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Abstract 16 

The biomass and composition of autotrophic communities in the littoral zone are mainly affected by light 17 

availability. In a field study, the spectral attenuation of periphyton was assessed. Periphyton absorbed more light 18 

in the red than in the infrared spectral range, resulting in a lower red to infrared ratio (~0.3 during the most active 19 

period of periphyton accumulation, compared with 0.9 to 1 otherwise). The lowest red to infrared ratio was 20 

detected in the upper 20 – 40 cm of the water column. Epiphytic algae are therefore found to not only affect the 21 

quantity, but also the quality of light passing through periphyton. Acclimation of Potamogeton perfoliatus L. 22 

plantlets to such infrared-enriched light was also studied in the laboratory. During leaf morphogenesis, lower red 23 

to infrared ratio light was associated with increased leaf area via the growth of existing (+85%) and the production 24 

of new leaves. Intensified internode length growth (+130%) was also observed. Post-morphogenesis, no leaf or 25 

internode growth was observed, new shoot production was also intensive. Leaf photochemical activity did not 26 

significantly differ between groups or treatments. Results suggest that periphyton could trigger shade-tolerance 27 

(leaf growth), shade-avoidance (internode growth), and morphogenetic (branch production from axillary buds) 28 

adaptations in macrophytes.  29 
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Introduction 33 

Light is the primary energy source for plants, affecting their growth, development and structure in both terrestrial 34 

and aquatic settings, and creating strong selection pressure through its variability (Lacoul & Freedman, 2006; 35 

Mooney & Ehleringer, 2009; Tilman, 2009). In the littoral zone of a turbulent lake, such as Lake Balaton, 36 

submerged rooted macrophytes, growing from the sediment to the water surface with upright stems, face highly 37 

variable light intensities. On a sunny day, irradiance in Lake Balaton can range over two orders of magnitude, 38 

from ~15 µmol m-2 s-1 at the base of a dense macrophyte stand to ~1500 µmol m-2 s-1 at the water surface (Vári et 39 

al., 2010; Tóth & Vári, 2013). Moreover, the change of light within a water column is spatially deterministic, thus 40 

each part of the plant perceives a unique environmental signal.  As highly modular organisms consisting of fairly 41 

autonomous parts (i.e., leaves and connecting internodes), macrophytes are able to respond to variable irradiance 42 

at the sub-individual level (de Kroon et al., 2005; Tóth & Vári, 2013). Successful adaptation by macrophytes to 43 

these very different light intensities throughout the water column is possible through their modular structure, where 44 

each module grow to the optimal size determined by its own optical environment resulting a greater flexibility of 45 

foliar responses and thus more effective light capture (Tóth & Vári, 2013).  46 

Through leaf growth, macrophytes provide a constantly increasing surface for autotrophs within the littoral zone, 47 

housing a large variety of periphyton communities (Ács et al., 2005; Bécares et al., 2008; Liboriussen & Jeppesen, 48 

2009; Strayer & Findlay, 2010). Greater access to light is a significant competitive advantage and macrophytes 49 

employ different strategies to adapt to periphyton accumulation (Westoby et al., 2002). This constant competition 50 

for light results an additional increase in spatial and temporal variability of biomass that alters the architecture of 51 

individual plants, modifying the foliar morphology (Crawley, 2009; Tilman, 2009), as well as the variable species 52 

density in the littoral zone of freshwater lakes (Wetzel, 1975; Kirk, 1994). 53 

Macrophytes shaded by periphyton obtain significantly less light than they would in the absence of periphyton 54 

growth, with the latter absorbing up to 98% of the incident light (Tóth, 2013). Adaptations to suboptimal irradiance 55 

levels include vertical spread toward a more optimal light environment (shade avoidance), and the increase of leaf 56 

area and the modification of photophysiological traits of plants (shade-tolerance) (Westoby et al., 2002; Valladares 57 

