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Abstract 43 

Previous immunohistochemical and in situ hybridization studies of sheep, goats and rodents 44 

indicated that kisspeptin (KP), neurokinin B (NKB) and dynorphin A (DYN) are extensively 45 

colocalized in the hypothalamic arcuate nucleus (ARC), thus providing a basis for the „KNDy 46 

neuron‟ concept; in both sexes, KNDy neuropeptides have been implicated in the generation of 47 

gonadotropin releasing hormone (GnRH) neurosecretory pulses and in the negative feedback effects 48 

of sexual steroids to the reproductive axis. 49 

To test the validity and limitations of the KNDy neuron concept in the human, we carried out the 50 

comparative immunohistochemical analysis of the three neuropeptides in the infundibular nucleus 51 

(Inf=ARC) and stalk (InfS) of young male human individuals (<37 years). 52 

Results of quantitative immunohistochemical experiments established that the regional densities of 53 

NKB immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed 54 

onto GnRH neurons, were about 5 times as high as those of the KP-IR elements. Dual-55 

immunofluorescent studies confirmed that considerable subsets of the NKB-IR and KP-IR cell 56 

bodies and fibers are separate and only about 33% of NKB-IR perikarya and 75% of KP-IR 57 

perikarya were dual-labeled. Furthermore, very few DYN-IR cell bodies could be visualized in the 58 

Inf. DYN-IR fibers were also rare, and with few exceptions, distinct from the KP-IR fibers. The 59 

abundance and colocalization patterns of the three immunoreactivities showed similar trends in the 60 

InfS around portal blood vessels. 61 

Together, these results indicate that most NKB neurons in the Inf do not synthesize detectable 62 

amounts of KP and DYN in young male human individuals. These data call for a critical use of the 63 

„KNDy neuron‟ terminology while referring to the putative pulse generator system of the 64 

mediobasal hypothalamus. We conclude that the functional importance of these three neuropeptides 65 

in reproductive regulation considerably varies among species, between sexes and at different ages. 66 
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Introduction 67 

 Information accumulated from immunohistochemical and in situ hybridization studies has recently 68 

formed the basis for the kisspeptin/neurokinin B/dynorphin A („KNDy‟) neuron concept and terminology 69 

(1-4). As shown first for the sheep (5), many of these neurons with cell bodies located in the 70 

hypothalamic arcuate nucleus (ARC; called infundibular nucleus in humans; Inf) co-synthesize kisspeptin 71 

(KP), neurokinin B (NKB) and dynorphin A (DYN). They have been implicated in negative sex steroid 72 

feedback to gonadotropin-releasing hormone (GnRH) neurons (5-7) and proposed to also serve as 73 

pacemakers for the GnRH neurosecretory pulses (3, 4, 8, 9). Recent models of the GnRH pulse generator 74 

(3, 4, 8) suggest that KNDy neurons communicate with one another via NKB and its receptor, NK3, and 75 

possibly, also DYN and its receptor, KOR. In ovariectomized goats, central NKB increases and DYN 76 

decreases the frequencies of multiunit activity volleys and LH secretory pulses (8). Pulse generator cells, 77 

in turn, appear to communicate with GnRH neurons primarily via KP/KISS1R signaling. GnRH neurons 78 

express KISS1R (10-12) and the majority of GnRH neurosecretory pulses show temporal association 79 

with KP pulses in the median eminence of monkeys (13). 80 

 The general consensus that KP, NKB, DYN, NK3 and KOR are expressed by the same neurons relies 81 

on combined neuroanatomical data from sheep (1, 5), rats (14), mice (3, 4, 15), goats (8), monkeys (16) 82 

and humans (17, 18). However, closer analysis of these reports, in retrospect, reveals that neuropeptide 83 

and receptor colocalizations are often only partial and also variable in the different studies, species, sexes 84 

and age groups. Notably, in our recent immunohistochemical study of aged human individuals, we have 85 

detected robust sex differences in the abundance of KP-IR (17, 18) and NKB-IR (18) neuronal elements 86 

in the Inf. These studies have also revealed that the incidences of NKB-IR cell bodies, fibers and 87 

appositions onto GnRH neurons exceed several-fold those of KP-IR elements, with particularly robust 88 

differences in males (18). These results suggested that NKB-IR neurons and their fibers are partly 89 

distinct from the KP-IR elements in these human models, thus challenging the universal validity of the 90 
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KNDy neuron concept. Moreover, in triple-immunofluorescent studies of aged human males, GnRH 91 

neurons tended to receive primarily single-labeled afferent inputs from these peptidergic systems, with 92 

KP/NKB double-labeled axons representing only 10.2% of all KP-IR afferents and NKB/KP double-93 

labeled axons about 8.8% of all NKB-IR afferents (18). From the above findings and preliminary 94 

observations indicating that KP immunolabeling is even weaker in young than in aged men, we predicted 95 

that the degree of overlap between the KNDy neuropeptides is much lower in young male humans than 96 

suggested earlier for female sheep (1, 5), goats (8) or mice (3). 97 

In the present study we investigated the universal validity of the KNDy neuron concept via the 98 

parallel immunohistochemical analysis of NKB-, KP- and DYN immunoreactivities in the Inf and the 99 

infundibular stalk (InfS) of young men. Specifically, i) we compared the immunoreactive perikaryon and 100 

fiber densities in the Inf and the InfS, ii) we addressed the colocalization of KP with NKB and KP with 101 

DYN in perikarya and fibers, and finally, iii) we compared quantitatively the incidences of NKB-IR vs. 102 

KP-IR afferent contacts onto GnRH-IR neurons.  103 

 104 

Materials and methods 105 

Human subjects 106 

Human hypothalamic samples were obtained from autopsies at the Forensic Medicine Department of 107 

the University of Debrecen with permission from the Regional Committee of Science and Research 108 

