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Abstract Prediction of machine tool chatter requires

the characterization of dynamic of the machine-tool-

workpiece system by means of frequency response func-

tions (FRFs). Uncertainties of the measured FRFs re-

sult in uncertainties of the calculated stability diagrams,

therefore robustness of stability prediction against pa-

rameter perturbations is of high importance. Although

there exist methods to determine robust stability in

terms of stability radii, these methods either give a

conservative estimate of the real uncertainties or are

limited to perturbations of a few modal parameters,

only. In this paper, a frequency-domain approach is pre-

sented to determine robust stability boundaries using

the measured FRFs directly without any modal param-

eter identification. The method is based on an envelope

fitting around the measured FRFs combined with some

considerations of the single-frequency method. The ap-

plication of the method is demonstrated in case of a

turning operation, where the machine tool structure is

characterized by a series of FRF measurements.

Keywords Robustness · Stability · Sensitivity · FRF ·
Chatter · Turning

1 Introduction

Reliable prediction of technological parameters without

producing machine tool chatter is a highly important

task for efficiency-oriented machine tool centers. After

the pioneering work of Tobias [31] and Tlusty [30] in

the 1950s and 1960s, the so-called regenerative effect
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became the most commonly accepted explanation for

machine tool chatter. The vibrations of the tool are

copied onto the surface of the workpiece, which mod-

ifies the chip thickness and induces variation in the

cutting-force one revolution later. From dynamic sys-

tems point of view, chatter is associated with the loss

of stability of the steady-state (chatter-free) machin-

ing process followed by a large amplitude self-excited

vibration between the tool and the workpiece usually

involving intermittent loss of contact. Stability proper-

ties of machining processes are depicted by the so-called

stability lobe diagrams, which plot the maximum sta-

ble depths of cut without producing chatter versus the

spindle speed. These diagrams provide a guide to the

machinist to select the optimal technological parame-

ters in order to achieve maximum material removal rate

without chatter.

Chatter prediction techniques can be classified into

two groups: frequency-domain methods and time-domain

methods [1]. Frequency-domain methods, such as the

single frequency solution, the multi frequency solution

[2,4], the extended multi frequency solution [3], can ap-

ply the measured frequency response functions (FRFs)

directly. Time-domain methods, such as the semi-dis-

cretization method [14,15], full-discretization method

[6], Chebyshev collocation method [5,32], spectral ele-

ment method [17], the implicit subspace iteration method

[36] or the integration method [37], just to mention a

few, require fitted modal parameters as input.

In spite of the wide spectrum of the available effi-

cient numerical techniques, the predicted stability lobe

diagrams often do not match experimental cutting tests

[29]. One reason for this can be identified in the limi-

tations of models of machine tool chatter. Most models

in the literature use linear systems, although nonlinear

effects also influence global stability properties [28,7].
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Another reason for the differences between predicted

and measured stability lobe diagrams is the uncertain-

ties of the measured FRFs. For frequency-domain meth-

ods, these uncertainties directly affect the generated

stability lobe diagrams. For time-domain methods, the

uncertainties of the FRF are manifested as uncertain-

ties of the fitted modal parameters, which, again, af-

fect stability lobe diagrams. In this case, the number

of modes to be involved in the fitting and the proper-

ties of the mechanical model used for the fitting (e.g.,

proportional vs. non-proportional damping, symmetric

vs. non-symmetric FRF matrix) also strongly affect the

structure of the stability lobe diagrams [22,37,11,10].

A dynamical system with an uncertain parameter

p bounded by the limits pmin ≤ p ≤ pmax is called

robustly stable if it is stable for any p ∈ [pmin, pmax].

For N uncertain parameters pi ∈ [pi,min, pi,max], i =

1, 2, . . . , N , the Edge Theorem combined with the Zero

Exclusion method can be applied after determining the

vertices corresponding to the limit values of pi [23,9,8].

A widely used approach in robust stability analy-

sis is the so-called pseudospectra and stability radius

method which gives the exact robust stability bound-

aries corresponding to bounded static perturbations.

A detailed introduction to the concept of pseudospec-

tra can be found in [33]. Stability radius for structured

complex perturbations was presented in [12]. Real sta-

bility radius was introduced in [24]. An overview on

pseudospectra and robust stability analysis for time-

delay systems can be found in [20]. Real stability ra-

dius for time-delay systems was introduced in [21] and

in [13]. The formulas for unstructured and weighted

structured complex stability radii for time-delay sys-

tems were given in [19] and [35], respectively.

