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Abstract. In the earlier paper [6] we described the structure of all
spectral order automorphisms of the sets of Hilbert space effects and
bounded observables in the case where the dimension of the underlying
Hilbert space is at least 3. The aim of this note is to present a complete
description in the missing two-dimensional case. We will see that in that
case there is a one-to-one correspondence between the set of all spectral
order automorphisms and the set of all bijective maps of pure states
together with the set of all strictly increasing bijections of the real unit
interval or the real line.

In von Neumann’s mathematical formulation of quantum mechanics to
every quantum system there corresponds a complex Hilbert space H and
the (bounded) observables are represented by (bounded) self-adjoint oper-
ators on H. We denote by Bs(H) the space of all such operators and ≤
stands for the usual partial order on Bs(H) (coming from the notion of
positive semidefinitess). Although the order ≤ has apparent and impor-
tant quantum mechanical meaning, as mentioned in the paper [6], it has
certain disadvantages. In fact, Kadison [3] pointed out the surprising and
strange property that the space Bs(H) equipped with ≤ forms a so-called
anti-lattice: the supremum of any two elements exists only in the trivial
case where those elements are in fact comparable. This motivated Olson [7]
to introduce another natural partial order � called spectral order on Bs(H)
with which this space becomes a conditionally complete lattice.

The definition of � is as follows. For any self-adjoint operator A we denote
by EA its spectral measure (defined on the Borel subsets of R). For each
pair A,B ∈ Bs(H) we write

A � B if and only if EA(−∞, t] ≥ EB(−∞, t], t ∈ R.

Clearly, � is a partial order on Bs(H). Moreover, one of the main results
in [7] tells us that every nonempty subset of Bs(H) which is bounded from
above (with respect to this order) has a supremum and analogous statement
holds true concerning the infimum. Beside the fact that the spectral order
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has nice mathematical properties, it has proved to be very useful in quantum
theory, too. For a few of the latest references see [1] and [2] (Chapters 13
and 18).

In the paper [6] we considered the symmetries with respect to �, i.e.,
the spectral order automorphisms (bijective maps which preserve the spec-
tral order in both directions) of the sets of all (bounded) observables and
all Hilbert space effects, respectively. We gave the complete descriptions of
those transformations in the case where dimH ≥ 3 (in fact, as for observ-
ables, we also needed to assume that dimH < ∞). The aim of this note is
to complete our former results by presenting the structure of spectral order
automorphisms in the missing case dimH = 2 which is rather important for
different reasons, for example, for its use in quantum information science,
see, e.g., [8]. We will show below that the structures of those automorphisms
in the case dimH = 2 is rather different from the ones in the case dimH ≥ 3.
This is rather surprising especially because there are no such differences in
the case of the corresponding automorphims relative to the usual order ≤,
see [4] (or Section 2.5 in [5]) and [9].

For the formulation of our results we need some terminology and notation.
An operator A ∈ Bs(H) is called an effect if 0 ≤ A ≤ I and the set of all such
operators is denoted by E(H). Effects play important role in the quantum
theory of measurements, they represent yes-no measurements which can be
unsharp. In what follows P1(H) stands for the collection of all rank-one
projections on H, its elements represent the pure states of the quantum
system. Below we characterize the spectral order automorphisms of E(H)
and Bs(H) under the condition dimH = 2 which are the bijective maps
φ of E(H) or Bs(H) with the property that for any elements A,B in their
domains we have φ(A) � φ(B) if and only if A � B.

The main results of the paper tell us that in the case dimH = 2 the spec-
tral order automorphisms of E(H) and Bs(H) originate from bijective maps
(of any sort) of the set of all pure states together with strictly increasing
bijections of the real interval [0, 1] and the real line R, respectively. The
precise statements read as follows.

