
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Biró, P., Manlove, D.F., and McDermid, E.J. (2012) "Almost stable"
matchings in the Roommates problem with bounded preference
lists. Theoretical Computer Science, 432 . pp. 10-20. ISSN 0304-3975

http://eprints.gla.ac.uk/66396/

Deposited on: 26th June 2012

http://eprints.gla.ac.uk/view/author/3976.html
http://eprints.gla.ac.uk/view/author/4916.html
http://eprints.gla.ac.uk/view/journal_volume/Theoretical_Computer_Science.html
Samsung
Typewritten Text
The final publication is available at 10.1016/j.dam.2011.11.003

Samsung
Typewritten Text

“Almost stable” matchings in the Roommates

problem with bounded preference lists

Péter Biró1,∗,†,‡, David F. Manlove2,‡ and Eric J. McDermid3,†,‡,§,¶

1 Institute of Economics, Hungarian Academy of Sciences, Budapest, Hungary.

Email: birop@econ.core.hu.

2 School of Computing Science, University of Glasgow, Glasgow, UK.

Email: david.manlove@glasgow.ac.uk.

3 21st Century Technologies, Inc., 6011 W. Courtyard Drive, Austin, TX 78730.

Email: emcdermid@21technologies.com.

Abstract

An instance of the classical Stable Roommates problem need not admit a stable
matching. Previous work has considered the problem of finding a matching that is “as
stable as possible”, i.e., admits the minimum number of blocking pairs. It is known
that this problem is NP-hard and not approximable within n

1

2
−ε, for any ε > 0, unless

P=NP, where n is the number of agents in a given instance. In this paper we extend
the study to the Stable Roommates problem with Incomplete lists. In particular, we
consider the case that the lengths of the lists are bounded by some integer d. We
show that, even if d = 3, there is some c > 1 such that the problem of finding a
matching with the minimum number of blocking pairs is not approximable within c
unless P=NP. On the other hand we show that the problem is solvable in polynomial
time for d ≤ 2, and we give a (2d − 3)-approximation algorithm for fixed d ≥ 3. If
the given lists satisfy an additional condition (namely the absence of a so-called elitist
odd party – a structure that is unlikely to exist in general), the performance guarantee
improves to 2d− 4.

1 Introduction

Background. The Stable Roommates problem (sr) has been the subject of much at-
tention in the literature [6, 10, 7, 15, 16, 13, 1]. An instance of this problem comprises a
set of n agents (where n is even), each of whom ranks all others in strict order of prefer-
ence. A solution is a stable matching, which is a partition of the agents into pairs such
that there is no blocking pair – this is a pair of agents, each of whom prefers the other to
their partner in the matching. The Stable Roommates problem with Incomplete lists (sri)
is the generalisation of sr that arises when n need not be even, and agents can declare
a subset of the others as being unacceptable (i.e., they can neither be matched to such

∗Supported by OTKA grant K69027 and by the Hungarian Academy of Sciences under its Momentum
Programme (LD-004/2010).

†Part of this work was carried out whilst at the School of Computing Science, University of Glasgow.
‡Supported by EPSRC grant EP/E011993/1.
§Part of this work was carried out whilst at the Department of Electrical Engineering and Computer

Science, University of Wisconsin-Milwaukee.
¶Supported by NSF award CCF-0830678 and by the UWM Research Growth Initiative.

1

agents, nor form a blocking pair with them). A special bipartite restriction of sri is the
Stable Marriage problem with Incomplete lists (smi), in which the agents are partitioned
into two sets, the men and women, where men find only women acceptable and vice versa.

The full sr and sri problem names reflect their original application to the assignment
of students to share campus accommodation comprising two-person rooms, where students
may have preferences over one another based on their compatibility as a roommate [6, 12].
However, a more recent application of sri lies in kidney exchange [14], with each agent ai
corresponding to a pair (di, pi), where di is a willing but incompatible donor for a patient
pi who requires a kidney transplant. Two agents {ai, aj} find each other acceptable if di
is compatible for pj, and dj is compatible for pi (so that a pairwise kidney exchange is
possible, in which di donates a kidney to pj in exchange for dj donating a kidney to pi).
Preference lists can reflect degrees of compatibility of patients for the donors from whom
they can potentially receive a kidney. A stable matching in this context is one possible
solution concept [14].

Gale and Shapley [6] showed that an sr instance I need not admit a stable matching.
Irving [10] gave an O(n2) algorithm to find a stable matching in I or report that none
exists. This algorithm has a straightforward O(m) analogue for the case that I is an sri

instance [7, Section 4.5.2], where m is the number of mutually acceptable pairs of agents.
By contrast, every instance of smi admits a stable matching, which can be found in linear
time by using the classical Gale-Shapley algorithm (see [6] and [7, Section 1.4.2]).

