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Abstract: There is a conjecture that if the union (also called sum) of graphic matroids is
not graphic then it is nonbinary [7]. Some special cases have been proved only, for example if
several copies of the same graphic matroid are given. If there are two matroids and the first
one can either be represented by a graph with two points, or is the direct sum of a circuit and
some loops, then a necessary and sufficient condition is given for the other matroid to ensure
the graphicity of the union. These conditions can be checked in polynomial time. The proofs
imply that the above conjecture holds for these cases.
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1 Introduction

Graphic matroids form one of the most significant classes in matroid theory. When introducing matroids,
Whitney concentrated on relations to graphs. The definition of some basic operations like deletion,
contraction and direct sum were straightforward generalizations of the respective concepts in graph
theory. Most matroid classes, for example those of binary, regular or graphic matroids, are closed with
respect to these operations. This is not the case for the union. The union of two graphic matroids can
be non-graphic.
The first paper studying the graphicity of the union of graphic matroids was probably that of Lovász and
Recski [2], they examined the case if several copies of the same graphic matroid are given.
Another possible approach is to fix a graph G0 and characterize those graphs G where the union of their
cycle matroids M(G0)∨M(G) is graphic. (Observe that we may clearly disregard the cases if G0 consists
of loops only, or if it contains coloops.) As a byproduct of some studies on the application of matroids
in electric network analysis, this characterization has been performed for the case if G0 consists of loops
and a single circuit of length two only, see the first graph of Figure 1. (In view of the above observation
this is the simplest nontrivial choice of G0.)

Theorem 1 [4] Let A and B be the cycle matroids of the graphs shown in Figure 1 on ground sets
EA = {1, 2, ..., n} and EB = {1, 2, i, j, k}, respectively. Let M be an arbitrary graphic matroid on EA.
Then the union A ∨M is graphic if and only if B is not a minor of M with any triplet i, j, k.

Recski [7] conjectured some thirty years ago that if the union of two graphic matroids is not graphic then
it is nonbinary. This is known to be true if the two graphic matroids are identical or if one of them is A
as given in Theorem 1 – these results follow in a straightforward way from [2] and from [4], respectively.

The main purpose of the present paper is to extend the result of Theorem 1 if G0 either consists of loops
and two points joined by n parallel edges (n ≥ 2, see Section 4) or if it consists of loops and a single
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Figure 1: A graphic representation of A (left) and B (right)

circuit of length n (n ≥ 2, see Section 3). We prove that deciding whether M(G0)∨M(G) is graphic can
be performed in polynomial time if G0 is one of these two matroids (Theorems 20 and 12, respectively).
Our results will then imply that the above conjecture is true if one of these two types of graphs play the
role of G0.

Observe that the first graph of Figure 1, representing A, has only two non-loop edges (1 and 2), while the
second graph, representing B, has the property that the complement of the set {1, 2} of non-loop edges
of A contains both a circuit and a spanning tree. This property will turn out to be crucial if we consider
a larger set of non-loop edges which are either all parallel or all serial, see Remark 24.
Then as a corollary, we can prove the conjecture in these two special cases: If the non-loop edges of a
graph are either all parallel or all serial then the union of its cycle matroid with any graphic matroid is
either graphic or contains a U2,4 minor, hence it is nonbinary [8].
During our study of the union of the two graphic matroids M1 = M(G0) and M2 = M(G) the former
one will have a very special structure. Nevertheless, in Section 2 we formulate some reduction steps for
arbitrary graphic matroids M1 and M2 on the same ground set (although we shall apply the results in
the aforementioned two special cases only).

2 The reduction

Throughout M1 and M2 will be graphic matroids on the same ground set E. We shall refer to them
as addends. It is well known that if a matroid is graphic then so are all of its submatroids and minors.
Hence if a matroid has a non-graphic minor then the matroid is not graphic.

Definition 2 We call some non-coloop edges of a matroid serial if they belong to exactly the same circuits.

Definition 3 Let L(M) and NL(M)denote the set of loops and non-loops, respectively, in the matroid
M .

The following lemmata contain the main opportunities when we can simplify our addend matroids. Since
they refer to graphic matroids only, we can use graph theoretical terminology. Throughout, M \X and
M/X will denote deletion and contraction, respectively, of the set X in a matroid M , while X − Y will
denote the difference of the sets X and Y .

