
HunTag3: a general-purpose, modular sequential tagger – chunking phrases in
English and maximal NPs and NER for Hungarian

István Endrédy, Balázs Indig

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
MTA-PPKE Hungarian Language Technology Research Group

50/a Práter Street, 1083 Budapest, Hungary
{endredy.istvan,indig.balazs}@itk.ppke.hu

Abstract
The available statistical tools for sequential tagging, especially for maximal NP (noun phrase) chunking, perform well, and the current
popular methods usually involve CRFs. However, all the freely available tools consist of tightly coupled modules. Combining well-
known methods (HMM, Maximum Entropy, first and second order transition models, beam search, CRFs, different smoothing techniques)
in a general-purpose sequential tagger would help to find the best combination for each language and task. This paper introduces
an updated, modular, universal sequential tagger which is evaluated using combinations of multiple methods for chunking phrases in
English (arbitrary phrase identification) and maximal NPs and NER for Hungarian. Our simple trigram based MEMM solution amended
with enhanced POS categories based on WordNet beat first order CRF for Hungarian NP chunking (best ever F-score 93.59%), but the
same method was slightly outperformed for English.

1. Introduction
As the first step towards the syntactic parsing of sen-

tences, especially if one only needs specific parts of a sen-
tence (in our case Noun Phrases (NP)), it is trivial to divide
the sentence into syntactically linked parts of subsequent
tokens (chunks). In a later step, if needed, one may try to
find the internal structure of these chunks and their rela-
tions. This task is therefore called shallow parsing, which
can be interpreted as sequential tagging. (See Section 2.
for detailed introduction to chunking.)

This kind of labeling is applied in many different tasks
of NLP (e. g. Named Entity Recognition (NER), NP
chunking, POS-tagging). Different methods have been ap-
plied to individual tagging tasks, however, they all share
the same general idea (i.e. to issue one unambigous label
per token). There even exist attempts that apply some well-
known methods to tasks other than they were originally
developed for, like a POS tagger for NP chunking (Brill,
1992), even for loosely related tasks like parsing with a
sequential tagger (shallow parser) (Charniak, 2000).

The available tools, however, consist of a set of tightly
coupled methods, which try to provide a product that ‘just
works’ and might even use the same basic techniques for
NER, POS-tagging and NP chunking (Baldridge, 2005).
Even though a method can be used for many purposes, it
might produce different results. Instead of working with
tightly coupled modules of multiple tools, we introduce a
single tool, HunTag3, that consists of loosely coupled mod-
ules, such as feature generation, pluggable unigram model
(currently maximum entropy), and first- or second-order
transition models using the Viterbi algorithm (for details
see Section 3.), in order to be able to select the appropri-
ate method for the given task and language. Apart from
the features described in Section 4.2. our tool is language-
independent and might be applied to other languages eas-
ily, but demonstrating its performance in other languages
is out of the scope of this paper.

This paper provides the preliminary results (achieved
with the aforementioned tool) of experiments on multiple
chunking tasks in Hungarian and in English in terms of
newly found features as well as the applied methods. We
tested the English dataset also to show that the gain in F-
score compared to our baseline affects the English results
as well, and to compare our method with that of CRF.

We use a specialized variant of TnT (Brants, 2000) in
conjunction with second-order (trigram) transition model
for NP chunking and NER, which greatly outperforms the
original version in NP chunking and its performance is
comparable with the currently popular first-order (bigram)
CRF-based tools (Okazaki, 2007).

2. Background
Chunking, in general, is a fairly standardized task since

the CoNLL-2000 shared task (Tjong Kim Sang and Buch-
holz, 2000) which is the de-facto standard for measuring
and comparing taggers in English. The problem is also
known as IOB tagging of NPs as each chunk can be formu-
lated as a sequence of the following tags: B indicates the
beginning, I the inside and E the end of a (syntactically)
correlated token sequence respectively. Additionally, one
may distinguish the outside (O) of a sought sequence and
sequences that span only one token (S or 1) (for other rep-
resentations see (Shen and Sarkar, 2005). In addition, each
marked sequence has a type that corresponds to the name
of the parsing unit that the syntactic parse would issue. In
general, the task is to assign these labels to tokens cor-
rectly. This idea was successful and made it possible to use
the same formalism to tag Named-Entities in CoNLL-2003
shared task (Tjong Kim Sang and De Meulder, 2003).

