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Abstract 

In this study trichloroethylene (TCE) removal from model solutions and groundwater by 

ferrate treatment was investigated applying different initial TCE concentrations, ferrate 

dosages and pH values. TCE concentrations were measured both in the vapor and liquid 

phases of water samples with head space gas chromatograph mass spectrometer (HS/GC-MS) 

and solid phase micro-extraction gas chromatograph mass spectrometer (SPME/GC-MS) 

systems, respectively. Analytical data obtained by these methods were in good agreement and 
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the deviations changed in the range of 1 and 7%. The optimum pH value for the ferrate 

treatment was pH=7. Applying ferrate in concentration of 50 mg/L for treatment of model 

solutions with TCE concentration of 0.1 and 1.0 mg/L (FeO4
2-

/TCE molar ratios 500 and 50), 

the removal efficiency values were 97 and 74%, respectively. However, in case of 

groundwater having the same TCE concentrations but additionally 28 mg/L organic carbon 

content, the removal efficiency decreased to 42 and 36%. It means the necessary ferrate 

dosage considerable depends on the chemical composition of contaminated groundwater to be 

treated.  



 

1. Introduction 

 

Trichloroethylene (TCE) is a potentially carcinogenic and volatile organic chlorinated 

hydrocarbon (VOC), which have been used for several industrial purposes such as paint 

stripper, metal degreaser, chemical intermediate, and industrial cleaning agent. Due to its 

long-term and widespread applications, TCE became a typical contaminant both in surface 

and groundwater (Aulenta et al. 2005; Löffler et al. 2006). 

For quantitative determination of TCE in different water matrices several sample-preparation 

and analytical methods are available. USEPA 551.1 Standard Method prescribes the 

application of liquid-liquid extraction (LLE) with methyl-tert-butyl ether or pentane. For 

analysis gas chromatograph (GC) coupled with electron capture detector (ECD) or mass 

spectrometer (MS) are recommended (Munch et al. 1995). LLE with diethyl-ether and GC-

MS were used to quantify TCE concentration in drinking water (Brown et al. 2003). Due to its 

high volatility, TCE can simply be determined with headspace (HS) GC technique or 

following an enrichment by solid phase micro extraction (SPME) also with GC introducing 

the loaded SPME fiber directly into the GC-injector port. These analytical techniques can be 

characterized with detection limits of 0.01-0.02 µg/L. (Peccorino et al. 2008; Gonzalo et al. 

2008) 

Over the past few decades for removal of TCE from water matrices several technologies 

based on biodegradation and chemical oxidation (ozone, persulfate, ferrate) have been 

developed. Mészáros et al. applied Sulfurospirillum halorespirans and Dehalococcoides sp. 

communities for biodegradation of TCE in groundwater. 95% removal efficiency was achived 

and as by-products vinyl-chloride and ethane were detected (Mészáros et al. 2013). 

Ozonization combined with γ–radiation was also successfully applied to remove TCE from 

drinking water with efficiency of 98% (Gehringer et al. 1988). Liang et al. published three 

papers in topic of TCE removal applying activated persulfates. Depending on the activation 

way the TCE degradation rate changed from 65 to nearly 100 % in case of model solutions 

(Liang et al. 2003; Liang et al 2004a; Liang et al. 2004b). Although an efficient degradation 

of target molecules can be achieved by oxidation technologies mentioned above, the possible 

by-products remain in the treated solutions. Therefore it is recommended to apply an 

adsorption stage (e.g. filtration through activated carbon column) after oxidation.  

Ferrate technology offers a simple way for water treatment by combination of oxidation and 

coagulation processes (Jiang et al. 2002; Lee et al. 2004; Jiang et al. 2007). The applicability 



of ferrate for removal of heavy metals (Lim et al. 2010), cyanide (Lee et al. 2009) , hydrogen 

sulfide (Sharma et al. 1997), ammonia (Sharma et al. 1998), arsenic (Lee et al. 2003) or 

organic contaminants e.g. biphenol-A (Li et al. 2008), carbohydrates (Sharma et al. 2012), 

phenol and chlorophenols (Graham et al. 2004), pharmaceutical residues (Sharma et al. 2006), 

personal care products (Yang et al. 2012) was demonstrated in the literature. It should be 

emphasized that the removal efficiencies were highly dependent on the testing conditions, the 

chemical properties of target molecules and the water matrix. 

