
More Effective Boilerplate
Removal—the GoldMiner Algorithm

István Endrédy, Attila Novák

Abstract—The ever-increasing web is an important source for
building large-scale corpora. However, dynamically generated
web pages often contain much irrelevant and duplicated text,
which impairs the quality of the corpus. To ensure the high
quality of web-based corpora, a good boilerplate removal
algorithm is needed to extract only the relevant content
from web pages. In this article, we present an automatic
text extraction procedure, GoldMiner, which by enhancing a
previously published boilerplate removal algorithm, minimizes
the occurrence of irrelevant duplicated content in corpora,
and keeps the text more coherent than previous tools. The
algorithm exploits similarities in the HTML structure of pages
coming from the same domain. A new evaluation document set
(CleanPortalEval) is also presented, which can demonstrate the
power of boilerplate removal algorithms for web portal pages.

Index Terms—Corpus building, boilerplate removal, the web
as corpus.

I. THE TASK

WHEN constructing corpora from web content, the
extraction of relevant text from dynamically generated

HTML pages is not a trivial task due to the great amount of
irrelevant repeated text that needs to be identified and removed
so that it does not compromise the quality of the corpus. This
task, called boilerplate removal in the literature, consists of
categorizing HTML content as valuable vs. irrelevant, filtering
out menus, headers and footers, advertisements, and structure
repeated on many pages.

In this paper, we present a boilerplate removal algorithm
that removes irrelevant content from crawled content more
effectively than previous tools. The structure of our paper is as
follows. First, we present some tools that we used as baselines
when evaluating the performance of our system. The algorithm
implemented in one of these tools, jusText, is also used as
part of our enhanced boilerplate removal algorithm. This is
followed by the presentation of the enhanced system, called
GoldMiner, and the evaluation of the results.

II. EXISTING TOOLS

In this section, some relevant boilerplate removal algorithms
are reviewed, which are freely accessible and thus could be
used as evaluation baselines. They contain good ideas, and

Manuscript received on July 31, 2013; accepted for publication on
September 30, 2013.

The authors are with the MTA-PPKE Language Technology Research
Group and Pázmány Péter Catholic University, Faculty of Information
Technology and Bionics, 50/a Práter street, 1083 Budapest, Hungary (e-mail:
{endredy.istvan.gergely, novak.attila}@itk.ppke.hu).

the path of these good ideas are outlined in the following
overview: methods often built on the result of the previous
ones. We reimplemented some of these algorithms in C++, so
that they can be evaluated in a fast and comfortable way.

A. The Body Text Extraction (BTE) Algorithm

The basic insights underlying the BTE algorithm [1] are the
following:

1) the relevant part of the HTML content is usually a
contiguous stretch,

2) the density of HTML tags is lower in it than in
boilerplate content.

Based on these two assumptions, the algorithm performs
a search for the longest stretch of text in which the number
of intervening tags is minimal. The idea is simple, but the
result is often wrong with the algorithm failing to extract the
most relevant part of the content in situations where, contrary
to the tag density assumption, it contains a segment with a
higher tag-to-text ratio. This occurs, for example, if tables are
included or advertisements interrupt the article. In this case, a
significant part of the valuable content (or the whole) may be
lost or replaced by entirely irrelevant content.

B. The Boilerpipe Algorithm

A merit of the boilerpipe [2] algorithm is that its authors
demonstrated experimentally that boilerplate content can be
identified effectively by using a good combination of simple
text properties. They used an annotated training corpus of 500
documents (mainly Google news) to find the most effective
feature combination. They tried to extract articles with the
help of shallow text features, using 8-10 different feature
combinations, and then they evaluated their results. In their
experiments, a combination of word and link density features
gave the best results (its F-measure was: 92%). Furthermore,
the method is very fast and it needs no preprocessing. Both
the training set and the tool can be downloaded.

