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ABSTRACT
Almost 2 decades have passed since the discovery that pregnancy is associated with a basal
inflammatory state involving neutrophil activation, and that this is more overt in cases with
preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report,
made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs)
in a non-infectious human pathology, namely preeclampsia, where an abundance of these
structures were detected directly in the placental intervillous space.

Despite these remarkable findings, there remains a paucity of interest among reproductive
biologists in further exploring the role or involvement of neutrophils in pregnancy and related
pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings
including the discovery of a novel neutrophil subset in the decidua, the interaction of placental
protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of
animal model systems to elucidate neutrophil function in implantation, gestation and parturition.
These model systems have been particularly useful in identifying key components implicated in
recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the
recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that
these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss.

KEYWORDS
animal model; neutrophil
extracellular traps (NETs);
parturition; preeclampsia;
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Introduction

Traditionally, polymorphonuclear neutrophils (PMNs)
are viewed as highly abundant, short-lived, terminally
differentiated granulocytic leucocytes, characterized by
the presence of a multi-lobed nucleus and distinct sets of
cytoplasmic granules.1,2 In this context, PMN are pro-
posed to play a significant role as gate keepers or first
line defenders in combatting infection, exploiting an
array of biological weapons, including production of
reactive oxygen species or hypochlorous acid (HOCl) by
the action of myeloperoxidase, and the degranulation of
lytic enzymes or peptides, such as neutrophil elastase or
cathelicidin (LL37).1,2 The presence of LL37 on NETs
can have a two-fold action. On the one hand this antibi-
otic peptide can assist with the elimination of pathogenic
bacteria.3 On the other hand, due its amphipathic nature,
LL37 can act as a transfecting agent, facilitating the entry
of extracellular DNA into adjacent cells, where it can

lead to the activation of the Toll-like receptor (TLR) sys-
tem and consequent production of inflammatory cyto-
kines such as interferon-a (IFN-a).4 Such a mechanism
has been proposed to occur in psoriasis.4 In addition, the
presence of LL37 on NETs has been implicated with the
underlying etiology of systemic lupus erythematosus.5 It
is unclear whether this mechanism is active in NETs
occurring in placental tissues.6

A crack in this rather archaic view of PMN occurred
when it was observed that PMN were able to generate
neutrophil extracellular traps (NETs) upon stimulation
or when encountering bacteria, fungi or even viruses.7

These lattice like structures with a chromatin backbone
function to ensnare microorganisms and kill them via
the presence of histones or toxic granular proteins.8

Since deregulated or aberrant neutrophil activation is
a hallmark of inflammation,2 resulting in tissue damage,
it comes as no big surprise that overt NETosis is
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associated with a number of inflammatory conditions
including preeclampsia,9 systemic lupus erythematosus10

or rheumatoid arthritis.11 Furthermore, tissue damage,
possibly involving NETs induced apoptosis, is implicated
in small vessel vasculitis, cystic fibrosis and transfusion
related acute lung injury (TRALI).12,13

Further paradigm shifts challenging the view of the
PMNs as suicidal mundane uniform foot soldiers, are
the observation of distinct subsets with discrete func-
tional differences,14 the ability of circulatory PMNs to
revert to a de-primed state of reduced activity,15 and sur-
prising longevity under certain conditions.16 In addition,
PMN have been determined to be quite adept at social
networking, interacting with numerous other cells,
including the ability to modulate the activity of adaptive
immune system cells.17,18

Neutrophil migration into the placenta – is it
really of any relevance?

Sadly, the role of PMNs in reproduction is still a largely
neglected topic, despite their possible involvement in
various stages, ranging from infertility, preeclampsia to
fetal loss.6 The fact that PMNs may be key players in the
development of several pregnancy related perturbations,
is underscored by the detection of vast numbers of NETs
in preeclamptic placentae,9 the deleterious action of
PMNs in mediating placental damage associated with
anti-phospholipid syndrome (APS)19 or following treat-
ment with the progesterone antagonist (RU-486).20 In
this review we aim to highlight new developments and
point to possible new roles of PMNs as immune-modula-
tors promoting efficient placentation.

Neutrophil migration into tissues includes the fol-
lowing steps: tethering, rolling, adhesion, crawling
and transmigration. It is initiated by the stimulation
of the endothelium by other activated leukocytes or
pattern recognition receptor (PRR)-mediated detec-
tion of pathogens. The activated endothelium
expresses high levels of intracellular adhesion mole-
cule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1) as well as P- and E-selectins on its sur-
face.21,22 Neutrophil recruitment is mainly mediated
through the linkage of P selectin glycoprotein ligand
1 (PSGL1), ESL1, CD44 and L-selectin.23,24 The inter-
action of selectins with their glycosylated ligands
mediate rolling and the expression of L-selectin is
especially indicative of rolling neutrophils.25 Neutro-
phil adhesion can be facilitated through activation by
pro-inflammatory cytokines, chemoattractants or
growth factors. Moreover, the stabilization of neutro-
phils to the endothelium is mediated by the interac-
tion of chemokines with the endothelial cell heparan