Only a few studies have been dealing with the removal of TCE by ferrate from aquatic 

solutions. DeLucca et al. investigated the TCE removal from model solutions containing 0.5 

meq/L NaHCO3, about 1.0 mg/L total organic carbon (TOC) and 0.1: 0.32 and 1.0 mg/L TCE 

by means of potassium ferrate added in concentration of 10, 20 or 30 mg/L at pH 8.3. At 

FeO4
2-

/TCE molar ratio of 182:1 the ferrate oxidation-coagulation processes followed by gas 

(N2) flocculation resulted in practically a full removal of TCE (DeLucca et al. 1983). 

However, it should be noted, that during the gas flocculation a considerable amount of TCE 

could be volatilized. The study of Graham et al. was focused on the influence of pH on the 

degradation of TCE as a non-dissociating compound, by potassium ferrate in the K2FeO4/TCE 

molar ratio range of 1:1 to 9:1. It was established that the extent of degradation achieved a 

maximum at pH 8 and about 85% of TCE was removed at molar ratio of 9:1. The lower 

degradation of TCE in acid or neutral conditions, where the oxidation potential of the ferrate 

is high, was explained by the high rate of ferrate decomposition. (Graham et al. 2004) 

Nam et al. studied TCE degradation rate in model solutions with electrochemically generated 

ferrate at various pH values. According their results in case of 1.0 mg/L initial TCE 

concentration the removal efficiency was 64% applying potassium ferrate in concentration of 

17 mg/L FeO4
2-

/TCE molar ratio 17:1 at pH=7 and treatment time of 30 minutes. As 

intermediate products ethyl chloride, dichloroethylene, chloroform, 1,1-dichloropropene, 

trichloroacetic acid, trichloroethane, and as end product Cl
-
 were identified (Nam et al. 2012).  

In this work TCE removal from model solutions and spiked groundwater obtained from a 

chlorinated hydrocarbons contaminated area was studied using potassium ferrate solution 

generated by electrochemical reactions. Our goal was to develop a technology based on 

oxidation-coagulation processes for treatment of polluted groundwater and to select an 

appropriate analytical method to follow the TCE degradation comparing the HS-GC-MS and 

SPME-GC-MS methods. Since the contaminated groundwater has a relatively high total 

organic carbon content which also consumes the ferrate reagent, in our experiments a higher 

ferrate /TCE ratios were selected than in the papers mentioned above.   





2. Materials and Methods 

 

2.1. Chemicals 

All chemicals used during the experiment were of analytical grade. Trichloroethylene was 

purchased from Sigma Aldrich Ltd., Hungary, and for its dissolution ultrapure water was used 

produced by Milli Q Plus equipment. Potassium ferrate solution was produced by 

electrochemical process in our laboratory. For pH adjustment sulfuric acid solution and to 

regulate the buffer capacities of model solutions sodium-hydrogen-carbonate were applied. 

 

2.2. Solution preparation and handling 

Model solutions containing TCE in concentration of 0.1 and 1.0 mg/L were prepared by using 

ultrapure water and trichloroethylene. In order to achieve a similar buffer capacity of these 

solutions to the groundwater, sodium hydrogen carbonate was added in concentration of 600 

mg/L to these model solutions. In this way similar inorganic carbon content was set for both 

systems. Groundwater was filtered through a glass membrane (Millipore, 0.45 µm), and 

analyzed by methods listed in 2.4 subchapter. Since TCE was not detectable in the 

groundwater containing several other chlorinated hydrocarbons, TCE was added to this 

groundwater resulting in concentration of 0.1 and 1.0 mg/L. After this process 10 cm
3
 of each 

water sample was transferred into a septum sealed vial with volume of 20 cm
3
.  