Theorem 1. Suppose that H is 2-dimensional and let φ : E(H)→ E(H) be
a bijective map. Then φ is a spectral order automorphism if and only if there
are bijections ψ : P1(H)→ P1(H), f : [0, 1]→ [0, 1], f is strictly increasing
and φ can be written in the form

(1) φ(λP + µQ) = (f(µ)− f(λ))ψ(Q) + f(λ)I,

where P,Q ∈ P1(H) are arbitrary mutually orthogonal projections and 0 ≤
λ ≤ µ ≤ 1 are arbitrary numbers.

The characterization of spectral order automorphisms of Bs(H) is similar.

Theorem 2. Suppose that H is 2-dimensional and let φ : Bs(H)→ Bs(H)
be a bijective map. Then φ is a spectral order automorphism if and only if
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there are bijections ψ : P1(H) → P1(H), f : R → R, f is strictly increasing
and φ can be written in the form

(2) φ(λP + µQ) = (f(µ)− f(λ))ψ(Q) + f(λ)I,

where P,Q ∈ P1(H) are arbitrary mutually orthogonal projections and λ ≤ µ
are arbitrary real numbers.

In the proof of the above theorems we will use the following lemmas. The
verification of the first one requires only elementary considerations, hence
we omit the details. Recall that, by spectral theorem, if H is 2-dimensional,
then the elements of Bs(H) are exactly the operators of the form λP + µQ
where P,Q ∈ P1(H) are mutually orthogonal and λ, µ ∈ R are such that
λ ≤ µ, moreover λP + µQ is an effect exactly when λ, µ ∈ [0, 1].

Lemma 1. Assume that dimH = 2 and let A,B ∈ Bs(H). Let P1, Q1,
respectively P2, Q2 be mutually orthogonal rank-one projections on H and
λ1 ≤ µ1, λ2 ≤ µ2 be real numbers such that A = λ1P1 + µ1Q1 and B =
λ2P2 + µ2Q2. We have A � B if and only if µ1 ≤ λ2 or P1 = P2, λ1 ≤
λ2, µ1 ≤ µ2.

In the proof of the second lemma which gives a characterization of the
scalar multiples of the identity in terms of the spectral order, we will use
the following notation. For any A,B ∈ Bs(H) with A � B we define

[A,B] = {X ∈ Bs(H) | A � X � B}.
We say that such a set is nondegenerate if its cardinality is at least 3. For
any A ∈ Bs(H) let MA be the set of those operators X ∈ Bs(H) for
which A 6= X, A � X, [A,X] is nondegenerate and there is an element
X ′ ∈ Bs(H) such that A 6= X ′, A � X ′, [A,X ′] is nondegenerate and
[A,X] ∩ [A,X ′] = {A}.

Lemma 2. Assume that dimH = 2 and let A ∈ Bs(H). Then A is a scalar
multiple of the identity if and only if for all elements X1, X2 ∈ MA which
are not comparable (with respect to �) one has [A,X1] ∩ [A,X2] = {A}.

Proof. First suppose that A is a scalar operator. It is apparent that for any
B,C ∈ Bs(H) and t ∈ R we have B � C if and only if B + tI � C + tI.
Therefore, regarding the assertion in Lemma 2, we may and do assume that
A = 0. Observe the following. For any λ > 0 and P ∈ P1(H) we clearly
have 0 � λP and one can check that

(3) [0, λP ] = {αP | α ∈ [0, λ]}.
This immediately implies that if P 6= Q ∈ P1(H), then [0, λP ]∩ [0, Q] = {0}
which gives us that λP ∈MA. This shows that the positive scalar multiples
of rank-one projections belong to the set MA. Conversely, it is easy to see
that if X ∈ Bs(H) is not a positive scalar multiple of an element in P1(H),
then X /∈ MA. It follows that MA = {µR | R ∈ P1(H), µ > 0}. Now
let X1, X2 ∈ MA be operators which are not comparable. Then we deduce
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that there are projections P1, P2 ∈ P1(H) and numbers λ1, λ2 > 0 such that
X1 = λ1P1, X2 = λ2P2. We infer that P1 6= P2 which, by (3), yields that
[0, X1] ∩ [0, X2] = {0} = {A} and this completes the proof of the necessity
part of the statement in Lemma 2.

