Csongor Gy. Csehi*
Department of Computer Science and Information Theory
Budapest University of Technology and
Economics
Műegyetem rkp. 3-9, H-1521 Budapest, Hungary
cscsgy@math.bme.hu

Abstract

There is a conjecture that if the sum of graphic matroids is not graphic then it is nonbinary [5]. Some special cases have been proved only, for example if several copies of the same graphic matroid are given. If there are two matroids and the first one can be represented by a graph with two points, then a necessary and sufficient condition is given for the other matroid to ensure the graphicity of the sum. Hence the conjecture holds for this special case.

Keywords: matroid theory, graphic matroids, sum of matroids

1 Introduction

Graphic matroids form one of the most significant classes in matroid theory. When introducing matroids, Whitney concentrated on relations to graphs. The definition of some basic operations like deletion, contraction and direct sum were straightforward generalizations of the respective concepts in graph theory. Most matroid classes, for example those of binary, regular or graphic matroids, are closed with respect to these operations. This is not the case for the sum. The sum of two graphic matroids can be nongraphic.
The purpose of our work is to study the graphicity of the sum of graphic matroids. The first paper in this area was that of Lovász and Recski: they examined the case if several copies of the same graphic matroid are given [1]. Then Recski conjectured thirty years ago that if the sum of graphic matroids is not graphic then it is nonbinary [5]. He also studied the case if we fix one simple graphic matroid and take its sum with every possible graphic matroid. His main result is the following theorem.

Theorem 1 [2] Let A and B be the cycle matroids of the graphs shown in Figure 1 on ground sets $E_{A}=\{1,2, \ldots, n\}$ and $E_{B}=\{1,2, i, j, k\}$, respectively.
Then the sum $A \vee M$ is graphic if and only if B is not a minor of M with any triplet i, j, k.

Figure 1: A graphic representation of A (left) and B (right)
We shall use Tutte's theorem which is fundamental in matroid theory:

[^0]- A matroid is binary if and only if it does not contain $U_{4,2}$ as a minor.
- A matroid is regular if and only if it does not contain $U_{4,2}, F_{7}$ and F_{7}^{*} as minors.
- A matroid is graphic if and only if it does not contain $U_{4,2}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)$ and $M^{*}\left(K_{3,3}\right)$ as minors.
- A matroid is the circuit matroid of a plane graph if and only if it does not contain $U_{4,2}, F_{7}, F_{7}^{*}$, $M^{*}\left(K_{5}\right), M^{*}\left(K_{3,3}\right), M\left(K_{5}\right)$ and $M\left(K_{3,3}\right)$ as minors.
Forbidden minors will be of importance in our forthcoming results as well, although they will not appear in our final statement.

2 Main result

In most of the cases we speak about graphic matroids so I will call the elements of the matroids edges. Observe that all but two of the edges of the graph representing the matroid A of Theorem 1 are loops (see Figure 1 as well). Also observe that bridges in a matroid remain bridges of its sum with any other matroid. Hence, in order to generalize Theorem 1 I started to analyze the case when we have only three edges which are neither bridges nor loops. There are two types of matroids with this property, the one with a circuit of length three, and the other with three parallel edges. I found in both cases that there are some forbidden minors so that if any of them appears in the other matroid then the sum is not graphic, while if the matroid doesn't contain any of them then the sum is graphic.
After these results [7] I started to work with the cases with n parallel edges or with circuits of length n (of course there may be many loops and bridges). After some disappointing results (that the n long circuit's cases surely can't lead to the same type of conditions that I wanted to prove in the other case) the case with n parallel edges lead to a very useful result.
For a transparent presentation of the theorems that will follow, we have to formulate some definitions and prove some lemmata, which help us to reduce the infinite number of cases. We study the sum of two graphic matroids M_{1} and M_{2} (of course they have identical ground sets). Throughout we shall refer to M_{1} and M_{2} as addends.
It is well known that if a matroid is graphic then so are all of its submatroids and minors. Hence if a matroid has a non graphic minor then the matroid can't be graphic.