In this paper, the sensitivity of the stability charts of

turning operations with respect to uncertain FRF and

uncertain fitted modal parameters is studied. First, the

effect of the uncertainties of the modal parameters are

analyzed for time-domain techniques using the stability

radii concept based on [24,12,21,19]. Then, inspired by

the time-domain concept, a new frequency-domain es-

timation of the robust stability boundaries is proposed

using the measured FRFs directly. Three different ap-

proaches are suggested based on different types of en-

velope of the FRFs. Finally, robust stability boundaries

are determined for a turning operation with respect to

the uncertainties of the measured FRFs.

2 Robust stability analysis in time domain

Time-domain chatter prediction requires fitted modal

parameters. The accuracy of parameter fitting depends
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Fig. 1 Surface regeneration in an orthogonal cutting process
with multiple vibration modes.

on many factors, such as the fitting algorithm, the num-

ber of degrees of freedom used in the model, and mea-

surement precision. Some of the most widely used fit-

ting algorithms are the Rational Fraction Polynomial

method (RFP) [25], Least Squares Frequency-Domain

algorithm (LSFD), Poly-reference Least Squares Com-

plex Frequency-domain estimator, Frequency-domain Di-

rect Parameter Identification (FDPI) method or Frequen-

cy-domain Maximum Likelihood Estimator (MLE) (see

[34] and the references therein). Stability lobe diagrams

can be constructed using the fitted modal parameters.

2.1 Mechanical model of turning operation

The dynamical model of an orthogonal cutting oper-

ation involving multiple vibration modes is shown in

Fig. 1. The modes are projected to the direction x of

the surface regeneration . Note that vibrations in the

y-direction do not affect linear stability properties [16].

An n-degrees-of-freedom mechanical model is used with

generalized coordinates x(t) = (x1(t), x2(t), . . . , xn(t))T.

The cutting-force acting on the tool tip according to the

power law [18,27] can be given as

Fx(t) = Kxwh
q(t), (1)

where Kx is the cutting-force coefficient in direction x,

w is the depth of cut, h(t) is the instantaneous chip

thickness and q is the cutting-force exponent. Due to

the vibrations of the tool, the chip thickness is deter-

mined by the feed motion, the current tool position and

the previous position of the tool one revolution before.

For constant spindle speeds, the regenerative time de-

lay can be given explicitly as τ = 60/Ω, where Ω is the

workpiece revolution given in rpm. The instantaneous

chip thickness can be calculated as

h(t) = vfτ + x1(t− τ)− x1(t), (2)
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where vf is the feed velocity and x1 indicates the po-

sition of the tool tip in direction x. The forcing vector

f(t) ∈ Rn is given as

f(t) =


Kxw (vfτ + x1(t− τ)− x1(t))

q

0
...

0

 . (3)

Local stability of the steady-state (chatter-free) mo-

tion can be analyzed by means of the linearized system.

The general solution can be given as x(t) = xs + ξ(t),

where xs ∈ Rn is related to the static deformation and

ξ(t) ∈ Rn is a small perturbation around the equilib-

rium x(t) ≡ xs. After the linearization, the variational

system is given by

Mξ̈(t) + Cξ̇(t) + Kξ(t) = κ (ξ(t− τ)− ξ(t)) , (4)

where M ∈ Rn×n is the mass matrix, C ∈ Rn×n is the

damping matrix, K ∈ Rn×n is the stiffness matrix and

κ =


κ 0 . . . 0

0 0 . . . 0
...

...
...

0 0 . . . 0

 ∈ Rn×n (5)

with κ = Kxwq (vfτ)
q−1

being the specific cutting-force

coefficient. Note that κ is linearly proportional to the

depth of cut w, which is one of the main technological

parameters.

Modal parameters are to be estimated using the

measured FRF of the machine-tool-workpiece system.

Uncertainties of the FRF generate uncertainties in the

fitted modal parameters, which result in uncertainties

in the system matrices M, C and K. The region of ro-

bust stability of Eq. (4) against parameter uncertainties

can be determined using the concept of pseudospectra

and stability radius.

