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Abstract

Background: Stage I lung adenocarcinoma is usually not treated with adjuvant chemotherapy; however, around
half of these patients do not survive 5 years. Therefore, a reliable prognostic biomarker for early stage patients
would be critical to identify those most likely to benefit from early additional treatments. Several studies have
searched for gene expression prognostic biomarkers for lung adenocarcinoma, but these have not yielded a widely
accepted prognosticator.

Results: We analyzed gene expression from seven published lung adenocarcinoma cohorts for which we included
only stage I and II patients who were not given adjuvant therapy. Seven genes consistently obtained statistical
significance in Cox regression for overall survival. The combined signature has a weighted mean hazard ratio of
3.2 in all cohorts and 3.0 (C.I. 1.3–7.4, p < 0.01) in an independent validation cohort and is strongly correlated with
previously published signatures of chromosomal instability and cell cycle progression.

Conclusions: The new prognostic signature, if validated prospectively, may enable better stratification and treatment
of early stage lung cancer patients.
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Background
Lung cancer has the third highest incidence rate and the
highest mortality rate of all cancer types. For non-small
cell lung cancer (NSCLC), the 5-year survival rate re-
mains below 15 % [1, 2]. Given the difficulties with
treatment of advanced NSCLC, the most promising
possibility of improving outcomes may be efficient
diagnosis and treatment of early stage cases. One of
the most important clinical decisions in these patients
is whether to give adjuvant chemotherapy in addition to
surgical resection. At present postoperative chemotherapy
is not recommended for patients with completely resected
stage IA NSCLC with 1A level of evidence, and can be
considered in stage IB disease and a primary tumor >4 cm
with 2B level of evidence [2]. Nonetheless, only up to 73 %
of stage IA and 58 % of stage IB patients survive 5 years
[1]. Therefore, identification of patients who are likely to

benefit from adjuvant treatment – even with NSCLC of
stage I – would be of strong diagnostic and prognostic
relevance.
A similar problem has been extensively studied and to

a significant extent answered in node negative estrogen
receptor positive breast cancer. A gene expression signa-
ture was obtained that identifies patients with high risk
of recurrence who benefit from additional chemotherapy
[3]. Identification of such a gene expression signature
often initiates with the quantification of a large number
of genes on a patient cohort where outcome is known
and then the most informative genes are selected and
further validated.
Similar strategies have been applied to lung adenocarcin-

oma as well. Several cohorts containing early to mid stage
lung cancer patients have been subjected to transcriptomic
analysis, mainly by microarray [4–10]. However, no reliable,
consistent gene expression based prognosticator has
emerged from these efforts. One possible reason for
this failure could be that some of these studies followed
a suboptimal strategy in one or more possible ways: 1)
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searching for a general NSCLC prognosticator, as opposed
to lung adenocarcinoma (LUAD)- or lung squamous
carcinoma (LUSC)-specific signatures [4, 5], 2) doing the
analysis in a treated/untreated mixed population [4, 6, 9],
3) ignoring the possibility of technical bias in the micro-
array data [11, 12]. On the other hand, a PCR-based gene
expression signature of cell cycle progression (CCP),
which was not derived from lung cancer patients, was
found to be prognostic in three early stage LUAD cohorts
and validated in a PCR-based study [13, 14].
The increasing availability of lung cancer datasets

makes it possible to look for a robust signature compris-
ing of genes that would not otherwise be found if the
study had been conducted on only a single dataset.
Therefore, we set out to perform a meta-analysis of sev-
eral lung cancer microarray datasets to see if we could
identify a gene expression signature that is prognostic in
early stage lung adenocarcinoma patients who were not
given chemotherapy.

Methods
Microarray data were downloaded from the GEO database
(GSE8894, GSE14814, GSE30219, GSE31210, GSE37745,
GSE50081), except Shedden et al., which was downloaded
from caarraydb.nci.nih.gov (Table 1). All calculations were
performed using the R programming language. Each gene
expression dataset was normalized with the RMA algo-
rithm except GSE9984, for which we were unable to ob-
tain the original raw data, and therefore we used the
version downloaded directly from GEO which had been
normalized with the GCRMA algorithm [4]. Each dataset,
except GSE9984, was also corrected for two sources of po-
tential bias: the RNA degradation captured as the average
decrease in expression between 5’ probes and 3’ probes
(degradation bias metric) and the diversity of starting
mRNA (RMA IQR bias metric) that remained after RMA
normalization. This step was performed using “bias” pack-
age version 0.0.5 [11]. Weighted average of hazard ratios
was calculated as a mean weighted by size of each dataset.