& Niinemets, 2008; Tóth & Vári, 2013). This demonstrates that light is not only a source of energy, but also a cue 58 

regarding the presence and amount of competitors.  59 

Macrophyte competition with epiphytic algae results in a complex web of interactions (Vis et al., 2006; Bécares 60 

et al., 2008; Tóth, 2013). Epiphytes directly influence macrophytes by decreasing the light intensity reaching the 61 

leaf surface (Asaeda et al., 2004; Sultana et al., 2010; Tóth, 2013), and also absorb light preferentially in the red 62 
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spectral range for photosynthesis. The resulting spectral changes are detected by photoreceptors such as 63 

phytochromes (Ballaré, 1999; Neff et al., 2000; Kami et al., 2010), which sense changes in irradiances between 64 

300 and 780 nm (Shinomura et al., 1996) and consequently regulate the expression of genes, affecting physiology 65 

and morphology, and triggering developmental changes (Neff et al., 2000; Smith, 2000; Kami et al., 2010). Studies 66 

on the spectral specific effects of light on morphological and physiological properties of macrophytes have mainly 67 

assessed modifications generated with regards to far red (Fr) irradiance, focusing on 730 nm in particular (Robin 68 

et al., 1994; Smith & Whitelam, 1997; Whitelam & Halliday, 1999; Franklin & Whitelam, 2005) and neglecting 69 

other wavelengths. 70 

Signal perception initiates a set of genetic and physiological responses at the point of perception consequently 71 

leading to morphological responses. This complex transduction network is a part of the intracellular signalling 72 

pathway used to transmit perceived information to local genes (Quail, 2002), thus its action might be local, 73 

affecting only the growth and morphogenesis of the given module. Moreover, morphological and developmental 74 

modifications depend mainly on changes in cell wall properties, hence the control of plant growth and development 75 

could be expected to be more pronounced during plant organ growth, morphogenesis (Kendrick & Kronenberg, 76 

1994). 77 

The spectral attenuation of light by periphyton (in this case the change in the red (R) to infrared (Ir) ratio, R/Ir 78 

ratio, where R = 675 nm, and 700 ≤ Ir ≤ 800 nm) was investigated in the mesotrophic area of Lake Balaton using 79 

artificial substrates (plastic strips) throughout a full vegetation period and at different depths. It was hypothesised 80 

that periphyton would alter the spectral properties of the light by preferentially absorbing in the red spectral range, 81 

and therefore decreasing the R/Ir ratio. Following results from the above experiments, the effect of the R/Ir ratio 82 

decrease on foliar morphology (leaf area), plant architecture (internode length) and photophysiology (electron 83 

transport in PSII) of Potamogeton perfoliatus L. plantlets were then studied under laboratory conditions during 84 

and after morphogenesis. It was hypothesised that (a) the R/Ir ratio decrease would affect both morphological and 85 

physiological traits of plantlets, (b) plantlets would be more strongly affected by spectral alteration during 86 

morphogenesis than in post-morphogenesis, and (c) leaves neighbouring the treated leaves would not be affected. 87 

 88 

Materials and Methods 89 

In situ experiments assessing the selective attenuation of periphyton were performed between 22 March and 9 90 

October, 2010. Based on the results of these experiments, the effects of Ir-enriched radiation on plant morphology 91 

and photophysiology were subsequently performed during the vegetation periods of 2011 and 2012. 92 
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 93 

In situ periphyton experiments 94 

A site near the Balaton Limnological Institute (N: 46°54'50.53", E: 17°53'37.60") in approximately 1.4 meter deep 95 

water was selected. The experimental setup was arranged 2 meters from a rocky shore, in a wave exposed area, 96 

close to a P. perfoliatus stand. At this site, the benthic sediment is a mixture of large (30-40 cm) stones and 97 

manganese rich calcite sand.  98 

Plastic strips 44 mm long and 14 mm wide (~6.2 cm2), representing the average size of P. perfoliatus leaves on 99 

the northern shore of Balaton (Vári et al., 2010; Tóth et al., 2011), were cut from APLI transparencies (Ref. 01495, 100 