For sufficiency, assume that A is not a scalar operator. It is straightfor-
ward to check that beside addition by scalar multiples of the identity, mul-
tiplication by a fixed positive real number also respects the order �. Hence
without loss of generality we may and do suppose that A ∈ P1(H). Pick a
projection P ∈ P1(H) such that P, P⊥ 6= A and set X1 = P+2P⊥, X ′ = 2A
(⊥ denotes the orthocomplementation on the set of all projections on H).
Then one can check that A � X1, X

′ and I ∈ [A,X1], moreover we have
[A,X ′] = {λA | λ ∈ [1, 2]}. Let T ∈ [A,X1] ∩ [A,X ′]. Then it follows that
T = λ0A for some λ0 ∈ [1, 2]. Since T � X1, referring to Lemma 1 we
deduce that the eigenvalues of T are at most 1 yielding that T = A. There-
fore, we obtain that X1 ∈ MA. Let Q ∈ P1(H) be a projection such that
Q,Q⊥ 6= A, Q 6= P and set X2 = Q+2Q⊥. Just as above, we have X2 ∈MA

and I ∈ [A,X2] which implies that [A,X1] ∩ [A,X2] 6= {A}. Moreover, it is
apparent that X1, X2 are not comparable. Putting together what we have
proved above, we obtain the statement in Lemma 2. �

We now turn to the proofs of our theorems.

Proof of Theorem 1. First, we assert that the bijections of E(H) of the form
(1) are spectral order automorphisms. It is easy to see that for any stricly
increasing bijection f : [0, 1] → [0, 1], the transformation A 7→ f(A), A ∈
E(H) is a spectral order automorphism of E(H). Therefore to prove the
assertion we only have to verify the following claim. Given any bijection
ψ : P1(H) → P1(H) and defining the transformation Ψ: E(H) → E(H) by
the formula

Ψ(λP + µQ) = (µ− λ)ψ(Q) + λI = λψ(Q)⊥ + µψ(Q),

where P,Q are mutually orthogonal rank-one projections on H and 0 ≤ λ ≤
µ ≤ 1 are real numbers, we have that Ψ is a spectral order automorphism
of E(H). Easy application of Lemma 1 shows that this is really true.

Now, let φ be a spectral order automorphism of E(H). We recall that it
follows from the results of Olson [7] that any nonempty subset E ⊂ E(H)
has a supremum ∨E and an infimum ∧E in E(H). In the next argument we
borrow several steps and ideas from the proof of Theorem 3 in [6]. Just as
there first we observe that ∧E(H) = 0 which shows that φ(0) = 0. Next, one
can prove that a nonzero effect A on H is of rank 1 if and only if it has the
property that any two elements of E(H) preceding A in the spectral order
are comparable. Therefore φ preserves the rank-one elements of E(H) in
both directions. Consequently, in our particular case where dimH = 2 we
obtain that φ leaves the rank of effects invariant. The rank-one projections
are precisely the maximal elements of the collection of all rank-one operators
in E(H). This implies that φ preserves the rank-one projections on H in
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both directions and therefore its restriction ψ to P1(H) is a bijection of
P1(H).

Let P ∈ P1(H) be a projection and 0 ≤ λ ≤ 1 be a real number. It is
clear that λP � P and therefore φ(λP ) � φ(P ) which, by (3), yields the
existence of a number fP (λ) for which

(4) φ(λP ) = fP (λ)φ(P ).