Ethics of the University of Debrecen (DEOEC RKEB/IKEB: 3183-2010). Selection criteria included 109 

sudden causes of death, lack of history of neurological and endocrine disorders and post mortem delay 110 

below 36h. Tissue specimens from six young male individuals (age 21-37 years) were used.  111 

Section preparation  112 

Following dissection, the hypothalamic tissue blocks were rinsed with running tap water and then, 113 

immersion-fixed with 4% formaldehyde in 0.1M phosphate buffer saline (PBS; pH 7.4) for 7-14 days. 114 

After fixation, the blocks were trimmed in a way to include the optic chiasma rostrally, the mammillary 115 
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bodies caudally and the anterior commissure dorsally (17-19). Bilateral sagittal cuts were placed 2cm 116 

lateral from the midline. The blocks were bisected into right and left halves and then, infiltrated with 117 

20% sucrose for 5 days at 4°C. The right hemihypothalami were sectioned coronally at 30μm with a 118 

Leica SM 2000R freezing microtome (Leica Microsystems). All experiments were performed on every 119 

24th hemihypothalamic section from each subject.  120 

Pretreatments 121 

The tissues were permeabilized and endogenous peroxidase activity reduced using a mixture of 0.2% 122 

Triton X-100 and 0.5% H2O2 in PBS for 30 min. Antigen epitopes were unmasked by incubating sections 123 

in 0.1M citrate buffer (pH 6.0) at 80 °C for 30 min (18). Dual-immunofluorescent experiments also used 124 

a Sudan black pretreatment against autofluorescence (17, 18).  125 

Immunohistochemical detection of KP 126 

 To detect KP immunoreactivity, sections were incubated in a sheep polyclonal antiserum against 127 

human kisspeptin-54 (GQ2; 1:200,000). This antiserum recognizes human KP-54, KP-14 and KP-10, 128 

exhibits less than 0.01% cross-reactivity in vitro with other related human RF amide peptides (20), and 129 

was used successfully in previous immunohistochemical experiments on primate hypothalami (16-18, 130 

21). Incubation in the primary antibodies for 48 h at 4C was followed by biotinylated secondary 131 

antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA, USA; 1:500) and the ABC Elite 132 

reagent (Vector, Burlingame, CA; 1:1000) for 60 min each. The peroxidase reaction was visualized with 133 

nickel-intensified diaminobenzidine chromogen (19) and then, post-intensified with silver-gold (22). 134 

Immunohistochemical detection of NKB and DYN  135 

 Another two parallel series of sections were used to visualize NKB- and DYN, respectively. NKB 136 

neurons were detected with rabbit polyclonal antibodies against the C-terminal 28 amino acids of human 137 

NKB (IS-682, P. Ciofi; 1:100,000) (17), whereas DYN neurons were labeled with rabbit polyclonal 138 

antibodies against amino acids 1-17 of porcine (and human) DYN (T-4268; Peninsula Laboratories; San 139 

Carlos, CA; 1:100,000). The primary antibodies were reacted with biotinylated antirabbit IgG (Jackson 140 
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ImmunoResearch Laboratories; 1:500; 1h) and then, ABC Elite reagent (1:1000; 1h). The peroxidase 141 

signal was developed with silver-gold-intensified nickel-diaminobenzidine. For control purposes, 142 

mapping studies of DYN were replicated using a previously characterized second antiserum (IS-35; 143 

1:200,000) against a different prodynorphin-derived peptide, dynorphin B (23). 144 

Dual-immunoperoxidase detection of KP and GnRH or NKB and GnRH 145 

Two section series were processed for the immunohistochemical detection of KP and NKB, 146 

respectively, as above. Then, they were processed to detect GnRH using a guinea pig primary antiserum 147 

(#1018; 1:5000) (18) which was reacted with biotinylated antiguinea pig IgG (Jackson ImmunoResearch 148 

Laboratories; 1:500; 1h) and ABC Elite solution (Vector; 1:1000; 1h). The peroxidase signal was 149 

visualized with brown diaminobenzidine.   150 

Fluorescent immunohistochemistry  151 

Other series of sections were processed for the dual-immunofluorescent studies of the colocalization 152 

between NKB and KP or DYN and KP. Incubation in a cocktail of primary antibodies (rabbit anti-NKB, 153 

1:1000 and sheep anti-KP, 1:1000; or rabbit anti-DYN, 1:1000 and sheep anti-KP, 1:1000; 48h; 4ºC) was 154 

followed by a cocktail of fluorochrom-conjugated secondary antibodies (Jackson ImmunoResearch; anti-155 

rabbit-FITC, 1:250; anti-sheep-Cy3, 1:1000) for 5h at room temperature.  156 

To maximize sensitivity, other dual-immunofluorescent studies used tyramide signal amplification. In 157 

these experiments KP was detected first using sequential incubations in KP antibodies (1:30,000; 48h; 158 

4ºC), biotinylated antigoat IgG (Jackson ImmunoResearch Laboratories; 1:500; 1h), the ABC Elite 159 

reagent (Vector; 1:1000; 1h), biotin tyramide working solution (1:1000, in 0.05M Tris-HCl buffer, pH 160 

7.6, containing 0.003% H2O2; 30 min) (24) and finally, avidin-Cy-3 (Jackson ImmunoResearch; 1:1000; 161 

1h). Then, the sections were treated for 30 min with 0.5% H2O2 and 0.1% sodium azide in PBS, to 162 

inactivate horseradish peroxidase. To detect NKB or DYN, the rabbit primary antibodies were used at 163 