Gene expression and clinical covariates from the valid-
ation cohort were downloaded from the TCGA Data
Portal using Data Matrix (https://tcga-data.nci.nih.gov/
tcga/dataAccessMatrix.htm), selecting all available tu-
mors on 15th Jan 2016, disease: LUAD and data type:
RNASeqV2. Expression values were extracted from files
containing RSEM gene-normalized results and we nor-
malized them across samples using the average gene
expression of each tumor [15, 16].

Results
We performed a literature and database search and iden-
tified seven publicly available gene expression data sets
with overall or recurrence-free survival data and with at
least 30 patients meeting the following criteria: 1) pro-
filed on the Affymetrix HG-U133A or HG-U133 Plus
2.0 platform; 2) adenocarcinoma subtype by histological
report; 3) pathological stage I or II; and 4) not given
neoadjuvant, adjuvant, or targeted therapy (Table 1). Each
data set (except Lee et al. [4]) was normalized individually
and adjusted to reduce technical bias [11].
To identify genes whose expression level is prognostic,

we applied the following procedure to each of the 22,277
common probe sets. We split each cohort into two
groups according to the expression value of the probe
set, and applied Cox proportional hazards regression
and a log-rank test of statistical significance on these
two groups. If the hazard ratio had the same directional-
ity in all cohorts, and the P value was below 0.05 in any
six of the seven cohorts, the probe set was considered
prognostic. We expect this procedure to yield an indi-
vidual type I error rate of 1.0 × 10−7, and with Bonferroni
correction for 22,277 probe sets, a family-wise error rate
of 0.00036. This procedure resulted in seven probe sets,
each representing a unique gene (Table 2).
The expression values of the seven probe sets were

strongly positively correlated, so we defined a prognostic
score of an individual tumor as the mean log2 expression
value of the seven probe sets (termed “ESLA-7”, for early
stage lung adenocarcinoma). We found that the ESLA-7
score, when used to stratify each cohort into two groups
of equal size, is prognostic in six of the seven individual
cohorts (Table 2 and Fig. 1). Notably, the ESLA-7 score
was more prognostic than any of the individual probe sets.
Overall, the weighted average hazard ratio of ESLA-7 was
3.2, or 3.6 if the Botling cohort was omitted (Fig. 1).
We next performed a multivariate analysis, adjusting

for stage, age and stratifying for gender. No other clin-
ical data types were available in all cohorts. In this ana-
lysis, ESLA-7 showed a HR ranging between 1.1–4.9 in
the individual cohorts, with a weighted mean of 2.7 and
statistical significance in all cohorts except Botling et al.
2008 (Table 3).

Table 1 Number of patients in the cohorts included in this
study

Includeda

Cohort Available Stage I Stage II Total

Lee et al. 2008 [4] 138 39 12 51

Zhu et al. 2010 [5] 133 20 12 32

Shedden et al. 2008 [6] 505 164 43 207

Rousseaux et al. 2013 [7] 307 81 3 84

Okayama et al. 2012 [8] 246 162 42 204

Botling et al. 2013 [9] 196 31 4 35

Der et al. 2014 [10] 181 92 35 127
apassed inclusion criteria: adenocarcinoma, no chemotherapy
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To assess the performance of ESLA-7 in an independ-
ent cohort that was not used to derive the signature, we
analyzed RNA-seq gene expression data from the TCGA
LUAD cohort. To reduce the effects of varying chemo-
therapy regimes in the TCGA cohort, we analyzed
recurrence-free survival (RFS) in stage I and II patients
from this cohort. The majority of early stage LUAD pa-
tients do not receive chemotherapy until recurrence;
therefore this analysis could be considered as a more ac-
curate assessment of true prognostic performance. Here,
ESLA-7 was statistically significant (HR = 1.8, C.I. 1.3–2.6,
p < 0.001, Additional file 1: Figure S1A). Subsequently, we
used available treatment information to censor the sur-
vival times at the time of initiation of chemotherapy, thus
creating a subcohort of patients who did not receive
chemotherapy during the followup period. RFS analysis of

stage I and II, untreated patients (N = 95) showed HR=
3.0 (C.I. 1.3–7.4, p < 0.01, Figure 1 and Additional file 1:
Figure S1B).
Since most of the seven genes were annotated with

functions related to chromosomal instability (CIN), we
asked whether we could achieve similar prognostic
performance with our previously described CIN25
chromosomal instability signature or with the previ-
ously published cell cycle progression (CCP) signature
[13, 14, 17]. We applied the CIN25 and the CCP signa-
tures in the same way as the ESLA-7 signature and
found that ESLA-7 on average performed better than
both CIN25 and CCP (weighted mean hazard ratio of
3.2, 2.9 and 2.8 respectively, Fig. 2). CIN25 and CCP
scores also showed trends similar to ESLA-7 when
using TCGA LUAD RNAseq data (Additional file 1:

Table 2 Hazard ratios for the individual ESLA-7 genes in each cohort

Gene ADAM10 DLGAP5 RAD51AP1 FGFR10P NCGAP KIF15 ASPM

Probe set 202604_x_at 203764_at 204146_at 205588_s_at 218663_at 219306_at 219918_s_at

Cohort HR p HR p HR p HR p HR p HR p HR p

Lee et al. 2008 [4] 3.0 ** 2.3 * 4 *** 2.9 ** 2.3 * 2.5 * 2.5 *

Zhu et al. 2010 [5] 0.7 3.1 * 3.7 * 3.2 * 4.7 ** 3.9 * 4.1 **

Shedden et al. 2008 [6] 1.7 * 1.7 * 1.7 * 1.6 * 1.8 * 1.6 * 1.7 *

Rousseaux et al. 2013 [7] 2.6 ** 2.4 ** 2.7 ** 1.9 * 2.3 ** 2.3 ** 1.9 *

Okayama et al. 2012 [8] 4.3 *** 2.9 ** 2.9 ** 3.4 ** 2.4 * 2.8 * 4.2 ***

Botling et al. 2013 [9] 2.5 * 1.7 1.0 1.3 1.3 1.7 1.1

Der et al. 2014 [10] 2.2 ** 2.5 ** 2 * 2.1 ** 2.5 ** 2.4 ** 2 *

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

Fig. 1 Kaplan-Meier overall or recurrence-free survival estimates for seven early stage lung adenocarcinoma cohorts and the TCGA LUAD validation
cohort [4–10, 16]. Each cohort was split according to ESLA-7 score (red: > median, black: ≤ median)
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Figure S1C-F). Additionally, the correlation between
ESLA-7 and CIN25 within each cohort was very high,
ranging from 0.88 to 0.98, suggesting that ESLA-7 to a
large extent quantifies CIN. Similarly correlation be-
tween ESLA-7 and CCP ranged from 0.89 to 0.99.
To assess the performance of ESLA-7 without arbitrary

stratifying the cohorts into two equally sized groups, we
performed Cox regression using ESLA-7 as a continuous
variable. Association with overall survival (or recurrence-
free survival in the Lee et al. 2008 cohort) was statistically
significant in all cohorts except Botling et al. 2013
(weighted mean 2.1, Table 4). Additionally, we explored
whether the ESLA-7 score might provide further prognos-
tic stratification into more than two groups, using the
ESLA-7 score to stratify each cohort into four groups of
equal size. For cohorts with sufficient number of patients
in each stratum a clear trend was apparent (Fig. 3). Pa-
tients in the first quartile had better survival than patients
in the other three quartiles, and, especially, patients in the
fourth quartile. No such trend was apparent in the Zhu et
al. 2010 [5] and Botling et al. 2013 [9] cohorts, possibly
due to the smaller numbers of patients in these two
cohorts.
Finally, we applied ESLA-7 to five lung squamous cell

carcinoma (LUSC) cohorts [4, 5, 7, 9]. Median split

according to ESLA-7 value did not yield statistical sig-
nificance in any of the LUSC cohorts (Additional file 2:
Table S1 and Additional file 3 ). We attempted to create
a separate signature for lung squamous cell carcinoma
(LUSC). However, similar methodology applied to LUSC
patients did not yield a robust expression signature (data
not shown).

Discussion
We used simple methodology to derive a robust prog-
nostic gene expression signature for early stage lung
adenocarcinoma. The signature was validated in an inde-
pendent cohort, however, with 95 patients in the regres-
sion, of which many left the study or were censored due
to the methodology within the first semester of the
follow-up, one should treat this result with caution. If
successfully validated in an independent clinical trial, the
ESLA-7 signature could potentially be used for guiding
clinical onocologist decisions on whether an individual
early stage lung adenocarcinoma patient, especially a pa-
tient with stage I disease, should receive chemotherapy
after surgical resection of the tumor. The seven genes
could be combined with an additional small panel of
reference genes, as has been done in similar prognostic
signatures for other cancer types [3, 14, 18].
High correlation among ESLA-7 and the two other

signatures suggests that to a large degree they may be
quantifying the same biological processes. CIN25 was
developed as a signature of chromosomal instability
from specific genes whose expression was consistently
correlated with aneuploidy in several types of tumors.
As with CIN25, net overexpression of ESLA-7 was pre-
dictive of poor clinical outcome. Both signatures contain
genes with function connected directly with kinetochore
assembly: KIF20A, KIF4A, TPX2, PRC1, and TTK in
CIN25; and KIF15, DLGAP5, and ASPM in ESLA-7.
Also, both contain genes that are part of condensin
complexes: NCAPG in ESLA-7; and NCAPD2 in CIN25.