2.1. From HunTag to HunTag3: General architecture
Our starting point was an existing tool: HunTag (Rec-

ski, 2014; Recski and Varga, 2009), a general-purpose se-
quential tagger for NLP written in Python 2. This tool was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42943981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


used for NER and NP chunking as well and is the current
state of the art for Hungarian (Simon, 2013). Its architec-
ture enables us to swap modules deep inside the engine
to experiment with other well-known Machine Learning
methods and practices. HunTag combines the linear SVM
classifier (Maximum Entropy) of Liblinear (Fan et al.,
2008) and first-order Hidden Markov Models (bigrams),
which are also called Maximum Entropy Markov Models
(MEMM) in the literature (McCallum et al., 2000).

In response to the increasing shift towards Python 3
as the default Python version, we have rewritten HunTag
in Python 3 and it has been renamed to HunTag3 1. The
Liblinear library was switched to Scikit-learn (LinearRe-
gressionClassifier), a Machine Learning library in Python
(Pedregosa et al., 2011) to enable the possibility to use and
compare other classifiers and to further ease later develop-
ment. The non-standard sparse matrix representation of
Liblinear was switched to sparse matrices of SciPy (Jones
et al., 2001–) in conjunction with arrays of NumPy (Van
Der Walt et al., 2011), two more convenient implementa-
tions of matrices in Python. Pluggable classifiers are only
required to support the sparse matrix type of SciPy as in-
put and to provide probability distribution of labels as out-
put conforming the Scikit-learn API. Differences between
Huntag and HunTag3 are shown in Table 1.

As Scikit-learn currently does not support Conditional
Random Fields (CRF), which overcomes the weaknesses
of MEMMs (Lafferty et al., 2001), we created an interface
in HunTag3 to generate featurized input suitable for inde-
pendent tools like CRFsuite (a first-order CRF learner tool
(Okazaki, 2007)) to be able to compare our results.

We used CRFsuite because it is a fast, reliable and com-
pact CRF implementation. Since it cannot be integrated by
design, the tool required two featurized input files: one for
training and one for testing. Our results concerning CRFs,
which yielded some improvement, are from this program.

For the feature names we followed the data format
of CRFsuite, because it met our requirements, is more
accepted and is more human readable than the original
homebrewed feature name convention of HunTag.

Due to the switching to Scikit-learn library, the re-
quired amount of memory for the training is lowered,
but the training time is increased. Technical changes in
HunTag3 include UTF-8 support and Python 3 support.

3. Trigram on IOB labels
In general, the processing is divided into the follow-

ing steps: the input is first featurized and then it can be
processed either with external tools – where the order of
the transition model is up to the external tool – (see --
toCRFsuite option in the documentation) or internally with
the available methods. When using the internal processing,
the remaining task is divided into two steps: the unigram
and the transition models. In the unigram model, we
favored existing tools and we mainly followed the original
idea of HunTag, as it is discussed in the previous section.

In the transition model for choosing the most probable
IOB sequence in HunTag, the first-order (bigram) Viterbi

1HunTag3’s source code and documentation are available at:
https://github.com/ppke-nlpg/HunTag3

algorithm is used as it is done in other available tools (e. g.
(Finkel et al., 2005) and (Baldridge, 2005)).

We modified it to a pluggable algorithm to ease later
replacement. This made it possible to switch to and fro
between the bigram and the trigram versions, the latter
is using trigrams as formalised in TnT for POS tagging
(Brants, 2000) with additional check for boundary sym-
bols at the end of sentences to prevent ‘loose end’. Our
approach differs from TnT in the lexical probability dis-
tribution (emission) which comes from our pluggable uni-
gram model.

In theory, plain IOB labels do not have many possible
valid transitions to indicate larger window size. But, in
practice, typed and lexicalized IOBES (or SBIEO) labels
do (see (Molina and Pla, 2002)), especially those which
mark adjacent ones, where the boundary is mistaken.

The following two examples demonstrate this problem
for Hungarian. NPs in Table 2 and in Table 3 differ only in
the case markings of their nouns, but the resulted NPs are
a single bigger one in the former case (Table 2), and two
smaller ones in the latter (Table 3) case. These two cases
are commonly mixed up.

