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Abstract  

Type 1 cannabinoid receptor (CB1) is the principal mediator of retrograde 

endocannabinoid signaling in the brain. In this study, we addressed the topographic 

distribution and amino acid neurotransmitter phenotype of endocannabinoid-sensitive 

hypothalamic neurons in mice. The in situ hybridization detection of CB1 mRNA 

revealed high levels of expression in the medial septum (MS) and the diagonal band 

of Broca (DBB), moderate levels in the preoptic area and the hypothalamic 

lateroanterior (LA), paraventricular (Pa), ventromedial (VMH), lateral mammillary 

(LM) and ventral premammillary (PMV) nuclei, and low levels in many other 

hypothalamic regions including the suprachiasmatic (SCh) and arcuate (Arc) nuclei. 

This regional distribution pattern was compared to location of GABAergic and 

glutamatergic cell groups, as identified by the expression of glutamic acid 

decarboxylase 65 (GAD65) and type 2 vesicular glutamate transporter (VGLUT2) 

mRNAs, respectively. The MS, DBB and preoptic area showed overlaps between 

GABAergic and CB1-expressing neurons, whereas hypothalamic sites with moderate 

CB1 signals, including the LA, Pa, VMH, LM and PMV, were dominated by 

glutamatergic neurons. Low CB1 mRNA levels were also present in other 

glutamatergic and GABAergic regions. Dual-label in situ hybridization experiments 

confirmed the cellular co-expression of CB1 with both glutamatergic and GABAergic 

markers. In this report we provide a detailed anatomical map of hypothalamic 

glutamatergic and GABAergic systems whose neurotransmitter release is controlled 

by retrograde endocannabinoid signaling from hypothalamic and extrahypothalamic 

target neurons. This neuroanatomical information contributes to the understanding of 

the role that the endocannabinoid system plays in the regulation of endocrine and 

metabolic functions. 
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Introduction 

Endocannabinoids modulate brain neurotransmission primarily via acting on type 1 

cannabinoid receptor (CB1) localized on presynaptic axon terminals (Pagotto et al., 

2006; Piomelli, 2003). Activation of CB1 by endogenous lipid ligands including 

anandamide (Devane et al., 1992) and 2-arachidonoyl-glycerol (2-AG) (Mechoulam 

et al., 1995) decreases the synaptic release of GABA (Hoffman and Lupica, 2000), 

glutamate (Gerdeman and Lovinger, 2001; Huang et al., 2001), acetylcholine 

(Degroot et al., 2006), noradrenaline (Vizi et al., 2001) and possibly, other 

neurotransmitters. CB1 is one of the most abundant G-protein-coupled receptors 

which is distributed widely in the rodent brain (Bellocchio et al., 2010; Herkenham et 

al., 1990; Katona et al., 2001; Katona et al., 1999; Marsicano and Lutz, 1999; 

Matsuda et al., 1993; McDonald and Mascagni, 2001; Tsou et al., 1998).  

Endocannabinoids exert profound effects on hypothalamic functions, including 

endocrine hormone secretion, appetite, food intake and energy balance (for a review, 

see: (Pagotto et al., 2006)). Somewhat conflictingly, previous studies only detected a 

low abundance of CB1 immunoreactive axons (Tsou et al., 1998) and a low 

expression level of CB1 mRNA (Cota et al., 2003; Marsicano and Lutz, 1999) in the 

rodent hypothalamus, leaving the central regulatory mechanisms unexplained. A 

more recent immunocytochemical mapping study (Wittmann et al., 2007) from our 

laboratory, which used a newly developed CB1 antiserum (Fukudome et al., 2004), 

revealed an unexpectedly dense CB1-immunoreactive fiber network in the mouse 

hypothalamus. The CB1-immunoreactive terminals established symmetric as well as 

asymmetric synapses, indicating that retrograde endocannabinoid signaling in the 
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hypothalamus can influence inhibitory and excitatory synaptic transmission, 

respectively. The lack of previous immunocytochemical proof for this surprisingly 

dense CB1 immunoreactive input to hypothalamic neurons and the previous evidence 

that CB1 can be synthesized at highly variable levels in distinct classes of neurons 

elsewhere in the brain (Katona et al., 2006), suggest that the detection sensitivity is 

critical to successfully visualize moderate or low levels of CB1. This is apparently a 

problem when in situ hybridization is used to visualize CB1 expression. Neurons of 

the rodent hypothalamus only seem to contain low levels of CB1 mRNA, observed 

primarily in non-GABAergic cells of the ventromedial and anterior hypothalamic 

nuclei (Marsicano and Lutz, 1999) and in specific subsets of peptidergic neurons in 

the paraventricular nucleus (Cota et al., 2003).  

While partial information already exists about the topography and phenotype of 

hypothalamic CB1 expressing neurons (Bellocchio et al., 2010; Cota et al., 2003; 

Marsicano and Lutz, 1999; Matsuda et al., 1993), there is no comprehensive study 

available about the presence, signal level and amino acid neurotransmitter phenotype 

of CB1 mRNA expressing neurons in distinct septal/hypothalamic regions of the 

mouse. In the present study we used an improved radioisotopic in situ hybridization 

technique (Hrabovszky and Petersen, 2002) to establish a detailed map of CB1 

mRNA-expressing neurons. To also identify the amino acid neurotransmitter 

phenotype of these endocannabinoid-sensitive cells, the CB1 expression map was 

compared to the distribution of GABAergic and glutamatergic septal/hypothalamic 

neurons, characterized by the expression of glutamic acid decarboxylase 65 (GAD65) 

and type 2 vesicular glutamate transporter (VGLUT2) mRNAs, respectively. Finally, 
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dual-label in situ hybridization experiments were carried out to confirm the cellular 

colocalization of CB1 mRNA with the GABAergic and glutamatergic markers.  
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Methods 

Animals  

Adult male CD1 mice (N=10; 30-35 g BW) derived from a local breeding colony at 

the Medical Gene Technology Unit of the Institute of Experimental Medicine were 

used for the experiments. They were housed under standard environmental conditions 

(lights on between 0600–1800 h, temperature 22±1 C, humidity 6010%, standard 

rodent chow and water ad libitum). All experiments were carried out in accordance 

with the Council Directive of 24 November 1986 of the European Communities 

(86/609/EEC) and were reviewed and approved by the Animal Welfare Committee of 

the Institute of Experimental Medicine (47/003/2005).  