2.2 Pseudospectra and stability radius

The ε-pseudospectrum σε of a matrix A is defined as

σε := {λ ∈ C : λ ∈ σ(A + δA), where ‖δA‖ < ε}, (6)

where σ denotes the spectrum, ‖ · ‖ is an arbitrary ma-

trix norm and δA is a perturbation matrix [19]. It is

known, that Eq. (6) is equivalent to

σε := {λ ∈ C : ‖R(λ,A)‖ > 1/ε}, (7)

where R(λ,A) = (λI−A)−1 denotes the correspond-

ing resolvent operator with I being the identity matrix

[33]. The ε-pseudospectrum plays an important role in

the definition of stability radius of time-delay systems.

In the next subsections, four concepts for the stabil-

ity radius are described. First, in section 2.2.1, the com-

plex stability radius is considered, where one of the sys-

tem matrices M, C or K is perturbed by complex val-

ues. In section 2.2.2, combined but still complex-valued

perturbation of all the system matrices is given, which

is called weighted complex stability radius. Since phys-

ical interpretation of complex-valued perturbations of

systems with real parameters is controversial, two con-

cepts of real stability radii are also given. In section

2.2.3 and 2.2.4, real and weighted real stability radii

are given.

2.2.1 Complex stability radius

Perturbations of the mass, damping and stiffness ma-

trices can be described by the perturbation matrices

δM, δC and δK, respectively. The perturbed equation

in case of perturbation of the mass matrix M reads

(M + δM)ξ̈(t)+Cξ̇(t)+Kξ(t) = κ (ξ(t− τ)− ξ(t)) .

(8)

According to the stability radii theorem (see [20]), the

unstructured complex stability radius of the system cor-

responding to complex-valued perturbations of the mass

matrix M can be calculated as

rMC =

(
sup
ω≥0
‖(iω)2 (D(ω))−1‖2

)−1
, (9)

where

D(ω) = (iω)2M + iωC + K + κ(1− e−iωτ ) (10)

is the characteristic matrix evaluated on the imaginary

axis and ‖·‖2 denotes the spectral norm. If the nominal

system with δM = 0 is stable, then the perturbed sys-

tem with any δM satisfying the condition ‖δM‖2 < rMC
is stable, too. Consequently, the robust stability bound-

aries for perturbations of different sizes are given by the

contour curves of rMC .

In case of perturbations of the damping matrix as

C + δC or the stiffness matrix as K + δK, complex sta-

bility radius can be given in a similar manner as

rCC =

(
sup
ω≥0
‖iω (D(ω))−1‖2

)−1
, (11)

or

rKC =

(
sup
ω≥0
‖(D(ω))−1‖2

)−1
, (12)

respectively.
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The stability radii rMC , rCC and rKC allow the pertur-

bation only in one of the system matrices, in M, in C,

or in K, respectively. The case when all the three ma-

trices are perturbed at the same time can be handled

by the weighted stability radius.

2.2.2 Weighted complex stability radius

The perturbed equation for the case when all the system

matrices are perturbed to different extent reads

(M + δM)ξ̈(t) + (C + δC)ξ̇(t)+

(K + δK)ξ(t) = κ (ξ(t− τ)− ξ(t)) . (13)

This type of combined perturbation can be described

by the perturbation matrix of the form

∆ :=

wM δM

wC δC

wK δK

 , (14)

where wM, wC and wK are the weights of the pertur-

bation of the mass, damping and stiffness matrices, re-

spectively. If ‖δM‖ < εM‖M‖, ‖δC‖ < εC‖C‖ and

‖δK‖ < εK‖K‖, where εM, εC and εK are the radii of

uncertainties, then the corresponding weights are

wM =
1

εM‖M‖
, wC =

1

εC‖C‖
, wK =

1

εK‖K‖
. (15)

For instance, if mass matrix M is perturbed by maxi-

mum 2%, then wM = (0.02‖M‖)−1. If wM → ∞, then

no perturbation on the mass matrix M is allowed [19].

This formalism allows the perturbations satisfying

(‖∆‖2)2 =

( ‖δM‖
εM‖M‖

)2

+

( ‖δC‖
εC‖C‖

)2

+

( ‖δK‖
εK‖K‖

)2

≤ 1.

