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Introduction 

 

Production of double haploid (DH) plants is a valuable tool in conventional breeding. This 

technique reduces the time needed for the development of new, improved varieties. Developing 

microspores of higher plants possess the ability to switch their default gametophytic developmental 

program to the sporophytic pathway under certain circumstances. This process, called androgenesis 

can be induced in isolated microspore and anther cultures. Androgenesis is the most widely used 

method for double haploid production, yielding diploid homozygous plants in large number and with 

high genetic variability (Reed et al. 2004). Haploid plants of more than 200 species were produced 

using androgenesis so far (Dunwell 2010). For the in vitro induction of the androgenetic process, 

immature anthers or isolated microspores at the mid- or late unicellular developmental stage are 

transferred to culture (Maluszynski et al. 2003). First pollen mitosis (PM I) is an important milestone 

in pollen development. Although androgenic induction of late  bicellular pollen is reported from 

Brassica napus (Binarova et al. 1997), the developing microspores of most studied species lose their 

totipotency around PM I (Maraschin et al. 2005b). Gene expression show significant alterations at this 

time. A new subset of genes required for pollen development become active, including the genes 

involved in starch synthesis, and other genes expressed exclusively in pollen grains (Mascarenhas 

1990). In order to alter the developmental program of the microspores and divert them towards the 

embryogenic path, a wide range of treatments are used in anther and microspore cultures, including 

heat, cold, starvation, and chemical agents (e.g. colchicine, mannitol) (Shariatpanahi et al. 2006; Islam 

and Tuteja 2012). Stress generated by these treatments is a necessary trigger for the embryogenic 

induction of immature microspores (Soriano et al. 2013).  

The ability to respond with the desired embryogenic induction to the applied pretreatments is highly 

genotype-dependent in maize (Kuo et al. 1986) and many other crop plants, such as wheat (Barnabás 

et al. 2001), apple (Höfer 2004), tomato (Zagorska et al. 1998) and pepper (Mitykó et al. 1995). While 

the germplasm-dependent manner of the androgenic response is well known, genetic background of 

the androgenic developmental switch remained unclear so far. Untreated microspores of barley show 

strong expression of cell division related genes before PM I, while the amount of transcripts related 

with starch and energy production increased highly after the division (Maraschin et al. 2006). In 

stress-treated androgenic microspores, transcription of genes involved in pollen development were 

downregulated, while genes related with protein and starch catabolism, stress response, and the 

inhibition of programmed cell death were expressed at a higher level compared to the binuclear pollen 

stage. Expression of endosperm and embryo-specific genes in multicellular structures derived from 

maize microspores was confirmed by Massonneau et al. (2005). The authors found that both 

endosperm-specific (ESR-2 and AE-3) and embryo-specific (LTP2, OCL-1 and OCL-3) genes were 

expressed in the early, exine-surrounded stage of development, around after 7 days of culture. Later, 

from the 12th day of culture, only the transcripts of embryo-specific genes were detected from 

multicellular structures, embryo-like structures, and embryo bowls. Callus-like structures expressed 

neither endosperm nor embryo-specific genes. Involvement of epigenetic changes in androgenetic 

induction of microspores in Brassica napus confirmed recently (Solís et al. 2012). 

 First structural sign of embryogenic induction is the dedifferentiation of the cytoplasm. This 

process involves a decrease in the number of organelles, lipid bodies, starch granules and ribosomes. 
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Degradation and recycling of these cytoplasmic components through two different pathways: the 

ubiquitin-26S proteosome system and autophagy (Alché et al. 2000; Maraschin et al. 2005b). In the 

next step, the nucleus moves from the periphery to the center of the microspore. Simultaneously, the 

vacuole is fragmented by cytoplasmic strands, creating the so-called star-like structure (reviewed by 

Touraev et al. 1997). This balanced distribution of cytoplasmic elements supports the symmetric 

division of the microspore, which is generally considered as a marker of embryogenic induction 

(Soriano et al. 2013). 

Cytoskeleton is an essential cell compartment for the successful completion of most of the 

above-mentioned structural changes. The plant cytoskeleton is a dynamic filamentous network, 

consisting of actin filaments and microtubules associated by various proteins (Collings 2008; Petrášek 

and Schwarzerová 2009). This complex system has diverse roles in the life of a cell: takes part in the 

formation of cell shape, sets up and maintains cell polarity, transports organelles, and coordinates cell 

division (Kost and Chua 2002). New functions of the cytoskeleton were found recently, such as 

phytohormone signalization (Lanza et al. 2012) and programmed cell death (Smertenko and Franklin-

Tong 2011). Nevertheless, there is a lack of information on the relation of the plant cytoskeleton and 

abiotic stresses, although the effects of salt and osmotic stresses (Wang et al. 2011) and heat stress 

(Malerba et al. 2010) are studied in some types of vegetative cells. 

Improvement of androgenic response in microspore and anther cultures can be achieved 

primarily by the enhancement of embryogenic induction frequency. which can be carried out by 

various pretreatments, such as heat, cold, starvation and chemical agents (reviewed by Zoriniants et al. 