NP
DET NOUN.DAT DET NOUN.POSS ADJ
A gyereknek a tolla piros.
The kid the his pen is red.

Table 2: Hungarian example for one NP which contains
two nouns. (The pen of the kid is red.) This sentence con-
tains one NP with two subsequent nouns.

NP NP
DET NOUN.NOM DET NOUN.ACC VERB
A gyerek a tollat fogja.
The kid the his pen grabs.

Table 3: Hungarian example for subsequent NPs which
differ only in the case (The kid grabs the pen.)

We used deleted interpolation for smoothing as Brants
did, but our program is open to evaluate other smoothing
methods. However, smoothing is likely to favor invalid
IOB sequences using plain IOB tags without lexicalizing.
Even if the size of the training set is small, there is still a
high chance to rank up invalid IOB sequences. We report
0 invalid transitions with HunTag3 (see Section 5.2.).

4. Engineering features
The format of the input sentences follows the typical

formalism: each word is in a new line, with tab separated
values (word, stem, pos, any other features), and every sen-
tence ends with an empty line. There can be hundreds of
features per token (even without their combinations). As
a result, the search space is huge. Therefore, manual fea-
ture selection and the fine-tuning of the chunking process
becomes difficult.



HunTag HunTag3
encoding Latin-2 UTF-8
language Python2 Python3
feature matrices cType NumPy/SciPy arrays

unigram model Liblinear
Scikit-learn,

LinearRegressionClassifier
feature naming convention
(featurized input data for external programs) homebrewed CRFsuite format

file format of the configuration homebrewed YAML
memory usage
on Mihaltz’s test/traing splitting (Miháltz, 2011) 4.2GB 4GB (5% lower)

training time
on Mihaltz’s test/traing splitting (Miháltz, 2011) 127min

154min
(18% higher,

due to Scikit-learn)

Table 1: Improvements of HunTag3 compared to HunTag

Our method generated many features into the input,
and used HunTag3 to aid the selection process. We used
manual feature selection during feature development, be-
cause it was important to control and understand the inner
working of assignments between features and labels.

To further aid this process, we developed a new mode in
HunTag3, called most informative features, identical to the
one found in NLTK (Bird et al., 2009). It generates a fea-
ture rank by computing P (feat = val|label) probability
for each <feature, value (with the possibility to consider
negative correlation), label> triplet. Then, the maximum
of this probability will be divided by the minimum for each
feature and finally sorted to get the best candidates.

This output is useful for inspecting feature quality. For
example, this function can show whether value VERB of
the feature POS correlates with a given output label (in
CoNLL-2000 with B-VP) or not. Early elimination of
the useless features (i. e. before training) reduces train-
ing space, which makes the process faster and more light-
weight (even suitable for older machines).

4.1. Word-level features
Word-level features can be very useful for certain word

classes which consist of a single token (e. g. punctu-
ation marks, verbs, OOVs). Although the frequencies of
these classes are low, but still, these word-level features
can be explored and used. Nevertheless, a word (that may
belong to a chunk class that spans multiple tokens) alone
can hardly provide satisfactory information for classifica-
tion, even if it has many features. NP chunking needs the
context, just like humans: nobody can tell whether a word
belongs to an NP tag or not: it depends on the context.

For example, the word dog can be either at the begin-
ning (dog with happy face) or inside (my old dog’s house)
or at the end (my dog) of an NP as well. Additionally, in
English, most nouns have a verb homonym as well, which
makes the task even more complicated (if we do not rely
on POS tagging): “I will dog him for the rest of his life.”

As a result, in most cases, a word alone cannot determ-
ine its own IOB label by using its own features only. It
needs feature sequences of previous and following tokens.
HunTag has an option to create a custom Python function

which builds these feature sequences with arbitrary size
and content. This makes it possible to easily create fea-
tures for an arbitrary language or formalism. The same
method can be applied not only in MEMMs, but in CRFs:
it is called graphical features, and it is used for example for
German NP chunking (Roth and Clematide, 2014).

