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"T'AMAS MIHALYDEAK

On Models of General Type-Theoretical

Languages

Abstract. In the present paper we consider general type theoretical
languages as the representations of the functor-argument decomposition and
compositional semantics relying on it and find some theorems making explicit
the theoretical presuppositions of general type theoretical languages and their
total or partial semantics. After defining the notion of semantic categories in
the spirit of Husserl, we characterize "I'arskian and Husserlian models both in
total and partial semantics and prove their characteristic theorems.

1 PERSONAL FOREWORD

I am greatly indebted to Professor Imre Ruzsa for the opportunity to work
with him for almost two decades. After graduation [ began to work as a research
assistant at Kossuth University, Debrecenin 1979 and I wrote a letter to professor
Imre Ruzsa. In spite of the fact that we had never met and did not know each
other personally, he answered soon. The first personal meeting changed my
scientific life profoundly. T have no opportunity to tell the whole story, but
I should like to emphasize that T should be quoting his books and papers’ in
almost each sentence of the present paper, which is dedicated to the memory of
Professor Imre Ruzsa.

2 INTRODUCTION

From the theoretical point of view, type theoretical languages (with a lambda
operator) represent function abstraction and function application and rely on
functor-argument decomposition, which goes back to Frege.

'T mention here only three of them: (Ruzsa 1989), (Ruzsa 1991), (Ruzsa 1997).
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28 RUZSA’S WORK

In Frege’s view, one of the most important inventions of Begriffsschrift is
the replacement of the subject—predicate decomposition by the functor-argu-
ment one. He wrote the following: “The very invention of this Begriffsschrift,
it seems to me, has advanced logic. . . [L.]ogic hitherto has always followed
ordinary language and grammar too closely. In particular, I believe that the
replacement of the concept subject and predicate by argument and function will
prove itselfin the long run. Itis easy to see how taking a content as a function of an
argument gives rise to concept formation. . . . The distinction between subject
and predicate finds no place in my representation of a judgement.”” (Frege
1879/1997, 51, 53.)

One of the most general theoretical representations of the functor-argu-
ment decomposition is the well-known type theory (or the different systems of
type—theoretical language and/or logic?).

Generally, syntactic categories have to be distinguished from semantic ones.
At the same time, our formal systems fulfill the following fundamental principle
of formal type—theoretical semantics:

[The mirror principle:] Associated with every syntactic category C is a
counterpart semantic category C*, whose mathematical type ‘mirrors’ the
grammatical type of C. And, in particular, every expression of syntactic
category C is interpreted by an object of semantic category C*.

(Dunn and Hardegree 2001, 142.)

On the basis of the mirror principle, in what follows, we are speaking about
types, and using them to define and denote different syntactic categories and
the corresponding sets of possible semantic values.

3 GENERAL FORMAIL SYSTEM

At first, the system of types has to be defined. "I'he system of types relies on
primitive type(s). Generally we have only one requirement: the symbol o must
be a primitive type. From the theoretical point of view, the main reason for this
is that the symbol o is taken as the type of the most fundamental expressions
of our formal language. Expressions of type o are called formulae. Formulae
directly correspond to a special sort of conceptual content or information. It
means that formulae are the structures of complete information or closed (and
whole) conceptual content. In a given interpretation, formulae are intended to
represent complete information called proposition in the literature.

I'here is another, mainly semantic reason for type o having been declared to
be primitive. From the semantic point of view, Frege’s context principle or as

%] use the expression ‘functor’ instead of ‘function’ in order to differentiate an incomplete

expression of a language from its semantic value.
3Tt goes back to (Church 1940).
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(Hodges 2001a) says, Frege’s Dictum can be taken as a general leading idea. In
The Foundations of Arithmetic Frege wrote the following, usually quoted as the
context principle:

never to ask for the meaning of a word in isolation, but only in the
context of a proposition; (Frege 1884/1980, x.)