Table 3 Performance of ESLA-7 in multivariate setting when
adjusted for age, stage and stratified for gender

Cohort HR CI p N events

Lee et al. 2008 [4] 2.9 1.2–7.1 * 51 24

Zhu et al. 2010 [5] 4.9 1.3–18.1 * 32 14

Shedden et al. 2008 [6] 2.0 1.2–3.5 * 207 64

Rousseaux et al. 2013 [7] 2.6 1.2–5.8 * 84 31

Okayama et al. 2012 [8] 3.1 1.2–7.9 * 204 27

Botling et al. 2013 [9] 1.1 0.3–3.9 35 14

Der et al. 2014 [10] 3.2 1.6–6.2 *** 127 44

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

Fig. 2 Forest plot indicating the performance of the ESLA-7, CIN25 [17] and CPP [13] signatures in the seven early stage lung adenocarcinoma
cohorts and in the TCGA LUAD validation cohort
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Both kinetochores and condensin complexes play central
roles in chromosome assembly and segregation. Overall,
both signatures point towards chromosomal instability
as an important factor in early stage patient outcome.
Only a single gene, RAD51-associated protein 1

(RAD51AP1), is present in both signatures. This gene
plays an important role in homologous recombination-
mediated chromosome damage repair by enhancing the
recombinase activity of RAD51.
The ESLA-7 signature includes genes ADAM10 and

FGFR10P, which have been reported to contribute to
oncogenesis of various cancer types including lung can-
cer, and whose function indicates that they may take part
in oncogenic transformation and/or increase cell prolif-
eration by interaction with major signaling cascades
(ERK1/2, p38 MAPK, and STAT, Notch1, RAS/MAPK,
PLC-γ, and PI3K/AKT). The slightly better performance
of ESLA-7 as compared to CCP might be due to additional

information carried by ADAM10 and/or FGFR10P, which
are slightly less correlated with the remainder of the ESLA-
7 genes (Additional file 4: Figure S2).
Interestingly, forkhead box MI (FOXM1), which takes

part in the regulation of spindle assembly genes, nearly
passed our criteria. This gene is also one of the top
CIN25 and CCP genes and, more recently, was identified
as predictor of adverse outcomes in various malignancies
in a cross-platform, cross-cancer study [19].
While we found a monotonic correlation between the

CIN signature and prognosis in LUAD, we previously
found a non-monotonic relationship between CIN and
prognosis in LUSC, in which very low and very high
levels of CIN result in increased survival compared to
the rest of the cohort [20].

Conclusions
If CIN is indeed highly prognostic in early stage lung
cancer, as our results indicate, then this would suggest
that LUAD and LUSC cohorts should be analyzed separ-
ately. The new prognostic signature, if further validated
prospectively, will enable better stratification and reduce
overtreatment of early stage lung cancer patients.

Statement on ethics approval
In this study we used publicly available data collected
with patients consent approved by relevant institutional
review board following declaration of Helsinki.
Data was approved by following institutional boards:

Institutional review board of Samsung Medical Center,
and written informed consent was obtained (IRB 2005-

Table 4 Hazard ratios of cox regression using ESLA-7 as
continuous variable

Cohort HR CI p N events

Lee et al. 2008 [4] 1.8 1.3–2.6 *** 51 24

Zhu et al. 2010 [5] 3.8 1.1–12.1 * 32 14

Shedden et al. 2008 [6] 2.4 1.6–3.5 *** 207 64

Rousseaux et al. 2013 [7] 2.2 1.5–3.3 *** 84 31

Okayama et al. 2012 [8] 1.9 1.3–2.8 *** 204 27

Botling et al. 2013 [9] 1.2 0.7–2.2 35 14

Der et al. 2014 [10] 1.6 1.1–2.2 * 127 44

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

Fig. 3 Kaplan-Meier survival estimates for the seven early stage lung adenocarcinoma cohorts, split according to ESLA-7 score quartiles
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12-034), The University Health Network Research Ethics
Board, Institutional Review Board of each of the four in-
stitutions’ (University of Michigan Cancer Center (UM),
Moffitt Cancer Center (HLM), Memorial Sloan-Kettering
Cancer Center (MSK) and the Dana-Farber Cancer In-
stitute (CAN/DF)), Institutional Review Board of the
National Cancer Center, Tokyo, Japan, Uppsala regional
ethical review board, reference #2006/ 325 and Linkoeping
regional ethical review board, reference #2010/44-31,
Research Ethics Board of University Health Network
(UHN181), for TCGA data used in this study declaration
on ethics is as follows: All specimens were obtained from
patients with appropriate consent from the relevant insti-
tutional review board.
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