2005 and Shariatpanahi et al. 2006). In the case of maize microspore and anther culture, tassels are 

usually pretreated by cold, placing the tassels at around  7 °C in the dark for 7-21 days (Gaillard et al. 

1991; Barnabás 2003). Besides this, androgenic induction was successfully triggered by chemical 

agents such as colchicine (Obert and Barnabás 2004), and 2-HNA (2-hydroxynicotinic acid, Zheng et 

al. 2003). 

Application of a primary alcohol, n-butanol (or 1-butanol) is reported to elevate the proportion 

of embryogenic microspores in wheat anther culture (Soriano et al. 2008; Broughton 2011). N-butanol 

decreases the production of a signaling phospholipid, phosphatidic acid (PA), catalysed by 

phospholipase D (EC 3.1.4.4, PLD) (Liscovitch et al. 2000). Phosphatidic acid antagonist effect of n-

butanol is not selective to PLD isoforms, as it diverts the transphosphatidylation reaction step, typical 

of all PLD isoenzymes (Motes et al. 2005). In the absence of n-butanol, phospholipase D isoenzymes 

hydrolyze different phospholipids at the terminal phosphodiester bond, yielding the former head group 

molecule of the hydrolyzed membrane lipid (e.g. choline, ethanolamine or glycerol) and different PA 

species (Wang et al. 2014a). These PA molecule types may have various target enzymes (Wang et al. 

2014b), regulating diverse functions of cells, such as response to abscisic acid and reactive oxygen 

species, programmed cell death, membrane trafficking and cytoskeletal dynamics (Hong et al. 2010; 

Pleskot et al. 2013). When n-butanol is present, PLD transfers the phosphatidyl group to butanol, 

instead of -OH group originated from water. This results in the production of phosphatidylbutanol 

instead of PA, reducing the amount of PA generated in the cell (Munnik et al. 1995; Wang et al. 

2014a). This triggered reversible microtubule depolymerization and/or the release of cortical 

microtubules from the plasma membrane in Arabidopsis BY-2 cell culture (Dhonukshe et al. 2003; 

Hirase et al. 2006). Our previous results indicated that n-butanol increases androgenic response in 

maize microspore and anther cultures (Földesiné Füredi et al. 2011; Földesiné Füredi et al. 2012). In 

order to link this androgenesis-enhancing feature to the previously demonstrated microtubule-

disrupting effect, cytoskeleton of n-butanol-treated maize microspores were studied using fluorescent 

probes by confocal laser scanning microscopy.  Moreover, cytoskeleton-altering effects of two 

potentially embryogenic treatments (cold pretreatment and n-butanol treatment) were compared. 

Possible ultrastructural alterations of microspores or microspore derived structures caused by n-

butanol treatment are studied for the first time. 

 

 

 

 

Materials and methods 

 



Plant material 

 

Plants of a single cross maize hybrid line (A 18) were used as donor plants for androgenic 

anther culture, according to (Földesiné Füredi et al. 2012). Briefly, plants were grown in phytotron 

growth chambers using a climatic program designed for growing maize (Tischner et al., 1997). After 

cold pretreatment (7 ºC for 10 days) in the dark, immature anthers containing microspores at the late 

uninuclear developmental stage were placed on a modified liquid YP medium (Genovesi and Collins 

1982) supplemented with 0.1 mg l-1 2,3,5-triiodobenzoic acid, 500 mg l-1 casein hydrolysate, and 120 g 

l-1 sucrose at pH 5.8. To investigate the effect of n-butanol, this chemical agent was added to the 

medium at a final concentration of 0.2%, or omitted. After 6 hours, treated anthers were transferred to 

n-butanol free induction medium. Experiments were performed either on cold pretreated and untreated 

control anthers, in order to distinguish the effect of cold pretreatment and n-butanol treatment.  

Anthers of all treatments (1500 anthers per treatment) were cultured at 29 ºC in the dark for 28 days. 

On the 28th day, androgenic induction and embryo/callus ratio was determined using a 

stereomicroscope. 

 

 

Treatment, sample collection 

 

In order to study the effect of cold pretreatment and n-butanol treatment on actin and 

microtubule cytoskeleton elements, microspores were obtained from anthers by mechanical isolation. 

Anthers were placed in 1 ml of culture medium and gently agitated to release microspores to the 

medium. Suspension was filtered through a 100 µm nylon mesh filter to remove debris from anther 

walls. Microspores from n-butanol treated anthers were isolated using culture medium supplemented 

with 0.2% n-butanol. Untreated control, cold pretreated and n-butanol treated microspores were 

immediately processed by fixation and cytoskeleton labeling. To investigate the recovery of 

cytoskeleton, n-butanol was removed from a portion of treated microspores by washing two times with 

culture medium. After 30 minutes in culture medium, these microspores were fixed and labeled as 

well. Anthers from all treatments were collected for light and electron microscope studies on the first, 

third, seventh and fourteenth days of culture. 