Related work. Since a stable matching need not exist in a given sri instance I, various
possibilities for coping with this situation have been formulated in the literature. Tan
[16] gave an O(m) algorithm for finding the smallest set of agents that need to be deleted
from I in order to leave an instance with a stable matching. An alternative [1, 3] is to
retain all agents in I and seek an “almost stable” matching, i.e., a matching M in I such
that |bp(M)| is minimum, where bp(M) denotes the set of blocking pairs of M in I. The
motivation for this problem is that, in many situations, agents’ preferences are private,
and there may be limited channels of communication that would lead to the awareness of
blocking pairs in practice. Hence, whilst a blocking pair may exist in theory, in practice
it may not lead to the matching in question being undermined. Naturally, the fewer the
blocking pairs, the more likely this is to be true. Finding matchings with few blocking
pairs has also been considered by a number of other authors in the context of sri and smi

[11, 4, 8, 9, 5].
Abraham et al. [1] showed that the problem of finding a matching with the minimum

number of blocking pairs in a given sr instance is NP-hard and not approximable within
n

1

2
−ε, for any ε > 0, unless P=NP. They improved this lower bound to n1−ε in the case

that preference lists are permitted to contain ties.
“Almost stable” matchings have also been considered in the context of smi. Whilst we

have already noted that every smi instance admits a stable matching [6], such a matching
may be half the size of a maximum cardinality matching [3]. In applications where we seek
to match as many agents as possible, a limited number of blocking pairs may be tolerated
in order to arrive at a larger matching. In the smi context, Biró et al. [3] proved that the
problem of finding a maximum cardinality matching that admits the minimum number of
blocking pairs is NP-hard and not approximable within n1−ε, for any ε > 0, unless P=NP.
Further, even if all preference lists are of length at most 3, they showed that the problem
remains NP-hard and not approximable within c, for some constant c > 1. Hamada et al.
[8] strengthened the latter result by improving the constant c to n1−ε, for any ε > 0. For
preference lists of length at most 2 on one side, Biró et al. [3] showed that the problem
can be solved in polynomial time.

2

Our results. In this paper we extend the results from [1, 3] as outlined in the previous
two paragraphs to the sri case. In particular, we consider the problem of finding a
matching M with the minimum number of blocking pairs, given an sri instance. Note
that there is no stipulation on the size of M here: in view of previous hardness results
[1, 3, 8], we already know that the problem is NP-hard and difficult to approximate if M
is required to be of maximum cardinality. Rather, our assumption is that the stability of
the matching is the overriding priority, and in cases where stability cannot be achieved,
we wish to minimise the amount of “instability”. Moreover we focus on the case that the
length of the preference lists in a given sri instance are bounded by some integer d. This
reflects the fact that preference lists are often short in practical applications: for example
a given kidney patient is likely to be compatible with only a relatively small subset of the
available donors.

Let min bp d-sri denote the problem of finding a matching with the minimum number
of blocking pairs, given an sri instance where all preference lists are of length at most d
(d ≥ 1). The main results in this paper are as follows:

1. for d = 3, min bp d-sri is NP-hard not approximable within c, for some c > 1 unless
P=NP;

2. for d = 2, min bp d-sri is solvable in O(m) time;

3. for d ≥ 3, there is a straightforward (2d − 2)-approximation algorithm for min bp

d-sri;

4. for d ≥ 3, min bp d-sri is approximable within 2d− 3. This performance guarantee
improves to 2d− 4 if the instance admits no elitist odd party.

With respect to Result 4, an elitist odd party, which will be defined formally in Section 5, is
a set of agents {a0, a1, . . . , ak−1}, for some odd k ≥ 3, such that, for each i (0 ≤ i ≤ k−1),
ai+1 and ai−1 are the first and second entries on ai’s preference list respectively, where
addition and subtraction are taken modulo k. The definition of an elitist odd party is
quite tightly constrained, and thus we would expect the majority of sri instances not to
admit such a structure. In such cases, the improved 2d−4 performance guarantee prevails.

In the case that d = 3, our upper bound for the approximability of min bp d-sri is
2 for instances with no elitist odd party, which increases to 3 if an elitist odd party does
exist. Either case represents a substantial improvement over the performance guarantee
of 4 as given by the straightforward (2d− 2)-approximation algorithm. Another strength
of our approach is that the approximation algorithm is valid for all d ≥ 3, albeit with a
performance guarantee that increases with d. On the other hand our lower bound for the
hardness of approximating min bp d-sri is quite close to 1 (∼ 1.000984), suggesting that
future work should address closing the gap between the lower and upper bounds.

Structure of the paper. The remainder of this paper is organised as follows. In Section
2, we define some important notation and terminology that will be used in the remainder
of the paper. Then in Section 3, we give the lower bound for the approximability of min
bp d-sri, which holds even if d = 3. The simple linear-time algorithm for min bp 2-sri is
given in Section 4. For general d ≥ 3, in Section 5 we give the approximation algorithm
with performance guarantee 2d − 3, which improves to 2d − 4 in the absence of an elitist
odd party. Finally, Section 6 contains some concluding remarks.

3

2 Preliminaries

We begin with a definition of the Stable Roommates problem with Incomplete lists (sri).
An instance I of sri consists of an undirected graph G = (A,E) where A = {a1, . . . , an}
and m = |E|. We assume that G contains no isolated vertices. The vertices of G are
sometimes referred to as the agents of I. The vertices adjacent to a given agent ai are
the acceptable agents for ai, and if {ai, aj} ∈ E, we say that ai and aj find each other
acceptable. The input of I also contains a preference list associated with each agent ai ∈ A,
which is a total ordering of the vertices adjacent to ai. We say that ai prefers an agent
aj to another agent ak if aj precedes ak in ai’s preference list. For a matching M ⊆ E
of I, if {ai aj} ∈ M then M(ai) denotes aj . A blocking pair is an edge {ai, aj} ∈ E\M
such that (i) either ai is unmatched in M , or ai is matched in M and prefers aj to M(ai),
and (ii) either aj is unmatched in M , or aj is matched in M and prefers ai to M(aj). Let
bp(M) denote the set of blocking pairs with respect to M in I. A matching M is stable
if bp(M) = ∅. We also denote by bp(I) the minimum value of |bp(M ′)|, taken over all
matchings M ′ in I.