C. The jusText Algorithm

The jusText algorithm [3] splits HTML content into
paragraphs at block-level tags that are generally used to
partition HTML content into logical units, such as <p>, <td>,
<h1> etc. Using various features of these blocks of text
such as the number of links (an idea from boilerpipe [2]),
words and stopwords, the algorithm performs a rule-based

79 Polibits (48) 2013ISSN 1870-9044; pp. 79–83

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42943984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


classification of the blocks using various thresholds and a
language-dependent list of function words tagging each unit
‘good’, ‘almost good’, ‘bad’, or ‘too short’. The latter tag
applies to units too short to categorize reliably. After initial
classification, ‘almost good’ and ‘too short’ units surrounded
by ‘good’ ones are reclassified as ‘good’. The text to be
extracted consists of all units classified as ‘good’ in the final
classification. The algorithm performs quite well even for
extreme pages.

However, inspection of the corpus generated by using the
jusText algorithm to filter crawled news portals revealed that
many expressions that obviously come from a single article
and should not occur more than once, like The feeding-bottle
is a potential source of hazard, were still extremely strongly
over-represented. Examples in Table I are from a corpus
crawled from Hungarian news portals applying jusText as a
boilerplate removal tool.

TABLE I
EXAMPLES OF PHRASES OVERREPRESENTED DUE TO INADEQUATE

BOILERPLATE REMOVAL

Phrase Occurr.
Utasi Árpi-szerű mesemondó. 10,587
‘Utasi Árpi-like storyteller.’
A cumisüveg potenciális veszélyforrás. 1,578
‘The feeding-bottle is a potential
source of hazard.’
Obama amerikai elnök, 292
‘U.S. President Obama,’
etióp atléta: cseh jobbhátvéd 39,328
‘Ethiopian athlete: Czech right-back’
Barack Obama amerikai elnök 2,372
‘U.S. President Barack Obama’
George Bush amerikai elnök 1,626
‘U.S. President George Bush’

We found that the problem is caused primarily by jusText
failing to eliminate leads of related and recommended articles
and content coming from index pages containing only article
headlines and leads. Leads and headlines of the set of
current articles advertised on every article body page during
the limited time span of the crawl were thus strongly
overrepresented in the corpus.

D. JusText + Onion

JusText [3] was complemented with a post processing tool,
called Onion (ONe Instance ONly), which is for removing
near-duplicate paragraphs from the corpus. It generates a hash
code for each sentence (n-gram of words), and only the
first occurrence in the corpus is kept, others are dropped. It
can be parametrized to drop whole documents or paragraphs
containing duplicated parts. This method effectively decreases
the ratio of duplicated content in the corpus, but it often
decreases the coherence of the individual texts: they will not
be continuous text any more: some parts may be missing from
them.

Whether this is a problem or not depends on the aim of
the corpus to be gathered. If the goal is just to have a huge

collection of sentences, then the available algorithms may
perform well enough, the best choice being most probably the
jusText+Onion combo. But if it is considered a problem that
the title and the lead of an article might be missing while it is
attached to just another recent article, i.e. if the coherence of
the text is important, then a new approach seems to be needed.

E. CleanEval

CleanEval [4] was a boilerplate remover competition held in
2007. The gold standard corpus used at that competition with a
test set of 684 documents is available. The performance of new
algorithms on this corpus can be evaluated using an improved
evaluation script created by Evert [5]: it calculates precision,
recall, F-score, true and false positives and negatives, etc. for
the output of a given algorithm. This makes comparison to
previously published tools possible.

The documents in the CleanEval corpus were prepared
from English and Chinese web pages, which were selected at
random: Google results for the following words were retrieved:
picture, extents, raised, events. Annotators were asked to
remove the boilerplate, and to identify the structure of the
article (title, paragraphs, lists: using the h, p, l tags). This
manually cleaned-up corpus is used as gold standard. The
evaluation is based on Levenshtein edit distance [6], adapted
by substituting ‘token’ for ‘character’. The calculated edit
distance between each pair of cleaned files is divided by the
file length: i.e. the percentage of all tokens from either of the
two files that cannot be matched with a token in the other file.

III. THE GOLDMINER ALGORITHM

The problem of boilerplate removal from web pages
generated by portal engines can be solved more efficiently if
we step up to a level higher than that of individual web pages.
As our first attempts at defining a good general procedure for
identifying unwanted parts of pages were less successful than
expected, we decided to take an optimistic stance and look for
what is good instead of what is bad.

We based our approach on the following observations:
1) The relevant part of the HTML content is usually a

contiguous stretch (see the BTE approach).
2) Within a web domain/subdomain, the internal structure

(the HTML code) of dynamically generated pages
generally contains common patterns that can help us
identify relevant content.

