y(t− τ)

a + x(t− τ)
− x∗y∗

a + x∗
ln

(a + x∗)x(t− τ)y(t− τ)

x∗y∗[a + x(t− τ)]

]
.
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Since

c2µ =
a + x∗

a
,

(
1− x∗

x(t)

)
x∗y∗

a + x∗
=

c2µx∗y∗
a + x∗

[
1− x∗[a + x(t)]

x(t)(a + x∗)

]
,

we have

V̇2(t) =
r

x(t)
[x(t)− x∗]2

[
1− x(t) + x∗

k

]
+

c2µx∗y∗
a + x∗

[
1− x∗[a + x(t)]

x(t)(a + x∗)

]
+

c2µx∗y∗
a + x∗

− c2µx∗y∗(a + x∗)x(t− τ)y(t− τ)

(a + x∗)x∗y(t)[a + x(t− τ)]

+
c2µx∗y∗
a + x∗

ln
x∗[a + x(t)](a + x∗)x(t− τ)y(t− τ)

x(t)(a + x∗)x∗y(t)[a + x(t− τ)]

=
r

x(t)
[x(t)− x∗]2

[
1− x(t) + x∗

k

]
− c2µx∗y∗

a + x∗

[
x∗[a + x(t)]
x(t)(a + x∗)

− 1− ln
x∗[a + x(t)]
x(t)(a + x∗)

]
− c2µx∗y∗

a + x∗

[
(a + x∗)x(t− τ)y(t− τ)

x∗y(t)[a + x(t− τ)]
− 1− ln

(a + x∗)x(t− τ)y(t− τ)

x∗y(t)[a + x(t− τ)]

]
.

From the positiveness of x(t), combining the condition, we have V̇2(t) ≤ 0, and V̇2(t) = 0 if
and only if x(t) = x∗, y(t) = y∗. By LaSalle’s invariant set principle we know that E∗(x∗, y∗)
is global asymptotically stable.

5 Hopf bifurcation analysis

In Section 3, we found that under some conditions the system undergoes a Hopf bifurcation
when τ passes through some critical value. In this section we study some properties of the
Hopf bifurcation and the global existence of the periodic solutions. For convenience, we
assume that the condition for Hopf bifurcation

(H1) p1 + q1 > 0, p0 − q0 < 0

is always satisfied in this section.

5.1 Properties of bifurcating periodic solutions

In this part, we will study the properties of the bifurcating periodic solutions such as the
orbital stability and the direction of Hopf bifurcation. The method we used is based on the
normal form method and the center manifold theory introduced by Hassard et al. [10].

Re-scale the time by t → (t/τ) to normalize the delay, and let τ = τ0 + ε, ε ∈ R, then we
can rewrite system (1.1) in the following form

ẋ(t) = (τ0 + ε)[l1x(t) + l2y(t) + l3x2(t) + l4x(t)y(t) + O(3)],

ẏ(t) = (τ0 + ε)[m1y(t) + m2x(t− 1) + m3y(t− 1)

+ m4x2(t− 1) + m5x(t− 1)y(t− 1) + O(3)],

(5.1)

where

l1 = r− 2rx∗
k
− ay∗

(a + x∗)2 , l2 =
−x∗

a + x∗
, l3 = − r

k
+

ay∗
(a + x∗)3 , l4 =

−a
(a + x∗)2 ,

m1 = −d, m2 =
aµy∗

(a + x∗)2 , m3 =
µx∗

a + x∗
, m4 = − aµy∗

(a + x∗)3 , m5 =
aµ

(a + x∗)2 .
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Clearly, the phase space is C = C([−1, 0], R2). From the analysis above we know that ε = 0
is the Hopf bifurcation value for system (5.1).

For φ = (φ1, φ2) ∈ C, let

Lε(φ) = (τ0 + ε)Bφ(0) + (τ0 + ε)Cφ(−1),

where

B =

(
l1 l2
0 m1

)
, C =

(
0 0

m2 m3

)
,

and

f (ε, φ) = (τ0 + ε)

(
l3φ2

1(0) + l4φ1(0)φ2(0) + O(3)
m4φ2

1(−1) + m5φ1(−1)φ2(−1) + O(3)

)
.