The classical Stable Marriage problem with Incomplete lists (smi) [6, 7] is the special
case of sri in which the underlying graph G is bipartite. Moreover, in the special case of
sri that n is even and m = n(n− 1)/2 (i.e., each agent finds all other agents acceptable),
we obtain the Stable Roommates problem (sr).

3 Inapproximability for d = 3

In this section we show that min bp 3-sri is NP-hard and not approximable within some
c > 1 unless P=NP. To prove this, we give a reduction from a restricted version of sat.
Given a Boolean formula B in CNF and a truth assignment f , let t(f) denote the number
of clauses of B satisfied simultaneously by f , and let t(B) denote the maximum value
of t(f), taken over all truth assignments f of B. Let max (2,2)-e3-sat [2] denote the
problem of finding, given a Boolean formula B in CNF in which each clause contains
exactly 3 literals and each variable occurs exactly twice as an unnegated literal in B and
exactly twice as a negated literal in B, a truth assignment f such that t(f) = t(B).

Theorem 1. Given any δ (0 < δ ≤ 1
1016), min bp 3-sri is NP-hard and not approximable

within 1017
1016 − δ unless P=NP.

Proof. Let B be an instance of max (2,2)-e3-sat. Let V = {v1, v2 . . . , vn} and C =
{c1, c2, . . . , cm} be the set of variables and clauses in B respectively. Then for each vi ∈ V ,
each of literals vi and v̄i appears exactly twice in B. Also |cj | = 3 for each cj ∈ C. We
form an instance I of min bp 3-sri as follows.

Let Aj = {asj : 1 ≤ s ≤ 3}, Bj = {bsj : 1 ≤ s ≤ 3}, Pj = {psj : 1 ≤ s ≤ 3} and
Qj = {qsj : 1 ≤ s ≤ 3} define new sets of agents. For each clause cj ∈ C, we create a
gadget Cj in I containing the 20 agents in Aj ∪Bj ∪ Pj ∪Qj ∪ {x

s
j , y

s
j : 1 ≤ s ≤ 4}. Also

for each variable vi ∈ V , we create a gadget Vi in I containing 4 agents {vri : 1 ≤ r ≤ 4}.
We refer to Aj ∪ Bj ∪ Pj ∪ Qj as the set of proper agents in Cj (inducing the proper
part of Cj), and the remaining agents in Cj are called additional agents (inducing the
additional part of Cj). Finally, for each i (1 ≤ i ≤ n), let Ti = {{v

1
i , v

2
i }, {v

3
i , v

4
i }} and

Fi = {{v
1
i , v

4
i }, {v

2
i , v

3
i }}.

The preference lists of these agents are shown in Figure 1, and this part of the instance
is also illustrated in Figure 2.

In the list of each asj ∈ Aj , if literal vi appears at position s of clause cj ∈ C, the

symbol v(asj) denotes agent v
2(r−1)+1
i where r = 1, 2 depending on whether this is the

4

a1j : b1j v(a1j) q1j

a2j : b2j v(a2j) q1j

a3j : b3j v(a3j) q3j

p1j : b1j b2j p2j

p2j : p1j p3j

p3j : p2j b3j y1j

v1i : v2i a(v1i) v4i
v3i : v4i a(v3i) v2i

b1j : a1j p1j

b2j : a2j p1j

b3j : a3j p3j

q1j : a1j a2j q2j

q2j : q1j q3j

q3j : q2j a3j x1j

v2i : v3i a(v2i) v1i
v4i : v1i a(v4i) v3i

x1j : q3j x2j

x2j : x1j x3j x4j

x3j : x4j x2j

x4j : x2j x3j

y1j : p3j y2j

y2j : y1j y3j y4j

y3j : y4j y2j

y4j : y2j y3j

Figure 1: Preference lists in the constructed instance of min bp 3-sri.

first or second occurrence of literal vi in B, otherwise if literal v̄i appears at position s of
clause cj ∈ C, v(asj) denotes agent v2ri where r = 1, 2 depending on whether this is the
first or second occurrence of literal v̄i in B. Similarly, in the preference list of agent vri
for r ∈ {1, 3}, a(vri) denotes the agent asj such that the (r+1

2)th occurrence of vi appears
at position s of cj . Finally, in the preference list of agent vri for r ∈ {2, 4}, a(vri) denotes
the agent asj such that the (r2)th occurrence of v̄i appears at position s of cj . Note that
v(asj) = vri if and only if a(vri) = asj .

We claim that t(B) + bp(I) = 2m. To show that bp(I) ≤ 2m− t(B), suppose that we
are given a truth assignment f with t(f) = t(B); we create a matching M in I such that
|bp(M)| = 2m − t(f). For each variable vi ∈ V , if vi is true under f , add the pairs in Ti

to M , otherwise add the pairs in Fi to M .
Now let cj ∈ C. If cj contains a literal that is true under f , let s ∈ {1, 2, 3} denote

the position of cj in which this literal occurs, otherwise set s = 1. Add the pairs (atj , b
t
j)

(1 ≤ t 6= s ≤ 3) to M , and match the rest of the proper part of Cj in the only way such
that no proper agent is unmatched in M , namely, for

• s = 1, add M1
j = {{a1j , q

1
j }, {b

1
j , p

1
j}, {q

2
j , q

3
j}, {p

2
j , p

3
j}} to M ;

• s = 2, add M2
j = {{a2j , q

1
j }, {b

2
j , p

1
j}, {q

2
j , q

3
j}, {p

2
j , p

3
j}} to M ;

• s = 3, add M3
j = {{a3j , q

3
j }, {b

3
j , p

3
j}, {p

1
j , p

2
j}, {q

1
j , q

2
j }} to M .