The algorithm takes a sample of the pages of the
domain/subdomain and tries to locate the common patterns in
the HTML code within the sample that identify the beginning
and the end of valuable content. For example, news portals
typically advertise recent and related articles by displaying
their headlines and leads next to the actual article. Although
this usually seems to be relevant content to jusText, it is in fact
just boilerplate content, like menus or advertisements, which
has little or nothing to do with the actual article. Not filtering
them out results in thousands of duplicates in the corpus.

80Polibits (48) 2013 ISSN 1870-9044

István Endrédy, Attila Novák



Fig. 1. An example HTML content with unique and not unique paragraphs

Although, as we have seen, post-crawl de-duplication tools,
like Onion, can remedy this situation by removing duplicate
content, nothing guarantees, however, either that the only
remaining instance of the duplicate content is the one that
is at the right place or that all duplicates should be removed.

The algorithm learns the HTML tags identifying the
beginning and the end of the article for each web
domain/subdomain, and only content within this stretch of the
page is kept. In addition, since it may still be the case that
the body of the article is interrupted with advertisements or
other boilerplate content at several points, it is submitted for
further processing to the jusText boilerplate removal algorithm.
An advantage of this solution is that text from pages with
no article content (thematic index pages, tag clouds, search
page results, etc.) will not be added to the corpus since the
domain-specific HTML tag pattern is not present on them. The
algorithm automatically discards the contents of these pages.
However, all pages are, of course, still used as a source of
URLs for the crawl.

A. A Detailed Description of the Algorithm

The first phase of the crawl of a domain is taking a
sample, which is used to identify the domain-specific HTML
tag pattern. The algorithm downloads a sample of some 100
pages, applying jusText categorization to each page, which

breaks content into paragraphs and evaluates them. Repetitions
of individual extracted paragraphs (identified as ‘good’ by
jusText) over different pages in the sample are identified by
the GoldMiner algorithm, and these paragraphs are reclassified
as bad. Unique paragraphs remain classified as ‘good’. Next,
it finds the nearest common parent HTML tag of the good
paragraphs in the DOM hierarchy on each page. At the end
of the learning phase, the most frequent common good parent
tag is identified as the winner.

We do not usually get optimal results, however, if the
closing tag pair of this parent tag is simply chosen as the tag
marking the end of the article. The span enclosed by the parent
tag pair may contain bad paragraphs, too. In this case, the
algorithm would not find the optimal cutting points. Therefore,
it performs another search for the optimal starting and endpoint
within the content of the previously selected tag, which may
be a series of tags. With the selection of the cutting points,
the learning phase for the domain is finished. As the URL
domain is crawled afterwards, only the content between the
domain-specific beginning and endpoint tag patterns is passed
to the jusText boilerplate removal algorithm. Of course, pages
used during the learning phase are also handled this way.

During the learning phase, GoldMiner uses only pages
where the length of the extracted paragraphs reaches a
threshold. Without using a threshold, it failed to learn the

81 Polibits (48) 2013ISSN 1870-9044

More Effective Boilerplate Removal - the GoldMiner Algorithm



optimal cutting points on some domains where thematic
opening pages are more frequent than pages containing
articles.

B. Illustration of the GoldMiner Algorithm

We present an example in Figure 1 to illustrate the
algorithm.

In the learning phase, for every paragraph that was classified
as ‘good’ by JusText, we check if it is unique or not among
all pages downloaded from the same domain during the first
phase of the crawl. Not unique paragraphs are reclassified as
‘bad’. In this example, unique paragraphs are colored green,
while those classified either by jusText as boilerplate or those
occurring on other pages as well are colored red and marked
by small red dotted arrows.

GoldMiner stores html patterns preceding and following
green paragraphs. The fragment preceding the green span in
the example is:

<label class="screen-reader-text"
for="s">Search</label>

<input type="text" value="search"
/></div>

<div id="content" class="hfeed">

The one following it is:

</em></p>
<div id="jp-post-flair"

class="sharedaddy sd-like-enabled
sd-sharing-enabled">

When the algorithm processed enough pages, it evaluates
the stored patterns: it selects the most frequent uniquely
identifiable pattern preceding and following the article body. In
this example, the best pattern of enclosing tags is highlighted
in blue and marked by bigger solid arrows. The configuration
information learned for the given subdomain contains these
html patterns. The html content of every page is trimmed using
these patterns, only the content between the tags matching the
patterns will be processed. Thus the otherwise unique content
of comments (it also has green color on the picture as it is
deemed ‘good’ by jusText) will be dropped from this page, it
will not be considered part of the article.