 

 

Actin and microtubule labeling 

 

Labeling of actin filaments was carried out according to Lovy-Wheeler et al (2005) with slight 

modifications. Microspores were fixed for 30 minutes in a buffer containing 100 mM PIPES, 5 mM 

MgSO4, 0.5 mM CaCl2, 7.5% sucrose, 0.05% Triton X-100 and 2% paraformaldehyde as fixative, at 

pH 9.0. Infiltration of the fixation buffer was facilitated by vacuum for 10 minutes. The fixative was 

washed out with the above buffer containing 10 mM EGTA at pH 7, then F-actin was stained with 6.6 

µM rhodamine phalloidin (Sigma) for 30 min.  

Visualization of microtubules was performed by indirect immunofluorescence. Microspores were 

fixed in PEM buffer (100 mM PIPES, 10 mM EGTA, 10 mM MgSO4, 7,5% sucrose, pH 7,4) 

supplemented with and 4% paraformaldehyde. Proteinase inhibitor cocktail (32 µg ml-1 benzamidine 

HCl, 2 µg ml-1 phenanthroline monohydrate, 20 µg ml-1 aprotinin, 20 µg ml-1 leupeptin, 20 µg ml-1 

pepstatin, final concentrations) was added to buffers during fixation, digestion of microspore wall, and 

incubation with primary and secondary antibodies. After fixation, microspores were washed three 

times with PEM buffer. Microspore wall was partially digested with 10 mg ml-1 ß-glucuronidase in 

PEM buffer at room temperature for 90 min (Simmonds and Keller 1999). After 60 min of digestion, 

DMSO and Nonidet P 40 substitute (Sigma) were added to the mixture at 5% and 0.1% final 

concentrations, respectively.  Microspores were pelleted and suspended in 1% Triton x-100. After 

washing three more times, microspores were transferred to PBS buffer by changing PEM buffer to 

PBS gradually in three steps. Blocking, incubation and washing of unbound antibodies were 

performed in PBS buffer containing 1% bovine serum albumin (BSA). Primary and secondary 

antibodies were monoclonal anti-α-tubulin antibody produced in mouse (Sigma T9026) and anti-

mouse IgG (whole molecule) - FITC antibody produced in goat (Sigma F0257), respectively. Both 



antibodies were used at 1:200 dilution, with 60 min incubation at room temperature. Actin and 

microtubule filaments were imaged using a Leica TCS SP8 confocal laser-scanning microscope 

(Leica, Germany). 

 

 

Light- and transmission electron microscopy 

Immature anthers containing microspores were fixed in PEM buffer containing 7.5% sucrose 

and 4% glutaraldehyde for 4 hours at pH 7.2. Fixative was vacuum infiltrated until anthers sinked in 

vials. Anthers were rinsed three times, 30 min each in PEM buffer and postfixed for 3 h at 4 °C in 1% 

(w/v) osmium tetroxide (OsO4) in Milli-Q water. After washing in Milli-Q water, the samples were 

dehydrated through a gradient series of ethanol, infiltrated with epoxy resin according to Spurr (1969). 

Resin blocks were polymerized for 48 h at 60 °C. Semi-thin (1 µm) and ultra-thin (70 nm) sections 

were made using an Ultracut E microtome (Reichert-Jung GmbH, Heidelberg, Germany). For light 

microscopy, semi-thin sections were collected on glass slides, stained with toluidine blue (0.5% 

toluidine blue in 0.1% sodium carbonate buffer at pH 11.1) or auramine O (0.001% in 50 mM Tris-

HCl buffer at pH 7.5). For transmission electron microscopy, ultra-thin sections were mounted on 

Formvar-coated (SPI-Chem, West Chester, PA, USA) 100-mesh nickel grids. Sections were contrasted 

with 3% (w/v) aqueous uranyl acetate and 0.08% (w/v) lead citrate. The sections were examined using 

a Philips Morgagni 268D electron microscope at 80 kV accelerating voltage. 

 

Quantitative evaluation of fluorescent signals 

 

Quantification of cytoskeletal changes following cold pretreatment and the introduction of n-

butanol were determined by the methods of Higaki and others (2010), using the image processing 

program ImageJ (http://rsbweb.nih.gov/ij/). Density of cytoskeletal elements, using the parameter 

“occupancy” was determined from three replicates, using pictures of 50 cells per treatment. All data 

were pooled means from the replicates and were statistically evaluated using ANOVA (SSPS for 

Windows, version 10.0). 

 

 

Results 

 

 

Pretreatment-dependent induction of maize microspores 

 

The applied various pretreatments triggered significantly different levels of microspore 

induction (Table 1). Anthers of highly responsive A-18 maize genotype used in our experiments 

yielded embryos and calli at low frequency in culture medium without cold pretreatment or the 

application of n-butanol. Induction of calli was more than twice prevalent than of embryos in this case. 

Application of 0.2% n-butanol without cold pretreatment elevated the percentage of responding 

microspores about six times. This treatment yielded a nearly equal amount of embryos and calli per 

100 anthers. Number of embryos was even higher when cold pretreatment was used alone. Highest 

embryo induction was achieved when n-butanol treatment was applied after the 10-day cold 

pretreatment, yielding 20.95 embryos per 100 anthers on average. Cold pretreatment alone and 

combined cold and n-butanol treatment resulted in the highest embryo/callus ratio, inducing more than 

twice as many embryos than calli (Table 1).  