1
j

a

iV

C
j

4
j

y

3
j

y 2
j

y 1
j

y 3
j

p

2
j

p

1
j

p
1
j

b

2
j

b

3
j

b

2
j

a

3
j

a

1
j

q

2
j

q

3
j

q 1
j

x 2
j

x 3
j

x

4
j

x

1
i

v 2
i

v

3
i

v4
i

v

1

1 1
1 1

1

1 1

1

1

1

1 1

1

1 1 1

1

1

1

1
1

1

12 2 2 2

2

2

2

2

2 2

2

2

3

3 3

3

3

3

3
2

2

2

2

2

3

3

3 3

2

2

2

2

3

2

3
2 2

Figure 2: Gadgets Cj and Vi, where the dashed lines represent the interconnecting edges.
The preferences of a given agent a are shown by annotating the edges incident to a.

5

Finally, add {{x1j , x
2
j}, {x

3
j , x

4
j}, {y

1
j , y

2
j}, {y

3
j , y

4
j}} to M for each j (1 ≤ j ≤ m). Observe

that bp(M) ∩ (Aj × Bj) = {asj , b
s
j}. Now if cj is not satisfied under f then agent v(a1j)

has her last-choice partner, by construction of M . Hence {v(a1j), a
1
j} ∈ bp(M). Moreover

these, together with the m blocking pairs identified already, are all the blocking pairs of
M in I. Hence |bp(M)| = m+(m− t(f)), as required. (Note that M is a perfect matching
in I.)

To show that bp(I) ≥ 2m− t(B), suppose for a contradiction that there is a matching
M with |bp(M)| = bp(I) < 2m− t(B). The most important point of our argument is that
M can be chosen to be perfect, since we can prove that if M is not perfect then we can
create a perfect matching M∗ with |bp(M∗)| ≤ |bp(M)| as follows.

First we show that, given a matching M , we can create a matching M ′ with |bp(M ′)| ≤
|bp(M)| such that M ′ covers all the additional agents. Consider a set of linked ad-
ditional agents, say {x1j , x

2
j , x

3
j , x

4
j}, and suppose that not all of them are covered in

M . If {x1j , q
3
j } /∈ M then we can clearly match all of these additional agents with-

out introducing any new blocking pairs. If {x1j , q
3
j } ∈ M then add {{x1j , x

2
j}, {x

3
j , x

4
j}}

to M ′, by leaving q3j unmatched in M ′, and let M ′ be the same as M for the rest

of the instance. Here {q3j , x
1
j} ∈ bp(M ′)\bp(M), however, since one of the edges from

{{x2j , x
3
j}, {x

3
j , x

4
j}, {x

4
j , x

2
j}} is in bp(M)\bp(M ′), the number of blocking pairs remains

the same. After making these changes for each component of additional agents, we obtain
a matching M ′ that covers every additional agent and satisfies |bp(M ′)| ≤ |bp(M)|.

In the second step, we remove all interconnecting edges, i.e. edges of the form {asj , v
r
i },

from M ′ and we rearrange matching M ′ in every gadget that admits an agent who is
covered by an interconnecting edge in M ′. We call these gadgets affected gadgets. In
each affected gadget Cj, let {{a

s
j , b

s
j} : 1 ≤ s ≤ 3} ∪ {{q1j , q

2
j }, {p

1
j , p

2
j}} belong to the new

matching M ′′, leaving p3j and q3j unmatched. In each affected gadget Vi, if {v
1
i , v

4
i } or

{v2i , v
3
i } is in M ′ then add {{v1i , v

4
i }, {v

2
i , v

3
i }} to M ′′, otherwise add {{v1i , v

2
i }, {v

3
i , v

4
i }} to

M ′′.
To show that |bp(M ′′)| ≤ |bp(M ′)|, first we observe that no interconnecting edge can

be blocking for M ′′ if it was not blocking for M ′. The interconnecting edges of the form
{asj , v

r
i }, where Cj is affected, cannot be blocking, since each asj is matched to her best

partner in M ′′. The interconnecting edges of the form {asj , v
r
i }, where Vi is affected but

Cj is not affected, cannot belong to bp(M ′′)\bp(M ′), since each vri has either remained
matched to the same partner in M ′′ or was unmatched in M ′ (and the partner of asj has
not changed). Now we prove that the number of blocking pairs has not increased within
any of the affected gadgets. Clearly, an affected Vi does not admit any blocking pair for
M ′′. An affected Cj admits exactly two blocking pairs for M ′′ (i.e., {x1j , q

3
j } and {y

1
j , p

3
j}),

so we shall prove that Cj admits at least two blocking pairs for M ′ too. If {asj , v
r
i } ∈ M ′

then {asj , b
s
j} ∈ bp(M ′). Furthermore, if {atj , b

t
j} /∈ M ′ for some (1 ≤ t 6= s ≤ 3) then

{atj , b
t
j} ∈ bp(M ′). On the other hand, if {atj , b

t
j} ∈ M ′ for each (1 ≤ t 6= s ≤ 3) then

at least one proper agent from {q1j , q
3
j} must be uncovered in M ′ which induces another

blocking pair, since each of these agents is the first choice of somebody else. Therefore
|bp(M ′′)| ≤ |bp(M ′)|, as claimed.