(16)

Thus, the allowed perturbations lie within an ellipsoid

of main axes εM‖M‖, εC‖C‖ and εk‖K‖ in the param-

eter space (‖δM‖, ‖δC‖, ‖δK‖).
According to [19], the complex stability radius cor-

responding to the perturbation matrix ∆ can be calcu-

lated as

r∆C =

(
sup
ω≥0
‖(D(ω))−1w(iω)‖2

)−1
, (17)

where

w(iω) =
(

(iω)2

wM
I (iω)

wC
I 1

wK
I
)
∈ Cn×3n (18)

is the complex weight function with I being the n × n
identity matrix. If the nominal system is stable and

r∆C < 1, then the system is robustly stable for any

perturbations satisfying ‖∆‖2 < 1. Consequently the

robust stability boundary associated with the uncer-

tainty radii εM, εC and εK is given by the contour curve

r∆C = 1. Contour curves r∆C = z with any z ∈ R+ give

the robust stability boundaries associated with the un-

certainty radii zεM, zεC and zεK.

The stability radii rMC , rCC , rKC and r∆C correspond

to the complex-valued perturbation of the matrices M,

C and K and provide therefore a conservative estima-

tion of the true stability radius. Actual robust stability

properties are better described by real stability radii.

2.2.3 Real stability radius

If only real entries of the perturbation matrices δM,

δC and δK are allowed, then the corresponding real

stability radius can be calculated following [21] and [13]

as

rMR =

(
sup
ω≥0

µR
(
(iω)2 (D(ω))−1

))−1
, (19)

rCR =

(
sup
ω≥0

µR
(
iω (D(ω))−1

))−1
, (20)

rKR =

(
sup
ω≥0

µR
(
(D(ω))−1

))−1
, (21)

where

µR(W(ω)) = inf
γ∈(0,1]

σ2

(
Re(W(ω)) −γIm(W(ω))

γ−1Im(W(ω)) Re(W(ω))

)
.

(22)

for an arbitrary matrix function W(ω). Here σ2 denotes

the second largest singular value. Note, that Eq. (22)

is a unimodal function in γ, therefore a golden section

method can be applied to find its minimum [24].

2.2.4 Weighted real stability radius

Weighted real stability radius is a straightforward com-

bination of unweighted real [21,13] and weighted com-

plex [19,35] stability radii and can be calculated as

r∆R =

(
sup
ω≥0

µR
(
(D(ω))−1w(ω)

))−1
, (23)

where ∆ and w(ω) are defined as in (14) and in (18), re-

spectively. If the nominal system is stable and r∆R < 1,

then the system is robustly stable for any real-valued

perturbations satisfying ‖∆‖2 < 1. Similarly to the pre-

vious cases, the robust stability boundaries associated

with the uncertainty radii εM, εC, and εK are given by

the contour curve r∆R = 1, while the contour curves

r∆R = z, z ∈ R+ give the boundaries associated with

the uncertainty radii zεM, zεC, and zεK.



Robust stability analysis of machining operations 5

Note, that the robust stability boundaries calcu-

lated using r∆R are still conservative since the perturba-

tion measures give limit only on the norm of the per-

turbed matrices and do not consider the structure of the

matrices. The condition can be sharpened using struc-

tured perturbations according to [12,35]. The method

of structured perturbations for multiple-degrees-of-free-

dom systems is however limited since only certain num-

ber of combinations of the entries of the matrices can

be perturbed individually.

2.3 Analysis of a single-degree-of-freedom system

In case of a single-degree-of-freedom system governed

by

mξ̈(t) + cξ̇(t) + kξ(t) = κ (ξ(t− τ)− ξ(t)) , (24)

the weighted real stability radius gives the exact robust

stability boundaries for any combined perturbations of

the modal massm, damping c and stiffness k. The corre-

sponding characteristic equation on the imaginary axis

is

D(ω) = m(iω)2 + ciω + k + κ− κe−iωτ . (25)

In case of weighted perturbations of the system param-

eters as m→ m+ δm, c→ c+ δc and k → k + δk, the

perturbation matrix reads

∆ =

wm δmwc δc

wk δk

 , (26)

where wm, wc and wk are the perturbation weights.