 

 

 

 

Table 1. Effects of various pretreatments on the embryo and callus induction in maize anther culture. 

Values indicate the number of induced structures per 100 anthers.  

 



Treatment Embryo induction Callus induction Embryo/callus ratio 

no treatment (control) 0.52±0.33a 1.02±0.32a 0.43 

0.2% n-butanol 5.00±2.32b 5.19±1.93b 0.96 

cold pretreatment 11.90±3.59c 5.53±1.84b 2.15 

cold pretreatment + 0.2% n-butanol  20.95±4.73d 9.86±2.09c 2.12 

Different letters within a column show significant differences between mean values at the P<0.005 

level of probability 

 

 

Effect of various pretreatments on cytoskeletal elements 

 

Cold pretreatment resulted in a significantly elevated amount of actin filaments (Fig. 1 a-b, d), 

which was confirmed by the quantitative analysis of fluorescence signal intensities from the 

rhodamine phalloidin labeled microspores (Fig. 2.). However, evenly distributed structure of cortical 

actin network did not change during the pretreatment; neither the production of actin cables was 

observed. Exposure to cold did not affected the structure nor the density of microtubule cytoskeleton 

in the microspores compared to untreated control (Fig. 1 e-f, h). In contrast with cold pretreatment, 

actin microfilaments remained similar to the control after the supplementation of culture medium with 

2 mM n-butanol for 6 hours. This treatment caused the depolymerization of microtubules, which 

resulted in the total disappearance of cortical microtubule cytoskeleton (Fig. 1 a, c, d). Interestingly, 

dense networks of MTs surrounding the nucleus and the aperture remained largely intact, indicating 

that n-butanol does not affect all kinds of microtubule arrays uniformly (Fig. 1 g, i). After the removal 

of n-butanol, the original structure of cortical microtubule cytoskeleton substantially recovered in 30 

minutes (Fig. 1 j). Actin cytoskeleton did not change significantly following the chemical treatment 

(Fig. 1 e, g, h). Quantification of fluorescent signals from specifically labeled cytoskeletal elements 

verified that cold pretreatment selectively increased the amount of actin microfilaments, while n-

butanol reversibly depolymerized the cortical microtubules of maize microspores (Fig. 2.). 

 

 

Alterations during the early development of microspore derived structures 

 

The early development (3-14 days) of MDSs originated from different treatments was studied 

in order to evaluate the effects of the applied n-butanol treatment on the embryogenic process. Since 

cold pretreatment is necessary for microspore embryogenesis in most maize genotypes, cold pretreated 

anthers were taken as control in our structural studies. Microspore derived structures were taken from 

cold pretreated anthers and cold pretreated anthers supplemented with n-butanol at the end of 

treatments and after 3, 7  and 14 days of culture and studied by histological methods. Histological 

study of structures collected after 3 and 7 days of culture indicated that n-butanol slowed the 

development of embryogenic microspores. During the first seven days, microspores treated with n-

butanol performed fewer divisions compared to cold pretreated control (Fig. 3 a-b, d-e). During this 

period, both n-butanol treated and untreated MDSs showed two differently organized domains similar 

to that previously reported by Testillano et al (2002). The smaller, probably embryogenic domain 

contained small cells with densely stained cytoplasm, while the other, probably not embryogenic 

group of cells (mentioned as endosperm-like domain by Testillano and coworkers) consisted of large, 

highly vacuolated cells. By the 14th day of culture, vast majority of the MDSs reached the proembryo 

developmental stage, regardless of the applied treatment (Fig. 3 c, f). Although the majority of the 

activated microspores followed the above-mentioned developmental process, both studied treatments 

triggered the formation of MDSs containing numerous, distinct clusters of cells (Fig. 3 g). Two types 

of clusters were distinguished, showing structural correspondence with the embryogenic and 

endosperm-like domains of the young microspore-derived structures. The application of a fluorescent 

dye, auramine-o enabled the study of the newly synthetized cell walls at the light microscopic level. 

Although auramine-o is known for its specificity for the sporopollenin exine in intact pollen grains 

(Lalonde et al. 1997; Nishikawa et al. 2005), in the case of microspores embedded in Spurr’s resin the 



dye stained specifically the intine and the new, inner cell walls instead of the exine layer. This study 

revealed the presence of incomplete and irregular cell walls in the case of n-butanol-treated cells (Fig. 

3 h-i), which were further investigated by transmission electron microscopy. 