IV. EVALUATION

A. Results and Problems on the CleanEval Corpus

JusText and GoldMiner, with and without Onion post-
filtering were tested on the CleanEval test set. As can be
seen in Table II, Onion post-filtering increases precision
while decreasing recall, which results in net reduction of the
balanced F-score.

GoldMiner tries to learn the structure of pages characteristic
of each (sub)domain, and applies jusText only to the part of
the page that is expected to contain a relevant stretch of text.
When comparing the results of GoldMiner with jusText on the

TABLE II
RESULTS ON CLEANEVAL

F-score Precision Recall
justText 93.61% 95.29% 91.99%
justText+Onion 93.24% 95.51% 91.08%
GoldMiner 93.40% 95.32% 91.55%
GoldMiner+Onion 93.08% 95.49% 90.78%
BoilerPipe 83.49% 95.15% 74.38%
BTE 91.09% 90.50% 91.68%

TABLE III
RESULTS ON CLEANPORTALEVAL

F-score Precision Recall
justText 87.26% 78.82% 97.72%
justText+Onion 91.16% 86.48% 96.38%
GoldMiner 98.32% 98.50% 98.15%
GoldMiner+Onion 97.77% 98.48% 97.07%
BoilerPipe 90.68% 92.91% 88.56%
BTE 81.63% 71.20% 95.64%

CleanEval corpus, we do not get consistent improvement. This
is not surprising, though, since this corpus does not contain
more than just 3 to 4 pages from each domain, thus GoldMiner
has no chance to learn anything relevant about the structure
of the pages.

It is worth mentioning that the corpus contains many torso
articles after post-filtering with Onion: Onion often deletes
paragraphs from the middle of the text. This often occurs with
stereotypical sentences that occur many times in the corpus,
like Good Morning! etc., and the text is fragmented without
them. For example 127.txt in the CleanEval gold standard test
set has this text:

<h>An open letter to KPLU
<p>To whom it may concern,
<p>Your radio feature by Kirsten

Kendrick...

JusText keeps these paragraphs, but after post-filtering with
Onion it looks like this:

<h>An open letter to KPLU
<p>Your radio feature by Kirsten

Kendrick

The salutation, “To whom it may concern,” is missing. If
we want to build a coherent text, not just a collection of
independent sentences, the post-filtering performed by Onion
may yield suboptimal results.

Moreover, the CleanEval gold standard sometimes does
contain boilerplate (e.g. in 634.txt, the last <p> item) or
broken words (e.g. 100-102.txt).1 This, and the wish to
demonstrate the power of GoldMiner inspired us to create
a new evaluation set: CleanPortalEval, which contains more
homogeneous sets of pages.

1Serge Sharoff’s reaction (p. c.) to calling his attention to this fact: “Nobody
is perfect.”

82Polibits (48) 2013 ISSN 1870-9044

István Endrédy, Attila Novák



TABLE IV
RESULTS ON 2 000 PAGES FROM VARIOUS NEWS PORTALS

Domain Algorithm Sentences Uniq. snt. % Characters Chr. in uniq. %
origo.hu BTE 60 682 33 269 54% 12 016 560 7 499 307 62%

jusText 58 670 30 168 51% 8 425 059 4 901 528 58%
GMiner 22 475 21 242 94% 3 076 288 3 051 376 99%

nol.hu BTE 154 547 107 573 69% 24 292 755 13 544 130 55%
jusText 186 727 128 782 68% 14 167 718 11 665 284 82%
GMiner 162 674 123 716 76% 12 326 113 11 078 914 89%

index.hu BTE 51 713 26 176 50% 5 756 176 4 061 697 70%
jusText 40 970 29 223 71% 4 371 693 3 441 337 78%
GMiner 13 062 11 887 91% 1 533 957 1 489 131 97%

