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Fitch’s paradox and Labeled Natural 
Deduction System

Abstract. This paper introduces a relatively novel system of representing 

modal logic in a form of natural deduction. It then expands it to accommodate 

the epistemic operator and applies it to generate a more precise formulation 

of Fitch’s paradox of knowability. Finally, an illustration of the paradox’s 

pertinence to contemporary philosophical debate is laid out.

1 INTRODUCTION

The purpose of this paper is to provide the means for presenting Fitch’s paradox, 

a philosophical argument requiring multiple modalities, within a purely formal 

deduction system. A labeled natural deduction system for modal logic offered 

by David Basin, Sean Matthews and Luca Vigano, provides the basis which is 

then expanded to accommodate an epistemic operator “know.” An advantage of 

this system: anyone familiar with first-order natural deduction is provided with 

the means to formulate a useful and fruitful philosophical argument in a more 

precise manner at no added complexity.

The remainder of this section will lay out some desirable properties of any 

natural deduction system that we will naturally strive to meet in this paper. The 

second section introduces the labeled natural deduction system of Basin et al. 
and expands on it to allow us to formulate Fitch’s paradox. Note that, while the 

authors use the “Gentzen-style” form of representing natural deduction, due to 

the relative length of the argument and the number of assumptions needed, for 

ease of presentation, the form used here is the “Suppes–Lemmon style.” The 

third section presents Fitch’s paradox first in an informal, and then in a formal 

manner. Finally, the fourth section provides the summary.
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1.1 Natural deduction systems

Although natural deduction was first developed 1934, it is partially based on a 

proposal put forth in 1926 by Jan Lukasiewicz, who called for a system that can 

yield the same theorems as the axiomatic systems of the time, but which would 

follow more closely the actual practice of constructing a proof1. This system, 

reflecting the “natural” way humans reason, would follow where “arbitrary 

assumptions” lead and how long they stay in effect. This desirable property is 

something to keep in mind while presenting a natural deduction system.

In their widely used logic handbook Language, Proof and Logic Jon Barwise 

and John Etchemendy state that: “… [natural deduction] systems are intended 

to be models of the valid principles of reasoning used in informal proofs.”2 This 

is precisely the purpose of the natural deduction system they present.

2 LABELED NATURAL DEDUCTION SYSTEM FOR MODAL LOGIC

This section introduces a labeled natural deduction system developed by Basin 

et al. Following the ideas of Dov Gabbay, this system provides a framework 

for capturing a large number of non-classical logics3. The focus here will be on 

modal logic. The peculiarity of the system is that it introduces a set of labels 

W, W = {x
0
, x

1
, … , xn, … ,y

0
, y

1
, … , yn, …}. These labels can be thought of 

as representing worlds in aKripke model. The language of the labeled natural 

deduction system (henceforth: LNDS) differs from the standard, and widely 

familiar, (propositional) modal logic language precisely with regard to W.

2.1 The language of LNDS

The language of LNDS comprises two types of formulas, labeled and relational 

well-formed formulas. The latter concern the relations of labels, and correspond 

to the properties of the accessibility relation R in a Kripke model, whereas the 

former are merely modal propositional wel formed formulas expanded with 

a label; we will define these first, and proceed from there. The (inductive) 

definition of a modal wff should be familiar:

1  (Pelletier, F., 2000).
2  (Barwise, J., Etchemendy, J., 2003).
3  (Basin & al. 1998).
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106 PHILOSOPHICAL LOGIC AND ITS HISTORY

Definition 2.1: Modal wff
1 Propositional letters P, Q and R are well formed formulae (wff).
2 If P is a wff, then ¬ P is a wff.
3 If P is a wff and Q is a wff, then (P ∧ Q) is a wff.
4 If P is a wff and Q is a wff, then (P ∨ Q) is a wff.
5 If P is a wff and Q is a wff, then (P → Q) is a wf.f
6 If P is a wff Q is a wff, then ( P ↔ Q ) is a wff.
7 If P is a wff, then � P is a wff.
8 If P is a wff, then ◊ P is a wff.
9 Nothing else is a wff.
Now we have all the ingredients necessary to define a labeled well-formed 
formula:

Definition 2.2: Labeled well-formed formula (lwff)
Let P be a modal wff (Def. 2.1), let W be a set of labels 

W = {x
0
, x

1
, …, xn, … ,y

0
, y

1
, …, yn, …}, and let x be a member of such a set, x ∈ 

W . Then x:P is a lwff which can be understood as meaning “P is the case in (a 

possible world) x.”

As noted earlier, a relational wff is concerned with a relation of two labels:

Definition 2.3: Relational well formed formula (rwff)
Let x and y be members of a set of labels W (as above). Then xRy is a rwff which 

can be understood as “y is accessible to x.”

2.2 Rules of inference

In this section we will explore the rules of inference in LNDS. The rules of 

inference for truth-functional connectives should be readily recognizable to 

anyone familiar with natural deduction—the only novelty here being that each 

line is expanded with (one and the same) label. The rule for negation introduction 

deviates from this pattern, and will be discussed separately. Afterwards, rules of 

inference for modal operators will be covered, along with examples to illustrate 

them. The mode of presentation is “Suppes–Lemmon” style—the central 

column contains the enumerated steps of the proof, assumptions or derived 

formulas. The column on the right contains the “justification” of a step—a 

rule of inference used, or “P” if it is an assumption (“P*” denotes an additional 

assumption that needs to be discharged, and the column on the left contains a 

set of undischarged assumptions the step “relies” on (assumptions “rely” on 

themselves). In a general form laid out here, the letters m, n, i, j, … signify 

numbers, Greek letters Γ and Δ signify sets of assumptions, and letters A, B, … 

signify wffs.
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2.2.1 Truth-functional connectives

Below are the rules for conditional and conjunction, which behave in a familiar 

way, the only difference being that each wff is expanded into a labeled wff, using 

the same label in each instance.

→ Intro
{m} m x:A P*

. . .

Γ ∪ {m} i x:B
Γ j x: A → B → I: m,i

→ Elim
Γ m x: A → B
Δ i x:A

Γ ∪ Δ j x:B → E: m,i

∧ Intro
Γ m x:A
Δ i x:B

Γ ∪ Δ j x: A ∧ B
or ∧ I: m,i

Γ ∪ Δ j x: A ∧ B ∧ I: m,i

∧ Elim
Γ m x: A ∧ B
Γ i x:A ∧ E: m

or

Γ i x:B ∧ E: m

¬ Intro
{m} m x:A P*

. . .

Γ ∪ {m} i y:⊥
Γ j x: ¬A ¬ I: m,i

Or, alternatively

¬ Intro
{m} m x:¬A P*

. . .

Γ ∪ {m} i y:⊥
Γ j x:A ¬ I: m,i
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108 PHILOSOPHICAL LOGIC AND ITS HISTORY

Note that not all the lines here contain the same label (the label used in the line 

(i) is “y”). An impossible result in one world (i.e. under one label) can “transfer” 

to another world—a fact that Basin et al. call a “global falsum.” This is elaborated 

in Section 2.4.

⊥ Intro
Γ m x:A
Δ i x: ¬A

Γ ∪ Δ j y:⊥ ⊥ I: m,i

⊥ Elim
Γ n x:⊥
Γ i x:A ⊥ E: n

2.2.2 Modal operators

The novelty of this approach consists in the introduction of natural deduction 

rules for the modal operators “�” (“necessarily”) and “◊” (“possibly”). Note that 

these rules of inference are analogous to the rules for universal and existential 

quantifiers, respectively (with an “arbitrary label” replacing an “arbitrary 

name”). 

� Intro
{m} m xRy P*

. . .