 

 

Ultrastructural attributes of microspore derived structures originated from different treatments 

 

Transmission electron microscopic study of cultured microspores revealed differences at the 

ultrastructural level triggered by n-butanol treatment. At the third day of culture, microspores 

following the gametophytic (Fig 4 a) and sporophytic (Fig. 4 b) developmental pathway were clearly 

distinguishable in both control and n-butanol treated samples. Cytoplasm of microspores successfully 

induced by either cold or n-butanol pretreatment was less dense and contained significantly less 

organelles; starch granules were totally absent (Fig. 4 c, d). This phenomenon is the result of the so-

called cytoplasmic cleaning (Seguí-Simarro and Nuez 2008), dedifferentiation of cytoplasm through 

the disassembly of organelles, which is generally considered as a necessary prerequisite of microspore 

embryogenesis. Autophagy-related structures, such as phagophores and autophagosomes were also 

observed in these activated microspores, on the third day of culture (Fig 4 d, f, g). Cytoplasmic 

cleaning and autophagy were both typical of cold treated control and n-butanol treated androgenic 

microspores. Frequent occurrence of incomplete and severely irregular cell walls was observed only in 

n-butanol-treated microspores, from the first, mostly symmetric cell division (Fig. 4.). Irregularities, 

such as curved, wavy appearance of cell walls, the appearance of extremely thickened wall segments 

and the formation of inclusions embedded in cell wall material containing cytoplasmic elements, e.g. 

as organelles (Fig. 4 f). Nevertheless, irregular or incomplete cell walls were only sparsely observed in 

n-butanol-treated MDSs sampled on the 7th and 14th days of culture. Autophagy-related structures, 

such as phagophores (Fig. 5 a), phagosomes (Fig. 5 a inset), intravacuolar autophagic bodies (Fig. 5 

b), intravacuolar deposits of autophagic bodies with digested material (Fig. 5 c), and small vesicles 

probably containing digested material to be excreted (Fig. 5 d) were still visible in n-butanol treated 

MDSs after 14 days of culture. Contrarily, these structures were absent in cold treated control. On the 

14th day of culture, signs of programmed cell death (PCD), such as highly condensed degenerating 

nuclei, destructuration of cytoplasm and organelles were observed in both n-butanol treated and 

control MDSs (Fig. 5 d-e). These microspore-derived structures contained several dividing cell 

groups, covered by degenerating cells and debris (Figs. 3 g, 5 e).  

 

 

Discussion 

 

 

N-butanol: an effective embryogenesis-enhancing agent 

 

While long exposures to n-butanol effectively slows or even blocks growth and development 

in Arabidopsis seedlings (Gardiner et al. 2003; Motes et al. 2005), shorter treatments with similar 

concentration resulted in elevated androgenic induction in wheat (Soriano et al. 2008; Broughton 

2011), maize (Földesiné Füredi et al. 2011) and barley (Castillo et al. 2014) microspore and anther 

cultures. As reported in barley microspore culture, n-butanol may act in a genotype- and pretreatment-

dependent manner (Castillo et al. 2014). In these experiments, n-butanol increased the number of 

embryos and green plants in low-responding cultivars, but not in the studied, medium and high 

responding cultivars. Moreover, this beneficial effect of n-butanol occurred only in the case of anthers 

pretreated with mannitol. Cold pretreated microspores from low-responding genotypes did not showed 

increased embryo number following the n-butanol treatment. In our system, n-butanol elevated the 

number of embryos when used alone or in combination with cold pretreatment, and increased the 

embryo/callus ratio, when used without cold pretreatment. This underlines that induction of 

androgenesis is an intricate process, depending on multiple factors. 

Although beneficial effect of n-butanol on microspore embryogenesis is well proven in 

different species, it was not yet confirmed if elevated embryogenic response is related to changes in 

cytoskeletal structure. Our studies demonstrated that n-butanol concentration effectively used to 



elevate androgenic induction in maize anther culture disrupted the cortical microtubules in 

microspores as well. We also found that microtubule-depolymerizing effect of n-butanol was 

reversible in maize microspores, similarly to previous reports published by other researchers, 

concerning cell cultures and vegetative organs (Dhonukshe et al. 2003; Gardiner et al. 2003; Hirase et 

al. 2006).  

 

 

Effect of n-butanol on cortical microtubule array 

 

Effect of n-butanol on microtubule network is very similar to that of colchicine, decreasing the 

amount of cortical microtubules in the cells. Colchicine, unlike n-butanol, acts directly on 

microtubules, as it binds to β-tubulin, blocking tubulin polymerization. In the absence of newly 

polymerized microtubules, cell polarity can no longer be maintained (Siegrist and Doe 2007). After 

the removal of colchicine, a new, evenly distributed microtubule network appears, enabling a 

symmetric cell division. Colchicine without cold pretreatment triggered embryogenesis in maize 

anther culture similarly to cold pretreated control (Obert and Barnabás 2004), but when applied 

following the cold pretreatment, number of embryos did not elevated as considerably as after the 

application of n-butanol in present study. Colchicine, like n-butanol in our previous study (Földesiné 

Füredi et al. 2012) significantly elevated the proportion of symmetric cell divisions in tobacco (Eady 

et al. 1995) and wheat (Szakács and Barnabás 1995). Eady and coworkers (1995) reported the 

activation of vegetative cell-specific tomato promoter lat52 in daughter cells originated from 

colchicine-triggered symmetric cell division of tobacco microspores. This points out that division 

symmetry can affect gene expression and may modify the developmental fate of the daughter cells 

(Eady et al. 1995). Authors of the article suggest that gene expression changing effect of altered 

division symmetry may be done by changing the uneven distribution of expression factors and/or 

inhibitors in daughter cells. Despite the similar effects on microtubule cytoskeleton, colchicine and n-

butanol may have different influence on microspore induction.  In the case of n-butanol, androgenesis 

may be aided many other ways besides the alteration of division symmetry, as the decrease of all 

signaling PA species influence various signal pathways.  