V. CLEANPORTALEVAL

The wish to demonstrate that the approach implemented in
GoldMiner is superior to a post-filtering approach for the task
of extracting whole articles with minimally compromising the
integrity of the texts prompted us to create a new gold standard
document set. It contains several pages from the same domain
(70 pages from 4 domains), thus it can be used to test the
ability of various algorithms to clean pages generated by portal
engines. Annotation in this gold standard corpus is similar to
that of CleanEval: the output text is annotated using p, h,
and l tags by human annotators. The CleanEval evaluation
script can be applied to this test set without any changes (the
corpus can be downloaded from https://github.com/
ppke-nlpg/CleanPortalEval). The algorithms were
tested on this document set, which yielded the following
results, shown in Table III.

Note that, when testing on an appropriate test set that
contains enough pages with similar structure, GoldMiner
clearly outperforms its rivals both in terms of precision and
recall. Applying Onion post-filtering to the GoldMiner output
decreases not only recall but also precision in this case (test
results can be downloaded from https://github.com/
ppke-nlpg/boilerplateResults).

VI. RESULTS ON SOME PORTALS

Table IV shows the results of the GoldMiner algorithm
compared with that of BTE and jusText on three Hungarian
news portals: origo.hu, index.hu, nol.hu. The sample corpora
quoted in Table IV were generated crawling just the first 2 000
pages from the domains above. Using GoldMiner, the ratio of
duplicates in the corpus was reduced considerably compared
to what other algorithms produced.

The results clearly show that the algorithm effectively
reduces unnecessary duplication in these crawled corpora.
Having not revised these pages manually, however, we have
no estimate of how the different algorithms perform in terms
of the amount/ratio of lost relevant content for these domains.

VII. CONCLUSION

In this paper, a new boilerplate removal algorithm,
GoldMiner, was presented, which can eliminate boilerplate

content from dynamically generated web pages in a more
efficient way than similar available tools: it identifies recurring
HTML tag patterns around relevant content characteristic of
web pages coming from a given domain/subdomain. The
algorithm preserves textual coherence better than the usual
post-filtering de-duplication approach.

A new test document set was created to demonstrate
its performance: previous gold standard corpora did not
contain enough pages from the same domain for the approach
to be applicable. The new gold standard set is called
CleanPortalEval and it is open to the public.

ACKNOWLEDGMENTS

This research was partially supported by the project grants
TÁMOP–4.2.1./B–11/2-KMR-2011-0002 and TÁMOP–4.2.2./
B–10/1-2010-0014.

REFERENCES

[1] A. Finn, N. Kushmerick, and B. Smyth, “Fact or fiction: Content
classification for digital libraries,” in DELOS Workshop: Personalisation
and Recommender Systems in Digital Libraries, 2001.

[2] C. Kohlschütter, P. Fankhauser, and W. Nejdl, “Boilerplate detection
using shallow text features,” in Proceedings of the third ACM
international conference on Web search and data mining, ser. WSDM
’10. New York, NY, USA: ACM, 2010, pp. 441–450. [Online].
Available: http://doi.acm.org/10.1145/1718487.1718542

[3] J. Pomikálek, “Removing boilerplate and duplicate content from web
corpora [online],” Ph.D. dissertation, Masarykova univerzita, Fakulta
informatiky, 2011.

[4] M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff, “Cleaneval:
A competition for cleaning web pages,” in Proceedings of the
Sixth International Conference on Language Resources and Evaluation
(LREC’08), B. M. Nicoletta Calzolari, Khalid Choukri and D. Tapias,
Eds. Marrakech, Morocco: European Language Resources Association
(ELRA), 2008.

[5] S. Evert, “A lightweight and efficient tool for cleaning web pages,” in
Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC’08), B. M. Nicoletta Calzolari, Khalid Choukri
and D. Tapias, Eds. Marrakech, Morocco: European Language Resources
Association (ELRA), 2008.

[6] V. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” Cybernetics and Control Theory, vol. 10, no. 8, pp. 707–
710, 1966, original in Doklady Akademii Nauk SSSR 163(4): 845–848
(1965).

83 Polibits (48) 2013ISSN 1870-9044

More Effective Boilerplate Removal - the GoldMiner Algorithm