By the Riesz representation theorem, there exists a 2× 2 matrix, η(θ, ε) (−1 ≤ θ ≤ 0),
whose elements are of bounded variation functions such that

Lε(φ) =
∫ 0

−1
dη(θ, ε)φ(θ), φ ∈ C.

In fact, we can choose

η(θ, ε) =


(τ0 + ε)B, θ = 0,

0, θ ∈ (−1, 0),

−(τ0 + ε)C, θ = −1.

Then Eq. (5.1) is satisfied.
For φ ∈ C ∩ C1, define the operator A(ε) as

A(ε)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(θ, ε)φ(θ), θ = 0,

and R(ε)φ as

R(ε)φ(θ) =

{
0, θ ∈ [−1, 0),

f (ε, φ), θ = 0,

then system (5.1) is equivalent to the following operator equation

u̇t = A(ε)ut + R(ε)ut, (5.2)

where u(t) = (x(t), y(t))T, ut = u(t + θ), for θ ∈ [−1, 0].
For ψ ∈ C ∩ C1, define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
ψ(−ξ)dη(ξ, 0), s = 0.

For φ ∈ C([−1, 0], C2) and ψ ∈ C([−1, 0], C2∗), define the bilinear form

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ,
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where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators.
Let q(θ), q∗(s) are eigenvectors of A(0) and A∗ associated to iω0τ0 and −iω0τ0 respectively,

it’s not difficult to verify that

q(θ) = (1, α)Teiω0τ0θ , q∗(s) =
1
D̄
(1, β)eiω0τ0s,

where

α =
iω0 − l1

l2
, β =

eiω0τ0

m2
(iω0 − l1),

D = (1 + αβ̄) + τ0e−iω0τ0 β̄(m2 + αm3),

then 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0.
Following the algorithms given by Hassard et al. [10], we can obtain the coefficients which

will be used in determining the important quantities:

g20 =
2τ0

D
[l3 + αl4 + β̄(m4 + αm5)e−2iω0τ0 ],

g11 =
τ0

D
[2l3 + l4(α + ᾱ) + 2β̄m4 + β̄m5(α + ᾱ)],

g02 =
2τ0

D
[l3 + ᾱl4 + β̄(m4 + ᾱm5)e2iω0τ0 ],

g21 =
τ0

D

[
2l3(2W(1)

11 (0) + W(1)
20 (0)) + l4(2W(2)

11 (0) + 2αW(1)
11 (0) + W(2)

20 (0) + ᾱW(1)
20 (0))

+ 2β̄m4(2e−iω0τ0W(1)
11 (−1) + eiω0τ0W(1)

20 (−1)) + 2β̄m5e−iω0τ0(W(2)
11 (−1) + αW(1)

11 (−1))

+ β̄m5eiω0τ0(W(2)
20 (−1) + ᾱW(1)

20 (−1))
]
,

where

W20(θ) =
g20q(0)
−iω0τ0

eiω0τ0θ +
ḡ20q̄(0)
−3iω0τ0

e−iω0τ0θ + Ee2iω0τ0θ ,

W11(θ) =
g11q(0)
iω0τ0

eiω0τ0θ +
ḡ11q̄(0)
−iω0τ0

e−iω0τ0θ + F,

and

E =

(
2iω0 − l1 −l2
−m2e−2iω0τ0 2iω0 −m1 −m3e−2iω0τ0

)−1 (
2l3 + 2αl4

2(m4 + αm5)e−2iω0τ0

)
,

F =

(
l1 l2

m2 m1 + m3

)−1 ( −2l3 − l4(α + ᾱ)

−2m4 −m5(α + ᾱ)

)
.

Consequently, the above g21 can be expressed by the parameters in system (1.1). Thus, we can
compute the following quantities:

c1(0) =
i

2ω0τ0

(
g20g11 − 2|g11|2 −

1
3
|g02|2

)
+

g21

2

µ2 = − Re c1(0)
Reλ′(τ0)

,

β2 = 2 Re c1(0),

T2 = − Im c1(0) + µ2 Im λ′(τ0)

ω0τ0
,
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which determine the properties of bifurcating periodic solutions at the critical value τ0. The
direction and stability of Hopf bifurcation in the center manifold can be determined by µ2 and
β2 respectively. In fact, if µ2 > 0 (µ2 < 0), then the bifurcating periodic solutions are forward
(backward); the bifurcating periodic solutions on the center manifold are stable (unstable) if
β2 < 0 (β2 > 0); and T2 determines the period of the bifurcating periodic solutions: the period
increases (decreases) if T2 > 0 (T2 < 0).