Preparation of the mouse CB1 probe 

To prepare a cRNA hybridization probe to mouse CB1 receptor mRNA, a 1368-bp 

cDNA fragment was amplified with polymerase chain reaction from mouse 

hypothalamic cDNA. The amplicon (corresponding to bases 579-1946 of the mouse 

CB1 mRNA; NM_007726.2) was inserted into plasmid vector using the PGEM T 

cloning kit from Promega (Madison, WI). The plasmid was grown in DH5α cells 

(Invitrogen, Carlsbad, CA, USA), isolated with the QIAfilter Plasmid Maxi kit 

(Qiagen; Valencia, CA, USA), linearized with Sal I and purified with 

phenol/chloroform/isoamyl alcohol (PCI), followed by chloroform/isoamyl alcohol 

(CI) extractions, and then, precipitation with NaCl and ethanol. The linearized 

transcription template was transcribed with T7 RNA polymerase in the presence of 

35S-UTP (NEN Life Science Products, Boston, MA, USA), to yield antisense 

transcripts (Hrabovszky et al., 2004). To generate a sense control for specificity 
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testing, the insert was cleaved at an internal ApaI site and a 1 Kb sense transcript was 

transcribed using the SP6 promoter site.  

Preparation of the mouse GAD65 and VGLUT2 probes 

Templates to generate probes to the GABAergic and glutamatergic marker 

enzymes, GAD65 and VGLUT2, respectively, were prepared with the PGEM T 

cloning kit, as described above for the CB1 cDNA. The inserts corresponded to bases 

166-994 of mGAD65 (NM_008078) and bases 1762-2390 of mVGLUT2 

(NM_080853) mRNAs. Probes for single-labeling experiments were transcribed in 

the presence of 35S-UTP. 

Single-label in situ hybridization studies  

Tissue preparation  

Five mice were decapitated. The brains were removed and snap-frozen on 

powdered dry ice. Then 12-μm-thick coronal sections were cut from the septal and 

hypothalamic regions of the frozen tissues using a Leica CM 3050 S cryostat (Leica 

Microsystems, Vienna, Austria), thaw-mounted on microscope slides coated with (3-

Aminopropyl) triethoxy-silane (Sigma, St. Louis, MO, USA), and air-dried. The 

sections were then processed for the radioisotopic in situ hybridization detection of 

CB1 mRNA.  

Prehybridization tissue treatments 

Prior to hybridization, the sections were pretreated as described elsewhere 

(Hrabovszky et al., 2004). Briefly, they were fixed in 4% paraformaldehyde for 15 

min, acetylated with 0.25% acetic anhydride in 0.9% NaCl/0.1 M triethanolamine 

(Sigma; pH 8.0) for 10 min, rinsed in standard saline citrate solution (2XSSC; 1X 
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SSC=0.15 M NaCl/0.015 M sodium citrate, pH 7.0) for 2 min, dehydrated in 70, 80, 

95 and 100% ethanol (2 min each), delipidated in chloroform for 5 min, and finally, 

rehydrated partially in 100%, followed by 95% ethanol (2 min each) and air dried.  

Hybridization and posthybridization 

Every tenth hypothalamic section from each of five mice, was hybridized with a 

35S-labeled antisense probe against mouse CB1 mRNA. Further two series consisting 

of immediate neighbors of these sections were hybridized to the antisense VGLUT2 

and the antisense GAD65 probes, respectively, whereas one series was Nissl-stained 

with cresyl violet, to facilitate anatomical analysis. Sections hybridized with sense 

transcripts were processed in parallel, to serve as negative controls. To prevent the 

formation of autoradiographic background in the hybridization experiments, high 

concentrations of dithiothreitol (1000 mM) were added to the hybridization buffer 

(Hrabovszky and Petersen, 2002). To enhance hybridization signal and allow single-

cell detection of low signal levels, high concentrations of radioisotopic probe (80,000 

cpm/μl) and dextran sulfate (20%) were used in the hybridization solution 

(Hrabovszky and Petersen, 2002). Following an overnight hybridization at 52 C, the 

non-specifically bound probe was digested with 20 µg/ml ribonuclease A (Sigma; 

dissolved in 0.5 M NaCl/10 mMTris-HCl/1 mM EDTA; pH 7.8) for 60 min at 37 oC, 

followed by a stringent treatment step to further clear the background (55 C in 0.1X 

SSC solution for 60 min). The slides were dipped into MQ water for 2 sec, rinsed in 

70% ethanol for 5 min and air-dried.  



 10 

Autoradiography 

The slides were exposed to Kodak BioMax MR autoradiography films for 5 days 

and the signal was developed with standard procedures. Then the sections were 

coated with Kodak NTB nuclear track emulsion (Kodak; Rochester, NY; diluted 1:1 

with distilled water) and exposed for 3 weeks. The autoradiographs were visualized 

with Kodak processing chemicals. The sections were lightly counterstained with 

0.05% Toluidine blue (Sigma) to enable the distinction of hypothalamic nuclei, then 

dehydrated with 95%, followed by 100% ethanol (five min each), cleared with xylene 

(2X5 minutes), and coverslipped with DPX mounting medium (Fluka Chemie; Buchs, 

Switzerland). 