Definition 3 We call some edges of the matroid serial if they belong to exactly the same circuits.
Definition 4 We call an edge of M_{1} essential if it is not a loop in M_{2} and we call it irrelevant otherwise.
Definition 5 We call a submatroid of an addend devoid if it contains irrelevant edges only.
The following lemmata contain the main opportunities when we want to simplify our addend matroids. It is important that these are valid for graphic matroids only, so I can use graph theoretical concepts.

Lemma 6 Let X and Y denote the set of bridges in M_{1} and in M_{2} respectively. The sum $M_{1} \vee M_{2}$ is graphic if and only if $M_{1} \backslash(X \cup Y) \vee M_{2} \backslash(X \cup Y)$ is graphic.

Proof: If an element of a matroid M is a bridge then it will be a bridge in the sum of M with any other matroid. Therefore if $M_{1} \backslash(X \cup Y) \vee M_{2} \backslash(X \cup Y)$ is graphic then we can extend this graph that represents the sum with bridges for $X \cup Y$ and this way we get a graph of $M_{1} \vee M_{2}$.
On the other hand if $\left(M_{1} \backslash(X \cup Y)\right) \vee\left(M_{2} \backslash(X \cup Y)\right)$ is not graphic then $M_{1} \vee M_{2}$ can't be graphic because it has a non graphic submatroid.

Lemma 7 If a connected component X of the matroid M_{1} is a devoid submatroid then the sum $M_{1} \vee M_{2}$ is graphic if and only if $\left(M_{1} \backslash X\right) \vee\left(M_{2} \backslash X\right)$ is graphic.

Proof: It is easy to see that the matroid which is the direct sum of $\left(M_{1} \backslash X\right) \vee\left(M_{2} \backslash X\right)$ and X is isomorphic to $M_{1} \vee M_{2}$. The direct sum of graphic matroids is also graphic, hence $M_{1} \vee M_{2}$ is graphic. On the other hand if $\left(M_{1} \backslash X\right) \vee\left(M_{2} \backslash X\right)$ is not graphic then $M_{1} \vee M_{2}$ can't be graphic because it has a non graphic submatroid.

Lemma 8 Assume that M_{1} is the circuit matroid of a graph $G(V, E)$ in which X is a connected set of edges and $E \backslash X$ has exactly two common vertices with X (call them a and b).
Let M_{1}^{\prime} be the circuit matroid of $G^{\prime}:=G(V, E \cup\{(a, b)\} \backslash X)$ and $M_{2}^{\prime}:=M_{2} \backslash X \cup \operatorname{loop}(a, b)$ (Here loop (a, b) denotes a loop corresponding to the edge (a, b) in $\left.G^{\prime}\right)$.
If X is devoid then the sum $M_{1} \vee M_{2}$ is graphic if and only if $M_{1}^{\prime} \vee M_{2}^{\prime}$ is graphic.

Proof: If $M_{1}^{\prime} \vee M_{2}^{\prime}$ is graphic then we can replace the edge (a, b) in its graph with the subgraph of X (where $a, b \in X$ will be the two common vertices of X and its complement) and we get a graph of $M_{1} \vee M_{2}$.
On the other hand if $M_{1}^{\prime} \vee M_{2}^{\prime}$ is not graphic then since this sum arises as a minor of $M_{1} \vee M_{2}$ this latter cannot be graphic either.

Lemma 9 Assume that M_{1} is the circuit matroid of a graph $G(V, E)$ where X is a connected component of G. If X has only one essential edge x then the sum $M_{1} \vee M_{2}$ is graphic if and only if $\left(M_{1} \backslash X \cup\right.$ $\operatorname{loop}(x)) \vee\left(M_{2} \backslash(X \backslash x)\right)$ is graphic.