Γ i y:A
Γ – {m} j x: � A � I: m,i

Note: y is a new label, such that x ≠ y, and not appearing in any of the suppositions 

in Γ, except perhaps {m}.

� Elim
Γ m x: � A
Δ i xRy

Γ ∪ Δ j y:A � E: m,i
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Example 2.1: See the Appendix.

◊ Intro
Γ m x:A
Δ i xRy

Γ ∪ Δ j x: ◊ A ◊ I: m,n

◊ Elim
Γ m x:A P*

{i} i xRy P*

{j} j x: ◊ A ◊ I: m,n
. . .

Δ ∪ {i} ∪ {j} k z:B
Γ ∪ Δ l z:B ◊ E: m,i,j,k

Note: y is a new label, such that y ≠ x and y ≠ z, which does not appear in any of 

the suppositions from Γ and Δ.

Example 2.2: See the Appendix.

2.3 Familiar axioms

As noted, it is expected of a natural deduction system that it provide the same 

results as an axiomatic theory. Therefore, what follows are proofs of two well-

known modal axioms—the rule of necessitation, which states that every theorem 

is necessary, and axiom K, which demonstrates how the necessity operator “�” 

is distributed over conditionals.

Proof 2.1: Rule of Necessitation (RN)

Let x:A be a theorem, and x an arbitrary label. Proof for x: � A will proceed as 

follows:

{m} m xRy P*

the proof of a theorem where each 
occurrence of the label x is substituted

for the label y
{} n y:A from the preceding proof
{} j x: � A � I: m,n
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110 PHILOSOPHICAL LOGIC AND ITS HISTORY

Proof 2.2: Axiom K

{1} 1 x: � (A → B) P*

{2} 2 x: � A P*

{3} 3 xRy P*

{1,3} 4 y: A → B � E: 1,3

{2,3} 5 y:A � E: 2,3

{1,2,3} 6 y:B → E: 4,5

{1,2} 7 x: � B � I: 3,6

{1} 8 x: � A → � B → I: 2,7

{} 9 x: � (A → B) → (� A → � B) → I: 1,8

2.4 Global falsum

One consequence of the negation introduction rule is the rule called “global 

falsum”: Γ ├x:⊥ ⇒ Γ ├x:⊥.4

Proof 2.3: Global falsum (gf)
Suppose that (1) Γ ├ x:⊥. Then Γ, y:P ├ x:⊥ (adding a premise does not alter the 

validity of a valid argument). It follows by ¬ I that (2) Γ ├ y: ¬ P. But in the same 

way, from (1) we can derive Γ , y: ¬ P ├ x:⊥, and another application of ¬ I gives 

(3) Γ ├ y:P. Applying ⊥ I to (2) and (3) yields Γ ├ y:⊥.

Since x and y represent arbitrary labels, it is obvious that falsum can “travel” 

freely between labels. The reason for the inclusion of the rule global falsum is 

that it allows a desirable result—interchangeability of W and ¬ ◊ ¬.

Global falsum

Γ 1 x:⊥ gf:m
Γ 2 x:⊥

The following two proofs demonstrate how this inference rule allows for the 

derivation of that desirable result.

4  (Basin & al. 1998).
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Proof 2.4a

{1} 1 x: � A P
{2} 2 x: ◊ ¬ A P*

{3} 3 y: ¬ A P*

{4} 4 xRy P*

{1,4} 5 y:A � E: 1,4

{1,3,4} 6 y:⊥ ⊥ I: 3,5

{1,3,4} 7 x:⊥ gf: 5
{1,2} 8 x:⊥ ◊ E: 2,3,4,6

{1} 9 x: ¬ ◊ ¬ A ¬ I: 2,7

Proof 2.4b

{1} 1 x: ¬ ◊ ¬ A P
{2} 2 xRy P*

{3} 3 y: ¬ A P*

{2,3} 4 x: ◊ ¬ A ◊ I: 2,3

{1,2,3} 5 x:⊥ ⊥ I: 1,4

{1,2} 6 y:A ¬ I: 3,5

{1} 7 x: � A � I: 2,6

2.5 Relational rules

Relational rules have the general form t
1
Rs

1
 . . . tmRsm ├ t

0
Rs

0
, where t

0
,t

1
,…

,tm,s
0
,s

1
,…,sm are members of the set of labels W. Relational rules mirror properties 

of the accessibility relation, and allow us to derive the corresponding axioms. 