It is enough if the proposition taken as a whole has sense; it is this that
confers on its parts also their content. (Frege 1884/1980, 71.)

According to the context principle, an expression has sense (meaning) only in
the sentence in which it occurs. Sometimes we need more than one primitive
type (usually individual names constitute another primitive type). T'he main
difference between primitive and non-primitive types is that the semantic
domains of primitive types have to be given via definition, while the domains of
non-primitive types are originated from them. Non-primitive types are usually
called functor types.

Definition 1. Ler PT be an arbitrary set of symbols, the set of primitive types, such
that o € PT' . Then the set TY PEpr is defined inductively as follows:

(1) PT CTYPEpr,

(2) o, € TYPEpr = (o, ) € TYPEpr.

Remark 1. Here o is the type of formulae from the syntactic point of view, and the
type of their possible semantic values from the semantic point of view. (o, 3) is the type
of functors which, when they are filled in by an argument of type v, yield an expression
of type B in syntax (in the formal language), and it stands for the type of function from
objects of type o to objects of type B in semantics.

T'he type—theoretical language is the most general one concerning the func-
tor—argument decomposition. It has only two syntactic operations: filling a
functor with an argument (function application from the semantic point of view)
and lambda abstraction. T'he latter produces a way to create a functor from an
expression.

Definition 2. A #ype-theoretical language is an ordered quadruple
L = (LC,Var,Con,Cat)

satisfying the following conditions:
(1) LC is the set of theoretical constants.* LC = {\, (,)}
(2) Var = Uaerypep,Var(a) and Var(a) is a denumerably infinite set of
symbols®.

A theoretical constant has the same semantic value (or sense) in every interpretation as a

logical constant does in a logical system.
"Var(a) is the set of variables of the type a.
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30 RUZSA’S WORK

(3) Con = Uuery prp, Con(a), where Con() is a denumerably set of symbols.®
(4) A/l mentioned sets of symbols are assumed to be pairwise disjoint ones.
(5) Cat = Upery ppp, Cat(), where the sets Cat (o) are defined by the inductive
rules (a). . . (c) as follows:
(a) Var(a)UCon(a) C Cat(w);
(b) C € Cat({e, B)), B € Cat(a) = ‘C(B)’ € Cat(p);
(c) Ae Cat(p), T € Var(a) = ‘(A\A)” € Cat({a, B));

The (total or partial) functor—argument frame is the compositional mirror of a
type—theoretical language. It can be said that the functor—argument frame gives
possible semantic values.

Definition 3. A zotal functor-argument frame F is the system of sets
(Domp(Y))yery PEpy Such that

(1) Ify € PT, then Domp(7y) is an arbitrary nonempty set.

(2) Domp({a, B)) = Domp(B)P™@ for all (o, B) € TY PEpr

Definition 4. A partial functor-argument frame PF is the system of sets
(Dompp(7Y))~ery PEpy Stch that
(1) ify € PT, then Dompp(7y) is an arbitrary set with a distinguished member
©.,, which is called the null entity of type v, such that Domprp(v) \ {0, } # 0;
(2) Dompr({a,3)) = Dompp(B8)Pomr7@ for all (o, 3) € TY PEpr and
O = g where g € Dompr((o,3)) and g(u) = Op for all u €
Dompr(a).

Interpretive function and assignment associate the constants and the variables
of the type—theoretical language with their semantic values. In a model, which
consists of a frame, an interpretive function and an assignment, semantic rules
can be defined to determine the semantic values of compound expressions with
respect to the given model.

Definition 5. A (7otal or partial) model M on G is an ordered triple (G, o, v) where

(1) G is a (total or partial) functor—argument frame;

(2) 0, v are functions with domains Con and V ar respectively® such that
(a) ifa € Con(a), then o(a) € Domeg(a);
(b) if T € Var(a), then v(T) € Domg(a).

Remark 2. A model M on G is total or partial if G is a total or partial func-
tor—argument frame respectively.