N-butanol treatment applied without cold pretreatment successfully induced embryos and calli 

in our experiments, however, with lower frequency compared to cold pretreated anthers (Table 1). The 

embryo/callus ratio was different between these two treatments as well. N-butanol induced the same 

amount of embryos and calli, while embryo induction was twice as frequent as callus induction when 

cold pretreatment was used alone (Table 1). Although application of n-butanol following cold 

pretreatment did not elevated further the embryo/callus ratio, this combined treatment resulted in a 

higher number of responding microspores compared to cold treatment alone. These results suggest that 

cytoskeletal reorganization induces developmental program shift from the gametophytic to the 

sporophytic pathway, but gene expression changes or epigenetic alterations induced by cold stress 

(Solís et al. 2012) ensure a more efficient induction of embryogenesis instead of generating callus. 

 

 

Cold pretreatment alters actin filament network of maize microspores 

 

The hypothesis that cytoskeleton has an important role in embryogenic induction leads to the 

question: How does cold pretreatment essential to microspore embryogenesis change the structure of 

actin and/or microtubule network? Our confocal laser scanning microscopic studies revealed that only 

actin filament network of maize microspores was altered after the applied cold pretreatment, while 

microtubule cytoskeleton remained unchanged. The fact that cold pretreatment triggered both the 

increase of actin amount and the efficient induction of embryogenesis, suggests that actin cytoskeleton 

is involved in cytoplasm reorganization leading to or involved in the induction of embryogenic 

microspores. This conception is supported by the results of Sheahan et al. (2004), who documented the 

crucial role of actin cytoskeleton in organelle partioning and redistribution of tobacco protoplasts. 

Similarly to our results, elevation of a certain actin isoform during cold pretreatment of maize 

microspores was observed by proteomic methods (Uváčková et al. 2012), although less than in our 

experiment. 



This raise the question, what mechanism links low temperature exposition to the redistribution 

of actin network. It is proven that activity of phospholipase D increased after cold exposure (Ruelland 

et al. 2002), leading to the elevation of intracellular PA levels. In Arabidopsis, phosphatidic acid 

negatively affected the actin-binding ability of a heterodimeric capping protein (CP) that binds actin 

filaments at the barbed ends (Huang et al. 2006; Pleskot et al. 2012). This regulatory protein decreases 

filament length and annealing frequency through the lowering of dynamic activity at filament ends. 

Therefore, elevated levels of PA expectedly increase the amount of actin in the cells. Indeed, 

exogenous PA is reported to enhance the amount of filamentous F-actin in Arabidopsis and tobacco 

suspension cultures and Arabidopsis epidermal cells (Huang et al. 2006; Pleskot et al. 2010; Li et al. 

2012). As recently discovered, phosphatidic acid has a regulating role in the case of microtubules as 

well. The binding of exogenously added PA to a microtubule associated protein MAP65-1, elevates 

the microtubule polymerization and bundling activity of this regulatory protein, stabilizing 

microtubule cytoskeleton during salt stress in Arabidopsis (Zhang et al. 2012). Nevertheless, 

microtubule content did not elevated further, when various PA species were added to control cells, 

suggesting that MAP65-1 may have a stress-related role. These data from literature altogether offer 

explanation to our findings concerning the effects of cold pretreatment on actin and microtubule 

cytoskeleton. Increased amount of actin filaments is probably the result of cold-induced PLD 

activation and subsequent elevation of PA content in cells. Unchanged microtubule cytoskeleton can 

be explained by the same factors: high level of PA might neutralized the eventual microtubule 

disassembly induced by cold stress through the activity of regulator proteins like MAP65-1. Early 

cold-induced disruption of microtubules and subsequent formation of new filaments were observed in 

cold tolerant wheat genotypes (Abdrakhamanova et al. 2003), suggesting the dynamic behavior of 

microtubules during long-term cold exposure. Besides this, cold stress sensitivity of microtubule 

network in microspores may show developmental stage dependency according to recent publications 

(De Storme et al. 2012; Barton et al. 2014), in which cold treatment only affected microtubular 

organization during the telophase of meiosis.  

 

 

N-butanol triggers abnormal formation of cell walls  

 

One of the most conspicuous structural alterations caused by the n-butanol treatment is the 

appearance of abnormal cell walls. Although cell plate, predecessor of the new cell wall is synthetized 

during the cytokinesis, the phragmoplast, a microtubular structure required for this process, appears in 

the telophase of the cell division. The phragmoplast array contains two sets of parallel microtubules, 

with their plus ends facing each other at the site of the prospective cell plate and subsequent cell wall. 