 

2.3. Analytical instruments and operating conditions 

The analysis was carried out by a Bruker SCION 436 GC-MS system, equipped with a SHS-

40 headspace autosampler. Separation of the compounds was obtained on a BR-5 column (30 

m × 0.25 mm, df=1 µm) using helium (purity: 6.0, which means He of: 99.9999%) as carrier 

gas (flow rate 2 ml/min). The temperature of manifold, filament and transfer line was 40°C, 

200°C, 220°C, respectively. Analytical measurements were performed in scanning mode 

(m/z: 50–500). 

TCE concentration in the vapor phase was determined applying headspace autosampler. To 

achieve a steady state distribution of analyte between the vapor and liquid phase the sample 

was thermostated at 40°C for 1 minute and 1 cm
3
 vapor sample was injected to the GC-MS 

system. Column temperature program started at 60°C maintained for 6 minutes, then ramped 

at 10°C/min up to 100°C (total elution time was 10 minutes). Injector temperature and split 

ratio were 250°C and 1/10, respectively. 



TCE concentration in liquid phase was measured applying SPME fibers (Supelco, PDMS, 100 

µm). Before the first application, SPME fiber was conditioned in the GC-MS injector port at 

250°C for 30 min. After that the SPME fiber was introduced into the septum sealed vial 

containing 10 cm
3
 water sample and immersed into the solution at room temperature for 5 

minutes, then directly injected to the GC-MS port. Between each measurement the SPME 

fiber was conditioned at 250°C for 5 minutes. GC-MS temperature program started at 40°C 

maintained for 0.75 minutes, then ramped at 20°C/min up to 160°C (total elution time was 

6.75 min). Injector temperature was 230°C and splitless mode was used. 

 

2.4. Chemical analysis of groundwater 

The groundwater was obtained from a hydrocarbon contaminated area and before the 

treatment process its physico-chemical parameters were determined according to standard 

methods. Total inorganic carbon (TIC), total organic carbon (TOC), as well as total nitrogen 

(TN) concentrations were measured by applying a Multi N/C 2100S TC-TN analyzer 

(Analytik Jena, Germany) equipped with a non-dispersive infrared detector (for C) and a 

chemiluminescent detector (for N) according to the valid international standards (EN ISO 

5667-3:1995 and MSZ EN 12260:2004). Specific electric conductivity and pH were 

characterized according to standard methods. (APHA, AWA, WEF 2005) Organic 

hydrocarbon content of the groundwater was identified according to HS/GC-MS method as 

mentioned in subchapter 2.3. 

 

2.5. Ferrate treatment 

10 cm
3
 model solutions or spiked groundwater having 0.1 or 1.0 mg/L initial TCE 

concentrations were introduced into septum sealed vials. After that calculated amount of 

ferrate solution was added to these water samples by using an injection syringe resulting in 

10, 20, 30 and 50 mg/L ferrate concentrations. Similar manner the pH was adjusted to 3, 5, 7, 

9 or 11 by addition of sulfuric acid and the solutions were agitated with Teflon coated 

magnetic stirrer bar for 30 minutes. After 1 minute stabilization time the TCE concentration 

was measured in the vapor phase by HS-GC-MS. The TCE determination in the liquid phase 

by SPME-GC-MS method needed 15 minutes for sedimentation of the reduced Fe(III) 

compounds.  

 



3. Results and discussion 

 

3.1. Chemical analysis of groundwater 

Before ferrate treatment the physical-chemical parameters of groundwater: total inorganic 

carbon, total organic carbon, total nitrogen, pH, specific electric conductivity were determined 

according to standard methods. Analytical data are listed in Table 1. As main organic 

hydrocarbon contaminants: 1.1 dichloroethylene, 1.2-cis dichloroethylene and 1.2-trans 

dichloroethyelene were identified according to above mentioned HS/GC-MS method in 

subchapter 2.3. 