Lemma 4 Let X and Y denote the set of coloops in M1 and in M2, respectively. The union M1 ∨M2

is graphic if and only if (M1 \ (X ∪ Y )) ∨ (M2 \ (X ∪ Y )) is graphic.

Proof: If an element of a matroid M is a coloop then it will be a coloop in the union of M with any
other matroid. Therefore if (M1 \(X∪Y ))∨(M2 \(X∪Y )) is graphic then we can extend its representing
graph with coloops for X ∪ Y and this way we get a graphic representation of M1 ∨M2.
On the other hand if (M1 \ (X ∪ Y )) ∨ (M2 \ (X ∪ Y )) is non-graphic then M1 ∨ M2 can’t be graphic
because it has a non-graphic submatroid. �
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Recall that a matroid is connected if it does not arise as the direct sum of two smaller matroids. If M is
not connected and X is the underlying set of a connected component of M then M/X = M \X

Lemma 5 If a connected component X of the matroid M1 is a subset of L(M2) then the union M1 ∨M2

is graphic if and only if (M1 \X) ∨ (M2 \X) is graphic.

Proof: It is easy to see that in this case the matroid which is the direct sum of (M1 \X) ∨ (M2 \X)
and M1 \ (E −X) is isomorphic to M1 ∨M2. The direct sum of graphic matroids is also graphic, hence
M1 ∨M2 is graphic.
On the other hand if (M1 \X) ∨ (M2 \X) is not graphic then M1 ∨M2 can’t be graphic because it has
a non-graphic submatroid. �

Recall that the cycle matroid of a graph is connected if and only if the graph is 2-vertex-connected.

Lemma 6 Assume that M1 is the cycle matroid of a graph G(V,E) in which X ⊂ E determines a
connected subgraph and E −X has exactly two common vertices with X (call them a and b).
Let M ′

1 be the cycle matroid of G′ := G(V, (E −X) ∪ {(a, b)}) and M ′

2 := (M2 \X) ∪ loop(a, b) (Here
loop(a, b) denotes a loop corresponding to the edge (a, b) in G′).
If X is a subset of L(M2) then the union M1 ∨M2 is graphic if and only if M ′

1
∨M ′

2
is graphic.

Proof: If M ′

1 ∨ M ′

2 is graphic then delete the edge (a, b) from the graph of the union and then put
the original subgraph of X (from G) in the place of this deleted edge (put the original a and b to the
endpoints of (a, b) in the union) and we get a graphic representation of M1 ∨M2.
On the other hand if M ′

1
∨M ′

2
is non-graphic then we show that this union arises as a minor of M1 ∨M2

hence this latter cannot be graphic either. There has to be a path between a and b in X in G; let α denote
one of its edges. There is a subset C of X so that {α} will be a base in the contraction [M1 \ (E−X)]/C.

((M1 ∨M2)/C) \ (X − (C ∪ {α})) = (M1/C \ [X − (C ∪ {α})]) ∨ (M2 \ [X − {α}]) = M ′

1
∨M ′

2

�

After these preliminaries we can define the reduction that will be the most important concept to reduce
the infinite number of cases.

Definition 7 We say that a pair M1,M2 is reduced if none of the lemmata above can help us to decrease
the number of edges.

Corollary 8 Assume that the application of the previous lemmata to M1 and M2 leads to a reduced pair
of matroids M ′

1
,M ′

2
. Then M1 ∨M2 is graphic if and only if M ′

1
∨M ′

2
is graphic.

Proposition 9 Assume that M1 and M2 are given by their graphs G1 and G2, respectively. Then we
can perform the reduction of these matroids in polynomial time.

Proof: The number of edges decreases with every step of reduction so we have to see that each step
can be performed in polynomial time and that we can check in polynomial time whether we can apply a
reduction step.
If we found a coloop or a component which is a subset of L(M3−i) in order to apply Lemma 4 or Lemma
5, respectively, then we can delete them quickly and it is also easy to replace a subset by an edge as in
Lemma 6 (once we have found the subset).
We can find the 2-vertex-connected components of a graph in polynomial time. This way we can easily
identify all the coloops. Moreover we can determine the number of the edges from NL(Mi) in any set
and delete those components in M3−i which have none.
In order to apply Lemma 6 we have to recognize these sets X effectively in spite of the fact that the same
matroid may have many graphic representations. For this purpose we define a relation on the edge set
of a coloopless graph G so that e and f are in relation if and only if either e = f or {e, f} is a cut set
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in G. This is an equivalence relation and using the operation ”twisting” (see [3], Section 5.3) one can
change G to G′ so that edges in each equivalence class form paths in G′ and M(G) = M(G′). This can
be performed in polynomial time (for each equivalence class contract all but one of the edges and replace
the remaining edge by a path formed by all the edges in this class). Finally pick all pairs of points in
both graphs and decide whether they separate their component into two parts so that one of them is a
subset of the set of loops in the other graph. �

Now we are ready to give this polynomial algorithm which reduces a pair of given graphic matroids. We
formulate the algorithm for coloopless matroids only, in order to keep its later application simpler.