Dual-label in situ hybridization studies  

To demonstrate the cellular coexpression of CB1 with GAD65 or CB1 with 

VGLUT2 mRNAs, five mice were deeply anesthetized with a cocktail of ketamine 

(25 mg/kg), xylavet (5 mg/kg) and pipolphen (2.5 mg/kg) in saline and sacrificed by 

transcardiac perfusion with 10 ml 0.1M phosphate buffered saline (PBS) followed by 

40 ml of 4% paraformaldehyde in 0.1M phosphate buffered saline. The brains were 

removed, postfixed for 1 h in the same fixative, infiltrated with 20% sucrose 

overnight and then, snap-frozen on dry-ice. Septal-hypothalamic blocks were 

dissected and 25-µm-thick coronal sections were cut on a freezing microtome (Leica). 

Every fourth section was processed to colocalize CB1 with GAD65 mRNA. A second 

series was processed similarly to study CB1/VGLUT2 coexpression. The floating 

sections were acetylated with 0.25% acetic anhydride in 0.9% NaCl/0.1 M 

triethanolamine-HCl for 10 min, rinsed in 2X SSC for 2 min, treated sequentially 
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with 50%, 70% and 50% acetone (5 min each), rinsed with 2X SSC and transferred 

into hybridization solution containing a cocktail of the radioisotopic CB1 probe 

(80,000cpm/µl) and the digoxigenin-labeled mGAD65 or mVGLUT2 hybridization 

probe (1:50 dilution) in PCR tubes. The hybridization buffer included 1000 mM DTT, 

and unlike for single-labeling, 10%, instead of 20% dextran sulfate. The digoxigenin-

labeled mGAD65 and mVGLUT2 probes were transcribed in vitro in the presence of 

digoxigenin-11-UTP (Roche Diagnostics Co., Indianapolis, IN, USA) as detailed 

previously (Hrabovszky et al., 2004). Following the use of posthybridization 

treatments (see under single-labeling), the floated sections were rinsed briefly with 

100 mM maleate buffer (pH 7.5) and blocked for 30 min against non-specific 

antibody binding with 2% blocking reagent (Roche) in maleate buffer. Then anti-

digoxigenin antibodies conjugated to horseradish peroxidase (anti-digoxigenin-POD; 

Fab fragment; 1:100; Roche) were applied to the sections overnight at 4oC. To 

visualize the enzyme reaction, the sections were first rinsed in TBS (0.1 M Tris-HCl 

with 0.9% NaCl; pH 7.8), then incubated for 30 min with biotinylated tyramide 

working solution (TSA kit; NEN Life Science Products, Boston, MA) according to 

the manufacturer’s instructions (NEN). Following biotin tyramide deposition and 

brief rinses in TBS, the sections were transferred into the ABC-alkaline phosphatase 

(AP) reagent (Vector, Burlingame, CA; 1:1000) for 1 h. The enzyme reaction was 

visualized with the 5-bromo-4-chloro-3-indolyl-phosphate/4-nitro blue tetrazolium 

(BCIP/NBT) chromogen system according to the manufacturer’s instructions 

(Roche). The development of purple color reaction was monitored at intervals and 

stopped after 120 minutes. The sections were mounted on gelatin-coated microscope 
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slides and dipped sequentially twice into 1% Parlodion (Mallinckrodt; St. Louis, MO, 

USA) in amyl acetate. This step can efficiently prevent positive chemography (high 

autoradiographic background) associated with the use of the BCIP/NBT chromogen 

in dual-label in situ hybridization experiments (Hrabovszky et al., 2006; Hrabovszky 

et al., 2004; Hrabovszky et al., 1995). Then, the autoradiographic signal was detected 

with Kodak NTB emulsion in the same way as in single-labeling experiments. 

Microscopic analysis 
 

Dark-field images of emulsion autoradiographs from single-labeling experiments 

were scanned with an AxioCam MRc 5 digital camera mounted on a Zeiss 

AxioImager M1 microscope, using a 10X objective lens and the MozaiX modul of the 

AxioVision 4.6 software (Carl Zeiss, Göttingen, Germany). Additional digital 

photomicrographs of single- and dual-labeled sections were prepared in bright-field 

mode. All digital images were processed with the Adobe Photoshop 7.1 software at 

300dpi resolution. Panels within the same figure were merged into a single image in 

which brightness and contrast were adjusted. 

 

Results 

General distribution of hybridization signals 

The autoradiographic detection of CB1, GAD65 and VGLUT2 mRNAs revealed 

highly patterned signal distributions in various septal-hypothalamic regions (Figs. 1 

and 2). In order to be considered specifically labeled with the radioactive probes, 

individual neurons had to exhibit at least 5 times higher autoradiographic signal (area 

covered by silver grains/selected total area) than the area fraction of silver grains in a 
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surrounding background region, as determined with the Image J software (public 

domain at http://rsb.info.nih.gov/ij/download/src/). No labeling was obtained 

following the use of sense transcripts.  

The incidences of neurons labeled for the three mRNAs varied from region to 

region. These variations were presented on arbitrary three point scales (“+”=low; 

”++”=moderate; “+++”=high; Columns 1-3 of Table 2) for each area and probe. High 

scores revealed the regions of extensive overlap between CB1 expressing neurons and 

distinct GABAergic and glutamatergic cell populations.  

In addition, labeled neurons also expressed variable single-cell levels of the signal. 

Another three point scale was used to rate the cellular intensity of labeling (“+”=low; 

”++”=moderate; “+++”=high) typical of labeled neurons in each area (Columns 4-6 

of Table 2). In case of CB1 mRNA, the low signal level (“+”) exceeded 5-10 times 

the level of non-specific background. Moderate signal (”++”) was 10-20 higher than 

background labeling, whereas high signal level (“+++”) was 20-50 times higher than 

non-specific background.  