In the third and final step, we modify M ′′ and obtain a perfect matching M∗ such
that |bp(M∗)| ≤ |bp(M ′′)|. Note that for each gadget Cj (1 ≤ j ≤ m), there are three
matchings that cover the proper part of Cj , namely M̄ s

j for (1 ≤ s ≤ 3), where M̄ s
j =

M s
j ∪ {{a

t
j , b

t
j} : 1 ≤ t 6= s ≤ 3}. For each M̄ s

j (1 ≤ s ≤ 3), there is exactly one
blocking pair involving two agents of Cj (i.e., {asj , b

s
j}), and at most one further blocking

pair involving one agent from Cj (i.e., possibly {asj , v(a
s
j)}). On the other hand, if M ′′

does not cover every proper agent in Cj, then at least two proper agents are uncovered,

6

since M ′′ contains no interconnecting edges. Note that these agents cannot be adjacent
to each other, since otherwise the number of blocking pairs could not be minimum in M ′′,
obviously. Furthermore, every proper agent in Cj is somebody else’s first choice, so M ′′

must admit at least two blocking pairs within Cj. Therefore, in the latter case, we can
replace the restriction of M ′′ to Cj by any of {M̄ s

j : 1 ≤ s ≤ 3} without increasing the
number of blocking pairs. Finally, if the restriction of M ′′ does not cover every agent in Vi

then we can always extend it to obtain either Ti or Fi without creating any new blocking
pair.

As a result, we obtain a perfect matching M∗, for which |bp(M∗)| < 2m − t(B). We
also know that the restriction of M∗ to the proper part of Cj (1 ≤ j ≤ m) is M̄ s

j for some
s (1 ≤ s ≤ 3) and the restriction of M∗ to Vi (1 ≤ i ≤ n) is either Ti or Fi. Moreover
for each j (1 ≤ j ≤ m), {asj , b

s
j} ∈ bp(M∗) for some s (1 ≤ s ≤ 3). Additionally, bp(M∗)

contains pairs of the form {asj , v(a
s
j)}. Now let f be a truth assignment of B such that

each variable vi is true if and only if the restriction of M∗ to Vi is Ti. Clearly, a pair of
form {asj , v(a

s
j)} ∈ bp(M∗) if and only if the literal occurring at position s of cj is false,

therefore
t(f) ≥ 2m− |bp(M∗)| > 2m− (2m− t(B)) = t(B),

a contradiction. Hence we proved that t(B) + bp(I) = 2m.
Now let ε = δ/3. Berman et al. [2] show that it is NP-hard to distinguish between

instances B of max (2,2)-e3-sat for which (i) t(B) ≥ (1−ε)m and (ii) t(B) ≤
(

1015
1016 + ε

)

m.
By our construction, it follows that in case (i), bp(I) ≤ (1 + ε)m, whilst in case (ii), bp(I) ≥
(

1017
1016 − ε

)

m. Hence an approximation algorithm for min bp 3-sri with performance

guarantee 1017
1016 − δ <

1017

1016
−ε

1+ε
could be used to decide between cases (i) and (ii) for max

(2,2)-e3-sat in polynomial time, which is a contradiction unless P=NP.

4 Algorithm for d ≤ 2

Tan [15] defined a stable partition in a given instance I of sri, which is a generalization
of the concept of a stable matching. We will utilise this concept in this section and
subsequently. Pittel and Irving [13] gave a concise definition of a stable partition, however
their definition requires that each agent ai ranks himself last on his preference list, after
all of the other agents on his list (this constitutes a self-loop in the underlying graph G).
We assume that this is the case in presenting the following definition.

Definition 2 ([13]). Let I be an sri instance where A is the set of agents. A stable
partition is a permutation Π of A satisfying the following two properties:

1. for each ai ∈ A, either Π(ai) = Π−1(ai) or ai prefers Π(ai) to Π−1(ai);

2. if ai prefers aj to Π−1(ai), then aj prefers Π−1(aj) to ai.

We refer to a cycle in Π with odd (respectively, even) length as an odd (respectively, even)
party of Π.

Note that, possibly ai is a fixed point of Π, so that Π(ai) = Π−1(ai) = ai. We consider
this to be an odd party of size one. The following theorem regarding stable partitions is
due to Tan [15, 16].

Theorem 3 ([15, 16]). Let I be an instance of sri. Then I admits at least one stable
partition, which can be found in O(m) time, where m is the number of acceptable pairs in
I. Furthermore, any two stable partitions in I have exactly the same set of odd parties.
Finally, I admits a stable matching if and only if Π has no odd party of size ≥ 3.

7

Suppose we are given an instance I of min bp 2-sri. Clearly the connected components
of the underlying graph G are paths and cycles. Construct a stable partition Π in I. Paths
and even-length cycles in G are bipartite, and hence Π gives rise to a stable matching
within each such component. Now consider each odd-length cycle C in G. If Π induces
an odd party P of size ≥ 3 in C, then by deleting an agent from P and forming a perfect
matching among the edges that remain, we obtain a matching in C with one blocking
pair. Otherwise Π induces a stable matching in C. After considering each component in
G in turn, we thus arrive at a matching with the minimum number of blocking pairs. We
summarise this discussion with the following theorem.

Theorem 4. min bp 2-sri is solvable in O(m) time, where m is the number of acceptable
pairs in a given instance I. Moreover bp(I) is equal to the number of odd parties of size
≥ 3 in a stable partition in I.