Algorithm 10 INPUT: Two coloopless graphic matroids M1 and M2 on the same ground set given by
their graphs G1 and G2, respectively.
OUTPUT: The reduced pair M ′

1,M
′

2.

1. If Gi has a 2-vertex-connected component which does not have edges from NL(M3−i) then delete
this component from Gi and the corresponding loops from G3−i.

2. Change Gi if necessary, to a new one where the equivalence classes (as described in the proof of
Proposition 9) are paths.

3. If X ⊆ E determines a connected subgraph of Gi which does not have edges from NL(M3−i) and
the subgraph has exactly two common vertices a and b with E −X in Gi, then delete from G3−i all
the loops of X except a single (arbitrary) one denoted by x and replace Gi by (Gi \X) ∪ edge(a, b)
(where edge(a, b) will play the role of x).

4. If during the last step the matroids are changed then go to Step 2 otherwise let M ′

1
,M ′

2
denote the

reduced pair.

We close this section with one more reduction related statement which will be needed in Theorem 25
only.

Lemma 11 Assume that M1 is the cycle matroid of a graph G(V,E) where E0 is the edge set of a 2-
connected component X of G which has only one edge x from NL(M2). Then the union M1 ∨ M2 is
graphic if and only if ((M1 \ E0) ∪ loop(x)) ∨ (M2 \ (E0 − {x})) is graphic.

Proof: If ((M1 \ E0) ∪ loop(x))∨ (M2 \ (E0 − {x})) is graphic then we can obtain the graph of M1∨M2

by replacing edge x with the subgraph X in the following way:
Let a and b denote the end vertices of x in X . Cut vertex a into two vertices a1 and a2 in X . Among
the edges incident to a in X , join x to a1 (b remains the other endpoint of x) and all the others to a2, let
X ′ denote the resulting graph. Now replace x in the graph of ((M1 \ E0) ∪ loop(x)) ∨ (M2 \ (E0 − {x}))
with the graph X ′ along the vertices a1 and a2.
On the other hand if ((M1 \ E0) ∪ loop(x))∨(M2 \ (E0 − {x})) is non-graphic then since this union arises
as a minor of M1 ∨M2, this latter cannot be graphic either.

(M1 ∨M2)/ (E0 − {x}) = ((M1 \ E0) ∪ loop(x)) ∨ (M2 \ (E0 − {x}))

�

3 The case when all the non-loop edges of G0 are serial

From now on we study the union M1 ∨M2 where M1 = M(G0) is the matroid which consists of a circuit
of length n and k loops and M2 = M(G) is an arbitrary graphic matroid. We shall write [n] for the set
of the edges of the circuit in G0.
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Theorem 12 If G0 consists of loops and a single circuit of length n (n ≥ 2) and M(G) is an arbitrary
graphic matroid on the same ground set then the graphicity of their union can be decided in polynomial
time.

Algorithm 13 INPUT: Two matroids M1 and M2 on the same ground set given by the graphs G0 and
G, respectively, where G0 consists of two parts: a circuit (with edge set [n]) and loops.
OUTPUT: Decision whether the union M1 ∨M2 is graphic.

1. If [n] has an element which is a coloop in G then the union is graphic. If the complement of [n] has
elements which are coloops in G then delete these elements from both G and G0.

2. Run Algorithm 10 to the pair M1,M2, that gives us the reduced pair M ′

1
,M ′

2
.

3. If [n] contains a cut set in M ′

2 or if M ′

2 \ [n] is the free matroid then the union is graphic otherwise
it is not (neither binary).