Regional distribution of CB1 mRNA 

CB1-expressing neurons were found in high numbers (+++) in the lateral (LS) and 

medial (MS) septal nuclei, in the nuclei of the horizontal (HDB) and vertical (VDB) 

limbs of the diagonal band of Broca (DBB), in the medial preoptic area (MPA) and in 

the anteroventral periventricular (AVPe), median preoptic (MnPO), medial preoptic 

(MPO), supraoptic (SO), ventromedial (VMH), ventral premammillary (PMV) and 

lateral mammillary (LM) nuclei. The abundance of labeled neurons was moderate 

(++) in many other regions, such as the vascular organ of the lamina terminalis 

http://rsb.info.nih.gov/ij/download/src/)
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(VOLT), the lateral preoptic area (LPO), the anterodorsal preoptic nucleus (ADP), the 

ventromedial preoptic nucleus (VMPO), the lateroanterior (LA), paraventricular (Pa), 

dorsal premammillary (PMD) and supramammillary (SuM) nuclei and the lateral 

hypothalamus (LH). Only few cells (+) contained CB1 mRNA in the arcuate (Arc; 

typically in the posterior part), suprachiasmatic (SCh), dorsomedial (DM) or medial 

mammillary (medial and lateral parts; MM, ML) nuclei. For results of the detailed 

topographic analysis, see column 1-3 in Table 2. For photographic illustrations, see 

Figs. 1 and 2. 

Cellular intensity of CB1 labeling 

The CB1 hybridization signal strength was low (+), moderate (++) or high (+++) in 

labeled septal and hypothalamic neurons and did not reach the heaviest (++++) CB1 

hybridization signal within the brain which was present in scattered interneurons of 

the neocortex (Fig. 3A), amygdala (Fig. 3B) and hippocampal formation (Fig. 3C) 

and in the majority of neurons of the lateral caudate putamen (CPu; Fig. 3D). 

Variations in the labeling intensity of septal-hypothalamic CB1-expressing neurons 

are illustrated in Fig. 3. Specifically, high single-cell CB1 mRNA levels (+++) were 

observed in the DBB (Figs. 1B, F and 3F) and the MS (Figs. 1B, F and 3E). Moderate 

levels (++) were typical of labeled neurons in several subdivisions of the preoptic 

region (Figs. 1F and J), including the medial preoptic area (MPA; Fig. 3G) and the 

medial preoptic nucleus (MPO; Fig. 3H). Moderate single-cell levels (++) were also 

observed in several hypothalamic nuclei, including the LA (Fig. 1N), Pa (Fig. 3L), 

VMH (Figs. 1R, 2B and 3J), LM (Figs. 2N, R and 3K), PMV (Figs. 2F and J), PMD 

(Fig. 2J), and LM (Figs. 2N and R). Neurons in the AVPe (Fig. 3I) and in numerous 
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hypothalamic regions including the SO (Fig. 3M) contained low single-cell levels (+) 

of the CB1 hybridization signal (although most neurons were labeled), which was 

sometimes only slightly above background labeling (+/-). If labeled, neurons of the 

Arc (especially caudally; Fig. 3N) and the Pe (Fig. 3O) also exhibited low signal 

levels only. 

Distribution of the GABAergic and glutamatergic marker mRNAs 

Typically, GAD65-expressing GABAergic and VGLUT2-expressing glutamatergic 

neurons exhibited distribution patterns complementary to one another (Figs. 1 and 2). 

GABA represented the dominant amino acid neurotransmitter phenotype in neurons 

of the MS (Figs. 1C, G), LS (Fig. 1C), HDB (Figs. 1C, G), VDB (Fig. 1C), in most 

subdivisions of the preoptic region (Figs. 1G and K), in the anterior hypothalamic 

area (Figs. 1O, S) and in the hypothalamic SCh (Fig. 1O), Arc (Figs. 2C, G) and DM 

(Fig. 2C) nuclei. Predominantly glutamatergic sites included the Pa (Figs. 1P, T), SO 

(Fig. 1P), VMH (Figs. 1T and 2D), LM (Figs. 2P, T), PMV (Figs. 2H, L), PMD (Fig. 

2L), medial mammillary (MM and ML; Figs. 2P, T), LM (Figs. 2P, T) and SuM 

(Figs. 2P, T) nuclei. Both GABAergic and glutamatergic neurons were present in 

high numbers in the AVPe (Figs. 1G, H). The regional abundance of GABAergic and 

glutamatergic neurons as well as the cellular intensity of labeling were scored on 

similar three point scales as for CB1 mRNA (For detailed results, see Table 2 and 

Figs. 1 and 2). 
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Overlaps between the distribution of CB1 mRNA with GABAergic and glutamatergic 

marker mRNAs 

The distribution of neurons with the highest cellular levels of CB1 mRNA (+++) in 

the MS, HDB and VDB overlapped with that of GAD65-expressing neurons (Figs. 

1A-D). Similarly, neurons with moderate single-cell CB1 mRNA levels (++) in the 

preoptic region, including the LPO, MPA and MPO, corresponded to dominantly 

GABAergic sites (Figs. 1E-L). Interestingly, all three mRNAs showed overlapping 

distributions in the AVPe (Figs. 1E-H). In contrast with the dominance of the 

CB1/GABA overlap at septal and preoptic sites, hypothalamic neurons exhibiting 

moderate (++) or low (+) cellular levels of CB1 mRNA rather tended to occur in 

areas populated by glutamatergic cells. Such CB1/glutamate regions included the 

VMH (Figs. 1R, T and 2B, D), LM (Figs. 2N, P and 2R, T), PMV (Figs. 2F, H and 

2J, L), PMD (Figs. 2J, L), SuM (Figs. 2N, P and 2R, T), SO (Figs. 1N, P) and Pa 

(Figs. 1N, P and 1R, T). Low levels of CB1 mRNA expression were detected in many 

other GABAergic and glutamatergic regions throughout the mouse hypothalamus 

(Figs. 1, 2). 

Dual-labeling experiments 

Dual-labeling experiments confirmed the colocalization of CB1 mRNA with the 

GABAergic (Fig. 4) and glutamatergic (Fig. 5) markers in regions where single-

labeling experiments revealed overlaps between CB1 with GAD65 and VGLUT2 

mRNAs, respectively.  