5 Approximation algorithm for d ≥ 3

5.1 Preliminary results

We mentioned in the introduction that Tan [16] gave an O(m) algorithm for finding the
smallest set of agents that need to be deleted from a given sri instance I in order to
leave a stable matching. Tan’s algorithm is based on finding a stable partition Π in I,
and attempting to match as many agents as possible within their own party in Π in the
following way. For each even party P = (a0, a1, . . . , a2k−1) (k ≥ 1), we match {a2i, a2i+1}
for all i (0 ≤ i ≤ k − 1). For odd parties P , we select an arbitrary agent ai ∈ P to delete
from the instance, decompose P − {ai} into a maximum set of pairs, and add these pairs
to the matching. When P is an even party, or P is an odd party with an agent ai ∈ P ,
let us refer to this process of decomposing P (respectively, P\{ai}) into a maximum set
of matched pairs as decomposing and matching P (respectively, P\{ai}). The following
lemma, and its immediate corollary illuminates why this approach may also be a good
approach for min bp d-sri.

Lemma 5. Let M ′ be any matching for I. Then, an agent ai matched to either Π(ai) or
Π−1(ai) does not block with an agent aj matched to either Π(aj) or Π

−1(aj). Consequently,
an agent ai in a party of size one does not block with an agent aj matched to either Π(aj)
or Π−1(aj), regardless of to whom ai is matched.

Proof. Recall property (1) of the stable partition, which states that either an agent ai
prefers Π(ai) to Π−1(ai) or Π(ai) = Π−1(ai). By property (2) of the stable partition, if
an agent ai prefers another agent aj to Π−1(ai), then aj does not prefer ai to Π−1(aj).
Hence, if ai is matched to either Π−1(ai) or Π(ai), he cannot be in a blocking pair with aj
if aj is matched to Π−1(aj) or Π(aj). Now, translate this into the context of ai being in
an odd party of size one: if ai is unmatched (i.e., he is matched to Π(ai) = Π−1(ai) = ai),
then he does not block with any agent aj matched to Π(aj) or Π−1(aj). Hence, if ai is
matched to anyone, he still cannot block with aj.

Corollary 6. Let M ′ be any matching for I. Then, for every blocking pair {ai, aj} relative
to M ′, at least one of {ai, aj}, say, ai, is not matched to Π(ai) or Π−1(ai).

This corollary leads one to believe that a reasonable attempt at minimizing blocking
pairs is indeed to simply decompose and match each party, excluding an arbitrary agent
(or, even better, one of minimum degree) from each odd party. This, in fact, does give a
constant performance guarantee as follows. Let P denote the set of all parties in Π, and
PO the set of odd parties of size ≥ 3. Given Pi ∈ PO, let di = minaj∈Pi

dG(aj), where

8

dG(aj) denotes the degree of vertex aj in the underlying graph G. Abraham et al. [1]
showed that the following upper and lower bounds hold for bp(I).

Proposition 7 ([1]).

⌈

|PO|

2

⌉

≤ bp(I) ≤
∑

Pi∈PO

(di − 1).

The latter upper bound is achieved by using Tan’s algorithm, where, for each odd
party Pi of size ≥ 3, we choose an agent ak ∈ Pi having minimum degree in G amongst all
agents from P to be unmatched. By Lemma 5, ak cannot block with Π(ak), and therefore
can be in at most di − 1 blocking pairs. When the preference lists have length at most
d, for some d ≥ 3, the upper bound can be set to be (d− 1)|PO|. Thus, this use of Tan’s
algorithm leads us to a straightforward (2d− 2)-approximation of min bp d-sri.

We now show how to improve on this performance guarantee for min bp d-sri. Our
improved algorithm achieves a superior performance guarantee by very selectively deciding
which agents from each odd party will be excluded from being matched within their party,
and either match them with another excluded agent, or decide that they will be unmatched.
We crucially rely on the properties of a particular type of odd party relative to Π, which
we call an elitist odd party, defined as follows.

Definition 8. An elitist odd party is an odd party P = (a0, a1, . . . , ak) in Π with k ≥ 2
such that Π(ai) and Π−1(ai) are the first and second entries, respectively, of ai’s preference
list for 0 ≤ i ≤ k.

Note that by Theorem 3, the definition of an elitist odd party is independent of the
particular stable partition in I chosen. Recall that P and PO are the set of all parties and
odd parties of size ≥ 3, respectively, in Π. We further denote the set of even parties, odd
parties of size one, and elitist odd parties in P by PE , P

1
O, and P

e
O, respectively. All other

odd parties not in PE ∪ P
1
O ∪ P

e
O, which must therefore be non-elitist odd parties of size

≥ 3, are denoted by Pne
O . For a given agent ai, we let P (ai) denote the party of ai. Also,

for any party P in Π, A(P) denotes the set of agents in P . It is important to note the
following remark, which follows immediately from property 2 of the definition of a stable
partition.

Remark. The set of vertices in the set P1
O of odd parties of size one in P constitutes an

independent set in G.

5.2 Approximation algorithm

The approximation algorithm, which is given in Figure 3, takes a four-phase approach to
compute a matching M for I.

Before the first phase, we set the stage by computing an arbitrary stable partition Π,
and by setting the matching M to be returned by the algorithm to be the empty set. Each
odd party is defined to be undestroyed – loosely speaking, this terminology means that we
have not yet decided how these agents will be matched in M .

Phase one: even parties are easy.
In phase one, all even parties are decomposed and matched as described immediately prior
to Lemma 5. These pairs are added to the matching M .