6Con is the set of non—theoretical symbols of L. The semantic value of an expression
belonging to the set C'on is given by an interpretation.

7Cat is the set of all well-formed expressions of L. The set Cat(a) is the a—category of
L (a e TYPEPT).

80 is an interpretive function, v is an assignment.
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If M = (F, 0,v) is a total model on F', then
Domy;(a) = Domp(«).
If PM = (PF, o,v) is a partial model on PF, then
Dompy(a) = Dompr(a) \ {O,}.

If M (= (G, p,v)) is a total or partial model, § € Var(y) and v € Domg(7),
then the model M (= (G, 0,v([§ : ul)) is like M except that v[§ : u](§) = u.

Definition 6. A zozal or partial model M (= (G, 0,v)) assigns each expression A of
type o a semantic value [A] vy according to the following semantic rules:

(1) ifa € Con(v), then [a]m = o(a);

(2) if€ € Var(y), then [E]pr = v(§);

(3) if A € Cat({a, B)) and B € Cat(c), then [A(B)]|a = [A] s ([Bllar);

(4) if A is an expression of type 3 and § € Var(«), then [N§A]yr = g, where g
is a function from Dome () to Dome(B) such that g(u) = [A] v for all
u € Domg(a).

Proposition 1. If M is a total model and A € Cat(w), then [A]nr € Dom ().
If M is a partial model, then [A] v € Domp(a) U {0, }.

Definition 7. If M is a total or partial model, then A is meaningful with respect to
M, in symbols A € Cat)), if A € Cat(a) forsome type & and [A] sy € Domy ().

Remark 3. If M is a total model, then all A € Cat are meaningful, i.e. there is no
difference at all between the notions of well-formedness and meaningfulness. We can only
make a real differentiation between them in the case of partial models.

Theorem 1. If A € Cat, My, = (G, 0,v1) and My = (G, 0,vs) are rwo (total
or partial) models of L with the same frame G and interpretive function o such that
(%1 (7') = Vg (7') fOTd//T € V(A)g, then [[A]]]V[l = [[A]]M2

Proposition 2. If A € Cat is a closed expression, then [A] vy is independent from v
ie [A)y = [Alae forall T € Var(y) and v € Domp(y)."

To prove lambda—conversion law, we need the Law of replacement 2 and
Lemma 1. The first one says that in semantics, we only take into consideration
semantic values and don’t pay any attention to the expression itself—except
its type—whose semantic value is given. It doesn’t matter how we get a

9The definitions of subterms, free variables, open and close expressions and the sub-
stitutability are usual ones. The set V(A), is the set of free variables of the expression
A.

101 the case of closed expressions we can speak about models as ordered pairs of frames
and interpretive functions.
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32 RUZSA’S WORK

semantic value, what form of the compound expression gets the semantic
value. We may formulate the property in the law of replacement by means
of universal replacement of expressions belonging to the same type with the
same semantic value. >From the logical-philosophical point of view, the law
of replacement is a special type—theoretical formulation of a version of the
principle of compositionality called the substitutivity principle, which goes back
to Leibniz.

[The Substitutivity Principle:] If two expressions have the same mean-
ing, then substitution of one for the other in a third expression does not
change the meaning of the third expression. (Szabé 2000, 490.)

I must emphasize that the law of replacement can only be considered as
a restricted version of the substitutivity principle, the unrestricted form of
the substitutivity principle holds only in Husserlian models dealt with in
Section 6. 'T'’he next definition introduces the notion of 1-compositionality.
1—-compositional systems fulfill a restricted version of the substitutivity principle,
and Corollary 1 of Law of replacement 2 says that our general system is
compositional in the sense of 1-compositionality.

Definition 8. Let M be a model of L. We say that M is 1—compositional if for all
well—formed expressions A, B,C (A, B,C € Cat) and variable T (T € Var) such
that (\TC)(A), (AC)(B) € Cat,)!;

[Als = [Blar = [(ArC) (A = [(ATC)(B)]m

Theorem 2 (Law of replacement). !!