 

3.2. Optimum pH value establishment of ferrate treatment 

In order to establish the optimum pH for the ferrate treatment, model solutions having 0.1 

mg/L were reacted with ferrate at different concentration and pH (see subchapter 2.5). TCE 

concentration in the treated solutions was measured by HS/GC-MS technique. The removal 

efficiencies obtained at various pH values and ferrate concentration are presented in Fig. 1. 

It can be established that the highest removal efficiency values were achieved at pH=7 and the 

concentration of ferrate had only moderate influence on the TCE removal in the pH range 5-9.  

However, at pH=3 and 12, were the ferrate compounds is instable or even stabilized, 

respectively, the increasing ferrate concentration resulted in higher removal efficiency of 

TCE. Considering these results all further ferrate treatments were carried out at pH=7.  

 

3.3. TCE removal from model solutions 

Model solutions having 0.1 and 1.0 mg/L TCE initial concentrations were prepared as 

mentioned in subchapter 2.2, and treated by ferrate at concentration of 10, 20, 30, 50 mg/L 

applying intensive magnetic stirring for 30 minutes at pH=7. After the oxidation process TCE 

residues was measured both in the vapor and the liquid phase. The removal efficiency values 

are illustrated in Fig 2. These analytical data demonstrate the excellent analytical features of 

the HS and SPME sampling procedures for determination of TCE. At 20 mg/L
 
ferrate and 0.1 

mg/L
 
TCE concentrations 97 and 96% removal efficiencies were measured applying these 

analytical methods. Increasing the TCE concentration to 1.0 mg/L the removal efficiency 

decreased to 74 and 73% following the same ferrate treatment. It means it is not 

recommended to use higher ferrate concentration than 20 mg/L.  

 



3.4. TCE removal from groundwater 

After chemical analysis and filtration of groundwater as mentioned in subchapter 2.2, the 

water samples were spiked with TCE similarly to the model solutions. Ferrate treatment 

process was carried out under the same conditions as in the case of model solutions. The 

residues of TCE were measured both in the vapor and liquid phases. The analytical results are 

presented in Fig 3. 

It can be seen, that in presence of organic matrix compounds the TCE removal increased 

contrary of model solution treatment, adding more ferrate dosages, higher TCE removal can 

be achieved. Results demonstrate, that samples having 0.1 mg/L initial TCE concentration, in 

the vapor- and liquid phases removal efficiency were 42%, and 41% by adding 50 mg/L 

ferrate dosage. Applying one magnitude higher TCE concentration and using same 

circumstances the degradation rate were 35% and 38%, respectively. It can be seen, that in 

case of samples having 0.1 mg/L TCE concentration, higher removal can be achieved but it 

should be emphasized, that this rate is lower than in case of model solution. It can be also 

concluded, that similarly to treatment of model solutions the vapor and liquid phase 

measurements also correlated with each other. 

 

3.5. Comparing TCE removal efficiencies obtained for model solutions and spiked 

groundwater 

In Fig 4. TCE removal efficiencies are presented applying 50 mg/L ferrate concentration for 

treatment of model solutions and spiked groundwater having two different initial TCE 

concentrations. 

It can be stated, that the removal efficiency decreased with increasing concentration of 

analyte. For example the reduction of ferrate/TCE concentration ratio from 500 to 50 resulted 

in removal efficiency from 97 to 74% in case of model solutions. However, this picture 

became more sophisticated in presence of dissolved organic and inorganic compounds which 

also consume the oxidation agent. Therefore the estimation of the necessary amount of ferrate 

for a successful purification procedure of contaminated groundwater needs a preliminary 

analytical investigation. First of all the TOC content plays a decisive role.  