Phase two: pair together as many odd parties as possible – with a twist.
How shall we decide what agent to exclude from each odd party? Consider the following
simple observation. If Pi = (a0, a1, . . . , ak) and Pj = (b0, b1, . . . , bl) are odd parties such
that {ar, bs} is an edge of G, with ar ∈ Pi and bs ∈ Pj , then, we could match {ar, bs} and
decompose and match Pi\{ar} and Pj\{bs}. (Note that, if one of these two odd parties,

9

Procedure min bp d-sri-approx:
compute Π
M ← ∅
set every odd party in P1

O ∪ P
e
O ∪ P

ne
O to be undestroyed

phase one:

for each even party P in Π:
decompose and match P , and add these pairs to M

phase two:

construct the auxiliary graph H
MH ← maximum matching in H
M ′

H ← ∅
for each pair {Pi, Pj} in MH :

add one acceptable pair {ar, as} with ar ∈ Pi and as ∈ Pj to M ′
H

decompose and match Pi\{ar} and Pj\{as}, and add these pairs to M
set Pi and Pj to be destroyed

UP ← set of unmatched parties relative to MH

UA ← set of agents in the parties in UP

while ∃ {ai, aj} ∈M ′
H and a set B = {b1, . . . , bt} ⊆ UA such that, for each bl ∈ B, {ai, bl}

forms a blocking pair relative to M ′
H :

bk ← ai’s most preferred agent from {b1, . . . , bt}
MH ← (MH\{{P (ai), P (aj)}}) ∪ {{P (ai), P (bk)}}
M ′

H ← (M ′
H\{{ai, aj}}) ∪ {{ai, bk}}

decompose and match P (bk)\{bk}, and add these pairs to M
set P (bk) to be destroyed
UP ← UP\{P (bk)}
remove the agents of P (bk) from UA // no agents are added to UA

add all pairs in M ′
H to M

phase three:

while ∃ ai in an undestroyed non-elitist odd party P with |P | ≥ 3:
ai ← arbitrary agent in P that prefers some aj 6= Π(ai) to Π−1(ai)
decompose and match P\{ai}, and add these pairs to M
set P to be destroyed

phase four:

while ∃ an undestroyed elitist odd party P :
ai ← arbitrary agent in P
decompose and match P\{ai}, and add these pairs to M
set P to be destroyed

Figure 3: A pseudocode description of the approximation algorithm.

Pi say, is an odd party of size one, then nothing happens when we decompose and match
Pi\{ar}.) Rather than myopically selecting two such odd parties, in phase two we will
compute a maximum pairing of these odd parties, and then adjust this pairing for our
purposes.

We construct an auxiliary graph H. The vertex set of H is the set of odd parties,
i.e., (Pne

O ∪ P
1
O ∪ P

e
O). We sometimes refer to the vertices of this graph as parties. The

10

edges of H are defined to be all pairs of odd parties {Pi, Pj} such that there exists an
acceptable pair {ar, as} with ar ∈ Pi and as ∈ Pj . We compute a maximum matching
MH for H, and construct an additional matching M ′

H as follows. For each pair {Pi, Pj} in
MH , arbitrarily choose exactly one acceptable pair {ar, as} to add to M ′

H where ar ∈ Pi

and as ∈ Pj (such a pair exists, otherwise {Pi, Pj} is not an edge of H). Next, decompose
and match Pi\{ar} and Pj\{as}, and add these pairs to M – but note that {ar, as} is not
added to M . These parties are now destroyed.

Next, we adjust the matchings MH and M ′
H . Let UP denote the set of unmatched

parties relative to MH , and UA the set of agents in UP . While there exists an edge
{ai, aj} ∈M ′

H such that there is a set of agents {b1, . . . , bt} ∈ UA that form a blocking pair
(relative to M ′

H) with ai, let bk denote ai’s most preferred agent from {b1, . . . , bt}. Remove
the pair {P (ai), P (aj)} from MH , and replace it with {P (ai), P (bk)}. Correspondingly,
remove the pair {ai, aj} from M ′

H , and replace it with {ai, bk}. Next, decompose and
match P (bk), and add these pairs to M . This party is now destroyed. The set UP now
contains one fewer odd party, and the set UA at least one fewer agent – hence the loop
terminates. Crucially, the agent aj is not added to UA, nor is his party added to UP (it
has already been decomposed and matched). When the loop ends, all pairs in M ′

H are
added to M .

We remark on two important subtleties of the while loop of phase two. First, if a pair
{ai, aj} is replaced with the pair {ai, bk}, then this pair will remain in the matching M ′

H

until the end of the while loop. This is proven in Lemma 9, where we show that it turns
out that no agent in the set UA at any further iteration of the loop can block with ai. It
also not immediately obvious (but nevertheless true) that no agent in UA at any further
iteration of the loop finds aj or bk acceptable. This is also shown in Lemma 9.

Phase three: destroy the remaining non-elitist odd parties of size ≥ 3.
Phase three consists of a loop that continues while there exists a non-elitist undestroyed
odd party P with |P | ≥ 3. By definition, P contains an agent ai with some aj 6= Π(ai) on
his list that he prefers to Π−1(ai). We identify this ai and decompose and match P\{ai},
and add these pairs to M (hence, ai is unmatched in M). This party is now considered
destroyed. It turns out (proven in Lemma 10) that ai can never block with aj .

Phase four: destroy the remaining elitist odd parties.
Finally, phase four iteratively considers each remaining undestroyed elitist odd party P .
An arbitrary agent ai ∈ P is selected, and P\{ai} is decomposed and matched. This party
is now considered destroyed. The algorithm then returns the matching M .