If A€ Cat, B,C € Cat(vy), and M is a (total or partial) model of L, then
[Blar = [Clar = [Alar = [A[C | Bllar-
Corollary 1. If M is a (total or partial) model of L, then M is 1—-compositional.

Lemma 1. If B is substitutable for variable T in A, M is a (total or partial) model,
and [[B]]M = U, then [[AE]]IW = [[A]:I My -

Theorem 3 (LLambda—conversion law). If A € Cat, T € Var((), B € Cat(()
and B is substitutable for T in A, then [ AT A)(B)|ar = [AB]as for all (total or
partial) models M.

4 PROPERTIES OF TOTAL AND PARTIAL MODELS

Let us turn our attention to different, total or partial models.'”> We need
some notions to compare and combine different models. In the following

UIf A € Cat and B,C € Cat(v), then A[C | B] (€ Cat) is obtained by replacing a
subterm occurrence (i.e. not preceded immediately by A) of B by C.
12The proofs of theorems in Section 4.5 can be found in (Mihalydedk 2010, 127-131.).
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definitions let L (= (LC,Var,Con,Cat)) be a type—theoretical language and
M (= (G, p,v)) be its total or partial model.
Definition 9.

(1) If = is an equivalence relation on the set Cat' (C Cat), then = is a synonynty
Jor L. The set Cat' is the field of synonymy ==.

(2) Syntactic synonymy for L is the synonymy =, generated by the syntax of L, i.e.
A= B if and only if there is a type v such that A, B € Cat ().

(3) Synonymy generated by the model M is a synonymy =y for L with the field
Cat)) such that A=y B < [A]y = [B] .

(4) Closed synonymy (or c—synonymy) generated by the model M is a synonymy
Rme for L with the field {A : A € Cat, A is closedy 0 Cat))!, such that
A=y B & [Aly = [B]u-

(5) A synonymy = for L is semantic if there is a model M of L such that = \; equals

~
~.

The next proposition shows that in a general type—theoretical compositional
framework, syntactic synonymy can be treated as a degenerate semantic one.

Proposition 3. 1he syntactic synonymy for L is semantic (in a degenerate sense).

Remark 4. In what follows, a model of L generating the synonymy =21, is denoted by
My, and called ‘syntactic’ model.

Definition 10.

(1) Two models My, My of a language L are said to be equivalent (closed equivalent,
c—equivalent) if =, equals =y, (R, equals =), i.e. their generated
Synonymies (c—synonymies) are equivalent.

(2) Given rwo synonymies = and =’ for L, we say that = is compatible with =' if for
all expressions A, B (€ Cat) in the field of both synonymies, A= B < A~'B

(3) Given two synonymies = and =' for L, we say that = is closed compatible with
(or c—compatible with) =' if for all closed expressions A, B(€ Cat) in the field
of both synonymies A=< B < A~'B

(4) We say that rwo models My, My of L are compatible (closed compatible) if their
generated synonymies =y, , =g, are compatible (c—compatible).

Proposition 4. If the models My, My of L are equivalent, then My and My are
compatible and c—compatible.

Proposition S. [f the models My, My of L are equivalent, then My and My are
c—equivalent.

Proposition 6. If M (= (G, 0,v)) is a model of L, T € Var(y) and uw € Domg,
then the models M and M are c—equivalent.

Proposition 7. If the models My, My of L are compatible, then M,, M, are
c—compatible.
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Proposition 8. Lez the models My, My of L be total. M\, My are compatible if and
only if My, My are equivalent.

In order to investigate the connection between total and partial semantic
systems, we need a ‘total’ or ‘pseudo partial’ part of a partial frame PF', which is
denoted by PF".

Definition 11. Ler PF be a partial frame. The total part PF* of the partial frame
PF is the system of sets (Domy (7)) yery pEpy Stich that

(1) ify € PT, then Dom's i (y) = Dompr(v) \ {0, };

(2) if v = («a, B) then Dom's () € Domprp(7y) such that for all
f € Domlpp((a, ) f(u) € Dompp(B) if u € Domp () and
f(u) = Og otherwise.