Examples for heavy (+++) CB1 signal in GABAergic cells were observed in the 

HDB (Fig. 4A). Moderate CB1 signal levels (++) were typical for GABAergic cells 
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of the MPA (Fig. 4C), MPO (Fig. 4D) and the different subdivisions of the anterior 

hypothalamic area (Figs. 4E, F). A small subset of GABAergic neurons in the SCh 

contained low levels of CB1 mRNA, whereas the majority of neurons were unlabeled 

(Fig. 4G). GABAergic neurons in many other regions including the AVPe (Fig. 4B), 

the DM (Fig. 4H) and the Arc (Fig. 4I) expressed CB1 mRNA at low levels (+) only.  

Examples for glutamatergic neurons with moderate levels of CB1 mRNA (++) were 

found in the HDB (Fig. 5A), LA (Fig. 5B), VMH (Fig. 5F), PMV (Fig. 5H) and LM 

(Fig. 5J). Low-to-moderate signal levels were also found in VGLUT2-expressing 

neurons of the AVPe (Fig. 5C), MPA (Fig. 5D), Pa (Fig. 5E), PMD (Fig. 5F) and 

SuM nuclei (Fig. 5K). Labeled glutamatergic neurons were also found in the Arc, 

most typically in its posterior part (Fig. 5G). 
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Discussion 

In the present report we provide a detailed map of septal-hypothalamic CB1 

mRNA-expressing neurons and demonstrate the differential colocalization of CB1 

with GAD65 and VGLUT2 mRNAs in distinct subsets of GABAergic and 

glutamatergic neurons, respectively.  

Differential expression of CB1 mRNA  

In this study, we present evidence for a wide and differential expression of CB1 

mRNA in septal-hypothalamic areas of the mouse. Overall, we found a much wider 

distribution of CB1 mRNA in the hypothalamus than reported earlier (Cota et al., 

2003; Marsicano and Lutz, 1999). To provide semiquantitative measures of regional 

differences in hybridization signal strength, we characterized distinct septal-

hypothalamic areas with both the regional abundance of CB1-expressing neurons and 

the typical single-cell level of CB1 hybridization signal, on three point scales, each. 

The CB1 signal strength of individual septal-hypothalamic neurons was always lower 

than the CB1 labeling intensity of a subset of GABAergic neurons in the basolateral 

amygdala (Herkenham et al., 1990; Katona et al., 2001; Katona et al., 1999; 

Marsicano and Lutz, 1999; Matsuda et al., 1993; McDonald and Mascagni, 2001; 

Tsou et al., 1998), hippocampus (Herkenham et al., 1990; Katona et al., 2001; Katona 

et al., 1999; Marsicano and Lutz, 1999; Matsuda et al., 1993; McDonald and 

Mascagni, 2001; Tsou et al., 1998) or cerebral cortex (Bodor et al., 2005). In 

comparison with the very heavy (++++) CB1 signal in cholecystokinin containing 

basket cells of these sites (Cota et al., 2003; Marsicano and Lutz, 1999), the labeling 

intensity of septal-hypothalamic neurons ranged from low (–) to high (+++).   
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GABAergic neurons expressing CB1 mRNA 

 The highest cellular levels of CB1 mRNA expression (+++) in our regions of 

interest were observed in GABAergic neurons in the MS, HDB and VDB; these 

GABAergic cells have been implicated in spatial learning and memory (Pang et al.). 

Various cognitive processes of the hippocampus depend on the theta rhythm which is 

generated and propagated to the hippocampus by GABAergic neurons located in the 

MS-DBB complex (Borhegyi et al., 2004; Varga et al., 2008) which selectively 

innervate GABAergic interneurons in the hippocampus (Freund and Antal, 1988). 

There is evidence that CB1 receptor activation reduces hippocampal theta 

oscillations, with concomitant memory impairment in hippocampus-dependent tasks. 

We found additional evidence for the presence of somewhat lower levels of CB1 

mRNA in glutamatergic neurons in the MS-DBB region. Further, cholinergic neurons 

also appear to contain CB1 at this site (Nyiri et al., 2005) and the CB1 agonist WIN 

55212-2 directly inhibits their acetylcholine release into the hippocampus (Gifford 

and Ashby, 1996). 

 In our studies to analyze the coexpression of CB1 and GAD65 mRNAs, we found 

moderate CB1 mRNA levels in GABAergic neurons of several preoptic regions, 

including the MPO, LPA and the MnPO and somewhat lower levels in the AVPe. 

From a neuroendocrine aspect, a particularly interesting observation was the presence 

of CB1 expression in the AVPe which represents an important source for neuronal 

inputs to gonadotropin-releasing hormone (GnRH) neurons (Herbison, 2008). The 

presence of CB1 in this putative GABAergic input system to GnRH neurons may 

explain our recent electrophysiological and morphological data that retrograde 
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endocannabinoid signaling reduces GABAergic afferent drive onto GnRH neurons 

via the activation of presynaptic CB1 receptors (Farkas et al., 2010). In that study we 

have provided evidence that GnRH neurons produce 2-arachidonoylglycerol (2-AG). 

Its presynaptic action via CB1 decreases GABA release, which, in turn, reduces 

postsynaptic GABAA-R signaling and inhibits the firing activity of GnRH neurons 

(Farkas et al., 2010).  

 In contrast with the high and moderate levels of CB1 mRNA expression in septal 

and preoptic GABAergic neurons, GABAergic cells in the hypothalamus tended to 

express low levels of CB1 mRNA, only. Where present, moderate levels of CB1 

signal were more typical for hypothalamic glutamatergic neurons. The colocalization 

of hypothalamic CB1 and GAD65 mRNAs in our study somewhat conflicts with the 

lack of evidence for CB1 mRNA in hypothalamic GABAergic cells (Cota et al., 

2003; Marsicano and Lutz, 1999). It is likely that these previous studies failed to 

reveal the relatively low levels of CB1 expression in GABAergic cells, given that 

CB1 mRNA expression tends to be heavier in glutamatergic vs. GABAergic systems 

of the hypothalamus,  

Glutamatergic neurons with the highest cellular levels of CB1 mRNA expression 

 Glutamatergic neurons also occurred in the MS, HDB and DBB and expressed CB1 

mRNA, albeit at slightly lower levels than did GABAergic neurons.  