Naturally, as the size of the context window increases,
the search space and running time of the training process
do as well. It is not necessary to emit every n-gram of
features, but specific features should be defined for special
cases. We handle more than 2 million features in our pro-
gram for Hungarian chunking. However, feature selection
may cause overfitting, therefore a 10-fold cross validation
was done to verify the significance of the results.

4.2. Useful features for Hungarian
In Hungarian, NPs can stand at any position of the sen-

tence, even next to each other. Our error analysis (based
on the classification of 150 randomly sampled errors) has
shown, that a typical type of error was to join two different
NP chunks at two neighbouring nouns, despite their differ-
ent case markings. We found that the relations of neigh-
bouring chunks are at least as important in terms of IOB
tags as the relations of POS-tags and NPs.

Therefore, an explicit feature was assigned when
a noun has different case marking from its adjacent
noun. Second, when investigating false negative errors
of HunTag (chunks not detected correctly), we found that
possessors and their possessees are often missed. Ac-
cordingly, a feature was introduced which creates a part-
of-speech sequence that connects possible possessors and
possessees when a word has the possessor tag in its part-
of-speech category. Similar ideas were evaluated recently
without success in German (Roth and Clematide, 2014).

We also defined other language-specific features based
on Hungarian grammatical behaviour of NPs. First of all,
the last determinant feature: each word gets a feature with
the sequence of the part-of-speech tags from the last de-
terminant (if there was any). Second, in the MSD form-
alism the POS tag for participles did not differ from that
of adjectives. A different tag was assigned for each occur-
rence manually, because these words behave differently.



Some of these ideas were transferred to English as well.

4.3. WordNet helps to define new features
Several types of features were used to augment the

original set of part-of-speech tags. Features were extrac-
ted from the MetaMorpho rule-based translation system
(Novák et al., 2008), such as countable/uncountable, an-
imate or not, abstract or not, etc.

The basic idea was to define good features which emit
mostly the same IOB labels. WordNet (Miller, 1995;
Miháltz et al., 2008) was used to define such new features
automatically. First, hyponyms of each word were gen-
erated as features. Second, the most informative features
function was used to list features that would be useful for
IOB purposes. Positive correlations with labels for English
on the CoNLL-2000 dataset can be seen in Table 4.

WN synset freq. connected
iob labels rates

mister.n.01 785 B:767 / I:18 B:98% / I:2%
nation.n.03 63 I:63 I:100%
number.n.11 90 B:1 / I:89 B:1% / I:98%
country.n.04 67 B:1 / I:66 B:1% / I:99%
period.n.05 84 B:2 / I:82 B:2% / I:98%
day.n.10 186 B:7 / I:179 B:4% / I:96%
month.n.02 273 B:9 / I:264 B:3% / I:97%

Table 4: Examples for feature suggestions generated from
WordNet (English on the CoNLL-2000 dataset)

If a WordNet synset correlates with an IOB label, then
it can be used as a new feature or as a refined ‘POS cat-
egory’ for IOB labeling. For instance, the category of
nouns can be divided into finer categories (noun nation,
noun country, etc.) on demand, where it is desirable.

These WordNet suggestions were generated for Hun-
garian too, and were used as new features. But these sug-
gestions can also be reviewed by linguists, motivating them
to refine POS categories to be more IOB friendly.

5. Results
5.1. English chunking

The current English state-of-the-art tagger is SS05
(Shen and Sarkar, 2005), which achieves an F-score of
94.01% on the CoNLL-2000 dataset (Tjong Kim Sang and
Buchholz, 2000). This dataset was used to evaluate the
modified tagger engine on arbitrary phrase identification.
Overall, HunTag3 performed better than HunTag, but both
of them were slightly outperformed by CRFsuite. During
the cross validation, all three methods turned out to be sig-
nificantly different according to the t-test. Still, CRFsuite
could not beat the state of the art (SS05) (see Table 5).

The ranking of the methods involving HunTag3 in this
test differs from those described in Sections 5.2. and 5.3. In
this test, applied to English chunking, CRF performed best,
but it is achieved by a certain constellation of the modules
in HunTag3. However, introducing modularity has the be-
neficial effect that each module can be switched easily de-
pending on the actual task and language. Thus, further res-

ults are produced by different, task- and language-specific,
use of the modules in our program.

method F-score (%)
HunTag 91.38
HunTag3, CRFsuite 93.42
HunTag3, bigram 92.79
HunTag3, trigram 93.41
SS05 (state of the art) 94.01

Table 5: Results of HunTag3 in English with CoNLL-2000
compared to HunTag. (The state of the art is also listed.)