Step 1 uses the statement of Lemma 4 and the special structure of G0. Algorithm 10 preserves the
graphicity or non-graphicity of the union according to Lemma 5 and Lemma 6. The correctness of the
algorithm will then follow from Proposition 14 below.
In view of Proposition 9 this algorithm is polynomial – in Step 3 we only have to check whether the
deletion of the edges of [n] disconnects G′ or leads to a circuit-free subgraph.

Proposition 14 Let M ′

1 = M(G′

0) and M ′

2 = M(G′) be the matroids after all the possible reductions
using Step 1 and Algorithm 10. M ′

1
∨M ′

2
is graphic if and only if either [n] contains a cut set in G′ or

M ′

2
\ [n] is the free matroid.

Proof: For the if part of the proof the following two propositions solve the two possible cases separately.
It is easy to see that if we have edges from NL(M ′

1
) which are serial in M ′

2
then the union will be graphic

(because these edges can destroy the circuit of G′

0
, so [n] will consists of coloops in the union). In fact,

the slightly more general statement of the following proposition is also true.

Proposition 15 If [n] contains a cut set [c] in M ′

2
then the union M ′

1
∨M ′

2
will be the cycle matroid of

the graph obtained from G′ by replacing the edges of [n] with coloops.

Proof: For every set X ⊂ L(M ′

1) we have to prove that [n] ∪X is independent in the union if and only
if X is independent in M ′

2
.

If X is not independent in M ′

2
then it will not be independent in the union either because every edge of

X is in L(M ′

1). It means [n] ∪X is not independent either in the union.
On the other hand if X is independent in M ′

2
then it is a part of a base. A cut set intersects all the bases

so [c] has an element a such that X ∪ {a} is independent in M ′

2. [n] is a circuit in M ′

1, so every proper
subset of it is independent thus [n]−{a} is independent. Now [n]∪X has a partition so that [n]−{a} is
independent in M ′

1
and X ∪ {a} is independent in M ′

2
so it is independent in the union M ′

1
∨M ′

2
. �

Notice that this proposition is more general than the if part of Proposition 14, since the matroids need
not to be reduced.
If a set contains no cut set in a matroid that means it is spanned by its complement. This means [n] is
spanned in M ′

2
by edges from L(M ′

1
).

Proposition 16 If M ′

2
\ [n] is the free matroid and [n] does not contain a cut set in M ′

2
then the union

M ′

1
∨M ′

2
is graphic, namely it is a circuit formed by all the edges.

Proof: Now L(M ′

1
), that is E − [n], is a spanning forest of G′ according to the assumption.

L(M ′

1)∪ [n] is not independent in the union because we can pick only n− 1 independent elements in M ′

1

and for every element i of [n] the set L(M ′

1
)∪ {i} is not independent in M ′

2
(because L(M ′

1
) spans every

edge of [n]). On the other hand every proper subset of L(M ′

1
)∪ [n] is independent in the union M ′

1
∨M ′

2
.

In order to prove this we give a suitable partition for all cases when we delete only one edge α:
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• If α ∈ [n] then [n]− {α} is independent in M ′

1 and L(M ′

1) is independent in M ′

2.

• If α ∈ L(M ′

1) then let F ′ denote the spanning tree of G′ in L(M ′

1) which contains α and let F ′

1

and F ′

2
be the two parts of F ′ (in the two sides of α). There exists a subset of NL(M ′

1
) which is a

path in G′ between F ′

1
and F ′

2
, since otherwise α would be a coloop in G′ which contradicts Step

1. There exists such a path with exactly one edge e, because if the lengths of all these paths are at
least two then there will be a point which is not covered by F ′ in G′ so there will be a cut set in
[n]. In that case L(M ′

1
) ∪ {e} − {α} is independent in M ′

2
and [n]− {e} is independent in M ′

1
.

�

This means that we proved the if part of Proposition 14 because if G′ contains more edges than a spanning
forest and [n] then there must be a circuit in it which is a subset of L(M ′

1
).

For the only if part suppose that M ′

2
\ [n] is not the free matroid and [n] does not contain a cut set in

M ′

2. M ′

2 contains a circuit I in E − [n] by the assumption, and its length is at least three due to the
reduction (length 1 or 2 would contradict to Lemmata 4 and 6, respectively).
In the proof we shall give a non-graphic minor of the union, to do this the following ”non-equivalent
reduction” will be our tool.

Lemma 17 If we contract an edge e ∈ L(Mi) in an addend M3−i and delete the corresponding loop in
the other one (Mi) then the union of the new matroids will be a minor of that of the originals.