The only rule necessary for the construction of Fitch’s paradox is the relational 

rule of reflexivity, and it is therefore the only one presented here.

Reflexivity

M
{} I xRx Rrefl:
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Proof 2.5: axiom T

{1} 1 xRx Rrefl:
{2} 2 x: � A P*

{2} 3 x:A � E: 1,2

{} 4 x: � A → A → I: 2,3

It is clear how this is in keeping with the historical requirement posed for natural 

deduction—to yield the same results as an axiomatic theory.

3 FITCH’S PARADOX

Fitch’s paradox, also known as the paradox of knowability, first appeared 

in Fitch’s 1963 article “A Logical Analysis of Some Value Concepts.” There, the 

paradox appears in Theorem 5, which states:

If there is some true proposition which nobody knows (or has known or will 

know) to be true, then there is a true proposition which nobody can know 

to be true.5

However, an equivalent claim, which states that if all truths are knowable, then 

all truths are known, is usually considered when discussing the paradox:

∀p (p → ◊ Kp) ├ ∀p (p → Kp)

3.1 Informal proof of the paradox

The strength of the paradox derives from the fact that it rests on mostly 

unproblematic principles. They are:

(KIT): Kp ├ p,

which states that knowledge is factive, i.e. knowledge implies truth.

(K Dist): K (p ∧ q) ├ Kp ∧ Kq,

which states that knowledge is distributed over conjunction, i.e. knowledge of a 

conjunction implies knowledge of the conjuncts.

5  (Fitch, F., 1963).
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Furthermore, we must rely upon the rule of necessitation (RN)—all theorems 

are necessary. The fourth and final principle states that if p is necessarily false, 

it is impossible: 

(P4): � ¬ p ├ ¬ ◊ p

Proof 3.1: Fitch’s paradox6

Now, suppose that every truth is knowable: ∀p (p → ◊ K p). Suppose also that 

we are not omniscient, that there is a truth which is not known: ∃p (p ∧ ¬ K p). 

Let p be such a truth:

(1) p ∧ ¬ K p

Now, since every truth is knowable, so is (1):

(2) (p ∧ ¬ K p) → ◊ K (p ∧ ¬ K p)

Therefore, by modus ponens,
(3) ◊ K (p ∧ ¬ K p)

This, however, can be proven to be false. Let us suppose (for reductio ad 
absurdum):

(4) K (p ∧ ¬ K p)

It follows by K Dist that both conjuncts are known:

(5) K p ∧ K ¬ K p

And, applying KIT to the second conjunct, we get a contradiction:

(6) K p ∧ K p
That allows us to negate (4):

(7) ¬ K (p ∧ ¬ K p)

And, since (7) is a theorem, we can apply RN to get:

(8) � ¬ K (p ∧ ¬ K p)

Applying the fourth principle, P4, we get the opposite of (3):

(9) ¬ ◊ K (p ∧ ¬ K p)

6  (Brogaard, B., Salerno, S., 2008).
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114 PHILOSOPHICAL LOGIC AND ITS HISTORY

Obviouslym this means there is no unknown truth

(10) ¬ ∃p (p ∧ ¬ K p)

Or, in other words, that all truths are known:

(11) ∀p (p → K p)

So, supposing that all truths are knowable leads us, very convincingly, to the 

conclusion that all truths are, in fact, known.

3.2 Formal proof of the paradox

Obviously, for the proof of the paradox to be constructed, we need to have rules 

for the operator K. These rules will mirror the inference rules for the necessity 

operator (using a separate accessibility relation, RE) and will allow us to derive 

all the principles needed in the informal proof.