APLI, Spain) (for further details, see Tóth 2013). The plastic strips were attached horizontally to a vertical fishing 101 

line at seven evenly distributed positions between 0 and 120 cm, with three strips at each depth. After ten days, 102 

the fishing line was removed from the water and the transparency of each plastic strip was measured with a 200 103 

µm diameter bifurcated fiber-optic attached to an Ocean Optics USB 2000+ spectroradiometer (Ocean Optics, 104 

USA) over the range from 200 to 1100 nm. All scans were performed against a metal halide lamp and corrected 105 

for the instrument's dark current. Four transparency measurements were recorded for each strip, with each 106 

measurement averaging 15 separate scans. Later, each plastic strip was used for chlorophyll measurement 107 

following the 90% acetone method (Ritchie, 2008). Four days after the transparency measurements, the experiment 108 

was restarted with 21 new strips on a new fishing line, and was repeated every two weeks between 22 March and 109 

9 October, 2010. 110 

 111 

 Laboratory experiments 112 

Laboratory experiments were performed during the vegetation periods of 2011 and 2012, at least once a month. 113 

Small, 3-10 leaved P. perfoliatus seedlings were collected from the shallow water area of the easternmost basin of 114 

Lake Balaton immediately before each experiment. Seedlings were planted in 60 cm deep, 53 l aquaria filled with 115 

5 cm of lake sediment collected from the seedling sampling area (Table 1). Water was changed at the beginning 116 

of each experiment, while sediment was changed every second experiment.   117 

Water and sediment characteristics were measured at the beginning of each experiment. Nitrogen (N)-forms — 118 

ammonium, nitrate and urea — were determined following standard methods (Newell et al., 1967; Elliott & Porter, 119 

1971; Mackereth et al., 1978). Total dissolved phosphorus (TDP) was determined after persulfate digestion (Gales 120 

et al., 1966). To minimise the overall effect of thermal infrared radiation, water temperature was held constant at 121 

23-24°C throughout all experiments. The tanks were illuminated by F33 Coolwhite fluorescent tubes (correlated 122 
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colour temperature 4000 K, Tungsram, Hungary), at 90 µmol m-2 s-1 intensity measured at the 4th leaf level with a 123 

14/10 hours cycle.  124 

Following one week of adaptation, four- and twelve- leaved plantlets were chosen for experiments. Plants for 125 

which the fourth leaf was approximately 30% of the projected final size (estimated from previous experiments) 126 

were categorized as undergoing morphogenesis, while plants for which the fourth leaf was close to (> 85%) its 127 

projected final size were categorized as post-morphogenesis. In a single aquarium, 10 (5 control and 5 infrared 128 

(+Ir) treatments) randomly chosen plantlets of the same size were planted. Two aquaria (morphogenesis and post-129 

morphogenesis) were simultaneously used. 130 

Infrared light emitting diodes (LED; emitting irradiance: 780±14 nm; viewing angle: 25°; current: 20mA) were 131 

assembled into a waterproof illumination system (30 LED in a system). During the assembly of the LED 132 

illumination system, the output intensity of each LED was corrected with appropriate resistors to 9mW output 133 

power. In addition to the fluorescent lamps, an infrared LED was elastically attached to the fourth basal leaf of 134 

every +Ir plantlet (Fig. 1). The LEDs were positioned in such a way that they did not physically interfere with 135 

growth (i.e., at a small, < 2mm distance from leaf) and so that the LED could illuminate both the leaf sheath and 136 

the leaf base. Based on results from the in situ experiments, the intensity of the infrared LED was set to a R/Ir ratio 137 

of approximately 0.3-0.4 (the most frequent low R/Ir ratio resulting from the in situ experiments). The R/Ir ratio 138 

was measured in the experimental setup without plants, using a 200 µm diameter bifurcated fiber-optic attached 139 

to a spectroradiometer (USB 2000+, Ocean Optics, USA): the light of the florescence tubes and LED was measured 140 

in the water, at the depth of the experiment (i.e., at approximately the depth of the fourth leaf). Control and treated 141 

plants were kept separate from each other in different parts of the tanks. Following two weeks of illumination by 142 