Proof: Contract e in the union. Then the independent sets will be those which can be partitioned so
that the first part is independent in Mi and the second is independent with e in M3−i because e is a loop
in Mi. This description is exactly the union of the above described matroids. �

Thus we can reduce our study to the 2-connected cases only, as follows. We can contract (like in
the previous lemma) a spanning tree of edges from L(M ′

1) in all 2-connected components but the one
containing I. We can apply now the steps of the reduction, so we get a reduced connected matroid from
it which contains the circuit I ⊂ L(M ′

1
) and the new M ′

1
will still consist of a circuit and loops.

We can clearly assume that there is only one circuit from L(M ′

1) because if there were more we could
delete one edge from both matroids so that there remain at least one circuit from L(M ′

1
) in M ′

2
(but less

than before) and [n] still does not contain a cut set. After that we can reduce the matroids and we still
have all the necessary conditions.
An edge from NL(M ′

1
) will be called an essential diagonal of I if it connects two distinct vertices of I.

Proposition 18 If we contract all edges from L(M ′

1
) except the edges of I in M ′

2
then there will be at

least two different essential diagonals of I.

Proof: Indirectly suppose that I has at most two vertices incident to edges from NL(M ′

1
) after we

contracted all other edges of L(M ′

1) in M ′

2. It means that all paths between the vertices of I and the
endpoints of the edges from NL(M ′

1
) go through these points. This is a contradicton because I ⊆ L(M ′

1
)

and I is a connected component which has at most two common vertices with E−I so I either disappears
or must be a simple edge in the reduced matroid (see Lemma 5 and Lemma 6). �

Now use Lemma 17 to contract M ′

2
in two steps. First contract the subset as in Proposition 18. We get

a circuit which is a subset of L(M ′

1), with at least two different essential diagonals. Then contract all but
three suitable edges of I such that we get a circuit of length three with at least two different essential
diagonals. (See the second graph of Figure 2 below)
Now we have a minor M ′′

2
of M ′

2
and the corresponding submatroid M ′′

1
of M ′

1
(which is M ′

1
without the

loops which we contracted in M ′

2
) so that if the union M ′′

1
∨M ′′

2
is non-graphic then the original union

is not graphic either.
We have to apply Lemma 17 again to the loops from NL(M ′′

1
) in M ′′

2
to contract the corresponding edges

in M ′

1
and after that we can delete all the remaining edges which are loops in both matroids. Let M ′′′

2

and M ′′′

1 denote the new matroids.
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Proposition 19 M ′′′

1 ∨M ′′′

2 is neither graphic nor binary.

Proof: For now M ′′′

1
consists of a circuit of length h (let [h] denote the set of its edges) and three loops

m, n and o while M ′′′

2 has a circuit formed by m, n and o and [h] can be partitioned to sets of edges
M , N and O such that all elements of the sets are parallel to the corresponding edge from L(M ′′′

1
) (see

Figure 2).
According to Proposition 18 at least two of the three sets M,N and O are non-empty. Then suppose

O

M

N

N

OM

om

x

n

y

y m

n

x o

Figure 2: Graphic representation of M ′′′

1
and M ′′′

2

that x ∈ M and y ∈ N are two edges from NL(M ′′′

1
). We show that (M ′′′

1
∨M ′′′

2
) / ([h]− {x}) is U2,4.

The rank of M ′′′

1 is h− 1 and the rank of M ′′′

2 is 2 so in order to obtain a base of the union we can choose
h − 1 elements of the first matroid and 2 elements of the second one. It is easy to check that {x,m},
{x, n}, {x, o}, {m,n}, {m, o} and {n, o} are independent in (M ′′′

1
∨M ′′′

2
) / ([h]− {x}): for the first pick

[h]− {y} from M ′′′

1 and y and m from M ′′′

2 and for the last five simply pick [h]− {x} from M ′′′

1 and the
others from M ′′′

2
. This means it is really a U2,4. �

This proposition completes the proof of the only if part of Proposition 14 because we gave a non-graphic
minor of the union. �

4 The case when all the non-loop edges of G0 are parallel

From now on we study the union M1 ∨M2 where M1 is the cycle matroid of G0 which consists of loops
and two points joined by n parallel edges and M2 = M(G) is an arbitrary graphic matroid. We shall
write [n] for the set of the parallel edges in M1.
In this section we shall prove a neccessary and sufficient condition for M2, like in the previous section,
for the graphicity of the union M1 ∨M2.