Proof: If $\left(M_{1} \backslash X \cup \operatorname{loop}(x)\right) \vee\left(M_{2} \backslash(X \backslash x)\right)$ is graphic then we can obtain the graph of $M_{1} \vee M_{2}$ by replacing edge x with the graph X in the following way:
Let a and b denote the end vertices of x in X. Cut vertex a into two vertices a_{1} and a_{2} in X. Among the edges incident to a, join x to a_{1} and all the others to a_{2}. Replace x with the result in the graph of $\left(M_{1} \backslash X \cup \operatorname{loop}(x)\right) \vee\left(M_{2} \backslash(X \backslash x)\right)$ along the vertices a_{1} and a_{2}.
On the other hand if $\left(M_{1} \backslash X \cup \operatorname{loop}(x)\right) \vee\left(M_{2} \backslash(X \backslash x)\right)$ is not graphic then since this sum arises as a minor of $M_{1} \vee M_{2}$, this latter cannot be graphic either.
The next lemma will be less general, it is only for the cases with parallel edges and loops.
Lemma $10 M_{1}$ consist of n parallel edges and k loops. If two essential edges x and y in M_{2} are serial then the sum $M_{1} \vee M_{2}$ is graphic if and only if $\left(M_{1} \backslash x\right) \vee M_{2}^{\prime}$ is graphic where M_{2}^{\prime} is defined as follows: Simply replace the edges x and y in M_{2} by a single edge $x y$ so that a set S containing $x y$ is independent if and only if $S \backslash x y \cup\{x, y\}$ was independent. Then $x y$ will play the role of y in $M_{1} \backslash x$.

Proof: If $\left(M_{1} \backslash x\right) \vee M_{2}^{\prime}$ is graphic then we can separate edge y of that graph into two serial edges x and y. Then the circuit matroid of the resulting graph will be exactly $M_{1} \vee M_{2}$.
On the other hand if $\left(M_{1} \backslash x\right) \vee M_{2}^{\prime}$ is not graphic then since this sum arises as a minor of $M_{1} \vee M_{2}$ this latter cannot be graphic either.

After these preliminaries we can define the reduction, that will be the most important concept to reduce the infinite number of cases.

Definition 11 We want to know if the sum $M_{1} \vee M_{2}$ is graphic. We call M_{2} reduced if none of the lemmata above can help us to decrease the number of edges. (Recall that Lemma 8 can be applied for a special case only while the other four types of simplifications can be applied in any case.)

Corollary 12 Assume that M_{1} and M_{2} are graphic matroids. Application of the previous lemmata to M_{2} leads to a reduced matroid M_{2}^{\prime} while M_{1} changes to M_{1}^{\prime} that we shall call the pair of M_{2}^{\prime}. Then $M_{1} \vee M_{2}$ is graphic if and only if $M_{1}^{\prime} \vee M_{2}^{\prime}$ is graphic.

We are only one step away from our theorem, but to write it in a pretty way we have to define the following:

Definition 13 Suppose that a matroid has at least three circuits C_{1}, C_{2}, C_{3} so that each circuit C_{i} has at least one element a_{i} satisfying $a_{i} \notin \bigcup_{j \neq i} C_{j}$. (These edges will be called proper edges.) Such a matroid fulfils the three circuits property if the circuits C_{1}, C_{2} and C_{3} are not pairwise disjoint.

Theorem 14 Let M_{1} be a matroid which consists of n parallel edges and k loops and let M_{2}^{\prime} be the matroid reduced from M_{2}. Then $M_{1} \vee M_{2}$ is non graphic if and only if M_{2}^{\prime} fulfils the three-circuit property.