 Among the various compartments of the preoptic region which contained 

glutamatergic, in addition to GABAergic neurons, the AVPe showed an interesting 

overlap of CB1, GAD65 and VGLUT2 mRNAs; Usually low levels of CB1 

expression were detectable here in glutamatergic, in addition to GABAergic neurons. 
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From a neuroendocrine aspect, it is interesting to note that the AVPe contains 

GABAergic/glutamatergic dual-phenotype neurons in female rats, which innervate 

GnRH cells (Ottem et al., 2004) and mediate positive sex steroid feedback effects 

(Herbison, 2008).  

Regarding the hypothalamus, the highest regional abundance of CB1 mRNA 

expression and the highest single-cell levels of CB1 mRNA tended to occur in 

glutamatergic regions. As we have shown in a previous (Hrabovszky et al., 2005) and 

the present studies, the bulk of the VMH consists of VGLUT2-expressing 

glutamatergic neurons in rodents. Presence of CB1 mRNA in these cells is in 

accordance with previous observations by others (Marsicano and Lutz, 1999) and 

suggests that glutamate release from hypothalamic and extrahypothalamic synapses 

of these neurons is modulated by endocannabinoids synthesized in postsynaptic target 

cells. The VMH establishes terminal fields in other parts of the medial hypothalamus, 

sends ascending projections to the zona incerta, the midline thalamus, the bed nuclei 

of the stria terminalis, the amygdala, the nucleus accumbens and the prefrontal cortex. 

Its descending projections reach the periaqueductal gray, the superior colliculus, 

peripeduncular area, locus coeruleus, Barrington's nucleus, parabrachial nucleus, 

nucleus of the solitary tract, and the mesencephalic, pontine, gigantocellular, 

paragigantocellular and parvicellular reticular nuclei (Canteras et al., 1994; Krieger et 

al., 1979; Saper et al., 1976). The VMH possesses massive intrinsic connections 

(Canteras et al., 1994; Millhouse, 1973; Nishizuka and Pfaff, 1989). Therefore, a 

major site of action on CB1 that is synthesized in the nucleus may be within the VMH 
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itself. It is likely that the massive CB1-immunoreactive innervation of the VMH we 

reported earlier (Wittmann et al., 2007) arises partly from local neurons.  

From a functional aspect, the VMH is involved heavily in the integration of 

forebrain neural influences with ascending information from the brainstem, and 

distributing the resulting output to regions involved in the control of visceral and 

behavioral mechanisms (Swanson and Mogenson, 1981). Functions associated with 

the VMH include the control of pituitary hormone release (Blache et al., 1991; 

Chateau et al., 1984; Kato et al., 1983; Okada et al., 1991; Pan and Gala, 1985). 

Furthermore, VMH lesions interfere with the diurnal rhythms of plasma 

corticosterone levels and food intake (Balagura and Devenport, 1970; Bellinger et al., 

1976; Bernardis, 1973). There is also general agreement that the VMH plays 

important roles in the regulation of feeding (Brooks et al., 1946; Minano and Myers, 

1991; Perkins et al., 1981; Shimizu et al., 1987), defensive (Fuchs et al., 1985a; b), 

and feminine copulatory behaviors and the modulation of autonomic responses 

associated with these behaviors.  

The LH also contained moderate numbers of CB1-expressing glutamatergic 

neurons. This anatomical site has been strongly implicated in the regulation of energy 

balance (Richard et al., 2009). A subset of CB1-expressing neurons in the LH may 

correspond to melanin concentrating hormone producing neurons that were 

previously shown to express CB1 (Cota et al., 2003). 

The LA contained a glutamate/CB1 cell population that was distinct from the 

glutamate/CB1 neurons of the LH. In the rat, this anatomical region forms part of the 
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hypothalamic attack area and contains VGLUT2-expressing neurons that co-

synthesize thyrotropin-releasing hormone (Hrabovszky et al., 2005).   

The medial and lateral mammillary nuclei play a crucial role in episodic memory. 

Some degree of parallelism exists both in the inputs and the outputs of these nuclei 

(Vann and Aggleton, 2004). Significant afferent sources include the hippocampal 

formation and the tegmental nuclei, whereas the excitatory efferents target the 

anterior thalamic nuclei via the mammillothalamic tract and the tegmental nuclei via 

the mammillotegmental tract (Hayakawa and Zyo, 1989). Both the medial and the 

lateral mammillary nuclei comprised VGLUT2-expressing glutamatergic neurons in 

our study, but only cells in the LM showed detectable levels of CB1 mRNA. The 

functional significance of this differential CB1 expression requires clarification. 

Other nuclei with high levels of CB1 and VGLUT2 mRNAs included the PMV. 

This site has been heavily implicated in reproductive regulation. Its neurons 

expressing cocaine- and amphetamine-regulated transcript project to the preoptic area 

(Rondini et al., 2010). Cells of the PMV express a dense concentration of leptin 

receptors which appear to play a role in linking changing levels of leptin and 

coordinated control of reproduction. Lesions of the PMV disrupt estrous cyclicity in 

rats and preclude the stimulation of luteinizing hormone secretion by leptin during 

fasting (Donato et al., 2009). Other regions where CB1 and VGLUT2 mRNAs were 

frequently coexpressed included the LM, PMD, SuM, SO and Pa nuclei. 

Cells expressing low levels or no CB1 

Neurons expressing low levels or no CB1 mRNA should also be noted. 

Accordingly, the large GABAergic cell mass in the lateral septum, the majority of 
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GABAergic neurons in the SCh and the Arc exhibited either no or only low levels of 

CB1 hybridization signal. Glutamatergic neurons in the medial mammillary nucleus 

were similarly devoid of CB1 mRNA. While the activity of such neurons may also 

regulate endocannabinoid production in their postsynaptic targets, it is likely that their 

own neurotransmitter release is independent of retrograde endocannabinoid signaling 

by the postsynaptic neurons.      