K Intro
{m} m xREy P*

. . .

Γ ∪ {m} i y:p
Γ j x: K p K I: m,i

K Elim
Γ m x: K p
Δ i xREy

Γ ∪ Δ j y:p K E: m,i

Additionally, the relational rule of reflexivity for RE will be introduced. It insures 

the KIT principle in keeping with the proof of axiom T in Proof 2.5.
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Proof 3.2: K Dist

{1} 1 x: K (p ∧ q) P
{2} 2 xREy P*

{1,2} 3 y: p ∧ q KE: 1,2

{1,2} 4 y: p ∧ E: 3

{1} 5 x: K p K I: 2,4

{6} 6 xREz P*

{1,6} 7 z: p ∧ q KE: 1,6

{1,6} 8 z: q ∧ E: 7

{1} 9 x: K q KI: 6,8

{1} 10 x: K p ∧ K q ∧ I: 5,9

Proof 3.3: KIT

{1} 1 x: K p P
{} 2 xREx RE refl:

{1} 3 x: p KE: 1,2

Obviously, the remaining principles have already been proven—RN in the Proof 

2.1, and P4 in the Proof 2.4b, substituting ¬ p 
 
for A.

Proof 3.4: Fitch’s paradox in LNDS

The formal version of the proof starts out in the same way—assuming that p is an 

unknown truth (2), but that every truth is knowable, and thus p ∧ ¬ K p as well 

as (1). Again, this leads to the claim that it is possible to know that something 

is an unknown truth (3). We now set out to prove (in line 23) that this not the 

case. Note that for the sake of legibility, the words label and world are used 

interchangeably.

{1} 1 x: (p ∧ ¬ K p) → ◊ K (p ∧ ¬ K p) P
{2} 2 x: p ∧ ¬ K p P*

{1,2} 3 x: ◊ K (p ∧ ¬ K p) → E: 1,2

We assume that there is an accessible world y in which it is known that p is an 

unknown truth:

{4} 4 xRAy P*

{5} 5 y: K (p ∧ ¬ K p) P*
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However, in that case p ∧ ¬ K p holds in y, and therefore, ¬ Kp holds in y. These 

steps correspond to an application of principles K Dist and KIT.

{} 6 yREy RErefl:
{5} 7 y: p ∧ ¬ K p KE: 5,6

{5} 8 y: ¬ K p ∧ E: 7

At the same time, if p ∧ ¬ K p is known in y, then K p holds in y.

{9} 9 yREz P*

{5,9} 10 z: p ∧ ¬ K p KE: 5,9

{5,9} 11 z: p ∧ E: 10

{5} 12 z: K p KI: 9,11

Lines 8 and 12 are contradictory—they imply that something is an unknown 

truth can not be known.

{5} 13 y:⊥ ⊥ I: 8,12

{} 14 y: ¬ K (p ∧ ¬ K p) ¬ I: 5,13

Since y is an arbitrary world, it is necessarily unknowable that something is an 

unknown truth. This step corresponds to the line (8) of the informal proof.

{} 15 x: � ¬ K (p ∧ ¬ K p) � I: 4,14

Now we need to perform the transformation from line (9) of the informal proof. 

To do so, we will assume that the opposite holds:

{16} 16 x: ◊ K (p ∧ ¬ K p) P*

Of course, if K (p ∧ ¬ K p) is possible, then there is a world in which it is true:

{17} 17 y: K (p ∧ ¬ K p) P*

{18} 18 xRAy P*

But, even in that world, ¬ K (p ∧ ¬ K p) is true (since it is, according to line 15, 

necessary). This leads to a contradiction:

{18} 19 y: ¬ K (p ∧ ¬ K p) � E: 15,18

{17,18} 20 y:⊥ ⊥ I: 17,19
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That contradiction transfers back to the original world:

{17,18} 21 x:⊥ gf: 20

And so the assumption in line 16 proves, be false, as we had hoped.