Remark 5.

(1) For the sake of brevity, we use the notation ‘Dom'.” in the case of a total frame
F. Of course, in this case Dom'.(~) = Domp(v) forall v € TY PEpr.

(2) If M (= (G, p,v)) is a total or partial model, then Dom’,;(y) = Dom!,(7)
forally € TY PEpr.

Definition 12. An expression A of type vy is total with respect to M if [A]y €
Domiy (7).

Proposition 9.
(1) If a non—logical constant A of a primitive rype is meaningful with respect to
a model M of L, then A is toral, i.e. if A € Con(y) where v € PT, and
A € Cat)l,, then [A]ar € Domiy (7).

(2) If A € Cat({«, B)) and B € Cat(c) are total with respect to M, then A(B)
is total with respect to M.

Definition 13.

(1) If =, = are synonymies for L, we say that =’ extends = (or it is an extension of
=) if the field of =' includes that of = and the rwo synonymies are compatible.

(2) If My, My are models of L, we say that My extends M, (or that it is an
extension of M) if [A] s, = [A]ar, forall A € C’atf\f}.

(3) If My, My are models of L, we write My > M,y to mean that =y, D=y, .

Remark 6. If My > My, then the domain of My includes that of My, bur within that
domain, My may make more distinctions than M does.

Proposition 10. The models My and My of L are equivalent if and only if both
Mg Z M1 dﬂ{lMl Z Mz.

Proposition 11. If M, extends M, then My > M. (In this case Mo makes exactly
the same distinctions in the field of My as M does.)
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Proposition 12. A rotal model is maximal in the sense that all of its extensions are
equivalent to it.

Proposition 13. A rotal model M of L is minimal in the sense that there is no total
model M’ such thar M extends M’ and M and M' are not equivalent.

Corollary 2. If a total model M extends M' such that M and M’ are not equivalent,
then M is a partial model of L.

5 TARSKIAN MODELS

In Section 4 we investigated the properties of models by means of their
generated synonymies. In his well-known paper (Tarski 1936/1983) Tarski
introduces a new classification. The classification and therefore the associ-
ated synonymy is—at least in some cases—between syntactic synonymy and
synonymies generated by non—degenerate models of our language.

Definition 14. If L is a nype—iheoretical language, M is a model of L and A, B
are well—formed expressions (or grammatical rerms, ie. A, B € Cat), then we say
that A, B belong to the same semantic category with respect to M (they have the same
M—category), in symbols A~y B, if for every expression C (€ Cat) and a variable
7 (€ Var)

(A\TC)(A) € Cat)l, < (ArC)(B) € Cat)),.

In a very general sense, the next proposition has been mentioned by Tarski.
In our case it sounds as follows:

Proposition 14. If M is a (total or partial) model of L, then ~ y; is a synonynry with
the field of Cat.

Theorem4. A~y B = A1 B (andso =1 D~ ), where M is a (fotal or partial)
model of L.

Corollary 3. If A, B are well—formed but not meaningful expressions with respect to
a partial model M, ie. A, B € Cat \ Cat), then

AN]wB @A%JLB

By means of the notion of semantic category, Tarski lays down a very im-
portant principle called the first principle of the theory of semantic categories, '3
which is, as he says, very natural “from the standpoint of ordinary usage of
language™ (T'arski 1936/1983, 216.). In our terminology the principle sounds
informally as follows:

B original version can be found in (Tarski 1936/1983, 216.).
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36 RUZSA’S WORK

[The first principle of the theory of semantic categories:] T'wo expres-
sions of our language have the same semantic category if there is an
expression of our language such that it produces meaningful expressions
when combined with them.!™

T'he following definition formulates the first principle of the theory of
semantic categories formally, and gives the notion of a "I'arskian model:

Definition 15. We say that the model M of L is Tarskian if it is the case that if there is
a meaningful expression C and a variable T such that (\TC')(A) and (AtC)(B) are
both meaningful, then A and B have the same M —category.