Theorem 20 If G0 consists of loops and two points joined by n parallel edges and M(G1) is an arbitrary
graphic matroid on the same ground set then the graphicity of their union can be decided in polynomial
time.

Algorithm 21 INPUT: Two matroid M1 and M2 on the same ground set given by the graphs G0 and
G, respectively, where M1 consists of two parts: a set [n] of parallel edges and loops.
OUTPUT: Decision whether the union M1 ∨M2 is graphic.
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1. Delete all the coloops of G (if any) from both G0 and G.

2. Run Algorithm 10 to the pair M1,M2, that gives us the reduced pair M ′

1,M
′

2.

3. If there exist two elements a and b of [n] so that M ′

2 \ {a, b} is not the free matroid and a and b are
not serial in M ′

2
then the union is not graphic (neither binary) otherwise it is graphic.

Step 1 uses the statement of Lemma 4 and the special structure of G0. Algorithm 10 preserves the
graphicity or non-graphicity of the union according to Lemma 5 and Lemma 6. The correctness of the
algorithm will then follow from Proposition 22 below.
In view of Proposition 9 this algorithm is polynomial – in Step 3 there are

(

n

2

)

possible choices of a and
b, and in each case a spanning forest has to be constructed only.

Proposition 22 Let M ′

1 = M(G′

0) and M ′

2 = M(G′) be the matroids after all the possible reductions
using Step 1 and Algorithm 10. Then M ′

1
∨M ′

2
is graphic if and only if no 2-connected component of G′

has two non-serial edges a and b from [n] so that M ′

2 \ {a, b} is not the free matroid.

Proof: For the only if part assume that there exist two such edges a and b. The assumption implies
that:

• There exists a circuit C1 in G′ containing a and b (since they are in the same component)

• There exists a circuit C2 in G′ containing a but not b (since they are not serial)

• There exists a circuit C3 in G′ containing none of them (since the remaining is not the free matroid)

Observe that since a and b are not coloops in G′, the condition that a and b are not serial is equivalent
to that {a, b} does not contain a cutset (which more strongly resembles Proposition 14).
The existence of C1 and C2 must generate a subgraph of G′ as shown in the first graph of Figure 3. Here

D
Q

A

E1

BC

V1

V2

F
E2

a x a bb x

α

B

F

A

ED

C

Figure 3: The main structure

there are three internally disjoint paths between the vertices V1 and V2 (let Θ denote this structure).
Each path must have length at least one, hence there exists at least one edge x in the ”central” path.
However any of the paths indicated by A,B,C,D,E and F may be of length zero.
We have to consider two different cases.
Case 1. Let C3 be in the same component of G′ as a and b are. That is, Θ is a proper subgraph of the
component of G′ under consideration. The following lemma handles this case. We speak about paths in
a matroid in the sense of equivalence classes, see the proof of Proposition 9.

Lemma 23 If a 2-connected component of the reduced matroid M ′

2
contains Θ as a proper subgraph then

the union M ′

1 ∨M ′

2 has a U2,4 minor.
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Proof: First delete all the other 2-connected components of M ′

2 from both matroids. If there are more
than a Θ structure and an additional path remaining, then we can delete at least one path such that
the result reduces to a matroid which still has at least four paths (but less than before). That way we
can suppose that there is exactly one path in addition to Θ (throughout we refer to this path as the
additional path) in the reduced matroid M ′

2
. The three paths of the Θ structure are shown in the first

graph of Figure 3, let P and Q denote the endpoints of the additional path.
The following case study examines all the possible cases. Recall that if there are two paths (equivalence
classes) between two points then at least one of the paths must contain an edge from NL(M ′

1
), since we

consider a pair of reduced matroids.

1. If both P and Q are in C ∪ F (the points V1, V2 are also permitted) then there must be at least
one edge c from NL(M ′

1
) in the additional path or in the one which forms a circuit with it, let y

denote an arbitrary edge from the other one. If we contract all edges but a, b, c and y in the union
we get a U2,4 (since any pair of edges will be independent and any triple will be dependent).

2. Otherwise without loss of generality we may suppose that Q is in E and it is separated from
V2 by at least one edge α, see the second graph of Figure 3. The other endpoint P can be in
A,B,C,D,E1, E2 and F (see the second graph of Figure 3). Let p denote an edge in the additional
path.