If |δm| < εm|m|, |δc| < εc|c| and |δk| < εk|k|, where

εm, εc and εk are the radii of uncertainties, then the

corresponding weights are

wm =
1

εmm
, wc =

1

εcc
, wk =

1

εkk
. (27)

Similarly to (16), the allowed perturbations lie within

an ellipsoid defined by

(‖∆‖2)2 =

(
δm

εmm

)2

+

(
δc

εcc

)2

+

(
δk

εkk

)2

≤ 1. (28)

In this numerical study, the following nominal pa-

rameters were assumed: m = 1 [kg], c = 100 [Ns/m],

k = 106 [N/m]. The results are presented for three

different cases. Stability diagrams are constructed by

evaluating Eq. (23) on a 400× 200 grid of the parame-

ter plane (Ω, κ). The frequency parameter ω was swept

from 0 to 3000 [rad/s]. Parameter γ was determined by
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Fig. 4 Robust stability boundaries of Eq. (24) for uncer-
tainty radii εm = µ, εc = 4µ, εk = µ.

the golden section method [24]. The stability bound-

aries without perturbation is obtained by the contour

level r∆R = 0.

In Fig. 2, only the stiffness k is perturbed such

that |δk| < εk|k| with uncertainty radius εk = µ =

0, 0.1, . . . , 0.5 and the mass and the damping parame-

ters are fixed (εm = εc = 0). The corresponding weights

are therefore wm =∞, wc =∞, wk = (εkk)−1. For in-

stance, the case µ = 0.1 represents a maximum ±10%

perturbation of the stiffness parameter.

In Fig. 3, both the damping and the stiffness pa-

rameters are perturbed with the same uncertainty radii

εc = εk = µ, while the mass is fixed (εm = 0). Here,

the case µ = 0.1 represents a maximum ±10% pertur-

bation of the stiffness parameter and a maximum ±10%

perturbation of the damping parameter.

Figure 4 shows the case when all of the three modal

parameters are perturbed with uncertainty radii εm =

εk = µ and εc = 4µ. Here, the case µ = 0.1 represents

a maximum ±10% perturbation of the stiffness param-
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eter, a maximum ±40% perturbation of the damping

parameter and a maximum ±10% perturbation of the

mass. It can be seen that perturbation of different sys-

tem parameters gives different robust stability bound-

aries. For given perturbation bounds, the robust stabil-

ity boundaries can exactly be determined.

Although the weighted real stability radius can eas-

ily be determined for single-degree-of-freedom systems,

its application to multiple-degrees-of-freedom systems

is limited since individual perturbations of the elements

of the mass, damping and stiffness matrices cannot be

described by this technique. In that case only conserva-

tive estimations can be obtained by giving conditions

for the norm of the perturbation matrices. Another dif-

ficulty is that the calculation time of the second largest

singular value increases with the number of perturbed

parameters.

3 Robust stability analysis in frequency domain

In this section, a new method is presented to the robust

stability analysis using the uncertainties of the mea-

sured FRF directly (see Fig. 5).

3.1 Single-frequency method

In this subsection the main steps of the single-frequency

method is summarized for the stability analysis of sys-

tems with fixed parameters [1]. The definition of the

FRF matrix H(ω) gives

H(ω)F(ω) = X(ω), (29)

where F(ω) = F (f(t)), X(ω) = F (ξ(t)) and F de-

notes the Fourier transform. The Fourier transform of

the parametric forcing f(t) = κ(ξ(t− τ)− ξ(t)), which

is the right hand side of Eq. (4), is

F(ω) = κ(e−iωτ − 1)X(ω). (30)

Perturbed FRF
Uncertainty envelope

Averaged FRF

Perturbed FRF
Uncertainty envelope
Averaged FRF

Frequency

2R
2R

Frequency

 H
R
e
(ω

)
 H

Im
(ω

)

Fig. 5 Frequency response function of a single-degree-of-
freedom system with uncertainty.

Substitution of Eq. (29) into Eq. (30), and simplifica-

tion yield(
I− (e−iωτ − 1)κH(ω)

)
F(ω) = 0. (31)

The existence of the nontrivial solution implies

det
(
I− (e−iωτ − 1)κH(ω)

)
= 0, (32)

which, considering the structure of κ in (5), can be

expressed as

D(ω) = 1− (e−iωτ − 1)κH11(ω) = 0, (33)

where H11(ω) is the measured tip-to-tip FRF (corre-

sponding to the vibrations of the tool tip due to forcing

at the tool tip). Note that Eq. (33) is the characteristic

equation of the system evaluated on the imaginary axis.