sulfates. Neutrophils express high levels of the integ-
rins CD11a-CD18 (LFA1 / lymphocyte function asso-
ciated antigen 1) and CD11b-CD18 (MAC1 /
lacrophage-1 antigen), which bind to endothelial cell
surface molecules such as ntracellular adhesion mole-
cules 1 and 2 (ICAM1 and ICAM2).26,27 The expres-
sion of CD11b-CD18 is important for the crawling of
neutrophils.28 Neutrophil transmigration requires
integrins and cellular adhesion molecules (CAMS)
such as ICAM1, ICAM2 and VCAM1, as well as
platelet endothelial cell adhesion molecule 1
(PECAM1, also termed CD31), CD99, junctional
adhesion molecules (JAMs), epithelial cell adhesion
molecule (ECAM) and other endothelial cell mole-
cules.29 Transmigration occurs between (paracellu-
larly) or through (trancellularly) endothelial cells and
in order to pass across the membranes, neutrophils
release specific proteases such as matrix metalloproei-
nases (MMPs) and serine proteases (Fig. 1). These
enzymes are able to affect neutrophil migration by
the degradation of elastin and collagen, thereby
increasing the vascular permeability.30,31 Interestingly
these proteins are under hormonal regulation during
pregnancy.32 On the other hand, neutrophils are able
to recruit other neutrophils through the expression of
interleukin-17 (IL-17), which induces the release of
chemokines and cytokines such as interleukin-6 (IL-
6) and macrophage inflammatory protein – 2 (MIP-
2) by other cells that recruit neutrophils.33

Identification of a novel decidual neutrophil
population

Traditionally most studies examining the presence and
action of immune cells in the placenta have addressed
innate immune effector cells such as uterine or decid-
ual NK cells (dNK), macrophages, dendritic cells or
more recently regulatory T cells (Treg).34-38 In the
context of this review, it is gratifying to observe a shift
in these tendencies, with more attention being focused
on PMN.

In a recent study, Amsalem and colleagues examined
leucocytes from 1st and 2nd trimester decidual tissues
and matching blood samples.39 Their data indicated a
significant increase in CD45C and CD15C neutrophils
migrating into the decidua during the period from 6 to
20 weeks of gestation. High levels of CD66b expression
further characterized these PMN. CD66b, also termed
carcinoembryonic antigen-related cell adhesion molecule
8 (CEACAM8), is specifically expressed on neutrophils
and eosinophils. It plays an important role in adhesion
and activation. Treatment of PMNs with their natural
ligand, galectin-3, triggers increased phagocytosis and
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degranulation. Its effect on migration or induction of
NETosis is currently unknown.

Immunostaining for neutrophil elastase (NE) and
CD66b revealed that PMNs were indeed physically pres-
ent in 2nd trimester decidua, specifically the decidua
basalis, and that clusters of these cells were frequently
located close to spiral arteries. Furthermore, infiltrating
PMN could be detected migrating from the venous endo-
thelium into the decidua.

Further characterization of these cells revealed that
they expressed reduced levels of the IL-8 (also termed
CXCL8 (chemokine (C-X-C motif) ligand 8) receptors
CD181 and CD182, and higher levels for chemokine
receptors where the ligands were present in the decidua.
Decidual migration was mediated via IL-8 (CXCL8), as
anti-IL-8 antibodies could antagonize the effect of decid-
ual culture medium on PMN migration in vitro.

It was furthermore determined that these decidual neu-
trophils (dN) were pro-angiogenic, expressing increased
levels of VEGF-A, arginase-1 (ARG1) and CCL¡2, and
that in co-culture experiments they promoted angiogenic
sprouting by uterine microvascular endothelial cells
(UtMEC). Once again, IL-8 appeared to play a crucial
role in promoting this novel chemotactic phenotype.39

The precise mechanism leading to the generation of
these decidual neutrophils is currently unclear, other
than it involves the migration of normal circulatory poly-
morphonuclear granulocytes into this placental tissue via
the action of chemokines such as IL-8 (CXCL8). It is
possible that other placentally-derived factors may

contribute to this phenomenon, including syncytiotro-
phoblast microparticles, as these have been shown to
activate PMN and induce NETosis.9

PP13, immune diversion and spiral artery
modification

A feature of early onset preeclampsia (ePE), defined by
the manifestation of symptoms prior to 34 weeks of ges-
tation, is failure of adequate modification of the maternal
spiral arteries by fetal invasive extravillous trophoblast
cells.40 In the procedure the maternal endothelium is
replaced by trophoblast cells, which adopt an endothe-
lial-like phenotype, resulting in much wider blood vessels
and a concomitant slow even flow of maternal blood to
the underlying fetal tissues.34,41 In cases with ePE or
intra-uterine growth restriction (IUGR), such failure
results in highly pulsatile high pressure blood flow, lead-
ing to inadequate oxygenation or delivery of nutrients to
the fetal tissues, thereby contributing to the underlying
pathology of these disorders.