5.2. Hungarian chunking
In Hungarian, the current state-of-the-art chunker is

HunTag (Recski, 2014; Recski and Varga, 2012), which
uses the KR tagset (Kornai et al., 2004) and yields 90.28%
F-measure (2nd column of Table 6). This was the baseline
in our tests. Hungarian test data are based on the Szeged
Treebank (Csendes et al., 2005), the biggest Hungarian
manually annotated (MSD morphosyntactic descriptions
(Erjavec, 2010)) corpus which contains about 80,000 sen-
tences with 326,000 annotated maximal NP chunks.

Tagging systems can be compared if they work on
the same corpus, with the same training/test set split-
tings, and also with the same part-of-speech tagset. There-
fore, a different train/test set splitting from a previous NP
chunker comparison for Hungarian based on the MSD tag-
set (Miháltz, 2011) was tested as well, which was reused
to be able to compare the results (1st column of Table 6).

In all tests, IOBES labels were used in conjunction with
the original chunk types conforming to the referred papers.
We optimized the features on a development set, which
is a held-out set of 10% from the training set. Using tri-
grams and smoothing, we achieved some gain in F-scores
and window size three produced the best results for Hun-
garian on the previously used train/test splittings.

Our best F-score, which is the state-of-the-art score
so far was 93.59% on Miháltz’s test set (Miháltz, 2011)
(see 1st column of Table 6). Our detailed experiments on
the MSD dataset show that the most notable improvement
was the correct recognition of neighboring chunks. The
features mentioned in Section 4.2. alone increased the F-
score with 1.70% (3rd column of Table 6). This result con-
firmed our hypothesis to look for new categories sugges-
ted by WordNet (Section 4.3.). The rewritten HunTag3 en-
gine itself resulted in 0.19% improvement in average (2nd
column of Table 6). We evaluated the original TNT as
well, to compare it to our methods. In agreement with the
previous English results (Shen and Sarkar, 2005), TNT is
greatly outperformed by HunTag3 with trigram for Hun-
garian. In each train/test we measured the best score with
HunTag3 and trigrams on IOBES labels. Despite the res-
ults for English, CRFsuite did not produce better F-score
for Hungarian (5th and 6th row of Table 6). The number
of inconsistent IOB sequences were 0 in all tests based on
the MSD dataset (1st column of Table 6).

A 10-fold cross-validation was done to examine the



method

train/test

MSD KR KR
+Sect. 4.2.

TNT 68.52 70.95 -
prev. results by others 81.71 88.72/90.28 -
HunTag (baseline) 93.20 88.96 90.78
HunTag3, bigram 93.43 89.10 90.72
HunTag3, trigram 93.59 89.83 91.50
HunTag3, CRFsuite 92.27 89.12 89.77

Table 6: Hungarian results on Szeged Treebank, F-scores
with various POS tags and test sets. The best results were
reached with the help of new POS category suggestions,
and explicit features against typical HunTag mistakes

validity of our best results on MSD tagset. It showed
the following average F-scores: HunTag: 86.9±4.9%,
HunTag3 with CRFsuite: 89.2±3.8%, HunTag3 with bi-
gram: 90.1±3.7% and HunTag3 with trigram: 90.3±3.8%.
These results have the same trend as Table 6, however,
the differences are significant only between CRFsuite and
HunTag3 with bigram (according to the t-test).

5.3. Hungarian NER
HunTag3 was evaluated on the Szeged NER corpus

(Szarvas et al., 2006) as well (tokens: 226,000, NE:
14,500). We used previous HunTag results as a baseline
(Simon, 2013), with the same development set, and 10-
fold cross-validation on the test set, omitting the devel-
opment set. All the aforementioned methods were tested.
First, with Simons’s original featuresets, which include a
reduced featureset suggested by Simon that yields better
results on the test set. Second, the featuresets were aug-
mented with our features (Section 4.2.).