CB1 in neuroendocrine cells 

Parvicellular and magnocellular neuroendocrine cells project outside the blood-

brain barrier and release their neurohormone contents in the blood stream to regulate 

endocrine functions. Previous studies from our laboratory found that most of the 

classical neuroendocrine cells in the rat, with the exception of dopaminergic and 

growth hormone-releasing hormone neurons in the Arc nucleus, express VGLUT2 

mRNA (Hrabovszky and Liposits, 2008). In the present studies we identified large 

numbers of CB1/VGLUT2 dual-labeled neurons in the SO, although individually, 

these cells contained low CB1 mRNA levels only. These neurons are exclusively 

magnocellular neurosecretory cells which secrete oxytocin and vasopressin into the 

peripheral circulation. Similarly, the Pa also contained many parvicellular 

CB1/VGLUT2 neurons some of which could also be neuroendocrine cells. 

Accordingly, a previous dual-label in situ hybridization study by Cota and co-workers 

provided evidence that a subset of CB1 neurons in this nucleus expresses 

corticotropin-releasing hormone mRNA (Cota et al., 2003). Furthermore, our 

previous immunocytochemical study (Wittmann et al., 2007) identified CB1-

immunoreative axon terminals in the external layer of the median eminence where 
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parvicellular neurosecretory systems project. Future dual-label immunofluorescent 

experiments will need to clear the neuropeptide phenotypes of these CB1 containing 

neuroendocrine terminals. From a conceptual viewpoint, it will be important to 

identify the glial, endothelial, or neuronal sources of endogenous cannabinoids at 

these neuroendocrine secretion sites. Tanycytes, which exhibit immunoreactivity for 

the endocannabinoid biosynthetic enzyme diacylglycerol lipase, represent one likely 

source for 2-AG that affects CB1-containing parvicellular neurosecretory axon 

terminals (Suarez et al., 2010). Functional studies will need to determine the 

physiological significance of CB1 in parvicellular and magnocellular neurosecretory 

systems. 

Technical considerations 

Because hypothalamic neurons express relatively low levels of CB1 mRNA 

(Marsicano and Lutz, 1999), in the present study we chose to use an improved 

radioisotopic hybridization procedure (Hrabovszky and Petersen, 2002). With this 

method, a low autoradiographic background can be achieved via the use of high 

dithiothreitol concentrations (1000mM) in the hybridization solution. This 

modification allows the use of enhanced radioisotopic probe (80,000 cpm/ml) and 

dextran sulfate (20%) concentrations in the hybridization solution, increasing thus the 

specific hybridization signal. This method has also been adapted successfully to dual-

label in situ hybridization (Hrabovszky et al., 2004; Hrabovszky et al., 2006). In the 

present study we have noticed that while increased concentration of dextran sulfate 

can, indeed, significantly enhance the isotopic signal for CB1 mRNA, it actually 

weakens the signal using the digoxigenin-labeled probes for GAD65 and VGLUT2. 
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Therefore, in order to achieve the sufficient visualization of GABAergic and 

glutamatergic neurons, we have modified the dual-labeling procedure by using high 

isotopic probe, but not dextran sulfate, concentrations. This necessary compromise 

could somewhat reduce the sensitivity of CB1 mRNA detection.  

As we stated and discussed in a previous technical report (Hrabovszky and 

Petersen, 2002), the finding of increased hybridization signal following the use of 

enhanced probe and/or dextran sulfate concentrations in the hybridization solution, or 

an enhanced hybridization time, collectively suggest that the “saturation” of mRNA 

targets can not be achieved using routine in situ hybridization procedures with 

isotopic cRNA probes. This also implies that the in situ hybridization reaction does 

not follow pseudo-first order kinetics, as postulated for nucleic acid hybridization to 

immobilized targets (Hrabovszky and Petersen, 2002). Use of an improved 

hybridization method could be important in the present study to visualize low levels 

of CB1 mRNA in neurons previously reported not to have significant levels of CB1 

mRNA, including GABAergic hypothalamic neurons (Marsicano and Lutz, 1999). It 

is still important to note that practical limits exist in enhancing the hybridization 

signal via using improved methods. Increasing probe and/or dextran sulfate 

concentration beyond some point will also result in increased background. Also, the 

visualization of isotopic probes at the single-cell level can be quite insensitive and in 

case of rare mRNA targets, grain clusters might not appear in the emulsion even after 

long exposures. Furthermore, while the in situ formed probe RNA/mRNA hybrids are 

considered stabile based on theoretical considerations, in our experience a quite 

robust decrease of the specific hybridization signal can also result from too harsh 
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posthybridization RNase A- and stringent treatments. Therefore, negative results 

including the lack of CB1 hybridization signal in significant subsets of hypothalamic 

neurons should be interpreted with caution and not as a functional proof for the 

insensitivity of these cells to endocannabinoids.  

In summary, in this report we present a detailed neuroanatomical map of 

GABAergic and glutamatergic septal-hypothalamic neurons that express CB1 

mRNA. Neurotransmitter release from these cells is controlled by retrograde 

endocannabinoid signaling from target neurons. This neuroanatomical information 

may help to understand the role of the endocannabinoid system in the regulation of 

endocrine and metabolic functions. 
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Legends 

Figure 1. Comparative distribution of CB1, GAD65 and VGLUT2 hybridization 

signals in septal-rostral hypothalamic areas of the mouse.  