In the context of neutrophil migration into the
decidua, an intriguing observation was made with regard
to PP13 (placental protein 13; galectin-13) expression,
which is reduced in cases with ePE, early in gestation
before the onset of symptoms.42 PP13 is a small glycan-
binding protein uniquely produced by the placenta
which may be a key regulator of maternal immune
responses.40,43-45 It is mainly produced by the syncytio-
trophoblast on the maternal-fetal interface throughout

Figure 1. Sequential steps of neutrophil recruitment from the vasculature to the tissue. Two possible mechanisms of transmigration are
described: (a) paracellular - between endothelial cells; and (b) transcellular - through endothelial cells. Major groups of adhesion mole-
cules are marked. Rolling depends mostly on selectins, whereas adhesion, crawling and transmigration depend on integrin interactions.
Chemokines lining the lumen of the vascular endothelium activate rolling neutrophils, thus inducing conformational changes of the
integrins on the surface of the neutrophils and facilitating the subsequent events. Crawling neutrophils follow the chemokine gradient
along the endothelium, which leads them to the preferential sites of transmigration. Figure adapted from Kolaczkowska and Kubes.26
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pregnancy from where it is secreted into the maternal
circulation.43,44 There, it may be downregulating mater-
nal immune responses against fetal tissues due to its
capability of inducing the apoptosis of activated T cells.44

Interestingly, the gene encoding PP13 (LGALS13) has
emerged in anthropoid primates as member of a pri-
mate-specific galectin-gene cluster on Chromosome
19.44,46 These data collectively suggested that PP13 may
have a unique role during placentation and the immuno-
regulation of pregnancy in anthropoid primates, and
may provide be part of a novel pathway of maternal-fetal
immune tolerance evolved in these species to promote
deep hemochorial placentation during their long
gestation.44,46,47

Interestingly, a recent immune-histological examina-
tion indicated that PP13 was chiefly produced by the
syncytiotrophoblast (STB) of chorionic villi in the first
trimester, but also with sporadic occurrence in tropho-
blast cells of modified decidual spiral arteries.48 Interest-
ingly, extracellular PP13 was detected in the decidua in
so-called zones of necrosis (ZONEs). These ZONEs were
associated with regions of necrotic or apoptotic cell
death. Furthermore, these ZONEs are associated with
the influx of numerous immune cells, including
CD45RO memory T cells, CD68C macrophages,
CD57C large granular lymphocytes and PMN. The pres-
ence of the latter could be indicative of an inflammatory
response.

A key event in the formation of these ZONEs, was the
deposition of PP13, which occurred prior to leukocyte
influx, particularly that of PMNs.48 It is of considerable
interest that these ZONEs were located in tissues sur-
rounding converted maternal spiral arteries, and also
occurred in close proximity to decidual veins. This mate-
rial was not associated with trophoblasts, but rather
appeared in the form of dense aggregates.

The number of these ZONEs was found to increase
during gestation, peaking at 7 to 8 weeks of gestation. It
was also determined that their number or intensity cor-
related with the degree of spiral artery modification,
being virtually absent in cases with low levels of circula-
tory PP13. This is particularly interesting as low mater-
nal serum concentrations of PP13 has been associated
with an increased risk for the development of PE, espe-
cially the early-onset form.40,42,49

Due to the regulated appearance of these ZONEs and
their close association with the degree of spiral artery
modification, it has been proposed that they act as decoy
sites of inflammation, drawing maternal immune effector
cells away from the sites being altered by invasive tro-
phoblast action.

The action of PP13 in this system is quite complex,
relying on a multimeric secreted form, which is

transported via the decidual veins into the tissues sur-
rounding the arteries requiring modification, where they
form pro-inflammatory aggregates.48 These PP13 aggre-
gates have been shown to be pro-inflammatory in vitro,
triggering the release of interleukin – 1beta (IL-1b) and
IL-6 from buffy coat lymphocytes.

The concept of decidual diversionary sites of inflam-
mation to facilitate spiral artery modification is intrigu-
ing in the view of recent findings, which indicate that
aberrant systemic inflammation hinders or abrogates
this process in rat model systems.50

Knowledge about neutrophil migration from
animal systems – new lessons from the rat

Although scholars of human reproduction have long
neglected animal models, particularly murine or rodent-
based systems, due to the intrinsic differences in placen-
tation, a number of recent studies have highlighted the
need to peer across this ideological fence.51-53 On the
one hand, this is due to both human and rodent placen-
tation being hemochorial systems, whereby the maternal
blood is in direct contact with fetal tissues.54 On the
other hand, due to the ease whereby these systems can
be manipulated using gene knock-out technologies.52,53

The use of a murine system was very useful in delin-
eating the mechanism evoked by anti-phospholipid anti-
bodies (aPL) in triggering fetal demise in anti-
phopholipid syndrome (APS) patients.19,55-58 In a key set
of studies using discrete knockout mutants of members
of the complement family, Girardi and Salmon showed
that PMN infiltration into the decidua was very promi-
nent in APL treated mice.59,60 This effect could be antag-
onized using inhibitors or knock-out mutants for
complement components C3, C5a or the coagulation
promoting tissue factor (TF).19,55-57 Interestingly, the
deleterious effect of aPL could also be abolished by anti-
body mediated neutrophil depletion. The underlying cas-
cade was determined to be activation of complement C5a
by aPL antibody binding to the trophoblast. The binding
of C5a to the C5a receptor (C5aR) triggered neutrophil
activation via the TF/PAR2 (protease activated receptor
2) system, leading to the generation of toxic ROS mole-
cules, thereby inducing placental damage and subsequent
fetal demise.19

aPL have been implicated in arterial and venous
thrombosis frequently observed in patients with APS.61

A recent report showed that aPL from patients with APS
can stimulate neutrophils to produce neutrophil extracel-
lular traps (NETs), a possible mechanism for thrombi
formation. Yalavarthi and colleagues62 compared serum,
plasma and isolated neutrophils from patients with pri-
mary APS and healthy volunteers. APS patients showed
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higher levels of NETs, while neutrophils from patients
showed higher spontaneous release of NETs in vitro.
Moreover, b-2-glycoprotein 1 (b2GP1) is also bound to
the cell surface of neutrophils, and b2GP1-specific anti-
bodies stimulate NET formation; this effect was shown
to be dependent on ROS production and on TLR4 acti-
vation. Furthermore, in vitro stimulation of neutrophils
with purified aPL or with serum from patients with APS
potentiated NET formation and thrombin production.