Since φ is a spectral order automorphism, we see that fP is a strictly in-
creasing bijection of the unit interval [0, 1]. Next, following the arguments
in the second and third paragraphs on p. 247 in [6], one can show that fP
in fact does not depend on P , hence we may and do denote it simply by f .
Clearly, the map A 7→ f−1(A), A ∈ E(H) is a spectral order automorphism
of E(H). This gives us that the transformation Φ: E(H)→ E(H) defined by
Φ(A) = f−1(φ(A)), A ∈ E(H) is again a spectral order automorphism and,
by (4), it has the additional property that for any projection P ∈ P1(H)
and real number 0 ≤ λ ≤ 1, the equality

Φ(λP ) = λΦ(P )

holds true. Since φ and Φ coincide on the set of all projections, it is also
clear that the restriction of Φ onto P1(H) is equal to ψ.

Now pick arbitrary rank-one projections P,Q on H and real numbers
0 ≤ λ, µ ≤ 1 such that P 6= Q and λ ≤ µ. By the second paragraph on page
247 in [6] we have

∨{λP, µQ} = λ(P ∨Q−Q) + µQ = λQ⊥ + µQ.

Assume that P and Q are orthogonal to each other. We then compute

Φ(λP + µQ) = Φ(∨{λP, µQ}) = ∨{Φ(λP ),Φ(µQ)} = ∨{λΦ(P ), µΦ(Q)}

= λΦ(Q)⊥ + µΦ(Q) = λψ(Q)⊥ + µψ(Q) = (µ− λ)ψ(Q) + λI.

Having in mind the definition of Φ we obtain that the original transformation
φ can be written in the form (1). �

Keeping the assumption dimH = 2, for the proof of Theorem 2 we will
need a characterization of those spectral order automorphisms of the set of
all positive operators which leave the nonnegative scalar multiples of the
identity fixed. We argue as follows.

For any bijection ϕ : P1(H)→ P1(H) define

(5) Θϕ(λP + µQ) = (µ− λ)ϕ(Q) + λI = λϕ(Q)⊥ + µϕ(Q),

whenever P,Q are mutually orthogonal rank-one projections and 0 ≤ λ ≤ µ
are real numbers. It follows easily from Theorem 1 that the transformations
Θϕ|E(H) are exactly the spectral order automorphisms of E(H) which fix the
scalar elements of E(H). We now assert that the transformations Θϕ defined
in (5) are exactly the spectral order automorphisms of the set of positive
operators which fix the nonnegative scalar multiples of the identity. By
Lemma 1 we see that every Θϕ is such a transformation. For the converse, let
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Θ be a bijection of the set of all positive elements of Bs(H) which preserves
the spectral order in both directions and which fixes the nonnegative scalar
multiples of the identity. Since Θ leaves E(H) invariant, by Theorem 1
there is a bijection ϕ : P1(H) → P1(H) such that Θ(A) = Θϕ(A) holds
for all A ∈ E(H). Let c > 1 be any number and consider the map A 7→
(1/c)Θ(cA), A ∈ E(H). Clearly, this map is a spectral order automorphism
of E(H) and hence we have a bijection ϕc : P1(H) → P1(H) such that
(1/c)Θ(cA) = Θϕc(A), A ∈ E(H). If cA ∈ E(H), we deduce

(1/c)Θ(cA) = (1/c)Θϕ(cA) = Θϕ(A).

Consequently, whenever cA ∈ E(H), we have Θϕc(A) = Θϕ(A). This easily
implies that ϕc = ϕ and thus we obtain that

Θ(cA) = cΘϕc(A) = cΘϕ(A) = Θϕ(cA)

holds for any A ∈ E(H) and c > 1. This yields Θ = Θϕ verifying our claim.
We are now in a position to prove our second theorem. The fundamental

idea of the proof is similar to the one in the proof of Theorem 4 in [6] but
the technical details are rather different.