the infrared diodes, plants were removed from the aquaria.  143 

The light response curves (i.e., the electron transport rate (ETR) of the photosystem II (PSII) as a function of 144 

photosynthetically active radiation (PAR)) were measured for all leaves of all plantlets after a dark adapting period 145 

of 20 minutes with a PAM-2500 (Heinz Walz GmbH, Germany). First, the ETR value was detected for a dark 146 

adapted leaf with a pulse of a saturated light (630 nm, intensity 3000 μmol m−2 s−1). Later, the measured leaves 147 

were exposed to 11 actinic lights (duration 15 seconds, 630 nm, intensity between 5 and 787 μmol m−2 s−1) and the 148 

ETR values were measured after each illumination step with a new pulse of saturated (3000 µmol m-2 s-1) light. 149 

The light response data were fitted with the curve of Eilers and Peeters (1988), and the maximum ETR (ETRmax), 150 

theoretical saturation light intensity (Ik) and the maximum quantum yield for whole chain electron transport (α) 151 

were retrieved from this formula. 152 
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Each leaf was then digitalised, and leaf area (LA) was determined using ImageJ software 153 

(http://rsbweb.nih.gov/ij/). The length of each internode was measured at the beginning and at the end of the 154 

experiment. 155 

 156 

 Mathematical and statistical data analysis  157 

Student's t-test was chosen to compare the means between treatments (control vs. +Ir). This compared the area of 158 

leaves at the same leaf position at the end of the experiment and the internode growth during the 2 weeks 159 

experimental period at the same internode position.  160 

Leaf area at the end of the experiment was analysed by a General Linear Model (GLM) ANOVA using treatment 161 

(control vs. +Ir) and morphogenetic status (during morphogenesis vs. post-morphogenesis) as categorical 162 

variables, leaf position as a continuous variable, and plant number and experiment number as random variables. 163 

Assumptions of normality and homoscedascity were assessed and, when necessary, raw data were transformed via 164 

reciprocal transformation to obtain a normal distribution. Statistical analyses were performed in the statistical 165 

software R version 2.15.3 (R Development Core Team, 2012) using the R Stats, anova and anova.glm packages. 166 

Sigma Plot v 12.5 (Systat Software Inc., USA) was used to graph results and for curve fitting. Exponential rise to 167 

maximum equations (Eilers & Peeters, 1988) were fitted to the light response data using the method of least 168 

squares.  169 

 170 

Results 171 

 In situ measurements  172 

Accumulation of periphyton on the surface of the plastic strips and the preferential light absorption of chlorophyll 173 

molecules (the epiphytic algae were mostly pennate diatoms; see Tóth 2013) resulted in a R/Ir ratio decrease (Fig. 174 

2). The more algae were present in the periphyton, the more red light was absorbed (at around 675 nm and lower 175 

than 550 nm; Fig. 3A): absorbance in the red spectral range was 40-70%, while in the Ir range, it was only 20-40% 176 

(Fig. 3A). This preferential absorption resulted in a relatively higher amount of infrared radiation potentially 177 

reaching the adaxial surface of the strips (i.e., a lower R/Ir ratio; Fig. 3B). Within the physiologically significant 178 

Ir spectral region (i.e., 700-800 nm), the R/Ir ratio was lowest at 775 nm (Fig. 3B), while within the full infrared 179 

spectrum (i.e., 700-1000 nm), the lowest R/Ir ratio was at 880 nm.   180 

Based on the R/Ir ratio, two temporal groups within the vegetation period of 2010 were identified (Fig. 2A and 181 

2B). The beginning of the vegetation period, from March to May, was associated with highly variable and low 182 
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(down to 0.17) R/Ir ratio values (Fig. 2B), while the summer-autumn period was more uniform and characterised 183 

by higher mean R/Ir ratio values (Fig. 2A). In addition to the temporal pattern, a strong vertical pattern was also 184 

observed, with the lowest R/Ir ratio at 20 cm below the water surface and a gradual increase with depth (Fig. 2C). 185 