The role of the phragmoplast is to drive the vesicles containing newly synthetized cell wall material 

from the cytoplasm to the site of cell plate construction (Liu et al. 2011). As the exact location of the 

forming cell plate is determined by the plus ends of MTs involved in the phragmoplast, various events 

inducing dissociation or depolymerization of microtubules during the telophase are likely change the 

location and/or the structure of the new cell wall. Application of colchicine triggered abnormal cell 

plate formation in oat roots (Holmsen and Hess 1985), leading to the synthesis of branching, wavy cell 

plates. Colchicine altered the orientation of otherwise normally structured cell plates in Funaria as well 

(Schmiedel et al. 1981). In our experiments, we observed irregular cell walls very similar to the 

colchicine treated samples of Holmsen and Hess (1985), which underlines the parallel effect of 

colchicine and n-butanol. Although the suggested polarity-ceasing effect of n-butanol is considered to 

take effect before the onset of PM I, it is expected that microspores already commenced mitosis at the 

beginning of the n-butanol treatment may show altered cell walls due to the presence of n-butanol 

during telophase and cytokinesis. Moreover, removal of n-butanol at the end of treatment may be slow 

or uneven from intact anthers, leading to considerably different local concentrations. This is supported 

by the observation that microspore derived structures in anthers frequently appeared in clusters (data 

not shown). 

Although literature data suggests that different arrays of microtubules are main factors 

involved in the establishment of division plane and cell plate (Rasmussen et al. 2013), it is proven that 

depolymerization of actin filaments during cell division alters division symmetry in vegetative cells 

(Liu and Palevitz 1992; Eleftheriou and Palevitz 1992) and even in microspores, inducing 



embryogenesis (Gervais et al. 2000). To sum up literature data, it can be said that cooperation of 

microtubule and actin arrays during thelophase and cytokinesis is necessary for the formation of 

normal cell walls.  

 

 

Autophagy sustained selectively in n-butanol treated samples 

 

Cytoplasmic cleaning is the essential part of the dedifferentiation of cytoplasm, taking place in 

cultured microspores.  This process, together with gene expression changes lead to the totipotency and 

to the embryogenic induction of microspores (Seguí-Simarro and Nuez 2008). Corral-Martínez and 

coworkers (2013) found evidence for the involvement of autophagy in the early development of 

embryogenic microspore derived structures in Brassica, pointing out that the autophagic process and a 

subsequent excretion of digested cell compartments are elemental parts of androgenic induction. By 

the application of monodansylcadaverine (MDC), a fluorescent amine specifically staining 

autophagosomes, the authors demonstrated that autophagy was present only in embryogenic 

microspores. Neither non-embryogenic structures, nor microspore derived embryos after only 4 days 

of development were positive to MDC staining, suggesting that autophagy only takes part in the very 

first step of androgenesis, the dedifferentiation of cytoplasm. In our system, large autophagosomes 

containing cytoplasm and organelles were observed, which confirmed that macroautophagy took place 

in embryogenic microspores and MDSs (Li and Vierstra 2012). Autophagy-related structures were 

observed in cold treated control and n-butanol treated samples on the third day of culture. Moreover, 

microspore derived structures from n-butanol treated samples showed both initial- and progressed-

stage autophagy after 7 and even 14 days of development as well. Although slowed development of n-

butanol treated MDSs could explain this, MDSs from cold treated control and n-butanol treated 

samples show parallel development from the 7th day of culture, making this alternative unlikely. 

Prolonged existence of autophagic processes may contribute to the elevated embryo induction 

observed after n-butanol treatment, enabling the formation of new, potentially embryogenic cells 

during the later phase of anther culture, which is generally not yields new embryos. According to 

Varnier et al (2009), programmed cell death during microspore embryogenesis is a significant factor 

that lowers the number of embryos and  regenerated plants. In our experiments, clear signs of 

programmed cell death were observed in both cold-treated control and n-butanol treated cultures at the 

14th day of culture. 

 Gene expression study of maize microspore-derived structures demonstrated the parallel 

expression of endosperm- and embryo specific genes in 7-day stage structures (Massonneau et al. 

2005). The same study revealed that only the embryo specific genes expressed in MDSs on the 15th 

day of culture. This indicates that genetic program of endosperm-like domain in developing embryos 

changes, or more likely, that these cells die by this time. Ultrastructural study of the developing 

structures showed that cell domains containing large vacuoles could be found only sparsely in MDSs 

on the 14th day of culture. The disappearance of these domains in MDSs overlapped with the onset of 

PCD, suggesting that mainly non-embryogenic cells of endosperm-like domains underwent PCD. 

Remaining cells of MDSs performed additional divisions, forming numerous, actively dividing cell 

clusters, resembling the structural and cytological features of younger-stage proembryos (Figs 3 g, 5 

e). PCD of cells within developing proembryos were found in barley microspore culture as well, 

starting five days after the start of culture (Maraschin et al. 2005a). The authors considered that 

programmed cell death might be a developmental feature, required for the transition from a 

multicellular structure to a proembryo. Coexistence of autophagy and programmed cell death of non-

embryogenic cells in n-butanol treated samples may elevate the final number of embryos. 