Although NETs were first identified as a defense
mechanism against microbial pathogens,7 it is now

widely accepted that they can activate platelets and the
coagulation cascade, serving as a scaffold for the assem-
bly of thrombi. This data suggests that NETs present in
the circulation can contribute to thrombotic events lead-
ing to excessive placental damage and consequent fetal
loss (Fig. 3).

By examining the CBA/J x DBA/2 mouse model for
spontaneous fetal loss, it was once again determined that
C5a and TF played key roles, but this instance led to the
production of the anti-angiogenic factor sFlt-1 (soluble
fms-like tyrosine kinase – 1) by macrophages, which

Figure 2. Immune diversion model, spiral artery modification and PP13 Upper panel: The hemochorial human placenta is nourished by
maternal blood that is injected into the intervillus space via the uterine spiral arterioles (red decidual vessels). Products of syncytiotro-
phoblast secretion are released into the intervillus space and, along with blood, are returned to the maternal circulation through the
decidual basalis veins (blue decidual vessels). Middle panel: Decidual veins are filled with placental protein 13 (PP13) while PP13 and
associated neutrophils transudate to the region. Lower panel: PP13 shows intense deposition consistent with early and active ZONE for-
mation, and other areas of end-stage ZONEs. Neutrophils follow an inverse pattern with the least intense staining in the early ZONEs
and the most intense in the endstage ZONEs. Combining this data suggests that syncytiotrophoblast-secreted PP13 exits the intervillus
space via the decidual basalis veins (blue) where it binds to the endothelial cells, traverses the veins to be deposited into the surround-
ing decidua, precipitates, and induces a ZONE consisting of activated T cells, macrophages, and neutrophils. At the same time, invasive
trophoblasts migrate to and invade the maternal spiral arterioles (red) without interference from potentially cytotoxic elements of
maternal immune surveillance. Figure adapted from Kliman et al.48
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adversely affected placental development.51 Of interest is
that this model also shows many traits associated with
preeclampsia, such as albuminuria and endotheliosis,
and could be pharmacologically treated with
pravastatin.51,63

In a very recent study of the rat utero-placental unit
investigating the localization of discrete innate immune
effector cell populations, it was determined that uterine
NK (uNK) cells were present, as expected, in the perivas-
cular region of the mesometrial triangle adjacent to the
uterine artery.64 Of interest is that uNK cells co-localized
with areas of TNFa and INFg expression, indicative of a
potential role in modulating trophoblast invasion. Previ-
ous studies have indicated that uNK cells play a crucial
role in regulating the extent of trophoblast invasion and
modification of spiral arteries, with TNFa limiting the
extent of trophoblast migration.35 PMNs, on the other
hand, were located directly at the fetal-maternal inter-
face, or directly in the spiral artery lumen in the meso-
metrial triangle.64 In this instance, PMNs were found to
be associated with regions of IL-10 expression, which

would be indicative of an immune dampening condition.
IL-10 could, however, also play a role in regulating tro-
phoblast behavior, as previous studies have indicated
that IL-10 could antagonize the action of TNFa, and
facilitate trophoblast invasion.64

Although not yet elucidated in detail, this study does
suggest that the location of PMNs in the utero-placental
unit may play a subtler role than merely combatting
infection, but may be crucial to ensure successful placen-
tation by modulating trophoblast invasion and
differentiation.64

Defective spiral artery modification,
hypertension and poor pregnancy
outcome – do PMNs play a role?

Defective placentation in combination with hypertension
and poor pregnancy outcome is a hallmark of pre-
eclampsia.34,65 To examine this association in more
detail, researchers have made use of the inbred BPH/5
murine model system for preeclampsia.66 In this mouse,

Figure 3. Mechanism of antiphospholipid (aPL) antibody–induced fetal damage. aPL antibodies are directed to the placenta where they
activate the classical pathway of the complement cascade which leads to the expression of potent anaphylatoxins, C5a in particular. C5a
is a neutrophil, monocyte and platelet activator, which furthermore stimulates the release of inflammatory mediators, including reactive
oxygen species (ROS), proteolytic enzymes, histones, cytokines and chemokines, as well as additional complement and coagulation fac-
tors. Tissue factor (TF) expression on monocytes enhances the release of antiangiogenic molecule sFlt-1. sFlt-1 impairs trophoblast prolif-
eration, reduces placental blood flow, induces oxidative stress, and increases TF expression on trophoblasts. This creates a
proinflammatory amplification loop at sites of leukocyte infiltration that generates additional C5a. This results in enforced neutrophil
influx, inflammation within the placenta, and ultimately, fetal injury. Either fetal growth restriction or even death in utero ensues
depending on the extent of the damage. PMN: neutrophil, Mf: monocyte/macrophage. Figure adapted from Girardi et al.51 and
Redecha et al.49
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pregnancy is characterized by the development of hyper-
tension, proteinuria and endothelial dysfunction late in
gestation. The pups are frequently growth restricted, and
litter sizes may be reduced in comparison to wild type
mice.