The decreased R/Ir ratio was attributed to periphyton accumulation. The equation ([R/Ir]=1.049*e-0.001*chl-a) used 186 

suggests that the variance of Chl-a content explained the vast majority of the R/Ir ratio variance (R=-0.986, 187 

P<0.001), showing the strong and significant correlation between these variables (Pearson Product Moment 188 

Correlation R=-0.976, P=2.2*10-65). 189 

 190 

Laboratory experiments 191 

By the end of the two weeks, the smaller plantlets had an average of 7 distinguishable leaves, while the larger 192 

plants grew 7 additional leaves (i.e., an average of 19 leaves). Changes in the plantlets were only observed within 193 

a close vicinity of the treated leaves, and as such only the results of the 7 basal nodes are shown. During the 194 

experiment, no periphyton was observed on plants, although the oldest (i.e., basal) leaves were covered by a fine 195 

calcite crust.  196 

Infrared treated P. perfoliatus plantlets showed differing growth responses depending on their morphogenetic 197 

status (Figs 4 and 5, Table 2). During morphogenesis, leaf area and internode length increased: the illuminated 198 

(4th) leaves were 45-80 % larger, the apically next (5th) leaves were 70-140% larger (Fig. 4A), while the leaves 199 

adjacent to the illuminated leaf internodes grew longer by 90-230% (Fig. 5A). Moreover, this effect sometimes (in 200 

23% of the cases) appeared on the next (5th or 6th) internodes as well (Fig. 5A, Table 2, treatment-leaf position 201 

intercept: TxP). Contrary to this, the infrared illumination of the fourth basal leaf of the older plantlets that were 202 

in post-morphogenesis stage had no significant effect on either leaf growth or internode length (Figs 4B and 5B).   203 

During the experiment, 35% of the studied control P. perfoliatus plantlets produced adventitious shoots and roots, 204 

while all plants illuminated with infrared irradiation grew adventitious roots and shoots (Figs 4C and 4D). The 205 

produced shoots and roots of the larger plantlets (i.e., from the post-morphogenesis experiment) were longer (on 206 

average 1.6 and 1.9 cm respectively) compared with the shoots and roots formed by the smaller plantlets during 207 

morphogenesis (0.4 and 0.3 cm respectively) (Figs 4C and 4D). 208 

Chlorophyll fluorescence showed no significant effect of infrared irradiation on the photophysiological parameters 209 

of any of the P. perfoliatus plantlet leaves (Fig. 6). Light saturation curves of the apparent ETR of the control and 210 

treated leaves were almost identical, and were not statistically distinguishable (Fig. 6A). Nevertheless, the 211 

theoretical light saturation intensity (Ik) decreased as a result of the infrared radiation in the plantlets both during 212 
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morphogenesis and post-morphogenesis, while the maximum quantum yield for whole chain electron transport at 213 

low radiation (α) slightly increased, mostly in leaves undergoing morphogenesis (Fig. 6B).  214 

The GLM-ANOVA test revealed the significant effect of morphogenetic stage of the plantlets and leaf position on 215 

leaf area at the end of the experiment (Table 2). Ir treatment alone was found to not have a significant effect, 216 

although there was a significant interaction effect between Ir treatment and position (P<0.001). In the case of 217 

internode, length neither Ir treatment nor leaf position had a significant effect, while morphogenetic stage had the 218 

strongest single effect on internode growth (P=0.023). Although the Ir treatment alone had no effect on internode 219 

growth, its interaction with internode position produced a significant (P=0.048) effect (Table 2).  220 

 221 

Discussion  222 

In situ measurements 223 

In addition to other factors affecting light quenching within the water column (e.g., water depth, water 224 

transparency, temperature, waves, solar elevation angle, etc.),  periphyton accumulation not only attenuates the 225 

light reaching the leaf surface, as has previously been shown (Bécares et al., 2008; Liboriussen & Jeppesen, 2009; 226 