The radioisotopic in situ hybridization detection of CB1 (B, F, J, N, R), GAD65 (C, 

G, K, O, S) and VGLUT2 (D, H, L, P, T) mRNAs in autoradiographic emulsion 

reveals CB1 mRNA expression in areas populated by GABAergic (GAD65 mRNA-

expressing) as well as glutamatergic (VGLUT2 mRNA-expressing) neurons. The 

regional abundance of CB1 mRNA is high (+++) in the HDB (B, F), VDB (B) and 

the MS (B, F); these regions are dominated by GABAergic neurons (C, G). Similarly, 

CB1 labeling in most subdivisions of the preoptic region (F, J) also tends to overlap 

with the distribution of GABAergic neurons (G, K). Note that the AVPe contains 

overlapping CB1, GAD65 and VGLUT2 signals (F-H). The highest regional 

expression of CB1 mRNA in the rostral hypothalamus can be observed in glutamate-

dominated nuclei, including the LA, SO, Pa, and VMH (N-T). GABAergic 

hypothalamic sites, including the AHA and AHP, express lower levels of the CB1 

hybridization signal (N-T). Note the well-patterned and complementary distributions 

of GABAergic and glutamatergic neurons. For a list of abbreviations and the results 

of the detailed regional analysis, see Tables 1 and 2, respectively. Scale bar=200µm. 
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Figure 2. Comparative distribution of CB1, GAD65 and VGLUT2 hybridization 

signals in the caudal hypothalamus of the mouse. 

Autoradiographic images of neighboring sections from the caudal hypothalamus 

illustrate the distributions of CB1 (B, F, J, N, R), GAD65 (C, G, K, O, S) and 

VGLUT2 (D, H, L, P, T) mRNAs. Similarly to the rostral hypothalamus, CB1 

expression tends to be more abundant in glutamatergic vs. GABAergic regions, 

including the VMH (B), PMV (F, J), PMD (J), SuM (N, R) and LM (N, R) nuclei. 

CB1 mRNA expression can be observed in the DM (B) where both GABAergic (C) 

and glutamatergic (D) neurons occur. Several sites with GABAergic dominance, 

including the Arc (B, F, J), exhibit lower levels of CB1 expression, with somewhat 

more labeled neurons caudally (F, J). For a list of abbreviations and the results of the 

detailed regional analysis, see Tables 1 and 2, respectively. Scale bar=200µm. 
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Fig. 3. Representative autoradiographic images of septal-hypothalamic neurons 

with different single-cell levels of CB1 mRNA. In situ hybridization experiments 

reveal the most intense CB1 labeling (++++) in subsets of interneurons in the 

neocortex (Ctx; A), amygdala (B) and hippocampal formation (C). CB1 is also 

expressed very heavily (++++) in the majority of neurons in the lateral caudate 

putamen (CPu; D). Such heavy expression is never observed in septal-hypothalamic 

neurons; if labeled, these neurons exhibit CB1 signal levels that range from low (+) to 

high (+++). High signal (+++) is present in a subset of neurons in the diagonal band 

of Broca (E) and the medial septum (F). Moderate signal levels (++) are typical for 

neurons in several subdivisions of the preoptic region, including the medial preoptic 

area (MPA; G) and the medial preoptic nucleus (MPO; H). These sites are dominated 

by GABAergic cells (see Fig. 1). Most neurons in the anteroventral periventricular 

nucleus (AVPe; I) express CB1 mRNA at low levels. Moderate signal levels 

characterize neurons in the hypothalamic ventromedial (VMH; J), lateral mammillary 

(LM, K), and paraventricular nuclei (Pa; L). These hypothalamic sites are dominated 

by glutamatergic cells (see Figs. 1 and 2). Low levels (+) of CB1 mRNA are 

expressed at many other sites. Accordingly, low levels are typical for neurons of the 

supraoptic (SO; M), posterior arcuate (Arc post; N) and periventricular (Pe; O) 

nuclei, among other sites. Arrows in all panels point to representative neurons used 

for scaling for the cellular intensity of labeling. In addition, note that the regional 

abundance of labeled neurons varies significantly. For scoring, see Table 2. 

Abbreviations: BMA, basomedial amygdaloid nucleus, anterior part; Ctx, 
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(retrosplenial granular) cortex; DG, dentate gyrus; HDB, nucleus of the horizontal 

limb of the diagonal band. Scale bar=50 µm. 
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Fig. 4. Representative dual-label in situ hybridization images of GABAergic 

neurons expressing CB1 mRNA from different coronal planes of the mouse 

septal-hypothalamic region. GAD65-expressing GABAergic neurons (purple 

alkaline phosphatase substrate) exhibit heavy (+++) hybridization signal (clusters of 

autoradiographic grains) in the HDB (A). Panels B-F illustrate the low to moderate 

intensity of CB1 labeling (+, ++) in large populations of GABAergic neurons in the 

AVPe (B), MPA (C), MPO (D), the AHC (E) and AHP (F). Note the small subset of 

GABAergic neurons in the suprachiasmatic nucleus (SCh; G) that express low levels 

of CB1 mRNA, whereas most cells are devoid of any CB1 labeling. GABAergic cells 

of the DM (H) and Arc (I) nuclei contain low levels of signal, if any. Arrows in all 

panels point to dual-labeled neurons. See Table 1, for a list of abbreviations. Scale 

bar=50µm. 
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Fig. 5. Representative dual-label in situ hybridization images of glutamatergic 

neurons expressing CB1 mRNA at different coronal planes of the mouse septal-

hypothalamic region. Glutamatergic neurons (purple perikarya) express moderate 

levels (++) of CB1 mRNA (clusters of silver grains) in the HDB (A). Compare to the 

heavier CB1 signal over GABAegic neurons in 3A. Moderate levels of CB1 signal 

can be observed over hypothalamic glutamatergic neurons of the LA (B), VMH (F), 

PMV (H) and LM (J) nuclei. Low to moderate levels of CB1 mRNA expression can 

be observed in glutamatergic cells of the AVPe (C) nucleus, the MPA (D), the Pa (E), 

posterior Arc (Arc post; G), PMD (I) and SuM (K) nuclei. Arrows point to dual-

labeled neurons. See Table 1, for a list of abbreviations. Scale bar=50 µm. 
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Table 1. List of abbreviations used in text and figures. 
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Table 2. Regional and single-cell abundances of radioisotopic in situ 

hybridization signals for CB1, GAD65 and VGLUT2 mRNAs in septal-preoptic-

hypothalamic regions of the mouse. 