Previous investigations have indicated that placental
sizes were reduced in pregnant BPH/5 mice, and that
this involved aberrant trophoblast invasion of the proxi-
mal decidual zone.67,68 Furthermore, the maternal decid-
ual arteries were not modified by trophoblast cells to the
same extent as in wild type mice, resulting in increased
vascular resistance, detectable by pulse wave Doppler
ultrasound analysis. Consequently, this BPH/5 murine
model system shares several features in common with
the human form of preeclampsia, in that placental dys-
function occurs in association with hypertension and
endotheliosis, leading to poor pregnancy outcome.66

In a recent more detailed examination of this murine
system, it was determined that PMN infiltration was at
least 2-fold greater in BPH/5 mice, than in control
C57BL/6J mice.66 This was particularly evident in the
ectoplacental cone at day E8.5 of gestation. An examina-
tion of placental homogenates indicated that the chemo-
kine CXCL1, also termed neutrophil activating protein 3
(NAP-3), was present in significantly higher concentra-
tions in BPH/5 than in C57 mice, indicating that this
chemoattractant may be responsible for increased PMN
infiltration. To discern whether excessive PMN infiltra-
tion contributed to defective placentation and poor preg-
nancy outcome in this model, they were depleted by
treatment with either anti-GR1 (myeloid differentiation
antigen Gr-1) or anti-Ly6G antibodies. These studies
showed that depletion of PMNs with either antibodies
lead to a reduction in fetal resorption, and an increase in
both fetal and placental mass. These changes were
reflected in altered placental development, including an
increase in placental disc size, and most notably a change
in maternal spiral artery modification, as these increas-
ingly became transformed by trophoblast cells, thereby
losing their smooth muscle actin phenotype.

Akin to the human form of preeclampsia, placental
deficiency in BPH/5 mice is associated with an imbalance
in angiogenic factors, most notably VEGF (vascular
endothelial growth factor). Intriguingly, it was observed
that plasma and placental VEGF concentrations were
significantly elevated in anti-GR1 neutrophil depleted
mice. Furthermore, it was observed that co-culture of
isolated PMN with the trophoblast cell line HTR8/
SVNeo lead to a significant reduction in VEGF
production.

Since the complement system has been implicated in
preeclampsia, and in mediating activation of PMN in
murine model systems of spontaneous or aPL antibody

induced fetal loss, this aspect was examined in BPH/5
mice. This data indicated that C3 complement deposi-
tion in the ectoplacental cone preceded PMN infiltration.
As expected, blocking of the complement cascade lead to
a decrease in fetal resorption and an increase in fetal and
placental mass. Under these conditions, decreased PMN
infiltration into the decidua was noted, which was
accompanied by increased spiral artery modification.66

The mode of action whereby PMNs contribute to the
pathology witnessed in pregnant BPH/5 mice was deter-
mined to involve the production of TNFa. The first indi-
cator for such an involvement was the presence of
increased concentrations of TNFa in BPH/5 placentae.
In co-culture experiments using the human trophoblast
cell line HTR8/SVNeo, it was observed that both murine
and human PMNs produce prodigious quantities of
TNFa under such conditions.66 By treating pregnant
BPH/5 mice with Etanercept (also known as Enbrel), a
TNFa inhibitor used in the therapy of auto-inflamma-
tory diseases such as rheumatoid arthritis, it was
observed that this lead to a vast improvement of the
underlying pathology.66 This included decrease in fetal
resorption, increase in fetal and placental mass, and
increase in spiral artery modification. It is also notewor-
thy that an increase in placental VEGF production was
noted following this therapeutic intervention.

As the pathology of this experimental system bears a
striking resemblance to that of preeclampsia in humans,
it begs to question whether it would be useful to treat at-
risk pregnancies with anti-inflammatory biologics such
as Etanercept.47

Sphingolipids – a key regulatory element of
innate immune cell activity at the feto-maternal
interface

Sphingolipids, also known as glycosylceramides, are
important components for a series of signaling mole-
cules, ranging from sphingosine which displays anti-apo-
ptotic activities, to ceramide which is pro-apoptotic.69

One of the bioactive sphingolipid metabolites is sphingo-
sine 1-phosphate (S1P), produced by the action of
2 distinct kinases, sphingosine kinase 1 and 2 (Sphk1
and Sphk2).

Previous studies on mice in which both the Sphk1 and
Sphk2 genes had been deleted, revealed that these
suffered embryonic lethality in utero, while mice in
only one of the kinase gene knockouts (Sphk1¡/¡ or
Sphk2¡/¡) were functionally normal.70,71 Of interest in
the discourse of this review was the phenotype of mice
with a heterozygous knock-out genotype (Sphk1¡/¡

Sphk2C/¡) suffered from reproductive failure. Analysis
of these mice indicated that the S1P pathway was highly
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active during pregnancy. This was particularly evident by
the death of decidual cells, reduced proliferation of stro-
mal cells and massive breakdown maternal blood vessels
in this tissue.