(a) If P is in A,B or C: if we contract all edges but b, x, p and α in the union then we get a U2,4.

(b) If P = V2 or P ∈ E1 : there must be an edge c from NL(M ′

1
) in one of the two paths between

P and Q (according to the reduction). If we contract all edges except b, c, x and the one of α
or p which is not serial with c in M ′

2
in the union then we get a U2,4.

(c) If P ∈ E2: as before there must be an edge c from NL(M ′

1) in one of the two paths between
P and Q. If p is in the same path as c then let the role of p be played by an arbitrary edge
from the part of the other path which forms a circuit with the additional path. If we contract
all edges but b, c, x and p in the union then we get a U2,4.

(d) If P ∈ D (but not V2): there must be an edge α2 in D between V2 and P . If we contract all
edges but b, α, α2 and p in the union then we get a U2,4.

(e) If P ∈ F (but not V2): there must be an edge β in F between V2 and P . If we contract all
edges but b, α, β and p in the union then we get a U2,4.

�

This case study is mainly the same as in [5: Figure 18.11], where Lemma 6 has implicitly been used as
well.

Case 2 (in the proof of the only if part of Proposition 22). C3 is in another component of G, but
according to Lemma 4, that component must contain at least one edge c from NL(M ′

1). Let C′

3 be a
circuit of G′ containing c.
We shall find a U2,4 minor in M ′

1 ∨M ′

2. If we contract all edges of C1 ∪C2 ∪C′

3 but {a, b, c, x} and delete
all the other edges in the union then we get a U2,4 in M ′

1
∨M ′

2
.

For the if part of Proposition 22 suppose that there are no such edges a and b. Then we distinguish two
cases again.
Either there are two non-serial edges a, b from NL(M ′

1) in G′ but G′ \ {a, b} is the free matroid. Then
we have the situation as in the first graph of Figure 3 and so the union is graphic (a large circuit formed
by all the edges which were not coloops in G′).
In the other case all components of G′ are circuits, consisting of all but one edges from NL(M ′

1) (see
Figure 4). Let X ⊆ E be an arbitrary subset and let k(X) denote the number of circuits of G′ which
are fully contained in X . If k(X) ≥ 2 then X is dependent in the union, because we can only choose one
edge from M ′

1 and j − 1 edges of a circuit of length j from M ′

2. If k(X) = 1 then it is independent in
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the union, because we can choose one element from M ′

1 (one from the circuit of G′ which is in X) and
all the others from M ′

2
. If k(X) = 0 then X is independent in M ′

2
so it is independent in M ′

1
∨M ′

2
too.

This means that a set is independent in the union if and only if it does not contain all the edges of more
than one circuit of G′. Then the union is graphic, the circuits of G′ will become parallel paths (see an
example in Figure 4). �

α

γ

D

C

A

β

δ

B

A

γ

C

δ

D

β

B

α

Figure 4: A schematic representation of the second case of the proof of the if part

Remark 24 Observe that the final conditions in Algorithms 13 and 21 can be formulated in a uniform
way as well: M1 ∨M2 is graphic if and only if for every circuit C of length ≥ 2 in M ′

1
either M ′

2
\ C is

the free matroid or C contains a cut set in M ′

2
.

One can see that the lemmata in Section 2 can be applied to any pair of graphic matroids. In addition
we only use the structure of the reduced matroids in Propositions 14 and 22. Hence we have a slightly
more general result:

Theorem 25 We can decide in polynomial time whether the union of M1 and M2 is graphic if using all
the possible reductions described by Lemmata 4-5-6-11 leads to a case where M ′

1 or M ′

2 consists of loops
and either a single circuit, or some parallel edges.

Proof: We only have to verify that we can reduce the matroids in polynomial time until one of them
consists of loops and a single circuit, or loops and parallel edges (as in Algorithms 13 or 21). This is
true since every step of the reduction (including the steps described by Lemma 11) can be performed in
polynomial time and decreases the number of edges. The last part of the proof follows from Theorems
12 and 20. �

The general problem (when is the union of two graphic matroids graphic) and the conjecture (if it is not
graphic then it is non-binary) are still open. We have given necessary and sufficient conditions for the
problem in two special cases. These conditions can be checked in polynomial time. Our results also prove
the conjecture in these two cases.
We expect that these results will also be useful in the future study of more general cases. However, the
straightforward generalization of the statement in Remark 24 is not true.
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