Tóth, 2013), but also changes its spectral properties, as shown by the current results. The spectrally specific light 227 

attenuation by periphyton has been found to have both a temporal and a spatial pattern. Due to the seasonal 228 

difference in algal accumulation, which is not unique to Lake Balaton (Vis et al., 2007; Nõges et al., 2010), R/Ir 229 

ratio was lowest in the spring months (from March to May), and, as a result of decreased periphyton biomass, was 230 

close to 1 from June onward. This shift from periphyton rich to periphyton poor periods is a result of the 231 

temperature dependence of pennate diatoms that comprise the majority of the epiphytic algae (Tóth, 2013). The 232 

influence of temperature on algal community composition is in accordance with results from other shallow lakes 233 

throughout Europe (Liboriussen & Jeppesen, 2003; Bécares et al., 2008). Parallel to this, the vertical pattern of 234 

periphyton accumulation, with its maximum at 20-40 cm below the water surface, also significantly influences 235 

R/Ir ratio, resulting in the lowest seasonal average ratio (~0.7) at this depth. Since the artificial substrate was found 236 

to accumulate less periphyton than the living leaves (Tóth, 2013), it could be assumed that macrophytes might be 237 

exposed to quantitatively and qualitatively distinct irradiance and consequently have to efficiently acclimate to 238 

this specific light environment. The process of this acclimation and adaptation could result in the distinct vertical, 239 

morphological and physiological differentiation of rooted submerged macrophytes (Barthélémy & Caraglio, 2007; 240 

Mathieu et al., 2009; Tóth et al., 2011).  241 
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Periphyton accumulation was shown to be a crucial determinant of the R/Ir ratio. Hence, any factor influencing 242 

periphyton accumulation (i.e., macrophyte biomass, leaf form and surface structure, allelopathic effect of 243 

macrophytes, etc. (Zimba & Hopson, 1997; Cattaneo et al., 1998; Jones et al., 2000; Gross, 2003)) could 244 

significantly influence the R/Ir ratio reaching the adaxial surface of macrophyte leaves. 245 

 246 

Laboratory experiments 247 

The role of far-red light has been extensively studied in the past, showing its effect on plant development ( Franklin 248 

& Whitelam, 2005; Franklin, 2008; Kami et al., 2010). These studies were performed predominantly on terrestrial 249 

plants and demonstrate that plants grown under enriched far-red irradiance display characteristic morphological 250 

changes as a response to the aboveground competition cue. The affected parameters can be grouped into shade-251 

tolerance and shade-avoidance categories (Smith & Whitelam, 1997; Franklin, 2008; Kami et al., 2010).  252 

Significantly less is known about the effect of the infrared radiation on the physiology and morphology of aquatic 253 

plants. In aquatic environments, spectral alteration related, for example, to self-shading that results a relative 254 

increase of infrared radiation, is shown to influence the morphology of plants (Talarico & Maranzana, 2000; 255 

Arenas et al., 2002; Monro & Poore, 2005). In our study of infrared radiation, we found similar results to studies 256 

of far-red radiation on terrestrial plants (Ballaré, 1999; Franklin, 2008). For example, the intensification of plants’ 257 

vertical growth toward the surface of the water into the optimal light environment as a sign of shade-avoidance 258 

(i.e., longer internodes), and simultaneous development of shade-tolerance in the form of expanded 259 

photosynthetically active surface (i.e., increased leaf area) and minor photophysiological adjustments of the PSII 260 

system, supporting photosynthetic performance in low light environments. These adaptations likely enhance the 261 

light foraging capacity of macrophytes with dense periphyton coverage.  262 

The intensive growth of adventitious tissues in P. perfoliatus plantlets subjected to Ir treatment was also 263 

demonstrated for the first time in this study. In terrestrial plants far-red radiation promoted vertical growth (i.e., 264 

elongation) rather than horizontal expansion (i.e., branching) (Hutchings & Mogie, 1990; Kami et al., 2010). 265 

Contrary to this, the 780 nm infrared enriched radiation stimulated the development of axillary buds into 266 

adventitious tissues in P. perfoliatus, both during and after morphogenesis. This response allowed P. perfoliatus 267 

to increase the photosynthetically active leaf area, not only via growth of already existing leaves, but also via the 268 

production of new leaves from axillary buds, and thus to better forage for light.  269 