From the discussion in Section 2, we know that the transversal condition is positive, there-
fore we have the following result.

Theorem 5.1. For system (1.1), if conditions p1 + q1 > 0 and p0 − q0 < 0 hold, then the Hopf
bifurcation at E∗ when τ = τj is forward (backward) and the bifurcating periodic solutions are orbitally
asymptotically stable (unstable) when Re(c1(0)) < 0 (> 0).

5.2 Global existence of periodic solutions

In this subsection, we shall study the global existence of periodic solutions bifurcating from
the point (E∗, τj), j = 0, 1, 2, . . . for system (1.1) by a global Hopf bifurcation theorem by
Wu [25].

For simplification of notations, setting zt = (xt, yt), we may rewrite systems (1.1) as the
following functional differential equation:

ż(t) = F(zt, τ, p),

where zt(θ) = z(t + θ) ∈ C([−τ, 0], R2), and p is the period of the solution of the above
equation.

Following the work of Wu [25], we introduce some notations:

X = C([−τ, 0], R),

Σ = C l{(z, τ, p) : z is a p− periodic solution of (1.1)} ⊂ X×R+ ×R+,

N = {(z̄, τ̄, p̄) : F(z̄, τ̄, p̄) = 0}.

Let C(z∗, τj, 2π/ω0) denote the connected component of (z∗, τj, 2π/ω0) in Σ, where τj and ω0

are defined in Lemma 3.2.

Lemma 5.2. If condition

(H2) µ > d, k > x∗, (µ + d) +
bk(µ− d)

rx∗
≥ dk

is satisfied, then system (1.1) has no nontrivial τ-periodic solution.

Proof. To the contrary, suppose that system (1.1) has a τ-periodic solution, then the following
system of ordinary differential equations also has a periodic solution

ẋ(t) = rx(t)
(

1− x(t)
k

)
− x(t)y(t)

a + x(t)
+ b,

ẏ(t) = −dy(t) +
µx(t)y(t)
a + x(t)

.
(5.3)

As to the existence of the limit cycle of this ODE system, Sugie and his coworkers have
obtained some results in [23]. Based on Theorem 2.3 in [23], we know that the ODE system
has no limit cycles when condition (H2) holds, which completes the proof.
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Theorem 5.3. Suppose that the conditions (H1) and (H2) are satisfied, then for each τ > τj, j =

0, 1, 2, . . . , system (1.1) has at least one periodic solution.

Proof. It is sufficient to prove that the projection of C{(z∗, τj, p)} onto the τ−space is [τ̄, ∞) for
each j ≥ 0, where τ̄ ≤ τj.

Firstly, we note that F(zt, τ, p) satisfies the hypotheses (A1), (A2) and (A3) in Wu [25],
and

∆(z∗,τ,p) = λ2 + p1λ + p0 + (q1λ + q0)e−λτ = 0.

It can also be verified that (z∗, τj, 2π/ω0) are isolated centers, then by Lemma 3.2, there exist
ε > 0, δ > 0 and a smooth curve λ : (τj − δ, τj + δ)→ C such that

∆(λ(τ)) = 0, |λ(τ)− iω0| < ε

for all τ ∈ [τj − δ, τj + δ], and

λ(τj) = iω0,
dRe(λ(τ))

dτ

∣∣∣∣
τ=τj

> 0.

Denote pk = 2π/ω0, and let

Ωε = {(0, p) : 0 < u < ε, |p− pk| < ε}.

Clearly, if |τ − τk| ≤ δ and (u, p) ∈ Ωε, such that ∆(z∗,τ,p)(u + 2iπ/p) = 0, then τ = τj, u = 0
and p = pj. This verifies the assumption (A4) in Wu [25] for m = 1. Moreover, putting

H±(z∗, τj, 2π/ω0)(u, p) = ∆(z∗,τj±δ,p)(u + 2iπ/ω0),

we have the crossing number

γ1(z∗, τj, 2π/ω0) = degB(H−(z∗, τj, 2π/ω0), Ωε)− degB(H+(z∗, τj, 2π/ω0), Ωε) = −1.