1:50,000 (48h; 4ºC) and reacted with antirabbit-peroxidase (Jackson ImmunoResearch; 1:500; 1h). Then, 164 

FITC-tyramide (24) (diluted 1:500 with 0.05M Tris-HCl buffer, pH 7.6, containing 0.003% H2O2; 30 165 
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min) was deposited on the peroxidase sites. Control experiments included the omission of the NKB and 166 

DYN primary antibodies. Lack of FITC labeling in these control sections indicated that no FITC-167 

tyramide deposition is caused by residual peroxidase activity on KP-IR sites.    168 

Section mounting and coverslipping  169 

Following section mounting, immuno-peroxidase labeled sections were coverslipped with DPX (Fluka 170 

Chemie; Buchs, Switzerland) and immunofluorescent specimens with Mowiol.  171 

Digital photography 172 

The light and fluorescent microscopic images were scanned with an AxioCam MRc 5 digital 173 

camera mounted on a Zeiss AxioImager M1 microscope using the AxioVision 4.6 software (Carl 174 

Zeiss, Göttingen, Germany). The light and fluorescent microscopic images were scanned with an 175 

AxioCam MRc 5 digital camera mounted on a Zeiss AxioImager M1 microscope using the 176 

AxioVision 4.6 software (Carl Zeiss, Göttingen, Germany). Confocal images were prepared with 177 

an inverted Nikon Eclipse Ti-E microscope equipped with an A1R confocal system (Nikon, 178 

Austria). The digital images were processed with the Adobe Photoshop CS software (Adobe Systems, 179 

San José, CA, USA) at a 300 dpi resolution. Quantitative data were expressed as mean±SEM and 180 

statistical comparisons used one-way ANOVA. 181 

Experiment 1. Studies of the incidences and overlaps of IR cell bodies in the Inf  182 

The number of immunoreactive cell bodies was counted at 100X magnification within a 0.25 mm
2
 183 

counting area with the aid of a 5X5 ocular grid, as described previously (17, 18). Each subject was 184 

characterized by the maximal number of immunoreactive perikarya in this counting area (determined 185 

from 2-6 sections.)  186 

The overlaps between NKB- and KP immunoreactivities and between DYN- and KP 187 

immunoreactivities were first assessed in confocal images of dual-immunofluorescent specimens. The 188 

percentages of single-labeled and double-labeled NKB-IR and KP-IR perikarya were also determined 189 
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quantitatively from the specimens in which the tyramide signal amplification was used, using 1-3 190 

representative confocal images per subject. 191 

Experiment 2. Studies of the regional abundance of IR fibers in the Inf 192 

The regional density of immunoreactive fibers was determined as described recently (18). First, 193 

digital images were taken from the bulk of kisspeptin-IR and NKB-IR neurons in the Inf. The files were 194 

opened with the Adobe Photoshop CS software. The immunolabeled cell bodies were erased (“eraser 195 

tool”) from the photomicrographs. The remaining images were compiled into TIF files and opened with 196 

the Image J software (public domain at http://rsbweb.nih.gov/ij/download.html). The regional fiber 197 

density in each photograph was defined as the area occupied by immunoreactive fibers/total area. For 198 

each subject, the mean fiber density was derived from 1-3 digital images. The overlap between NKB-IR 199 

and KP-IR axons or DYN-IR and KP-IR axons was also studied qualitatively in confocal images of dual-200 

immunofluorescent specimens. 201 

Experiment 3. Studies of immunoreactive fibers in the InfS 202 

 Projections of NKB-, KP-, DYN- and GnRH-IR axons around the portal blood vessels of the InfS 203 

were analyzed in this experiment. Based on previous immunohistochemical results in the median 204 

eminence of different species (16, 23), we assumed that fibers containing KNDy peptides around the 205 

portal vasculature arise mostly from the ARC/Inf. First, sections labeled with peroxidase-based 206 

immunohistochemistry were used to study the relationship of fibers with the superficial and deep 207 

capillary plexuses of the human postinfundibular eminence (25). Then, the extents of overlap between 208 

NKB and KP immunoreactivities and between DYN and KP immunoreactivities were assessed from 209 

dual-immunofluorescent specimens.  210 

Experiment 4. Studies of the incidences of KP-IR and NKB-IR appositions onto GnRH-IR neurons 211 

of the Inf 212 

Dual-immunoperoxidase labeled sections were selected (1-2 from each individual) to determine the 213 

number of axonal contacts along the outlines of GnRH-IR cell bodies and dendrites. Counting of the 214 

http://rsbweb.nih.gov/ij/download.html
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appositions was carried out using a 63X oil-immersion objective and contacts defined using stringent 215 

criteria (18, 26, 27). For each subject, the mean number of contacts per GnRH soma and 100µm GnRH 216 

dendrite were calculated (18).  217 

 218 

Results 219 

The comparative analysis of NKB, KP and DYN immunoreactivities in 220 

immunoperoxidase-labeled sections of the Inf (Fig. 1) and the InfS (Fig. 2) revealed 221 

strikingly different labeling intensities for KNDy neuropeptides. In general, NKB-IR 222 

elements showed much higher abundance than KP-IR elements. DYN immunoreactivity, 223 

both in perikarya and fibers, was relatively sparse and weak. 224 

Experiment 1. Incidence of IR perikarya in the Inf  225 

 In peroxidase-based immunohistochemistry, many NKB-IR perikarya were identified in the 226 

Inf (Figs. 1A, B). KP-IR cell bodies occurred in much lower numbers in neighboring sections 227 