Studies of phytochrome mediated responses to low R/Ir ratio do not specify the range of the effect at the plant 270 

level, although suggest predominantly intracellular and not tissue level manifestation (Neff et al., 2000; Kami et 271 
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al., 2010). However, our results indicate a short-distance, local effect: the surplus of infrared radiation affected not 272 

only the treated leaf, but also produced an effect at a limited distance of 1 module (node) (i.e., close to the 273 

illuminated leaf), as has been found in terrestrial plants and for far-red radiation (730 nm, de Kroon et al., 2005). 274 

These local acclimations result in a very specific vertical pattern of morphological and physiological responses 275 

observed in Lake Balaton P. perfoliatus (Vári et al., 2010; Tóth et al., 2011; Tóth & Vári, 2013). In a vertically 276 

heterogeneous light environment influenced by planktonic and epiphytic light attenuation, this higher foliar 277 

variability is advantageous for P. perfoliatus, as it will result in a greater flexibility of responses and more effective 278 

light capture by the plants. 279 

This study showed that competition between epiphytic algae and its macrophyte substrate is not limited to the 280 

suppression of macrophyte production via general light attenuation, as has previously been shown (Tóth, 2013). 281 

Rather, epiphytic algae also change the spectral composition of light, consequently affecting leaf size and internode 282 

length of P. perfoliatus plantlets, suggesting the involvement of phytochrome mediated hormonal and signal 283 

transduction pathways (Smith, 2000; Franklin & Whitelam, 2005; Kami et al., 2010). In a broader context, our 284 

results show that the importance of epiphytic algae in the transition from clear water (macrophyte governed) to 285 

turbid (algae dominant) states during eutrophication (Scheffer et al., 1993; Weisner et al., 1997) might be greater 286 

than was previously thought (Scheffer & Nes, 2007): the epiphytic algae growing on macrophytes could affect the 287 

growth of the substrate macrophytes even in oligo-mesotrophic waters, thus under eutrophic conditions the 288 

combined quantitative and qualitative effects could easily supress the aquatic plants. Our data show that in addition 289 

to the general light quenching effect of the phytoplankton and the epiphytic algae, periphyton alters the spectral 290 

properties of the light reaching the adaxial surface of their substrate macrophyte leaves. 291 

In conclusion, it is believed that the epiphytic communities affect the size, morphology, depth of penetration and 292 

even metabolic status of their substrate species by changing the R/Ir ratio of the light. Moreover, this could further 293 

effect plant architecture and the spectral properties of the water under the macrophyte canopy. However, it should 294 

be noted that this study was performed on a broadleaved submerged macrophyte, and that thin-leaved and pinnate-295 

leaved species might accumulate periphyton in a different way. Furthermore, we concentrated here on the 780 nm 296 

wavelength, neglecting other wavelengths. In order to obtain more generalized results and a better understanding 297 

of the phenomena, comprehensive research must include macrophytes with different leaf forms and consider a 298 

wider range of wavelengths between 700 and 900 nm. Such future work would provide data for improved 299 

generalisation, since the effect of the periphyton on different leaf types could be expected to be very different, and 300 

there is a possibility of interaction between responses triggered by irradiation at different wavelengths. Moreover, 301 
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at the time of intense periphyton accumulation, the quantity of light reaching the adaxial leaf surface is very 302 

limited, and its quality significantly altered. Future research should also should collect information on the 303 

importance of backscattered light on macrophyte production. Although the study was performed on a wide-leaved 304 

species that intensively accumulate periphyton, and at 780 nm, periphyton accumulation and the consequent 305 

decrease in the R/Ir ratio is likely a ubiquitous phenomenon, common to all macrophytes. In turbulent lakes, this 306 

suppression of macrophyte growth by periphyton of mostly benthic origin could lead to the disappearance of 307 

macrophytes from the lake, despite the low amount of planktonic algae. 308 
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 432 
Table 1. The total dissolved nitrogen (TDN) and phosphorus (TDP) concentrations of the sediment and water 433 
during the laboratory experiments (average ±SD, n=6). 434 