By Theorem 3.2 given by Wu [25], we conclude that the connected component C(z∗, τj, 2π/ω0)

through (z∗, τj, 2π/ω0) in Σ is nonempty. Meanwhile, we have

∑
(z,τ,p)∈C(z∗,τj,2π/ω0)

γ1(z, τ, p) < 0,

then by Theorem 3.3 given by Wu [25], C(z∗, τj, 2π/ω0) is unbounded.
By (3.11), we know that when j > 0,

2π

ω0
< τj.

Now we prove that the projection of C(z∗, τj, 2π/ω0) onto τ-space is [τ̄, ∞), where τ̄ ≤ τj.
Similar to Lemma 5.2, we know that system (1.1) with τ = 0 has no nonconstant periodic
solutions. Therefore, the projection of C(z∗, τj, 2π/ω0) onto the τ-space is bounded below.

For a contradiction, we assume that the projection of C(z∗, τj, 2π/ω0) onto the τ-space is
bounded, which implies that the projection of C(z∗, τj, 2π/ω0) onto the τ− space is included
in a interval (0, τ∗). Since 2π/ω0 < τj and applying Lemma 5.2, we have 0 < p < τ∗

for (z(t), τ, p) ∈ C(z∗, τj, 2π/ω0), which implies that the projection of C(z∗, τj, 2π/ω0) onto
the p-space is bounded. Then combining this with Theorem 2.2 we get that the connected
component C(z∗, τj, 2π/ω0) is bounded. This completes the proof.
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6 Numerical simulation

We choose a set of data as follows:

a = 1, b = 0.4, d = 0.4, k = 4, r = 6, µ = 2, (a)

which are the same as those in [23], then E0 = (4.06559, 0), E∗ = (0.25, 9.03125). We can get
µx0/(a + x0) = 1.60518 > 0.4 = d, which implies that E0 is unstable.

Basing on the analysis in Section 4, we can get

p0 = 0.212, p1 = 0.93, q0 = 2.1, q1 = −0.4, p1 + q1 = 0.53 > 0, p0 − q0 = −1.888,

which implies that the conditions for the Hopf bifurcation are satisfied, and by the previous
algorithm we can get

ω0
.
= 1.3973, τ0

.
= 0.2727, Re c1(0)

.
= −122.1746, µ2

.
= 162.6826, β2

.
= −244.3492.

Therefore, we know that the equilibrium E∗ is asymptotically stable when τ ∈ [0, 0.2727),
which is shown in Figure 6.1, here we choose τ = 0.25 and the initial value is taken as
(x0, y0) = (0.1, 10.5).
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Figure 6.1: When τ = 0.25 < τ0, the positive equilibrium of system (1.1) is asymptotically
stable with parameters given in (a), and the initial value is (x0, y0) = (0.1, 10.5).

Furthermore, we know that the equilibrium E∗ is unstable when τ > 0.2727 and the
Hopf bifurcation is forward and the bifurcating periodic solutions are orbitally asymptotically
stable, which is shown in Figure 6.2, here we choose τ = 0.3 and the initial value is taken as
(x0, y0) = (0.1, 10.5).
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Figure 6.2: When τ = 0.3 > τ0, periodic solutions bifurcating from the positive equilibrium
of system (1.1) with parameters given in (a), and the initial value is (x0, y0) = (0.1, 10.5).

Finally, by the analysis in Subsection 5.2, we know that the bifurcating periodic solutions
exist for all τ ∈ (0.2727,+∞), which is shown in Figure 6.3.
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Figure 6.3: Global Hopf branch from τ0 = 0.2727 with parameters given in (a).

7 Conclusion

Sugie et al. studied the existence of the limit cycles of system (5.3) in [23]. They showed that
when condition (H2) holds, the coexistence equilibrium E∗(x∗, y∗) is globally asymptotically
stable and system (5.3) has no limit cycle. In this paper, we consider the same system with a
constant delay τ due to the gestation of predator. We find that even if the condition (H2) is
satisfied, combining with the condition (H1), the equilibrium E∗(x∗, y∗) loses its stability and
an orbitally asymptotically stable periodic solution arises from the Hopf bifurcation when the
delay τ passes through some critical value τ0, and the bifurcating periodic solution always
exists for all τ ∈ (τ0,+∞). This shows the important influence of the time delay τ on the
system.