For the sake of simplicity, the notation H(ω) := H11(ω)

is to be used in the sequel. If the inverse FRF is writ-

ten as H−1(ω) = ΛRe +iΛIm, then the analytic solution

for the transition curves, where the real parts of some

characteristic roots are zero, can be given as

Ω =
30ω

arctg
(
ΛRe

ΛIm

)
+ jπ

, κ = −Λ
2
Re + Λ2

Im

2ΛRe
, (34)

where j = 0, 1, 2 . . . and ω ∈ [0, ∞). These transition

curves separate the parameter plane into regions where

the number of unstable characteristic roots is constant.

Stable domains are the ones associated with zero unsta-

ble characteristic roots, which are the domains below

the transition curves. In general, the number of unsta-

ble roots can be determined using the Stepan formulas

[26].

3.2 Robust stability approach

The FRFs obtained from measurements are always load-

ed by noise and uncertainties, which can be represented

as an uncertain envelope around the averaged FRF (see

Fig. 5). Consequently, uncertainties of the FRF can be

represented as

H(ω) = H̄(ω) + δH(ω), (35)

where H̄(ω) is the averaged FRF and δH(ω) is the per-

turbation. Substitution of Eq. (35) into the characteris-

tic equation (33) and separation to real and imaginary

parts give

δHRe(ω) = − 1

2κ
− H̄Re(ω), (36)

δHIm(ω) = − sin(ωτ)

2κ(1− cos(ωτ))
− H̄Im(ω). (37)
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Fig. 6 Visualization of the solution of Eq. (36)-(37) for dif-
ferent types of perturbation envelopes: circular (a); elliptic
(b); and rotated elliptic (c).

If there is a perturbation δH(ω) = δHRe(ω)+i δHIm(ω),

which satisfies Eqs. (36)-(37) for some ω, then the sys-

tem is not robustly stable. If Eqs. (36)-(37) cannot be

satisfied by the possible/allowed perturbations for any

ω, then the system is robustly stable or robustly unsta-

ble depending on whether the averaged system is stable

or unstable.

A bound for the uncertainties of the FRF can be

given by an envelope about the averaged FRF. A pos-

sible envelope is a tube obtained by centering discs of

radius R(ω) at H̄(ω) (see Fig. 6a). In this case, a safety

factor can be defined as

SFa := min
ω∈[0,∞)

|δHRe(ω) + i δHIm(ω)|
R(ω)

, (38)

where δHRe(ω) and δHIm(ω) are provided by Eqs. (36)

and (37), respectively. If SFa < 1 then the system is

not robustly stable, i.e., there exists a perturbation

|δH(ω|) ≤ R(ω), for which the system is unstable. If

SFa > 1 then the system is robustly stable if the av-

eraged model is stable or robustly unstable if the aver-

aged model is unstable. The robust stability boundary

is given by the contour curves SFa = 1.

The accuracy of the robust stability analysis de-

pends on the estimation of the envelope of the actual

measured FRF. Circular approximation of the uncer-

tainties of the FRF assumes the same additive pertur-

bation in the real and the imaginary parts (see Fig.

6a), which may overestimate the perturbations. A less

conservative estimate is obtained if the real and the

imaginary parts are perturbed to different extents such

that(
δHRe(ω)

wRe(ω)

)2

+

(
δHIm(ω)

wIm(ω)

)2

≤ 1 (39)

(see Fig. 6b). Here wRe and wIm are the halves of the

axes of the ellipse, which bounds the perturbations. In

this case, the safety factor can be defined as

SFb = min
ω∈[0,∞)

√(
δHRe(ω)

wRe(ω)

)2

+

(
δHIm(ω)

wIm(ω)

)2

. (40)

An even better estimation of the envelope is a ro-

tated ellipse characterized by the half-lengths w1(ω)

and w2(ω) of its major and minor axes and by a rotation

angle α(ω) (see Fig. 6c). In this case, the perturbations

satisfy(
δHRe cos(α) + δHIm sin(α)

w1

)2

+

(
δHIm cos(α)− δHRe sin(α)

w2

)2

≤ 1, (41)

where the dependence on ω is not presented for the sake

of brevity. The corresponding safety factor is

SFc = min
ω∈[0,∞)

((
δHRe cos(α) + δHIm sin(α)

w1

)2

+

(
δHIm cos(α)− δHRe sin(α)

w2

)2
)1/2

. (42)

For all the above envelope types, robust stability

boundaries are given by the contour curves SFa,b,c = 1.