4. Conclusion 

 

Experimental data showed that both the HS/GC-MS and the SPME/GC-MS are appropriate 

analytical techniques to follow the concentration changes of TCE both in the contaminated 

and the ferrate treated groundwater samples. Comparing TCE removal from model solutions 

and groundwater samples, it can be concluded, that the organic groundwater matrix hampers 

the degradation of target molecules by oxidation. This phenomenon can be attributed to 

contaminants with similar or higher electron donor capacity than TCE. In order to develop an 

environmental friendly ferrate treatment technology for removal of TCE from contaminated 

groundwater in the next step the chlorine containing by-products will be identified and the 

chlorine balance will be calculated.  

 

CVMBNCV,BNDFJKLGHDFLHDFLmdvndfkljbndfjklghfjkldbhoébhgtbjugfotlodfgjhjghjkl

kjhhgfjfksdl 

 

 



References 
 

APHA, AWWA, WEF (2005). Standard Methods for the Examination of Water and 

Wastewater, 21st ed. American Public Health Association, Washington, DC. 

 

Aulenta F, Bianchi A, Majone M, Papini P M, Potalivo M, Tandoi V (2005) Assesment of 

natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in 

Italy: a microcosm study. Environ Int 31: 185─190. 

 

Brown D S, Dixon M A, Bruckner V J, Bartlett G M (2003) A validated GC-MS assay for the 

quantitation of trichloroethylene (TCE) from drinking water. Int J Environ An Ch 83: 

427─432. 

 

DeLucca J S, Chao C A, Asce M, Smallwood C, Asce F (1983) Removal of organic priority 

pollutants by oxidation-coagulation. J Environ Eng 109: 36─46. 

 

Gehringer P, Proksch E, Szinowatz W, Eshweiler H (1998) Decomposition of 

trichloroethylene and tetrachloroethylene in drinking water by a combined radiation/ozone 

treatment. Water Res 22: 645─646. 

 

Gonzalo Lara A, Sánchez-Uría E J, Segovia-García E, Sanz-Medel A (2008) Critical 

comparison of automated purge and trap and solid-phase microextraction for routine 

determination of volatile organic compounds in drinking waters by GC-MS. Talanta 74: 

1455─1462. 

 

Graham N, Jiang C C, Li X Z, Jiang J Q, Ma J (2004) The influence of pH on the degradation 

of phenol and chlorophenols by potassium ferrate. Chemosphere 56: 949─956. 

 

Jiang J Q, Lloyd B (2002) Progress in the development and use of ferrate(VI) salt as an 

oxidant and coagulant for water and wastewater treatment. Water Res 36: 1397─1408. 

 

Jiang J Q (2007) Research progress in the use of ferrate (VI) for the environmental 

remediation. J Hazard Mater 146: 617─623. 

 



Lee Y , Cho M, Kim Y J, Yoon J (2004) Chemistry of ferrate (Fe(VI)) in Aqueous Solution 

and its Applications as a Green Chemical. J Environ Sci Heal A 10: 161─171. 

 

Lee Y, Um H I, Yoon J (2003) Arsenic(III) Oxidation by Iron(VI) Ferrate and Subsequent 

Removal of Arsenic(V) by Iron(III) Coagulation. Environ Sci Technol 37: 5750─5756. 

 

Lee S M, Tiwari D (2009) Application of ferrate in the treatment of industrial wastes 

containing metal-complexed cyanides: A green treatment. J Environ Sci 21: 1347─1352. 

 

Li C, Li X Z, Graham N, Gao N Y (2008) The aqueous degradation of bisphenol A and 

steroid estrogens by ferrate. Water Res 42: 109─120. 

 

Liang C, Bruell J C, Marley C M, Sperry L K (2004) Persulfate oxidation for in situ 

remediation of TCE I. Activated by ferrous ion with and without a persulfate-thiosulfate 

redox couple. Chemosphere 55: 1213─1223. 

 

Liang C, Bruell J C, Marley C M, Sperry L K (2004) Persulfate oxidation for in situ 

remediation of TCE II. Activated by chelated ferrous ion. Chemosphere 55: 1225─1233. 