(Figs. 1C, D). Quantitative analysis showed that the density of KP neurons was about 5 times 228 

lower than that of NKB-IR perikarya (Graph 1; P=0.01 by ANOVA). DYN-IR perikarya were 229 

either entirely absent in some subjects (Figs. 1E, F) or extremely rare in the Inf of others, 230 

preventing quantitative studies. In contrast, the supraoptic nucleus contained many labeled 231 

perikarya (Fig. 1G), making it unlikely that the low DYN signal in the Inf reflects technical 232 

limitations.  233 

 A surprising segregation of NKB-IR and KP-IR perikarya was revealed in dual-234 

immunofluorescent specimens (Figs. 3A, B). Tyramide signal amplification was crucial for 235 

sensitive detection of NKB/KP dual-labeled cell bodies which represented only 32.9±4.7% of the 236 
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NKB-IR and 75.2±6.6% of the KP-IR perikarya (Figs. 3A, B). Tyramide signal amplification was 237 

capable of visualizing only a few DYN-IR perikarya (not shown).  238 

Experiment 2. Abundance of IR fibers in the Inf 239 

The incidence of immunolabeled fibers in the Inf followed a similar trend as labeled 240 

perikarya. The most frequently encountered phenotype was, again, IR for NKB. These axons 241 

established many appositions (Fig. 1B) to NKB-IR cell bodies and their dendritic processes. 242 

Quantitative analysis of the area covered by immunohistochemical signal established that the 243 

mean incidence of NKB-IR fibers was about 5 times as high as that of KP-IR fibers (Graph 244 

2; P=0.0001 by ANOVA). DYN-IR fibers were also detectable in the Inf, although less 245 

frequently than either NKB-IR or KP-IR axons (Figs. 1E, F). 246 

In immunofluorescent specimens, many NKB-IR fibers without KP immunolabeling as 247 

well as KP-IR fibers without NKB labeling could be seen in the Inf, in addition to dual-248 

labeled axons (Figs. 3A, B). DYN-IR fibers showed a high intensity of labeling only if the 249 

tyramide signal amplification approach was also used. Most of them were distinct from KP-250 

IR axons, although dual-labeled KP/DYN-IR fibers occasionally occurred (Figs. 3F, G). 251 

Similarly, the majority of KP-IR fibers were also devoid of dynorphin B immunoreactivity in 252 

the Inf and the InfS (Figs. 3I, J), whereas this second antiserum also performed well in 253 

regions rich in DYN fibers, including the ventromedial nucleus (Fig. 3K).  254 

Experiment 3. Abundance of immunoreactive fibers in the InfS 255 

 The InfS was associated with the superficial and the deep capillary plexuses of the 256 

postinfundibular eminence (25). Both were abundantly innervated by GnRH-IR axons 257 

(brown color in Figs. 2A-F), suggesting they contribute to the GnRH supply of 258 
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adenohypophysial gonadotropes. The relative abundance of the different types of labeled 259 

fibers around the two capillary plexuses matched what was seen in the Inf. Accordingly, 260 

portal blood vessels were surrounded by dense networks of NKB-IR fibers (Figs. 2A-C) and 261 

innervated only moderately by KP-IR fibers (Figs. 2D-F). Very few DYN-IR fibers occurred 262 

in the proximity of the portal capillaries (Figs. 2G, I, J). This low level of DYN signal did 263 

not reflect a technical limitation, considering that the magnocellular neurosecretory tract was 264 

immunolabeled heavily in the same sections (Fig. 2H).   265 

The analysis of immunofluorescent specimens confirmed that NKB dominates over KP 266 

around the portal vasculature and NKB-IR fibers often lack KP labeling (Figs. 3C-E). Similarly 267 

to the Inf, the InfS contained both single-labeled and double-labeled KP-IR fibers (Figs. 3C-E). 268 

In sections dual-labeled for KP and DYN, labeled fibers were mostly distinct, although rare 269 

colocalization cases were also detectable (Fig. 3H). 270 

Experiment 4. Frequency of kisspeptin-IR and NKB-IR appositions onto GnRH-IR neurons  271 

 Sections double-labeled with the silver-gold-intensified nickel-diaminobenzidine and 272 

diaminobenzidine chromogens were used to obtain quantitative estimates about NKB-IR and KP-IR 273 

inputs to GnRH-IR neurons. Microscopic analysis confirmed that NKB-IR (18) and KP-IR (17, 18) axons 274 

provide axo-somatic and axo-dendritic inputs to GnRH neurons in the Inf (Fig. 4). Quantitative analysis 275 

(Graph 3) established that GnRH-IR perikarya and dendrites, respectively, received 6 and 5 times heavier 276 

NKB-IR (Fig. 4A) than KP-IR (Fig. 4B) innervation (GnRH perikarya: P=0.004; GnRH dendrites: 277 

P=0.005, by ANOVA).  278 

Discussion 279 

Immunohistochemical results of this study provide evidence for limitations of the „KNDy 280 

neuron‟ terminology and concept. Specifically, our observations indicate that in young male humans 281 
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the majority of NKB-IR neurons in the Inf, their processes and contacts onto GnRH neurons do not 282 

contain detectable amounts of KP immunoreactivity. Furthermore, KP-IR neuronal elements without 283 