Acknowledgements

Thanks a lot for the kindly comments and suggestions from the reviewers and the handling
editor, which led to a great improvement in the presentation of this work. In addition, this
work is supported by the National Natural Science Foundation of China (No. 11031002) and
the Doctor Foundation of Harbin University (HUDF2014-010).

References

[1] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-dependent predator–prey
systems, Nonlinear Anal. 32(1998), 381–408. MR1610586; url

[2] F. Brauer, A. C. Soudack, Stability regions and transition phenomena for harvested
predator–prey systems, J. Math. Biol. 7(1979), 319–337. MR648855; url

[3] F. Brauer, A. C. Soudack, Stability regions in predator–prey systems with constant rate
prey harvesting, J. Math. Biol. 8(1979), 55–71. MR657280; url

[4] F. Brauer, A. C. Soudack, Constant-rate stocking of predator–prey systems, J. Math. Biol.
11(1981), 1–14. MR617876; url

[5] F. Brauer, A. C. Soudack, Coexistence properties of some predator–prey systems under
constant rate harvesting and stocking, J. Math. Biol. 12(1982) 101–114. MR631002; url

[6] K. Cheng, Uniqueness of a limit cycle for a predator–prey system, SIAM J. Math. Anal.
12(1981), 541–548. MR617713; url

http://www.ams.org/mathscinet-getitem?mr=1610586
http://dx.doi.org/10.1016/S0362-546X(97)00491-4
http://www.ams.org/mathscinet-getitem?mr=648855
http://dx.doi.org/10.1007/BF00275152
http://www.ams.org/mathscinet-getitem?mr=657280
http://dx.doi.org/10.1007/BF00280586
http://www.ams.org/mathscinet-getitem?mr=617876
http://dx.doi.org/10.1007/BF00275820
http://www.ams.org/mathscinet-getitem?mr=631002
http://dx.doi.org/10.1007/BF00275206
http://www.ams.org/mathscinet-getitem?mr=617713
http://dx.doi.org/10.1137/0512047


Global stability and bifurcation analysis of a delayed predator–prey system 19

[7] T. Faria, L. Magalhães, Normal forms for retarded functional differential equations
with parameters and applications to Hopf bifurcation, J. Differential Equations 122(1995),
181–200. MR1355888; url

[8] T. Faria, L. Magalhães, Normal forms for retarded functional differential equations and
applications to Bagdanov–Takens singularity, J. Differential Equations 122(1995), 201–224.
MR1355889; url

[9] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977.
MR0508721

[10] B. Hassard, N. Kazarinoff, Y. Wan, Theory and applications of Hopf bifurcation, Cambridge
University Press, Cambridge, 1981. MR603442

[11] C. S. Holling, The functional response of predator to prey density and its role in mimicry
and population regulation, Mem. Entomol. Soc. Can. 45(1965), 1–60. url

[12] S. B. Hsu, On global stability of a predator–prey system, Math. Biosci. 39(1978), 1–10.
MR0472126

[13] S. B. Hsu, P. Waltman, Competing predators, SIAM J. Math. Anal. 35(1978), 617–625.
MR512172; url

[14] S. B. Hsu, T. W. Hwang, Y. Kuang, Global analysis of the Michaelis–Menten-type ratio-
dependent predator–prey system, J. Math. Biol. 42(1978), 489–506. MR1845589; url

[15] V. A. A. Jansen, The dynamics of two diffusively coupled predator–prey populations,
Theor. Popul. Biol. 59(2001), 119–131. url

[16] W. Ko, K. Ryu, Qualitative analysis of a predator–prey model with Holling type II func-
tional response incorporating a prey refuge, J. Differential Equations 231(2006), 534–550.
MR2287896; url

[17] Y. Kuang, Delay differential equations with applications in population dynamics, Academic
Press, New York, 1993. MR1218880

[18] X. Liu, L. Chen, Complex dynamics of Holling type II Lotka–Volterra predator–prey
system with impulsive perturbations on the predator, Chaos Solitons Fractals 16(2003),
311–320. MR1949478; url

[19] M. Rosenzweig, R. MacArthur, Graphical representation and stability conditions of
predator–prey interation, American Naturlist 97(1963), 209–223.