 TDN TDP 

sediment 8093±1102 µg l-1 150±13 µg l-1 

water 30±6 µg l-1 14±2 µg l-1 

 435 

 436 

Table 2. Results of the GLM-ANOVA test of leaf area and internode growth with leaf and internode position (P) 437 
as the continuous variable, treatment (T) and morphogenetic status (M) as conditional variables.  438 

 leaf area internode growth 

 F Value Pr > F F Value Pr > F 

T 1.8 0.1811 0.1 0.768 

M 652.9 <0.001 5.3 0.023 

P 208.2 <0.001 1.7 0.133 

T x M 0.7 0.449 0.1 0.798 

T x P 49.5 <0.001 4.5 0.048 

M x P 20.8 <0.001 1.9 0.081 

T x M x P 0.2 0.717 0.5 0.791 

  439 
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Figure captions 440 

Figure 1. Diagram of the laboratory experimental setup showing a Potamogeton perfoliatus plantlet (a.) in an 441 

aquaria with the Ir LED (b.) attached the 4th leaf and the fluorescent tube (c.).    442 

 443 

Figure 2. Seasonal (A), vertical (C) and combined (B) changes of the red/infrared (T675nm/T780nm) ratio of 444 

periphyton covered plastic strips in 2010 in the mesotrophic basin of Lake Balaton. Each symbol in (A) and (C) 445 

subgraphs are the average ±SD (n = 21 and 42, respectively); (B) shows averages. 446 

 447 

Figure 3. The effect of periphyton chl-a concentration on the transparency of the experimental plastic strips in 448 

the range between 340 to 1000 nm (A) and the ratio of transparency at 675 nm to the transparency shown on the 449 

x axis (T675nm/Ti) (B). Clear plastic strips are represented by bold solid lines, while plastic strips covered with 450 

increasing amounts of periphyton (and higher chl-a concentration) are represented by green and brown lines. 451 

Each line is an average of 60 measurements.    452 

 453 

Figure 4. Leaf area (LA – figures A, B), and length of adventitious shoots (figures C, D, upper part) and roots 454 

(figures C, D, lower part) at the end of the experiment in plantlets during leaf morphogenesis (A, C) and after 455 

leaf morphogenesis (B, D). Control treatments are represented by white symbols and bars, while infrared 456 

irradiated plants (+Ir) are represented by black symbols and bars. The fourth basal leaf of each +Ir treatment was 457 

irradiated with infrared light (leaf #1 is the most basal). Each symbol represents the average ±SD (n = 5). 458 

Treatments at each leaf position were compared through a t-test; * is a significant difference at P<0.05.  459 

 460 

Figure 5. Change of internode growth (RG, cm cm-1) during leaf morphogenesis (A) and after leaf 461 

morphogenesis (B). Control treatments are represented by white symbols, infrared irradiated plants (+Ir) are 462 

represented by black symbols. The fourth basal leaf of each +Ir treatment was irradiated with infrared light 463 

(internode #1 is the most basal). Each symbol represents the average ±SD (n = 5). Treatments at each leaf 464 

position were compared through a t-test; * is a significant difference at P<0.05. 465 

 466 

Figure 6. Photophysiological properties of Potamogeton perfoliatus leaves. A: Light saturation curve of the 467 

apparent electron transport rate (ETR) of the 4th leaves of the control (squares) and infrared irradiated plants (+Ir; 468 

circles) of plantlets during (black symbols) and after (white symbols) morphogenesis. All fits resulted in R>0.99. 469 
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B: The maximum electron transport capacity (ETRmax), the theoretical light saturation intensity (Ik) and the 470 

maximum quantum yield for whole chain electron transport (α) of the infrared irradiated plantlets during (black 471 

bars) and after (white bars) morphogenesis. The fourth leaf of +Ir treatment were irradiated with far-red light 472 

(leaf #2 is second to the basal leaf). 473 

  474 
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