Remark 7. A model M of L is Tarskian if and only if it fulfills Tarski’s first principle
of the theory of semantic categories.

Theorem S (Characteristic theorem of Tarskian models). ke model M of L is
Tarskian, if and only if the synonymies ~y; and =, are equivalent, i.e. ~y; equals =y

Remark 8. According to the Characteristic theorem of Tarskian models 5, all Tarskian
models of L have the same system of semantic categories and this system is equivalent to
the system of syntactic categories.

Proposition 1S. [If the model M of L is total, then the synonymies ~y; and =y, are
equivalent, i.e. ~y; equals =,

Theorem 6. If M is a total model of L, then M is Tarskian.

Corollary 4. Non—Tarskian models are partial.

6 HUSSERLIAN MODELS

In Section 5 we dealt with the connection between syntactic and semantic
categories. 'T'he next step we have to take is the investigation of the bridge
between the system of semantic categories and the classification generated by
the equivalence relation ~ ;.

Definition 16.

(1) Let My, My be models. We say that M and its generated synonymy =y, are
Mo—Husserlian if A=y, B = A~y B forall A, B € Cat.

(2) We say that a model M of L is Husserlian if it is M—Husserlian. (That is
AQ‘JA{B = ANA{BfOTd//A, B e Cat)

(3) We say that a model M (= (G, 0,v)) of L is strictly Husserlian if M' (=
(G, 0,v")) is Husserlian for all assignments v'.

(4) We say that the generated synonymy =y; of a model M is Husserlian (strictly
Husserlian) if the model M is Husserlian (strictly Husserlian).

144 version of the principle is quoted by (Hodges 2001b, 11.).
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The notion of a Husserlian model creates a connection between generated
synonymy and M—category. It requires that two expressions with the same
semantic value with respect to M have to belong to the same M—category, and
so according to "I'heorem 4 they have to have the same type. More precisely:

Proposition 16. If a model M of L is Husserlian and A=y B for some (A, B €
Cat), then A=p B ie thereisa~y € TY PEpr such that A, B € Cat(7).

Corollary 5. If a model M of L is Husserlian, then =; 2=y, i.e. My > M.

Corollary 6. Ler My, My be models of L. If My is Mo—Husserlian, then it is
M —Husserlian.

Theorem 7. Let M be a Tarskian model of L. The model M is Husserlian if and only
if Epo~, e My > M.

Corollary 7. Let M be a total model of L. The model M is Husserlian, if and only if
gL:_DzA[, Z..e. ML Z M.

Law of replacement 2 says that an expression can substitute for another
one without changing the semantic value of the compound expression, if the
semantic value of the first expressions equals that of the second one. In the
law, there is a special condition usually regarded as not too important. 'I'he
condition requires that the two expressions have to belong to the same syntactic
category. Without supposing it, the law of replacement holds only in Husserlian
models. T'hat is why I said that Law of replacement 2 is only a restricted version
of the substitutivity principle (see in Section 3), a version of the principle of
compositionality. Its unrestricted type—theoretical formulation is the following
Husserlian law of replacement.

Theorem 8 (Husserlian law of replacement). If A, B,C € Cat and M is a
Husserlian model of L, then

[Bla = [Clar = [Aln = [A[C | Bl u-

Theorem 9 (Conversion of Husserlian law of replacement). If forall A, B,C €
Cat

[Blar = [Clar = [Alar = [AIC L Bl]w,
then M is a Husserlian model of L.