[20] X. Tian, R. Xu, Global dynamics of a predator–prey system with Holling type II func-
tional response, Nonlinear Anal. Model. Control 16(2011), 242–253. MR2885709

[21] Y. Kuang, H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator–
prey systems, Math. Biosci. 88(1988), 67–84. MR930003; url

[22] S. Ruan, J. Wei, On the zeros of transcentental functions with applications to stability
if delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A
Math. Anal. 10(2003), 863–874. MR2008751

http://www.ams.org/mathscinet-getitem?mr=1355888
http://dx.doi.org/10.1006/jdeq.1995.1144
http://www.ams.org/mathscinet-getitem?mr=1355889
http://dx.doi.org/10.1006/jdeq.1995.1145
http://www.ams.org/mathscinet-getitem?mr=0508721
http://www.ams.org/mathscinet-getitem?mr=603442
http://dx.doi.org/10.4039/entm9745fv
http://www.ams.org/mathscinet-getitem?mr=0472126
http://www.ams.org/mathscinet-getitem?mr=512172
http://dx.doi.org/10.1137/0135051
http://www.ams.org/mathscinet-getitem?mr=1845589
http://dx.doi.org/10.1007/s002850100079
http://dx.doi.org/10.1006/tpbi.2000.1506
http://www.ams.org/mathscinet-getitem?mr=2287896
http://dx.doi.org/10.1016/j.jde.2006.08.001
http://www.ams.org/mathscinet-getitem?mr=1218880
http://www.ams.org/mathscinet-getitem?mr=1949478
http://dx.doi.org/10.1016/S0960-0779(02)00408-3
http://www.ams.org/mathscinet-getitem?mr=2885709
http://www.ams.org/mathscinet-getitem?mr=930003
http://dx.doi.org/10.1016/0025-5564(88)90049-1
http://www.ams.org/mathscinet-getitem?mr=2008751


20 G. Zhu and J. Wei

[23] J. Sugie, Y. Saito, Uniqueness of limit cycles in a Rosenzweig–MacArthur model with
prey immigration, SIAM J. Appl. Math. 72(2012), 299–316. MR2888345; url

[24] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New
York, 1990. MR1056699; url

[25] J. Wu, Symmetric functional differential equations and neural networks with memory,
Trans. Am. Math. Soc. 350(1998), 4799–4838. MR1451617; url

[26] D. Xiao, Z. Zhang, On the uniqueness and nonexistence of limit cycles for predator–prey
systems, Nonlinearity 16(2003), 1–17. MR1975802; url

[27] D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator–prey system, J. Math.
Biol. 43(2001), 268–290. MR1868217; url

[28] R. Xu, M. A. J. Chaplain, F. A. Davidson, Periodic solutons for a predator–prey model
with Holling type II functional response and time delays, Appl. Math. Comput. 161(2005),
637–654. MR2112430; url

http://www.ams.org/mathscinet-getitem?mr=2888345
http://dx.doi.org/10.1137/11084008X
http://www.ams.org/mathscinet-getitem?mr=1056699
http://dx.doi.org/10.1007/978-1-4757-4067-7
http://www.ams.org/mathscinet-getitem?mr=1451617
http://dx.doi.org/10.1090/S0002-9947-98-02083-2
http://www.ams.org/mathscinet-getitem?mr=1975802
http://dx.doi.org/10.1088/0951-7715/16/3/321
http://www.ams.org/mathscinet-getitem?mr=1868217
http://dx.doi.org/10.1007/s002850100097
http://www.ams.org/mathscinet-getitem?mr=2112430
http://dx.doi.org/10.1016/j.amc.2003.12.054

	Introduction
	Positiveness and boundedness of the solutions
	Local stability analysis
	Local stability of the boundary equilibrium
	Local stability of the positive equilibrium and the existence of Hopf bifurcation

	Global stability analysis
	Hopf bifurcation analysis
	Properties of bifurcating periodic solutions
	Global existence of periodic solutions

	Numerical simulation
	Conclusion