NKB labeling also occur frequently, in addition to NKB/KP dual-phenotype structures. Finally, we 284 

observed that most KP-IR neurons and fibers are devoid of DYN immunoreactivity in this human 285 

model.  286 

Species differences in the colocalization of KNDy peptides 287 

We propose that the different colocalization patterns in the present human study and in previous 288 

animal experiments partly reflect species differences in reproductive mechanisms (28). These may 289 

include the absence of DYN signal from most KP neurons and fibers in humans, which is in contrast 290 

with the extensive coexpression in the rodent (3, 4, 14), sheep (5) and goat (8) ARC. Another putative 291 

species difference is the large excess of NKB-IR over KP-IR perikarya in the present human study, as 292 

opposed to the two-fold excess in the ARC of male mice (4).  293 

Sex-dependent variations in the absolute and relative abundances of KP and NKB and their 294 

colocalization pattern 295 

In a previous study of KP-IR and NKB-IR neurons we identified a series of sex-dependent 296 

morphological differences between aged human males and females (18). In particular, KP 297 

immunoreactivity was highly sexually dimorphic; the number of KP-IR perikarya, the density of KP-IR 298 

fibers and the incidence of KP-IR afferents on GnRH neurons were much higher in aged women 299 

compared with men (18). It is worth of note that the NKB/KP neuron density ratio also differed, being 300 

2.18 in aged males (>50 years) and 1.55 in postmenopausal females (>55 years) (18). In further support 301 

of the idea that the KP/NKB colocalization pattern is sexually dimorphic, the ratio of dual-labeled NKB-302 

IR as well as KP-IR afferent contacts onto GnRH-IR neurons was significantly higher in postmenopausal 303 

women (25-30%) than in aged men (8-10%) (18). We proposed that sex differences are either due to 304 
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organizational effects of sex steroids during critical period(s) of sexual differentiation or alternatively, to 305 

the loss of negative sex steroid feedback in postmenopausal women, unlike in aged men who maintain 306 

relative high testosterone levels. In our previous dual-immunofluorescent study we demonstrated a high 307 

degree of overlap between the KP and NKB systems of postmenopausal women; above 80% of KP-IR 308 

perikarya and NKB-IR perikarya contained also the other neuropeptide (17). The degree of this 309 

colocalization is likely to be sexually dimorphic and much lower in aged males whose Inf contained over 310 

twice as many NKB-IR as KP-IR perikarya (18).  311 

It is worthy of note that the sexual dimorphism of KP and NKB neurons in the ARC/Inf region is not 312 

unique to humans. The ARC of the sheep contains higher NKB (29) and KP (1) cell numbers in females 313 

than in males. In rats, sex differences were reported in the projection fields of NKB-IR axons within the 314 

infundibular area (23). 315 

Aging-dependent variations in the absolute and relative abundances of KP and NKB 316 

The human NKB and KP systems, at least in the male, also exhibit robust aging-dependent changes. 317 

Our preliminary data indicate that the enhancements of the absolute NKB and KP cell numbers coincide 318 

with a significantly enhanced percentage of KP-expressing NKB neurons in aged men (Molnár et al., in 319 

preparation).  320 

 Role of NKB in the regulation of the human reproductive axis 321 

 The tachykinin peptide NKB plays a crucial role in human reproduction and inactivating mutations of 322 

the NKB and NK3 encoding genes cause normosmic hypogonadotropic hypogonadism (30, 31). 323 

Although the first reports did not indicate fertility deficits in the NK3 mutant mice (32), later analysis 324 

focusing on the reproductive phenotype noticed subfertility (33), suggesting functional similarities in 325 

NKB/NK3 signaling between the human and mouse species. 326 
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Out of the three KNDy peptides, NKB provided the heaviest immunohistochemical signal in the Inf 327 

and the InfS of young men (present report), aged men (18) and aged women (18). In immunoperoxidase-328 

based studies, the dominance of NKB over KP was highest in young men (present study) where the 329 

density of NKB-IR perikarya and fibers were about 5 times as high as those of the KP-IR elements 330 

and NKB-IR axons established about 6-times as many axo-somatic and 5-times as many axo-dendritic 331 

contacts onto GnRH neurons as did KP-IR axons.  332 

Conflicting results of previous experiments suggest that the net effect of NKB on LH secretion 333 

depends on animal species and endocrine paradigms. Intraperitoneal or intracerebroventricular NKB 334 

administration to male mice had no effect on serum LH (34), whereas the intracerebroventricular 335 

injection of the selective NK3 agonist senktide reduced LH secretion in ovariectomized rats treated with 336 

a low dose of estradiol (35). Reduced LH secretion in response to senktide was also observed in 337 

ovariectomized and in ovariectomized and estradiol treated rats (36) and in ovariectomized mice (3), 338 

whereas another study on rats found stimulatory effect on LH secretion in the presence of physiological 339 

levels of estradiol (37). Senktide also stimulated LH secretion in castrated male monkeys (16), and in the 340 

follicular, but not in the luteal, phase in ewes (38), whereas reduced net LH secretion was observed in 341 

ovariectomized goats (8). 342 

Multiunit activity recorded in the ARC is considered to be an electrophysiological correlate of the 343 

GnRH pulse generator activity. The coordinated bursts of neuronal firing occur in synchrony with the LH 344 

secretory pulses in various animal species (8, 39), including primates (40). Senktide dose-dependently 345 

suppressed the frequency of pulsatile LH secretion and inhibited hypothalamic multiunit activity volleys 346 

in ovariectomized rats, independently of gonadal steroid levels (36). In contrast, a robust increase in the 347 

frequency of multiunit activity volleys was observed in ovariectomized goats (8).  348 

 NKB mainly acts upstream from GnRH neurons. For example, the stimulatory effect of intravenous 349 

NKB and senktide on LH secretion could be abolished by the GnRH receptor antagonist acyline (16). 350 
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One major target site for NKB actions appears to be on NKB (KNDy) neurons of the ARC/Inf. 351 

Accordingly, i) we found numerous NKB-IR afferent contacts on human NKB neurons, ii) similar 352 

contacts were reported previously in rats (14) and sheep (5, 41), iii) NK3 receptors are present on these 353 

cells in rodents and sheep (3, 14, 42) and iv) KP (KNDy) neurons in the ARC of male mice respond with 354 

c-Fos expression (4) and depolarization (4) to senktide.  355 

There is little consensus regarding the possibility that NKB also influences GnRH neurons directly. 356 