Proof. "I'he proof is indirect. Suppose that the model M is not Husserlian.
Then there are B,C € Cat such that B, C ([B]y = [C]ar) and By, C.
Therefore there is some D € Cat, T € Var, such that (A\rD)(B) € Cat)!; and
(ATD)(C) ¢ Cat)!,. According to Law of replacement 2, it is impossible that
B, C € Cat(y) for some v € TY PEpr because in contrary [(A7D)(B)]x =
[(ATD)(C)]as. Therefore there are o, 5 € TY PEpr such that a # [ and
B € Cat(a), C € Cat(B). Let A = <(NE)(B)” where £ € Var(a). A € Cat
and A[C'| B] ¢ Cat and so [A]m # [A[C | B]]m- O
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38 RUZSA’S WORK

Definition 17. A model M of L fulfills the substitutivity principle if forall A, B, C' €
Cat

[Blx = [Cla = [Alm = [A[C L B]]u-

The next theorem shows that the substitutivity principle is a strong version
of the principle of compositionality. In our theoretical framework all models are
compositional, but a model fulfills the substitutivity principle if and only if it is
Husserlian.

Theorem 10 (Characteristic theorem of Husserlian models). A model M of L is
Husserlian if and only if it fulfills the substitutivity principle.

Definition 18. A model M of L is strongly compositional if it fulfills the substitutivity
principle.

Remark 9. Characteristic theorem of Husserlian models 10 says the property of being
strongly compositional is equivalent to being Husserlian.

Corollary 8. If M is a Tarskian model of L and =12, then it fulfills the
substitutivity principle.

Theorem 11. A model M of L is strictly Husserlian if and only if the sets
Domy(y) (v € PT) are pairwise disjoint ones.

Proof. 1 have to note that the sets Domy () (7 € PT) are pairwise disjoint
ones if and only if the sets Domy(7y) (v € TY PEpr) are pairwise disjoint
ones.

At first we prove that if M (= (G, p,v)) is strictly Husserlian, then the sets
Domy () (v € TYPEpr) are pairwise disjoint ones. The proof is indirect.
Suppose that M is strictly Husserlian and there is a semantic value u such that
u € Domys(a) N Domyp(B) where a # (. Let 1y € Var(a) m € Var(B)
and v’ be an assignment such that v'(7) = u = V'(1z). If M’ = (G, 0,v"),
then [71]ar = [2]larr but 71 21 72 and according to Proposition 16 M’ is not
Husserlian. So M is not strictly Husserlian.

Secondly it is enough to prove that if M is a model of L and the sets
Domy () (v € TY PEpy) are pairwise disjoint ones, then M is Husserlian.
The proof is indirect. Suppose that A=y, B and A~y B where A, B € Cat%f.
Then A 2, B, and so there are «, 3 € TY PEpy such that A € Cat(a),
B € Cat(B) and o # . According to Proposition 1 [A]y € Domy(a),
[Bllar € Domy(B). Since [A]lar = [Bllar, Doma () N Domy (B) # 0. O

Definition 19. A (rotal or partial) frame G is strictly Husserlian if the sets
Domg () (v € PT) are pairwise disjoint ones.

Corollary 9. If M is a model on a strictly Husserlian frame then the model M of L is
strictly Husserlian.
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Corollary 10. 7%e degenerate model My, which generates the syntactic synonymy =,
is strictly Husserlian, and so the synonymy = is strictly Husserlian.

Theorem 12. A model M is Husserlian if and only if there is a strictly Husserlian
model M' such thar M' > M.

Proof. According to Corollary 10, the model My, is strictly Husserlian. If M is
Husserlian, then according to Corollary 5, My > M.

Let M’ be a strictly Husserlian model such that M’ > M. Then according
to Corollary 5 My > M’ and so My > M. It means that if A=), B, then
A= Bie. there is v € TYPEpr such that A, B € Cat(y). Therefore
(ATC)(A) € Catifand onlyif (A7C)(B) € Cat forany C' € Catand T € Var.
According to Law of replacement 2 [(A\TC)(A)]ax = [(A7C)(B)]ar and so
(A\TC)(A) € Cat))l; & (MC)(B) € Cathl;,ie. A~y B. O
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