0.5 2.00 1.0 1.5

Frequency  [Hz] 
0.5 2.00 1.0 1.5

Frequency  [Hz] 

-4
-2
0
2
4
6

-6

-4
-2
0
2

-6

-10
-8

-12

-4
-2
0
2
4
6

-6

-4
-2
0
2

-6

-10
-8

-12

  10-6

8

-8 -14

-4
-2
0
2
4
6

-6

-4
-2
0

-6

-10
-8

-12
-8 -14

28

HRe(ω)

HRe(ω)

HRe(ω)

HIm(ω)

HIm(ω)

HIm(ω)

uncertain

uncertain

uncertain uncertain

uncertain

uncertain

a)

b)

c)

wRe=0.05max|H|
-8 -14

wIm=0.05max|H|

wRe=0.3|H| wIm=0.3|H|

wRe=0.3HRe wIm=0.3HIm H
R
e(
ω
) 

[m
/N

]

 H
Im

(ω
) 

 [m
/N

]

×  10-6×

  10-6×  10-6×

  10-6×  10-6×

  103×  103×

 H
R
e(
ω
) 

[m
/N

]

 H
Im

(ω
) 

 [m
/N

]

 H
R
e(
ω
) 

[m
/N

]

 H
Im

(ω
) 

 [m
/N

]

Fig. 7 FRF of a single-degree-of-freedom system in case
of 5% constant frequency-independent uncertainty (a); 30%
amplitude-proportional frequency-dependent uncertainty (b);
and 30% complex-proportional frequency-dependent uncer-
tainty (c).



8 David Hajdu et al.

  Ω [rpm]
10 205 15 25

 103

0

2

4

6

8

10

κ
 [N

/m
] 

 105

1
robust stable

Nominal
Perturbed

chatter

uncertain

µ=0
µ=0.02
µ=0.04
µ=0.06
µ=0.08
µ=0.10

×

×

Fig. 8 Robust stability boundaries corresponding to con-
stant uncertainty: |δH(ω)| ≤ µmax|H(ω)| = const.
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Fig. 9 Robust stability boundaries corresponding to
amplitude-proportional uncertainty: |δH(ω)| ≤ µ|H(ω)|.
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Fig. 10 Robust stability boundaries corresponding to
complex-proportional uncertainty: |δHRe(ω)| ≤ µ |H̄Re(ω)|
and |δHIm(ω)| ≤ µ |H̄Im(ω)|.

3.3 Analysis of a single-degree-of-freedom system

The frequency response function of a single-degree-of-

freedom system is presented in Fig. 7 for different types

of uncertainties. In panel a) the uncertainty is con-

stant independently of the frequency, i.e. |δH(ω)| ≤
µmax(|H̄(ω)|) = const. In panel b) the uncertainty is

proportional to the amplitude, i.e., |δH(ω)| ≤ µ|H̄(ω)|.
In panel c), the uncertainty is proportional to the com-

plex function, i.e., |δHRe(ω)| ≤ µ|H̄Re(ω)| and

|δHIm(ω)| ≤ µ|H̄Im(ω)|. For instance, µ = 0.1 cor-

responds to maximum 10% uncertainty in any of the

above types. The corresponding robust stability charts

are presented in Figs. 8-10.

In Fig. 8, constant uncertainty is applied, i.e. the

same complex perturbation is added to the FRF ac-

cording to Fig. 7a. It is shown that this type of uncer-

tainty affects the stability lobes to different extent at

different spindle speeds. The uncertainty region widens
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Fig. 11 Measured FRFs (solid black lines) and their circular
(light gray shading) and rotated elliptic (dark gray shading)
envelopes.

as one moves from the left to the right along a particu-

lar stability lobe. Already a 10% uncertainty results in

significant change in the robust stability.

The uncertainty considered in Fig. 9 is proportional

to the absolute value of the FRF according to Fig. 7b.

Again, the uncertain region increases from left to right

along the stability lobes.

In Fig. 10, the applied uncertainty is proportional to

the complex FRF according to Fig. 7c. The uncertain

regions of the stability charts in this case are narrower

compared to the previous cases.

4 Case study

In practical applications, the uncertainties are filtered

by averaging the measured FRFs. Typically, five to ten

measurements are performed and their average is used

for the stability calculation [29].