In sheep, GnRH neurons do not express NK3 immunoreactivity (42). In mice, while single-cell 357 

microarray and RT-PCR studies provided proof for NK3 mRNA expression in GnRH neurons (43), in 358 

situ hybridization studies were unable to confirm this finding (4). Also, senktide did not activate mouse 359 

KNDy neurons in vitro (4). In rats, while immunohistochemical studies found evidence for NK3 360 

immunoreactivity in only 16% of GnRH-IR cell bodies (44), the receptor was more abundant on GnRH-361 

IR axon terminals in the median eminence (44) where frequent appositions between GnRH-IR and NKB-362 

IR axons occurred (23, 44). Although NKB in itself did not alter GnRH release from hypothalamic 363 

explants of male rats, it abrogated the KP-induced release of GnRH, suggesting a complex mode of 364 

action which is likely parallel with, and not upstream from, the KP action (45). Recent functional 365 

evidence from KISS1R-KO mice indicates that intact KP/KISS1R signaling is required for the 366 

suppression of LH secretion by senktide. This finding provides support for the concept that the dominant 367 

action of NKB is upstream from KP neurons, instead of being exerted directly on GnRH cells (45).  368 

 Results of the present and a previous (18) human study indicate that NKB-IR axons abundantly 369 

innervate human GnRH neurons and the incidence of these contacts is several times as high as those of 370 

KP-IR axons. It will require clarification whether this anatomical pathway uses NKB/NK3 signaling. 371 

Alternatively, neurotransmitter (s) other than NKB may act in this communication, which is not likely to 372 

be KP or DYN, in view of their relative paucity in young male individuals. In addition to innervating 373 

GnRH-IR cell bodies and dendrites, NKB-IR axons also represented the most abundant KNDy peptide 374 
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around the portal capillary plexuses of the human postinfundibular eminence (25). This hypothalamic site 375 

that lies outside the blood-brain barrier may represent an important site of interaction between NKB-IR 376 

and GnRH-IR axons. It also remains possible that NKB is released into the hypophysial portal circulation 377 

to influence adenohypophysial functions. In vitro evidence from rats, indeed, indicates that NKB 378 

can induce prolactin secretion from perifused pituitary cells (46). 379 

 Role of KP in the regulation of the human reproductive axis 380 

 In humans, KP/KISSR1 signaling plays a pivotal role in reproduction. Loss of function mutations of 381 

the genes encoding KISSR1 (47-49) and KP (50) result in hypogonadotropic hypogonadism. In recent 382 

models of the GnRH pulse generator, KP was proposed to provide the main output signal of the pulse 383 

generator neuronal network toward GnRH neurons, whereas NKB and DYN seem to primarily account 384 

for the intranuclear communication of KNDy neurons via acting on NK3 and KOR, respectively (3, 8). It 385 

is generally believed that independently from the species, KP acts directly on GnRH neurons that express 386 

KISS1R mRNA (10-12) and in mice, respond with depolarization to KP (11, 51, 52).  387 

 As in laboratory and domestic animals, KP increases LH secretion in men (20, 53, 54) and women 388 

(55, 56), most potently during the preovulatory phase of the menstrual cycle in the latter. It is interesting 389 

to note that the continuous intravenous infusion of KP enhanced the LH pulse frequency in men (53), 390 

indicating that KP not only acts on GnRH neurons, but also upstream from the pulse generator network. 391 

This finding suggests a species difference from the mouse in which KNDy neurons do not appear to 392 

synthesize KISS1R (57) and express only NK3 (3) and KOR (3) mRNAs. 393 

In humans, axo-somatic, axo-dendritic and axo-axonal contacts may serve as communication 394 

pathways between KP and GnRH neurons (17). In previous studies we showed that the KP system of 395 

aged human individuals exhibits a robust sexual dimorphism (18) with postmenopausal women having 396 

several times higher densities of KP-IR cell bodies and fibers in the Inf and higher incidences of KP-IR 397 
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afferent contacts onto GnRH neurons, than aged men above 50 years. Preliminary data that KP 398 

immunoreactivity is even much lower in the hypothalamus of young men (Molnár et al., in preparation) 399 

led us to carry out the present study to challenge the validity of the KNDy neuron terminology and 400 

concept for the young male human model. Our present immunohistochemical data indicate that the 401 

density of KP-IR perikarya and fibers in the Inf were about 5 times lower than those of the 402 

corresponding NKB-IR elements and the number of KP-IR appositions to GnRH-IR cell bodies and 403 

dendrites only reached about one-fifth and one-sixth, respectively, of those established by NKB-IR 404 

axons. The functional consequences of the surprisingly low level of KP immunoreactivity in young 405 

men (in somata as well as fibers) requires clarification. In view that KP is thought to represent the 406 

main neurotransmitter output of the pulse generator system (3, 8), its low level in the mediobasal 407 

hypothalamus of young men is compatible with only a moderate stimulation of GnRH/LH secretion. 408 

Much higher raw numbers of the KP-IR cell bodies, fibers and contacts onto GnRH neurons in aged 409 

male human subjects (18) and their highest incidence in postmenopausal women (18) are in 410 

accordance with the idea that KP immunoreactivity and serum LH levels are linked. A future 411 

challenge will be to correlate the immunohistochemical images of KP and the other KNDy peptides 412 

with the GnRH neurosecretory output at the different human age and sex groups.  413 

Absence of DYN immunoreactivity from most KP neurons and their fiber projections 414 