Our results show that on the development set, the best
method is trigrams. With the same features applied to the
test set, our features have no effect. However, on the cross-
validated test set, the bigram solution has turned out to be
the best. Significance test showed no difference between
the updated methods, but compared to the baseline, there
is a significant improvement. Our features have slight over-
all negative effect on performance. However, all meth-
ods have outperformed the original HunTag version (de-
tails can be seen in Table 7).

5.4. Discussion
Previously, HunTag was used as a flexible, open

source sequential tagger for maximal NP chunking and
NER achieving the state-of-the-art performance on Hun-
garian. We updated the codebase and fine-tuned the en-
gine (HunTag3, bigram), updated to use trigrams in a TnT-
like manner (HunTag3, Trigram), made it ready to use
with CRFsuite (HunTag3, CRFsuite) and added new fea-
tures in two steps. First, automatically generated ones
from resources (WordNet and MetaMorpho), then gram-
mar oriented ones from manual analysis of the errors of
HunTag. The program is now capable of feature evaluation
and is open to test different algorithms easily. We tested

the aforementioned methods on multiple training/test set
combinations, in some cases with 10-fold cross validation
for the Hungarian NP chunking, NER tasks and English
chunking. The latter is included to show the performance
of our tool compared to CRFs, when applied to an other
language.

In all tests for Hungarian, the CRF method was outper-
formed by HunTag3, however, for English CRF has turned
out to be significantly better by 0.01%, but still cannot beat
the state of the art. We can clearly conclude that the reim-
plemented HunTag3 has outperformed HunTag. For differ-
ent tasks in Hungarian, different methods turned out to be
the best: for NP chunking, the trigram solution augmen-
ted with our features reached the best score (3% improve-
ment), however, for NER, the bigram version achieved the
best results, and our features had no or negative effect.

Acknowledgments.
We would like to express our gratitude to Dr.

Nóra Wenszky and Borbála Siklósi for their constructive
proofreading during the writing of this article.

6. References
Baldridge, Jason, 2005. The OpenNLP project.
Bird, Steven, Ewan Klein, and Edward Loper, 2009. Nat-

ural language processing with Python. O’Reilly Media,
Inc.

Brants, Thorsten, 2000. TnT: a statistical part-of-speech
tagger. In Proceedings of the sixth conference on
Applied natural language processing. Association for
Computational Linguistics.

Brill, Eric, 1992. A simple rule-based part of speech tag-
ger. In Proceedings of the workshop on Speech and Nat-
ural Language. Association for Computational Linguist-
ics.

Charniak, Eugene, 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st North American
chapter of the Association for Computational Linguist-
ics conference. Association for Computational Linguist-
ics.

Csendes, Dóra, János Csirik, Tibor Gyimóthy, and András
Kocsor, 2005. The Szeged Treebank. In Lecture Notes
in Computer Science: Text, Speech and Dialogue.
Springer.

Erjavec, Tomaž, 2010. Multext-east version 4: Multilin-
gual morphosyntactic specifications, lexicons and cor-
pora. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk,
Stelios Piperidis, Mike Rosner, and Daniel Tapias (eds.),
Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10). Val-
letta, Malta: European Language Resources Association
(ELRA).

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin, 2008. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874.

Finkel, Jenny Rose, Trond Grenager, and Christopher
Manning, 2005. Incorporating non-local information
into information extraction systems by Gibbs sampling.



features

method
HunTag HunTag3,

CRFsuite
HunTag3,
Bigram

HunTag3,
Trigram

best features on the development set
- Simon’s full featureset

test set 89.37 ± 4.29 97.17 ± 1.58 97.70 ± 1.32 97.32 ± 1.48
devel set 85.83 87.99 97.25 97.87

best features on the test set
- Simon’s reduced featureset

test set 89.40 ± 4.43 96.75 ± 1.67 97.75 ± 1.30 97.29 ± 1.51
devel set 85.83 87.58 97.34 98.05

best features on the development set
+ sect. 4.2. - Our full featureset

test set - 96.57 ± 2.02 97.43 ± 1.50 97.06 ± 1.56
devel set - 93.22 97.24 96.98

best features on the test set
+ sect. 4.2. - Our reduced featureset

test set - 96.72 ± 1.87 97.45 ± 1.42 97.06 ± 1.53
devel set - 81.37 97.34 98.05

Table 7: NER results of HunTag3 in Hungarian with 10-fold cross-validation tests

In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. Association for
Computational Linguistics.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al., 2001–.
SciPy: Open source scientific tools for Python.