 Present study revealed the different effects of cold pretreatment and the n-butanol treatment on 

the cytoskeleton of maize microspores. However, further studies are needed to find out whether the 

enhanced embryogenesis triggered by n-butanol is based exclusively on its cytoskeleton-altering effect 

or it is aided by the influence of phosphatidic acid-dependent signaling pathways as well.  
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Figures 

 

 
 

Figure 1. Effects of cold pretreatment and 0.2% n-butanol treatment on the cytoskeletal organization 

of maize microspores. (a)-(e): F-actin microfilaments visualized by rhodamine phalloidin, (f)-(j): 

microtubules labeled with indirect immunofluorescence. Treatments: control (a, f), 0.2% n-butanol for 

6 hours without cold pretreatment (b, g), cold pretreatment (c, h), cold pretreatment followed by n-

butanol treatment (d, i), recovery of cold- and n-butanol treated microspores 30 minutes after the 

removal of n-butanol (e, j). Cold pretreatment led to the elevation of F-actin amount (c-e) compared to 

control (a). N-butanol treatment triggered the depolymerization of cortical microtubules in both cold 



untreated control (g) and cold treated (i) microspores, while F-actin network of these microspores (b 

and d) were unaffected. Bars represent 10 µm. 

 

 

 

 
 

Figure 2. Changes in actin (a) and microtubule (b) network densities triggered by the applied 

treatments. (a): n-butanol treatment did not alter the amount of F-actin, while cold pretreatment 

elevated its occupancy nearly twofold. (b): application of n-butanol significantly decreased the density 

of cortical microtubules, in contrast with cold pretreatment, which had no effect on it. After the 

removal of n-butanol, amount of microtubules increased to the level similar to control microspores. 

Asterisks show significant difference between the value and the untreated control, evaluated by 

analysis of variance. **P<0.005, *** P<0.0005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 3. Altered early development of microspore-derived structures after n-butanol treatment. 

Semithin sections stained with toluidine blue. (a)-(c): cold-treated control after 3, 7 and 14 days of 

culture. (d)-(f): n-butanol treated microspores and MDSs after 3, 7 and 14 days of culture. Note that n-

butanol treated microspores performed fewer divisions during the first seven days compared to 

control. (g): microspore derived structure showing numerous, embryogenic and non-embryogenic cell 

clusters, surrounded by debris originated from dead cells. (h)-(i): Sections of microspores after 3 days 

of culture, stained with auramine-O. (h): Microspore following the gametophytic developmental 

pathway, containing a generative and a vegetative cell. (i): Symmetrically divided microspore after n-

butanol treatment, with incomplete cell wall. Note the free ends of cell wall (arrows). v vacuole, e 

embryogenic domain, ne non-embryogenic domain, ve vegetative cell, g generative cell, arrows cell 

walls. Bars represent 10 µm. 

 

 

 

 

 

 

 



 
 

Figure 4. Ultrastructure of microspores on the third day of culture. (a) cold treated control bicellular 

microspore following the gametophytic developmental pathway. (b) n-butanol treated microspore, 



showing the signs of embryogenic activation: symmetric division, uniform nuclei in daughter cells, 

cytoplasmic cleaning. (c) cytoplasm structure of microspore shown in (a). Note the considerable 

amount of starch granules labeled by asterisks. (d) cytoplasm structure of embryogenic microspore 

shown in (b). Note the progressed cytoplasmic cleaning and the presence of autophagosomes (white 

arrows). (e) normally developed cell wall from an n-butanol treated microspore. (f) irregular cell wall 

from an n-butanol treated microspore shown in (b). Note the considerably thickened part of the wall 

with cytoplasm-containing inclusions (double arrow). (g) free end of incomplete cell wall from an n-

butanol treated microspore. cw cell wall, mw microspore wall, v vacuole, n nucleus, nu nucleolus, aw 

anther wall, fe free end of cell wall, white arrow vegetative nucleus, black arrow generative nucleus, 

white arrowhead autophagy-related structures, black arrowhead cell wall, double arrow inclusions in 

cell wall containing cytoplasmic elements, asterisk starch granule. Bars: (a)-(b):10 µm; (c),(e),(f): 3 

µm; (d): 2 µm; (g): 500 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure 5. Autophagy and programmed cell death in microspore derived structures after 14 days of 

culture.  (a)-(d) n-butanol treated MDSs, (e) cold pretreated control MDSs. (a) phagophores engulfing 

cytoplasm containing organelles. Inset: autophagosome. (b) intravacuolar autophagic bodies, (c) 

intravacuolar deposit of autophagic bodies with digested material (arrows), (d) coexistence of 

autophagy and programmed cell death in n-butanol treated MDSs. Note the small vesicles probably  

digested material to be excreted (arrows) and the neighboring, degenerating cell (dc) committing 

programmed cell death. (e) cold pretreated control microspore derived structure containing multiple 

proembryo-like structures (pe). dc degenerating cells, l lipid body, G Golgi apparatus, v vacuole, cp 

cytoplasm, asterisk phagophore, star highly condensed, degenerating nucleus. Bars: (a)-(b): 2 µm, (c)-

(d): 5 µm, (e): 10 µm 

 