 The opioid peptide DYN is rather ubiquitous and may have multiple sites of action upon the 415 

reproductive axis. These sites are likely upstream from the GnRH neuron that does not appear to express 416 

KOR in rats (58). DYN is critically involved in progesterone negative feedback to GnRH neurons in 417 

ewes; the majority of DYN cells in the ARC of ovariectomized ewes contain progesterone receptor (59) 418 

and progesterone treatment increases preprodynorphin mRNA expression in the ARC and DYN levels in 419 

the cerebrospinal fluid (60).    420 
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 DYN is an important regulator of the pulse generator system. In sheep, KOR antagonists stimulate 421 

the episodic secretion of LH during the luteal phase (61). In ovariectomized goats, central administration 422 

of DYN decreases and KOR antagonist increases the frequencies of the multiunit activity volleys and of 423 

the LH secretory pulses (8). Opioid peptides also regulate negatively the pulsatile release of prolactin and 424 

LH in humans; this inhibitory tone can be suspended by the blockade of opioid receptors with naloxone 425 

(62, 63).    426 

 The concept and terminology of the „KNDy neurons‟ rely on the similar results of colocalization 427 

experiments from several animal species. DYN has been detected in NKB (and/or KP) neurons in the 428 

ARC of sheep (5, 41), mice (3, 4), rats (14, 23) and goats (8). Moreover, the DYN receptor KOR is 429 

present in subsets of KNDy neurons in the ARC of mice (3, 4). Our present immunohistochemical study 430 

to address the presence of DYN immunoreactivity in human KP neurons was also informed by previous 431 

reports in which preprodynorphin mRNA expression was detected in the human Inf (64) and the monkey 432 

ARC (65). 433 

The somewhat unexpected absence of DYN immunoreactivity in most KP-IR somata and fibers of 434 

young male humans questions the universal importance of DYN peptides within NKB and KP neurons of 435 

the Inf and reveals an important difference from the rodent, sheep and goat species (1-5, 8, 23). It is 436 

worthy to note that species also vary considerably regarding the sex steroid regulation of DYN in the 437 

ARC/Inf. Preprodynorphin expressing neurons showed reduced numbers in postmenopausal women (64) 438 

and in ovariectomized ewes (60), whereas there was no change in mRNA expression in postmenopausal 439 

monkeys (65), whereas preprodynorphin mRNA was increased in the absence of sex steroids in mice (3). 440 

The absence of DYN immunoreactivity from most KP-IR neurons and their fibers we report in this 441 

study is unlikely to be entirely caused by the limited sensitivity of the applied immunohistochemical 442 

method because i) DYN-IR cell bodies (e.g. magnocellular perikarya in the supraoptic nucleus) and fibers 443 

(e.g. a dense fiber plexus in the ventromedial nucleus) were readily detectable elsewhere in the 444 
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hypothalamus, ii) substantial colocalization with KP was also undetectable using the highly sensitive 445 

tyramide signal amplification method to visualize DYN or iii) using an antiserum against a different 446 

prodynorphin cleavage product, dynorphin B.  447 

Summary of neuroanatomical findings  448 

i) The regional density of NKB-IR cell bodies, fibers and contacts onto GnRH neurons exceed about 449 

five-fold those of KP-IR neuronal elements in the Inf.  450 

ii) In addition to NKB-IR cell bodies and processes (in both the Inf and the InfS) that are devoid of 451 

KP labeling, KP-IR elements lacking NKB immunoreactivity are also highly abundant, as established in 452 

dual-immunofluorescent studies. In this study only 32.9±4.7% of the NKB-IR and 75.2±6.6% of the 453 

KP-IR perikarya were dual-labeled.  454 

 iii) DYN-IR cell bodies and fibers occur much less frequently than either NKB-IR or KP-IR 455 

elements; KP-IR axons in the Inf and the InfS contain DYN immunoreactivity only occasionally. 456 

In conclusion, the immunohistochemical observations we made on hypothalamic tissue samples of 457 

young male human subjects question the universal validity of the KNDy neuron concept and terminology 458 

and suggest that the abundance of these peptides and their overlap are species-, sex- and age-dependent. 459 
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 469 

Legends  470 

 471 

Figure 1. Relative abundances of NKB-, KP- and DYN-IR cell bodies and fibers in the Inf of young 472 

male humans. The silver-gold intensified nickel-diaminobenzidine chromogen was used to visualize 473 

NKB (A, B), KP (C, D) and DYN (E-G) immunoreactivities in adjacent sections of the Inf from a 31-474 

year-old male subject. NKB-IR perikarya as well as nerve fibers (A, B) occur in much higher numbers 475 

than do KP-IR elements (C, D). For results of the quantitative analyses which reveal about five-fold 476 

differences for both perikaryon and fiber densities, see Graphs 1 and 2, respectively. Arrowheads point to 477 

NKB-IR cell bodies in B and a KP-IR cell body in D. Note that NKB-IR neurons receive numerous 478 

afferent contacts (arrows in B) from NKB-IR varicose axons; analogous juxtapositions in other species 479 

were proposed to underlie the main peptidergic signaling mechanism among the putative pulse-480 

generating KNDy neurons. Few if any DYN-IR cell bodies are detectable in the Inf (none visible in this 481 

specific case) and only scattered DYN-IR fibers occur (E, F). This low level of the DYN signal does not 482 

appear to reflect a technical limitation of the immunohistochemical approach, given that IR perikarya and 483 

fibers are abundant elsewhere in the hypothalamus, including the supraoptic nucleus (SO; G). Scale 484 

bar=100μm for A, C, E and 9μm elsewhere. 485 

 486 

487 
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 488 

Figure 2. Results of immuno-peroxidase studies illustrating the differential innervation of the 489 