In a more recent detailed analysis of these mice, it was
observed that the levels of the CXCL1 and CXCL2 che-
mokines were significantly increased in the decidua of
such animals.70 This was reflected by a massive influx
and activation of PMNs in the decidua and uterus, cou-
pled to a decrease of dNK cells in these tissues. Since
uNK cells are prosed to play a key role in spiral artery
modification, their absence could explain this defect in
this murine system. As expected, depletion of neutro-
phils by application of Gr-1 antibodies lead to an amelio-
ration of symptoms, including reduced fetal resorption.

In an examination of 1st trimester human decidual
cells, it was observed that inhibition of the sphingosine
kinase system lead to an increased production of CXCL1
and CXCL8 (IL-8), indicating that anomalies of this sys-
tem could promote PMN infiltration via chemokine
production.70

Although there is no clear data concerning the
involvement of sphingolipids in pregnancy-related disor-
ders such as preeclampsia, it is worth noting that S1P
can have pronounced affects on vascular tone. In this
manner, an imbalance in S1P synthesis could contribute
to endothelial damage associated with preeclampsia. On

the other hand, increased levels of ceramide have been
noted in preeclampsia, which could affect trophoblast
survival and turn-over by promoting autophagy.

What can we learn from tumor-associated
neutrophils?

Solid tumors and the placenta have been suggested to
share a number of common features, including tissue
invasion, angiogenesis and immune modulation. For this
reason an examination of tumor infiltrating PMNs may
yield interesting clues as to PMNs in the placenta.

The tumor microenvironment plays an important role
in the development and progression of cancer. It is char-
acterized by a state of chronic inflammation enriched by
the infiltration of immune cells and stromal cells, which
promote tumorigenesis and metastasis.72 Tumor associ-
ated neutrophils (TANs), depending on the microenvi-
ronment, play dual roles in exerting pro-inflammatory
or anti-inflammatory functions.73 Like the pro-tumor
macrophages (M2), neutrophils exhibit a pro-tumor
neutrophil (N2) phenotype.74,75 These N2 TANs behave
pro-tumoral by the activation of TGFb released from the
tumor microenvironment. Blockade of the TGFb recep-
tor by small molecule inhibitors reversed the N2 neutro-
phil phenotype to anti-tumor (N1) neutrophils (Fig. 4).
PMNs have been shown to promote angiogenesis and

Figure 4. Tumor associated granulocytes. Chemokines expressed by tumor cells and tumor-associated macrophages (TAM) promote the
recruitment of circulating neutrophils into the tumors. Neutrophils promote genetic instability, possibly through generation of ROS and
stimulate angiogenesis through the production of matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor (VEGF).
Transforming growth factorb (TGFb) forces neutrophils to obtain a polarized, pro-tumoral N2 phenotype, which is characterized by high
levels of arginase production. On the other hand, inhibition of TGFb promotes neutrophil maturation toward an N1 phenotype. This is
associated with higher cytotoxic activity, higher capacity to generate H2O2, higher expression of tumor necrosis factor a (TNFa) and
lower expression of arginase and intercellular adhesion molecule 1 (ICAM1), CD8C T cell activation increases in the presence of N1 neu-
trophils, which leads to an effective antitumor effect. Figure adapted from Mantovani et al.14
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neovascularization by secreting matrix metaloproteases
(MMPs) and chemokines, which in turn activate the
release of VEGF.76 Neutrophil elastase, a major proteo-
lytic enzyme released from the azurophilic granules of
activated neutrophils has been shown to bind to the cell
surface of cancer cells and gets internalized in a clathrin
pit dependent endocytosis process, and mediates the pro-
liferation of cancer cells.77 In a mouse model of lung car-
cinoma, neutrophil elastase knockout significantly
reduced the tumor progression. Treating a lung cancer
cell line with neutrophil elastase has induced the prolifer-
ation of the cells by activating the PI3K/PDGFR (pho-
phoinositide 3-kinase/ platelet derived growth factor
receptor) pathway. Interestingly the activation of PI3K/
PDGFR in proliferation was due to the rapid hydrolysis
of IRS1 (insulin receptor substrate-1), a key adaptor mol-
ecule for the p85 subunit of PI3Kinase; hence the p85
subunit binds to PDGFR to induce proliferation. Mice
overexpressing neutrophil elastase also have reduced lev-
els of IRS1 in vivo, supporting cancer progression.73

NETs are also involved in the development of deep vein
thrombosis. Neutrophils along with platelets induce the
formation of thrombi in blood vessels activating the
endothelium.78 G-CSF secreted by tumor cells activates
neutrophils to generate NETs, allowing distant cancer
cells to metastasize.79

Contribution of placental microparticles and
exosomes

The placenta plays a key role in the modulation of the
immune system, in order to fine-tune the attraction, edu-
cation and response of the innate and adaptive immune
cells during each stage of pregnancy. It secretes a series
of both local and systemic soluble factors, which are
essential for the normal maternal hemostatic status. Fur-
thermore, the placenta produces a broad variety of extra-
cellular vesicles (EVs) that participate in the regulation
of the inflammatory profile during pregnancy.80,81 EVs
are released in large quantities from the syncytiotropho-
blast layer and include microparticles (0.2–1 um) and
exosomes (40–150 nm).