{16} 22 x:⊥ ◊ E: 16,17,18,21

{} 23 x: ¬ ◊ K (p ∧ ¬ K p) ¬ I: 16,22

Finally, we have shown that there are no unknown truths:

{1,2} 24 x:⊥ ⊥ I: 3,23

{1} 25 x: ¬ (p ∧ ¬ K p) ¬ I: 2,24

Of course, since p is an arbitrary proposition, it can be shown that all truths are, 

in fact, known. This transformation is trivial:

{26} 26 x:p P*

{27} 27 x: ¬ K p P*

{26,27} 28 x: p ∧ ¬ K p ∧ I: 26,27

{1,16,27} 29 x:⊥ ⊥ I: 25,28

{1,26} 30 x: K p ¬ I: 27,29

{1} 31 x: p → K p → I: 26,30

We have thus arrived at the conclusion that if all truths can be known, than all 

truths are known—Fitch’s paradox of knowability.

3.3 Philosophical implications of the paradox—an illustration

The purpose of this section is to demonstrate that Fitch’s paradox is not just 

of logical significance—it also makes a genuine and insightful philosophical 

contribution. 

Timothy Williamson uses Fitch’s paradox in his book Knowledge and its 
limits7 to demonstrate, predictably, what the limits of our knowledge are. Let us 

briefly examine how. Williamson labels the thesis that all truths are known as 

strong verificationism (SVER):

SVER: ∀p (p → K p)

7  (Williamson, T., 2000).
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This is, as Williamson puts it, an “insane sounding thesis” (p. 271).
 

The more 

plausible sounding thesis that all truths are knowable Williamson calls weak 
verificationism (WVER):

WVER: ∀p (p → ◊ K p)

Obviously, the stronger thesis implies the weaker one, since all that is known 

can be known. But in order to demonstrate some limits to our knowledge, 

Williamson uses Fitch’s paradox to demonstrate that the converse also holds—

WVER implies SWER. They are therefore equivalent, and any objection to the 

insane-sounding thesis will apply to the more plausible formulation as well.

4. SUMMARY

We put forth two desirable qualities of natural deduction systems at the 

beginning of this paper. The first—that it provide the same theorems as an 

axiomatic theory by way of making and following arbitrary assumptions—has 

clearly been met: we have derived all the axioms needed to prove one famous 

theorem. Regarding the second property, we have used the system to model the 

principles of reasoning present in the informal proof. So this was, in a manner 

of speaking, a textbook example of what natural deduction is supposed to do. 

Moreover, the formal principles come with no added complexity for someone 

familiar with first-order natural deduction, yet they are able to contribute to a 

fruitful philosophical debate. 

APPENDIX

Example 2.1

{1} 1 x: � (A ∧ B) P
{2} 2 xRy P*

{1,2} 3 y: A ∧ B � E: 1,2

{1,2} 4 y:A ∧ E: 3

{1} 5 x: � A � I: 2,4

{6} 6 xRz P*

{1,6} 7 z: A ∧ B � E: 1,6

{1,6} 8 z:B ∧ E: 7

{1} 9 x:   B � I: 6,8

{1} 10 x: � A ∧ � B ∧ I: 5,9
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Example 2.2

{1} 1 x: ◊ (A ∧ B) P
{2} 2 y: A ∧ B P*

{3} 3 xRy P*

{2} 4 y:A ∧ E: 2

{2,3} 5 x: ◊ A ◊ I: 3,4

{1} 6 x: ◊ A ◊ E: 1,2,3,5

{7} 7 z: A ∧ B P*

{8} 8 xRz P*

{7} 9 z:B ∧ E: 7

{7,8} 10 x: ◊ B ◊ I: 8,9

{1} 11 x: ◊ B ◊ E: 1,7,8,10

{1} 12 x: ◊ A ∧ ◊ B ∧ I: 6,11
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