portal capillary plexus by NKB-, KP- and DYN-IR fibers in a 31 year old men. A-I: The black 490 

silver-gold intensified nickel-diaminobenzidine chromogen was used to detect NKB (A-C), KP (D-F) 491 

and DYN (G-J) immunoreactivities in adjacent sections of the InfS. Note that GnRH has also been 492 

visualized in A-F with brown diaminobenzidine. The postinfundibular eminence with its deep (B, E, I) 493 

and superficial (C, F, J) plexuses of portal blood vessels (BV) is surrounded by GnRH-IR 494 

hypophysiotropic axons (brown color in A-F). Out of the axons immunoreactive for the three KNDy 495 

peptides (black color), those with NKB immunoreactivity represent the most frequently encountered 496 

phenotype (A) and densely innervate both the deep (B) and the superficial (C) portal capillaries; this 497 

innervation raises the possibility of NKB release into the hypophysial portal circulation. The KP-IR 498 

innervation of the portal BVs is of much lower density (D-F). Although DYN-IR axons are readily 499 

detectable in the InfS (G) and contribute to the magnocellular axon tract (H), they only occur rarely 500 

around the portal BVs (H-I). Scale bar=100μm for A, D, G and 10μm elsewhere. 501 

 502 

503 
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Figure 3. Results of immunofluorescent studies revealing a significant degree of mismatch between 504 

KP and NKB immunoreactivities (A-E) and KP and DYN (or dynorphin B) immunoreactivities (F-505 

K) in the Inf (A, B, F, G) and the InfS (C-E, H). The dual-immunofluorescent visualization of NKB 506 

(green) and KP (red) immunoreactivities in the Inf (A, B) not only confirms the dominance of NKB-IR 507 

(green) over KP-IR (red) cell bodies (arrowheads) and axons (arrows) in the Inf, but also reveals a 508 

considerable degree of segregation between the two different perikaryon (arrowheads) and fiber (arrows) 509 

populations. Yellow double-arrows and arrowheads point to dual-labeled fibers and cell bodies, 510 

respectively. Single-labeled NKB-IR axons are also typical around the portal blood vessels (BV) of the 511 

postinfundibular eminence in the InfS (C-E), in addition to single-labeled KP-IR fibers (red) and 512 

NKB/KP-dual-labeled (yellow) axons. The dual-immunofluorescent visualization of KP and DYN (F-H) 513 

illustrates the absence of DYN immunoreactivity from KP-IR cell bodies in the Inf (red arrowheads in F). 514 

With the exceptions of a few scattered dual-labeled fibers (yellow double-arrows) in the Inf (F, G) and 515 

the InfS (H), the majority of KP-IR (red) and DYN-IR (green) axons are separate. Negative 516 

colocalization results are reproducible in the Inf (I) and the InfS (J) using an antiserum against a different 517 

prodynorphin cleavage product, dynorphin B. Note the high density of dynorphin B-IR fibers in the 518 

neighboring ventromedial nucleus (VMH) in K. High-power micrographs (A, B, D-K) represent single 519 

optical slices (0.7µm). Scale bar=100μm for C, 5μm for D and 10μm for A, B, E-K. 520 

 521 

 522 

523 
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 524 

Figure 4. Different incidences of NKB-IR and KP-IR afferent contacts onto GnRH-IR neurons. 525 

NKB-IR axons (black color in A) show a much higher abundance in the Inf and establish considerably 526 

more axo-somatic and axo-dendritic juxtapositions (arrows) onto GnRH-IR neurons (brown color) than 527 

do KP-IR axons (black color in B). For quantification of these results, see Graph 3. Scale bar=20μm.  528 

 529 

530 
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 531 

 532 

Graph 1. Regional abundance of NKB-IR and KP-IR neuronal perikarya in the Inf of young male 533 

humans. The maximal number of immunoreactive cell bodies per 0.25mm
2
 counting frame (1-6 per 534 

subject) was determined with the aid of an ocular frame and used as the index of the density of labeled 535 

perikarya. Results show that in young male human individuals, the mean incidence of NKB-IR cell 536 

bodies is about 5-times as high as the incidence of KP-IR cell bodies. *P<0.05 by ANOVA.  537 

 538 

539 
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 540 

Graph 2. Density of NKB-IR and KP-IR fibers in the Inf of young men. The area covered by 541 

immunoreactive fibers (divided by the total area analyzed) was determined with the ImageJ software in 542 

digital photographs of the Inf and used as a fiber density measure. Areas that were occupied by labeled 543 

cell bodies and their thick proximal dendrites were deleted from the photographs with the eraser tool of 544 

the Adobe Photoshop software and thus, excluded from the analysis. The density of NKB-IR fibers 545 

(expressed in arbitrary units) is 5.4 times as high as the density of KP-IR fibers. *P<0.0005 by ANOVA.  546 

 547 

548 
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 549 

Graph 3. Incidences of NKB-IR and KP-IR contacts onto GnRH-IR neurons in the Inf in young 550 

men 551 

High-power light microscopic analysis of sections, dual-immunolabeled with the combined use of silver-552 

gold-intensified nickel-diaminobenzidine and diaminobenzidine chromogens, was carried out to 553 

determine the relative incidences of NKB-IR and KP-IR neuronal appositions to the somata (left 554 

columns) and the dendrites (right columns) of GnRH-IR neurons. The counts were obtained from all 555 

GnRH-IR cell bodies and dendrites identified in 1-3 infundibular sections of each individual. The number 556 

of NKB-IR contacts is about 6-times as high on the somatic and 5-times as high on the dendritic 557 

compartment of GnRH neurons as those established by KP-IR axons. *P<0.01 by ANOVA. 558 

 559 

  560 

561 
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