Proof: First we prove that if M_{2}^{\prime} does not fulfil the three-circuit property then $M_{1}^{\prime} \vee M_{2}^{\prime}$ is graphic, which means $M_{1} \vee M_{2}$ is graphic due to the previous corollary.
There can be two different cases, one with any number of essential loops and nothing else in M_{2}^{\prime} and the other is like A_{1} (see Figure 2). Both cases lead us to a graphic sum, the first to M_{1}^{\prime} and the second to a circuit with a, b and c.
Now we have to prove that if M_{2}^{\prime} fulfils the three-circuit property then $M_{1}^{\prime} \vee M_{2}^{\prime}$ is not graphic, which

Figure 2: A graph which belongs to matroid A_{1}
means $M_{1} \vee M_{2}$ is not graphic because it has a non graphic minor.
Without loss of generality, we may suppose that M_{2} has exactly three circuits (delete one proper edge from an appropriately chosen extra circuit otherwise, and then perform reduction for the resulting matroid). Notice that if we have more than three circuits with proper edges then we can delete one proper edge of a circuit and the three-circuit property still holds. In this case we can delete as many proper edges as we can, but we have to reduce the matroid after each deletion. So we can assume that M_{2}^{\prime} has exactly three circuits with proper edges.
It is easy to see that if M_{2}^{\prime} has at least two components (it means exactly two by the previous assumption) then it has F_{1} as a minor (see Figure 3), and then the sum can't be graphic, moreover the sum contains $U_{4,2}$ as a minor.
Then we only have to analyze the cases when M_{2}^{\prime} is connected therefore has exactly three circuits with

Figure 3: A graph which belongs to matroid F_{1}
proper edges in one component.
All the cases with this assumption are minors of the following matroid F_{2}. Let F_{2} be the circuit matroid of a graph obtained from K_{4} by replacing each edge with a path of length 2 (see Figure 4). There are several cases, but all we have to do is to verify that the sum has $U_{4,2}$ as a minor.
I show the way of the test and then leave the cases to the reader. So let M_{1} be the matroid with four parallel edges (a, b, c, d) and two loops (e, f) and M_{2} be the matroid which is a minor of F_{2} such that the irrelevant edges are neighbours as in Figure 5.
The bases of $M_{1} \vee M_{2}$ will be: $\{a, b, c, d\} ;\{a, b, c, e\} ;\{a, b, c, f\} ;\{a, b, d, e\} ;\{a, b, d, f\}$;

Figure 4: A graph which belongs to matroid F_{2}. Any essential edge may be serial with an irrelevant one after the reductions.

Figure 5: A graph which belongs to matroid M_{2}
$\{a, b, e, f\} ;\{a, c, d, e\} ;\{a, c, d, f\} ;\{a, c, e, f\} ;\{a, d, e, f\} ;\{b, c, d, e\} ;\{b, c, d, f\} ;$
$\{b, c, e, f\} ;\{b, d, e, f\} ;\{c, d, e, f\}$ So the sum is $U_{6,2}$ then it has $U_{4,2}$ as minor, so it is not binary, let alone graphic.

3 Summary

In spite of these results the main problem is still open. The conjecture holds for all the examined cases. We expect that the reductions described by Lemmata 4 through 7 will also be useful in the future study of more general cases.

References

[1] L. Lovász and A. Recski, On the sum of matroids, Acta Math. Acad. Sci. Hungar. (1973) 24, 329-333.
[2] A. Recski, On the sum of matroids II, Proc. 5th British Combinatorial Conf. Aberdeen (1975) 515-520.
[3] A. Recski, Matroids - the Engineers' Revenge, W J Cook, L Lovasz, J Vygen (eds.) Research trends in combinatorial optimization, Springer (2008) 387-398.
[4] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in Statics, Springer, Berlin (1989)
[5] A. Recski, Some open problems of matroid theory, suggested by its applications, Coll. Math. Soc. J. Bolyai (1982) 40, 311-325.
[6] W.T. Tutte, Introduction to the Theory of Matroids, American Elsevier, New York (1971)
[7] Cs.Gy. Csehi, Matroidelméleti vizsgálatok és alkalmazásaik, Master's Thesis, Budapest University of Technology and Economics (2012)

[^0]: *Research is supported by the grants TAMOP-4.2.2.B-10/1-2010-0009 and OTKA 108947