Proof of Theorem 2. Let φ : Bs(H) → Bs(H) be a spectral order auto-
morphism. First, referring to Lemma 2 we deduce that φ preserves the
scalar operators in both directions. This implies that there is a strictly
increasing bijection f : R → R such that for all real numbers λ we have
φ(λI) = f(λ)I. Now consider the transformation Φ: Bs(H) → Bs(H) de-
fined by Φ(A) = f−1(φ(A)), A ∈ Bs(H). Clearly, Φ is a spectral order
automorphism with the additional property that it leaves the scalar opera-
tors fixed. It follows that Φ maps E(H) onto itself and the restriction of Φ
onto E(H) is a spectral order automorphism of E(H). Applying Theorem
1 we obtain that there exist a bijection ψ : P1(H) → P1(H) and a strictly
increasing bijection g : [0, 1]→ [0, 1] such that Φ|E(H) is of the form

Φ(λP + µQ) = (g(µ)− g(λ))ψ(Q) + g(λ)I,

where P,Q ∈ P1(H) are arbitrary mutually orthogonal projections and 0 ≤
λ ≤ µ ≤ 1 are arbitrary numbers. In fact, since Φ leaves the scalar operators
fixed, we infer that g is the identity on [0, 1].

Now define a map Ψ: Bs(H)→ Bs(H) by the formula

(6) Ψ(λP + µQ) = (µ− λ)ψ(Q) + λI = λψ(Q)⊥ + µψ(Q),

where P,Q are mutually orthogonal rank-one projections onH and λ ≤ µ are
arbitrary real numbers. By Lemma 1, Ψ is a spectral order automorphism
of Bs(H). Furthermore, we see that Ψ and Φ coincide on E(H) (and leave
it invariant) and they both fix the scalar multiples of the identity. Consider
Γ = Ψ−1 ◦ Φ. This is again a spectral order automorphism of Bs(H) which
fixes the scalar multiples of the identity and acts as the identity on E(H).
We prove that it is the identity on the whole set Bs(H). Considering Γ on
the set of positive elements of Bs(H) we easily obtain from the discussion
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preceding the present proof that Γ acts as the identity on the set of all
positive elements of Bs(H).

Let B ∈ Bs(H) be arbitrary. There is a scalar 0 > k ∈ R such that B−kI
is positive. Consider the transformation

C 7−→ Γ(C + kI)− kI, 0 ≤ C ∈ Bs(H).

It is easy to see that this is a bijective map on the set of all positive elements
of Bs(H) which preserves the spectral order in both directions and sends
every nonnegative scalar multiple of the identity to itself. We apply the
discussion preceding the proof to see that there is a bijection ϕk : P1(H)→
P1(H) such that

Γ(C + kI)− kI = Θϕk
(C), 0 ≤ C ∈ Bs(H).

If C ≥ −kI, then C+kI ≥ 0 and, because Γ acts as the identity on positive
elements, we have

C = (C + kI)− kI = Γ(C + kI)− kI = Θϕk
(C).

It follows easily that ϕk is the identity. Setting C = B − kI, we obtain

Γ(B)− kI = Γ((B − kI) + kI)− kI = Γ(C + kI)− kI = Θϕk
(C) = C

and this implies Γ(B) = C + kI = B. Therefore, we obtain that Γ equals
the identity on the whole set Bs(H). It follows that Φ = Ψ and having in
mind the definition of Φ we conclude that φ is of the desired form (2). This
proves the necessity part of the theorem. The sufficiency follows just as in
the first part of the proof of Theorem 1. �

Remark. We conclude the paper with some remarks. For any linear sub-
space M of a finite dimensional complex Hilbert space H, let us denote by
PM the orthogonal projection onto M . We recall the following statement
which is a part of Proposition 1 in [6]:

Supposing that H is finite dimensional and T : H → H is a bijective
semilinear operator, for any self-adjoint operator A on H there exists a
unique compactly supported spectral measure ET

A on the Borel subsets of R
such that for any real number t we have

ET
A(−∞, t] = I − PT (rngEA(t,∞)).