Syncytiotrophoblast-derived microparticles (STBMs)
are able to stimulate monocytes and B cells toward pro-
inflammatory cytokine production, triggering activation
of neutrophils to generate superoxide radicals (ROS) and
NETs.9,82-84

On the other hand, exosomes are involved in T-cell
apoptosis via the expression of Fas ligand. Moreover,
they have also been shown to carry the immune modify-
ing MHC class I chain related protein A and B, which
can down-regulate NKG2D on PBMCs that is associated
with reduced activity.85-88 The effects of placental

exosomes on PMNs still remain to be explored, but it is
recently reported that exosomes from human macro-
phages and dendritic cells produced chemotactic eicosa-
noids and induced granulocyte migration.89 Rab27a-
dependent secretion of exosomes permits a mobilization
of a subpopulation of neutrophils required for local
tumor growth.90 The human placenta can be viewed as a
tumor due to its rapid growth and can most likely utilize
similar molecular and cellular mechanisms for growth
and survival.

In general, STBMs may activate immune effector
mechanisms, while exosomes lead toward an anti-
inflammatory state. It is speculated that the physiological
range of the STBMs/exosomes ratio is disturbed in vari-
ous pregnancy complications and might reach >1 due to
the overproduction of STBMs.91 At present, multiple
studies have investigated the levels of STBMs in pre-
eclampsia. Although STBM abundance during pre-
eclampsia is still under debate, an important
discrimination between early-onset and late-onset dis-
ease seems to exist.92,93 It has become clear, however,
that in response to cellular stress, condition changes are
evident not only in the abundance of syncytiotropho-
blast-derived EVs, but in their molecular composition
too. STBMs derived from preeclamptic placentae exhibit
increased tissue factor activity and over 25 proteins with
significantly higher expression were identified compared
to healthy controls.94,95 In exosomes isolated from 2nd

and 3rd -trimester serum samples of patients with pre-
eclampsia, Syncytin-2 was found to be significantly
reduced.96

The role of EVs in regulating the maternal immune
profile remains to be elucidated but it is clear that
changes in this profile reduces the ability of the placenta
to properly coordinate the activity and the inflammatory
status of the involved immune cells.

Do placental/uterine pmns contribute to
parturition?

A considerable line of investigations on PMNs in the sys-
temic circulation and in uterine tissues revealed that
these immune cells have multifaceted roles during partu-
rition, either at term or preterm, both in humans and in
other mammals.

In systemic circulation of women in term and preterm
parturition, the number, activation state and migratory
capacity of PMNs are increased compared to non-labor-
ing women.97-100 As described both in humans and in
experimental animals, these activated PMNs are
attracted into uterine tissues during labor due to the local
increase in chemokine (e.g. IL-8) expression,97,100-110

where they release cytokines and MMPs to contribute to
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the orchestration of local inflammation and tissue
remodeling during labor and to uterine involution in the
post-partum period.111-115 Of interest, the timing of
PMN tissue-migration and the function of tissue-resi-
dent PMNs may vary according to the compartment in
the uterine cavity.100

PMNs infiltrate the human cervix only postpartum.
This was evidenced by a similar number of cervical
PMNs in women not in labor with unripened and rip-
ened cervices,116 and by the increased number of cervical
PMNs in women after spontaneous vaginal delivery at
term compared to non-laboring women.116 As a molecu-
lar basis for this phenomenon, microarray studies
revealed that inflammation-related genes do not emerge
as differentially regulated with the ripening,117 only with
the shortening of the cervix,118 and the overexpression of
genes involved in neutrophil chemotaxis (e.g., IL8) occur
only with cervical dilatation and labor at term.108 Human
data is supported by experimental evidence in mice
showing that the numbers of PMNs do not change sig-
nificantly during pregnancy, only in the post-partum
period following an increase in the cervical expression of
the neutrophil chemoattractant Cxcl1, and that these cer-
vical PMNs have increased myeloperoxidase activity.119

Therefore, in spite of earlier thoughts on PMNs partici-
pating in cervical ripening,106,111,112 recent evidence in
humans and rodents support that PMNs rather play an
important role in postpartum tissue repair116,119,120

PMNs infiltrate the human myometrium during term
labor, where they are attracted by the local increase in
chemokine expression. In fact, the potent neutrophil che-
moattractant IL-8 is the most highly upregulated chemo-
kine in the human myometrium in term labor as shown
by high dimensional studies.109,110 In accord with human
data, rodent models of term as well as sterile and infec-
tious preterm parturition have also revealed strong PMN
infiltration into the myometrium during labor, and pro-
vided evidence that it mainly happens in the post-par-
tum period, when PMNs may have an important role in
uterine involution.100,115 Of interest, a very recent in vitro
study has provided mechanistic insights into this
sequence by demonstrating that the mechanical stretch
of the myometrium near term induces the secretion of
chemokines (e.g. IL-8, CXCL1), which activate periph-
eral leukocytes including PMNs, and increase their adhe-
sion to myometrial vascular endothelial cells and
transendothelial migration into the myometrium.121