In this case study, the FRF of a turning tool was

measured five times, and the five FRFs were averaged

in order to filter noise. Then the tool was removed, the

tool holder was driven back and forth, the tool was

placed back and the same FRF was measured again.

This cycle was repeated ten times, which provided ten

different FRFs, each being an average of five individ-

ual measurements. Figure 11 shows the ten FRFs (indi-

cated by solid black lines) and two different uncertainty

envelopes: (1) envelope with a circular cross section cen-

tered to the average of the ten FRFs such that the

resulting tube comprises all FRFs (indicated by light

gray shading); (2) envelope with a rotated elliptic cross

section of minimum area such that the resulting tube

comprises all FRFs (indicated by dark gray shading).
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Fig. 13 Robust stability boundaries for low spindle speeds.
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Fig. 14 Robust stability boundaries for high spindle speeds.

As can be seen, the rotated elliptic envelope gives less

conservative estimation of the uncertainties.

Figure 12 shows the stability lobes corresponding

to the averaged FRF and to the measured FRFs (ten

times) for low spindle speeds. The lower envelope of the

stability lobes corresponding to the measured individ-

ual FRFs are indicated by gray shading. This region

can be called the region of experimental robust stabil-

ity: within this region, the system is stable for all the ten

FRFs. It can be seen that the averaged FRF strongly

overestimates the robustly stable region.

Figure 13 shows the same averaged stability bound-

aries and the experimental robust stability boundaries

together with the estimated robust stability boundaries

obtained by the circular and the rotated elliptic con-

cepts. It can be seen that both the circular and the

elliptic envelopes provide almost the same curve as the

experimental robust stability boundary. Since the fit-

ted tubes comprises the measured FRFs, the estima-

tion of the robust boundary is always conservative, i.e.,

the circular and the elliptic estimations are below the

experimental robust stability boundary.

In Fig. 14, the robust stability boundaries are shown

for high spindle speeds. In this case, the structure of the

robust stability boundaries are more segmented than

in the low spindle speed region. The robust stability

estimations still provide a good approximation of the

lower envelope.

5 Conclusion

Prediction of the stability of machining operations al-

ways involves several sources of uncertainties. Dynamic

behavior of the machine-tool-workpiece system is a typ-

ical uncertain component, which is usually overcome by

averaging a series of FRFs. Fitting of modal parameters

is also a tool to handle uncertainties: it filters only the

significant modes, which can clearly be distinguished

from noise. However, if some modes are not identified

properly, then the resulted stability diagrams may not

reflect the properties of the real structure.

Robust stability estimations in terms of stability

radii is a useful tool for single- or low-degree-of-freedom

systems with a few well-structured uncertain parame-

ters, but cannot be used for multiple-degrees-of-freedom

systems with many different types of parameter uncer-

tainties. It is still a useful tool to provide conservative

estimations of robust stability boundaries.

In this paper, a frequency-domain method was pro-

posed to the robust stability analysis of machining oper-

ations, which uses directly the measured FRFs without

any filtering and modal parameter identification. The

method is based on an envelope fitting around the mea-

sured FRFs combined with some considerations of the

single-frequency method.

Application of the method to a single-degree-of-free-

dom model of orthogonal cutting operation showed that

the robust stability boundaries can significantly be small-

er than the stability boundaries corresponding to the

averaged FRF.

An experimental study was also performed using ten

different measured FRFs of a turning tool. The analy-

sis demonstrated that the experimental robust stability

boundary can well be approximated by the proposed

method. This analysis also confirmed that the robust

stability region can significantly be smaller than the

stability region of the averaged model. This observa-

tion may explain the mismatch between stability lobe

predictions and actual cutting tests, which is often ex-

perienced in machine tool chatter research. It was also
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shown that the robust stability boundaries are more

sensitive at higher spindle speeds and at higher depths

of cut, which highlights the significance of the predic-

tion of robust stability boundaries in high performance

machining.

The proposed method can be applied to time in-

variant cutting operations, such as turning operation or

milling operation with large radial immersion and large

number of cutting teeth. Generalization to time-varying

systems, such as the milling operation with low radial

immersions, using the concept of the multi-frequency

method is not straightforward. Independent perturba-

tions of the modulations of the FRF around the chatter

frequency cannot be described properly using this ap-

proach.
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