Next, define the map ψT : Bs(H)→ Bs(H) by

ψT (A) =

∫
R

λ d ET
A(λ), A ∈ Bs(H).

Theorem 4 in [6] tells us that in the case where 3 ≤ dimH < ∞, the
spectral order automorphisms of Bs(H) are exactly the transformations of
the form

(7) A 7→ ψT (f(A)),

where T : H → H is a bijective semilinear operator and f is a strictly
increasing bijection of R.
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In fact, we learn from the arguments given in [6] that the maps in the
last displayed formula are spectral order automorphisms also in the two-
dimensional case. Now, the question arises if there are spectral order auto-
morphisms in that case which are not of that form. By the following example
we show that if dimH = 2, the group of spectral order automorphisms of
Bs(H) is strictly larger than the collection of all maps of the form (7). To
see this, we first recall that in [10, section 5.2] it was proved that in the case
dimH = 2 there is an orthogonality preserving bijection ψ of P1(H) which
does not leave the transition probability invariant. Consider the transfor-
mation Ψ corresponding to ψ defined by the formula (6). We already know
that Ψ is a spectral order automorphism of Bs(H).

We assert that Ψ cannot be written in the form (7). Assume on the
contrary that there exists a bijective semilinear operator T : H → H and a
strictly increasing bijective map f : R→ R such that Ψ(A) = ψT (f(A)), A ∈
Bs(H). There is a ring automorphism h of C such that for any vector x ∈ H
and for each complex number λ one has

T (λx) = h(λ)Tx.

It is easy to see that for all self-adjoint operators A ∈ Bs(H) one has
ψT (f(A)) = f(ψT (A)). Let x ∈ H be a unit vector. We infer that for
the operator |x〉〈x| ∈ P1(H) the equality

ψ(|x〉〈x|) = Ψ(|x〉〈x|) = f(ψT (|x〉〈x|))

holds true. A straightforward calculation shows that ψT (|x〉〈x|) is the pro-
jection onto the subspace generated by the nonzero vector Tx which means
that ψT (|x〉〈x|) = ||Tx||−2|Tx〉〈Tx|. Since f(ψT (|x〉〈x|)) needs to be a
projection, we deduce that f(||Tx||−2|Tx〉〈Tx|) = ||Tx||−2|Tx〉〈Tx| which
yields the equality ψ(|x〉〈x|) = ||Tx||−2|Tx〉〈Tx|.

Using the orthogonality preserving property of ψ, it follows that T also has
this property, i.e., for any vectors x, y ∈ H we have 〈Tx, Ty〉 = 0 exactly
when 〈x, y〉 = 0. Now choose two mutually orthogonal unit vectors u, v
from H and a complex number λ. Then we clearly have 〈λu+ v, u− λv〉 =
0 and therefore 〈h(λ)Tu + Tv, Tu − h(λ)Tv〉 = 0. Having in mind the
equalities h(1) = 1 and 〈Tu, Tv〉 = 0, we get that ||Tu|| = ||Tv|| and then

we obtain h(λ) = h(λ) which yields h(R) ⊂ R. Since the only nonzero
field endomorphism of R is the identity, we deduce that h is either the
identity or the conjugation on C which implies that T is either linear or
conjugate linear. By the orthogonality preserving property of T , for any
vectors x, y ∈ H with 〈x, y〉 = 0 we have 〈T ∗Tx, y〉 = 0 yielding that T ∗T
is a scalar operator. We then get that T is a positive scalar multiple of
a unitary or antiunitary operator U . Finally, we conclude that ψ(P ) =
UPU∗, P ∈ P1(H) and thus ψ preserves the transition probability which is
a contradiction. Consequently, Ψ cannot be written in the form (7).

One can verify in a similar manner that in the case where dimH = 2, the
group of spectral order automorphisms of E(H) is also strictly larger than



9

in higher dimensions. In fact, one needs to refer to Theorem 3 instead of
Theorem 4 in [6] what we have used above.
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