In the human chorioamniotic membranes, the num-
ber of PMNs rise modestly during term labor in the
absence of infection or inflammation.122,123 This is con-
sistent with the relatively low increase in the expression
of neutrophil chemoattractant molecules (e.g. IL-8) in
the chorioamniotic membranes and the choriodecidua

following term labor103,124 These findings in humans are
substantiated by the observations on the increased PMN
numbers in the decidua in term labor and postpartum in
mice.104 Of importance, PMNs are recruited in large
numbers into the chorioamniotic membranes upon
infection and inflammation (i.e., histological chorioam-
nionitis).125 Indeed, the abundance of PMNs in the
decidua significantly increases in women with preterm
labor associated with chorioamnionitis, while it is not
the case in term and preterm labor without inflammation
of the membranes.123 This is consistent with the strongly
elevated IL-8 concentrations in the amniotic fluid in
women with infectious preterm labor compared to those
with term labor126. After migrating into the decidua,
PMNs also assault the chorion and then the mesodermal
layer of the chorioamnion,127,128 and their activation and
apoptosis are in line with the sequence of inflammatory
responses in histological chorioamnionitis.129 In accord
with findings in humans, there is an increased decidual
influx of PMNs following intrauterine administration of
LPS (lipopolysaccharide) in rodent models of infectious
preterm labor.104,130 This PMN influx during labor fol-
lows the increased decidual expression of chemokines
(e.g. Cxcl1), and occurs most prominently post-par-
tum.104 Since decidual PMNs release pro-inflammatory
mediators and MMPs, they were suggested to participate
in the degradation of the extracellular matrix of the fetal
membranes, the rupture of the membranes during term
and preterm labor, and the postpartum involution in the
decidua104,113,114,131,132 (Fig. 5).

Of note, the depletion of PMNs in animal models did
not prevent LPS-induced preterm birth, suggesting that
PMNs do not act as causative agents in infectious pre-
term labor100,119,130 However, PMN-depletion prior to
LPS administration still reduced the pro-inflammatory
responses evidenced by IL-1-b expression in uteropla-
cental tissues of mice,130 which is remarkable since the
systemic administration of IL-1-b itself is capable of
inducing preterm birth in animal models.133 These
results may collectively suggest that PMNs are important
but not essential components of the terminal pathway in
infectious and inflammation-induced preterm birth.

PMN and their contribution to preeclampsia and
recurrent fetal loss – what is the way forward?

A diverse body of evidence currently serves to link overt
or aberrant PMN activation with the development of
PE.6 These range from the original observations made by
the Redman and Sargent group on excessive PMN acti-
vation in cases with PE,134 which was greater than in
matching cases with sepsis, to our own observations on
the presence of NETs in affected placentae.9 In addition,
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deficient PP13 production may inadequately subvert
PMN activity, thereby leading to inadequate modifica-
tion of the maternal spiral arteries.45,48

Of considerable interest is the translation of animal
model data suggesting that the interplay between the
complement system and PMN may play a key role in the
development of both PE51,135 and RFL.19 This has paved
the way for the use of novel biologics targeting comple-
ment136 or TNFa activity as therapies.66 As such, the
treatment of these disorders may finally enter the 21st

century, making full use of cutting edge innovations.47,137

What remains to be discerned is a better understand-
ing of how the underlying etiology contributes to PMN
activation, and how the latter is involved in the disease
pathology. This should focus on the fundamental etio-
logical differences between early and late onset PE,41 and
include why such facets of obesity138 or air pollu-
tion139,140 contribute solely to the latter form of PE.

The recent finding that aPL can induce NETosis62

begs the question whether this mechanism is active in
RFL or in lupus induced PE-like conditions. This finding
also suggests that PMN activation by aPL may involve
both the complement system, as well as direct interaction
by the PMN with the aPL antibodies. A clearer under-
standing of these 2 routes will assist in tailoring thera-
peutic options.

A final query of considerable interest is whether a
direct link exists between RFL and PE. This is based on
the observation that a high proportion of RFL cases suc-
cessfully treated with heparin develop PE.6 In these
instances it will be very interesting to gain insight into
the potential involvement of PMN in order to devise
means of limiting aberrant activation.

In summary, the neutrophil is rapidly emerging as a
key player in reproductive biology, on the one hand pro-
moting implantation, spiral artery modification and even

Figure 5. Contribution of PMNs to parturition. Neutrophils have multifaceted roles during parturition, either at term or preterm, and are
attracted from the systemic circulation to the uterus by a process which is driven by IL-8 (top right) where they release cytokines and
MMPs to contribute to labor and post-partum wound sealing and healing. PMNs infiltrate the human cervix only postpartum, again by
chemotaxis to IL-8 and CXCL1 and play rather an important role in post-partum tissue repair (bottom right). PMNs infiltrate the human
myometrium during term labor by similar conditions, i.e., cyto- and chemokine gradient-driven (bottom left). PMN numbers rise in the
human chorioamniotic membranes modestly during term labor, which is consistent with the relatively low increase in the expression of
IL-8 in the chorioamniotic membranes and the choriodecidua following term labor. PMNs are recruited in large numbers into the cho-
rioamniotic membranes upon infection and inflammation (i.e., histological chorioamnionitis (top left). Figure adapted from Romero
et al.118
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assisting with the process of parturition. On the other
hand, aberrant or overt activation may play a key role in
the development of complex pregnancy related disorders
such as RFL or PE. Exciting times indeed for those inter-
ested in novel aspects of neutrophil biology.
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