Kornai, András, Péter Rebrus, Péter Vajda, Péter Halácsy,
András Rung, and Viktor Trón, 2004. Általános célú
morfológiai elemző kimeneti formalizmusa (The out-
put formalism of a general-purpose morphological ana-
lyzer). In Proceedings of the 2nd Hungarian Computa-
tional Linguistics Conference.

Lafferty, John, Andrew McCallum, and Fernando CN
Pereira, 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

McCallum, Andrew, Dayne Freitag, and Fernando CN
Pereira, 2000. Maximum entropy Markov models for
information extraction and segmentation. In ICML,
volume 17.

Miháltz, Márton, 2011. Magyar NP-felismerők össze-
hasonlı́tása (Comparing Hungarian NP-chunkers).

Miháltz, Márton, Csaba Hatvani, Judit Kuti, György Szar-
vas, János Csirik, Gábor Prószéky, and Tamás Váradi,
2008. Methods and results of the Hungarian WordNet
project. In Proceedings of the Fourth Global WordNet
Conference. GWC.

Miller, George A, 1995. WordNet: a lexical database for
English. Communications of the ACM, 38(11):39–41.

Molina, Antonio and Ferran Pla, 2002. Shallow pars-
ing using specialized HMMs. The Journal of Machine
Learning Research, 2:595–613.

Novák, Attila, László Tihanyi, and Gábor Prószéky, 2008.
The MetaMorpho translation system. In Proceedings
of the Third Workshop on Statistical Machine Transla-
tion, StatMT ’08. Stroudsburg, PA, USA: Association
for Computational Linguistics.

Okazaki, Naoaki, 2007. CRFsuite: a fast implementation
of Conditional Random Fields (CRFs).

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Du-
bourg, et al., 2011. Scikit-learn: Machine learning in
Python. The Journal of Machine Learning Research,
12:2825–2830.

Recski, Gábor, 2014. Hungarian noun phrase extraction

using rule-based and hybrid methods. Acta Cybernetica,
21(3):461–479.

Recski, Gábor and Dániel Varga, 2009. A Hungarian NP
Chunker. The Odd Yearbook. ELTE SEAS Undergradu-
ate Papers in Linguistics:87–93.

Recski, Gábor and Dániel Varga, 2012. Magyar főnévi
csoportok azonosı́tása (Identifying Hungarian noun
phrases). Általános Nyelvészeti Tanulmányok:81–95.

Roth, Luzia and Simon Clematide, 2014. Tagging Com-
plex Non-Verbal German Chunks with Conditional Ran-
dom Fields. Universitätsbibliothek Hildesheim.

Shen, Hong and Anoop Sarkar, 2005. Voting between mul-
tiple data representations for text chunking. In Balázs
Kégl and Guy Lapalme (eds.), Advances in Artificial
Intelligence, 18th Conference of the Canadian Society
for Computational Studies of Intelligence, Canadian AI
2005, Victoria, Canada, May 9-11, 2005, Proceedings,
volume 3501 of Lecture Notes in Computer Science.
Springer.

Simon, Eszter, 2013. Approaches to Hungarian Named
Entity Recognition. Ph.D. thesis, Budapest University
of Technology and Economics Budapest.

Szarvas, György, Richárd Farkas, László Felföldi, András
Kocsor, and János Csirik, 2006. A highly accurate
named entity corpus for Hungarian. In Proceedings of
International Conference on Language Resources and
Evaluation.

Tjong Kim Sang, Erik F. and Sabine Buchholz, 2000. In-
troduction to the CoNLL-2000 shared task: Chunking.
In Proceedings of the 2nd Workshop on Learning Lan-
guage in Logic and the 4th Conference on Computa-
tional Natural Language Learning - Volume 7, CoNLL
’00. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics.

Tjong Kim Sang, Erik F and Fien De Meulder, 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of the seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4. Association for Compu-
tational Linguistics.

Van Der Walt, Stefan, S Chris Colbert, and Gaël
Varoquaux, 2011. The NumPy array: a structure for ef-
ficient numerical computation. Computing in Science &
Engineering, 13(2):22–30.