 

Liang C, Bruell J C, Marley C M, Sperry L K (2004) Thermally activated persulfate oxidation 

of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soli 

slurries. Soli Sediment Contam 2: 207─228. 

 

Lim M, Kim M J (2010) Effectiveness of potassium ferrate (K2FeO4) for simultaneous 

removal of heavy metals and natural organic maters from river water. Water Air Soil Poll 

211: 313─322. 

 

Löffler E F, Edward A E (2006) Harnessing microbial activities for environmental cleanup. 

Curr Opin Biotech 17: 274─284. 

 

Mészáros É, Sipos R, Pál R, Romcsis Cs, Márialigeti K (2013) Stimulation of trichloroethene 

biodegradation in anaerobic three-phase microcosm. Int Biodeter Biodegr 84:  126─133. 



Munch D J, Hautman D P (1995) USEPA 551.1 Determination of chlorination disinfections 

byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by 

liquid-liquid extraction and gas chromatography with electron capture detector.  

 

Nam J H, Kwon B H, Kim I K (2012) Degradation of Trichloroethylene in Aqueous Phase by 

Electrochemical Ferrate(VI). J Kor Soc Water Wastew 26: 453─461. 

 

Peccorino G, Scalici L, Avellone G, Ceraulo L, Favara R, Candela G E, Provenzana C M,  

Scaletta C (2008) Distribution of volatile organic compounds in Sicilian  groundwaters 

analysed by head space-solid phase micro extraction coupled with gas chromatography mass 

spectrometry (SPME/GC/MS). Water Res 42: 3563─3577. 

 

Sharma K V, Smith O J, Millero F J (1997) Ferrate(VI) oxidation of hydrogen sulfide. 

Environ Sci Technol 31: 2486─2491. 

 

Sharma K V, Bloom T J, Joshi V N (1998) Oxidation of ammonia by ferrate (VI). 

J Environ Sci Heal A 33 635─650. 

 

Sharma K V, Mishra K S (2006) Ferrate(VI) Oxidation of Ibuprofen: A kinetic study. Environ 

Chem Lett 3 182─185. 

 

Sharma V K, Sohn M, Anquandah K A G, Nesnas N (2012) Kinetics of the oxidation of 

sucralose and related carbohydrates by ferrate(VI). Chemosphere 87: 644─648. 

 

Yang B, Ying B B, Zhao j L, Liu S, Zhou j L, Chen F (2012) Removal of selected endocrine 

disrupting chemicals (EDCs) and pharmaceutical and personal care products (PPCPs) during 

ferrate(VI) treatment of secondary wastewater effluents. Water Res 46: 2194─2204. 

 

 

 

 

 

 

 

 



Table 1. Physical-chemical parameters of groundwater 

 

Total inorganic carbon (mg/L) 91.7 

Total organic carbon (mg/L) 28.0 

Total nitrogen (mg/L) 4.5 

pH 8.16 

Specific electric conductivity (µS/cm, 20°C) 1034 
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Fig.2.  
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Fig. 4. 

 

 

 



 

 

Figure captions 

 

Fig. 1. TCE removal efficiency from model solution containing TCE in concentration of 0.1 

mg/L at various pH and ferrate dosages; Analytical data were determined by HS-GC-

MS 

 

Fig. 2. TCE removal efficiency from model solutions having 0.1 and 1.0 mg/L initial TCE 

concentrations at pH=7 and various ferrate dosages; Analytical data were measured by 

both HS-GC-MS and SPME-GC-MS methods 

 

Fig. 3. TCE removal efficiency from spiked groundwater containing 0.1 and 1.0 mg/L TCE at 

pH=7 and various ferrate dosages; Analytical data were measured by both HS-GC-MS 

and SPME-GC-MS methods 

 

Fig. 4. TCE removal efficiency from model solutions and spiked groundwater at pH=7 and 

ferrate concentration of 50 mg/L measured by HS-GC-MS 
 

 

 

 

 

 