We remark that, in general, some elitist odd parties may be destroyed prior to phase
four. Also, some odd parties of size 1 may end up being undestroyed. For our purposes,
it is irrelevant as to whether either of these occurs.

Next, we illustrate the execution of the approximation algorithm on an instance I of
sri with d = 3.

Example

Let the preference lists of the agents be as shown in Figure 4.
Here, the unique stable partition is Π = (a1, a2, a3)(a4, a5)(a6, a7, a8)(a9)(a10, a11, a12),

where P1 = (a1, a2, a3) is an elitist odd party, P2 = (a4, a5) is an even party, P3 =
(a6, a7, a8) and P5 = (a10, a11, a12) are non-elitist odd parties and P4 = (a9) is an odd
party of size one.

In the first phase of the algorithm we match a4 with a5. In the second phase we
construct the auxiliary graphH that is a triangle consisting of P1, P3 and P4 as vertices and

11

a1 : a2 a3 a8

a2 : a3 a1 a9

a3 : a1 a2 a4

a4 : a3 a10 a5

a5 : a4 a6 a11

a6 : a5 a7 a8

a7 : a8 a6 a9

a8 : a6 a7 a1

a9 : a7 a2

a10 : a11 a12 a4

a11 : a12 a5 a10

a12 : a10 a11

Figure 4: Preference lists in the instance of sri with twelve agents.

an isolated vertex corresponding to P5. Now the algorithm randomly chooses a maximum
matching H, that is one edge from the three. We describe all the three possible cases.

Suppose first that pair {P1, P3} is selected, so we match agents a1 and a8 in M ′
H and

we decompose and match P1\{a1} and P2\{a8} by adding {a2, a3} and {a6, a7} to the final
matching M . The while loop in the second phase does not make any change in M ′

H so we
add {a1, a8} to M . In phase three we take P5 and we select a11 to be unmatched (as a11
prefers a5 to a10 = Π−1(a11)), and we decompose and match P5\{a11} by adding {a10, a12}
to M . The matching M remains the same in the last phase, so the resulting matching
is M1 = {{a1, a8}, {a2, a3}, {a4, a5}, {a6, a7}, {a10, a12}} with three blocking pairs, i.e.,
bp(M1) = {{a1, a3}, {a7, a8}, {a10, a11}}.

Suppose now that the algorithm selects {P1, P4} instead. We add {a2, a9} to M ′
H and

we decompose and match P1\{a2} by adding {a1, a3} to the final matching M . In the
while loop of the second phase, {a7, a9} is a blocking pair relative to M ′

H , such that a7 is
the most preferred agent for a9 satisfying the requirements, so we adjust MH by removing
{P1, P4} and adding {P3, P4}. We also remove {a2, a9} from M ′

H and we add {a7, a9}
instead, furthermore we decompose and match P3\{a7} by adding {a6, a8} to the final
matching M . The while loop stops without any more changes so we add {a7, a9} to M
as well. In phase three we select a11 to be unmatched, and we decompose and match
P5\{a11} by adding {a10, a12} to M . All the odd elitist parties are destroyed so phase four
is skipped. The final matching is M2 = {{a1, a3}, {a4, a5}, {a6, a8}, {a7, a9}, {a10, a12}}
with three blocking pairs, i.e., bp(M2) = {{a1, a2}, {a6, a7}, {a10, a11}}.

Finally, in the third case {P3, P4} is chosen. We add {a7, a9} to M ′
H and we de-

compose and match P3\{a7} by adding {a6, a8} to the final matching M . The while
loop of the second phase runs without making any change to M ′

H , so we add {a7, a9}
to M . In phase three again we select a11 to be unmatched, and we decompose and
match P5\{a11} by adding {a10, a12} to M . In the fourth phase the remaining elitist
cycle (a1, a2, a3) is decomposed and matched in an arbitrary way, say by choosing a3
to remain unmatched and by adding {a1, a2} to M . The final matching in this case is
M3 = {{a1, a2}, {a4, a5}, {a6, a8}, {a7, a9}, {a10, a12}} which admits four blocking pairs,
i.e., bp(M3) = {{a2, a3}, {a3, a4}, {a6, a7}, {a10, a11}}.

Note that there is a matching M∗ = {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a10, a12}}
that admits two blocking pairs (i.e., bp(M∗) = {{a2, a3}, {a10, a11}}), which is optimal for
this instance since every stable partition admits three odd parties of size at least three
(recall from Proposition 7 that bp(I) ≥ ⌈|PO|/2⌉, and |PO| = 3 in I).

Finally we also note that a modified example may be constructed to show that the up-
per bound 2d−3 for the performance ratio of our approximation algorithm can be achieved
in the case where the instance admits an elitist odd party. By removing agents a10, a11 and
a12 from the instance the new optimal matchingM∗ = {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}}
would admit only one blocking pair (i.e., bp(M∗) = {{a2, a3}}), whilst the matching ob-
tained in the third case according to the above argument adjusted to the reduced in-
stance, M3 = {{a1, a2}, {a4, a5}, {a6, a8}, {a7, a9}} would admit three blocking pairs, i.e.,

12

bp(M3) = {{a2, a3}, {a3, a4}, {a6, a7}}.

5.3 An upper bound on the blocking pairs

We require two lemmas, one regarding phase two, and the other regarding phase three,
before presenting the main theorem of this section, which bounds the number of blocking
pairs relative to the matching M returned by the algorithm.

Lemma 9. Suppose that there is a pair {ai, aj} ∈ M ′
H and a set B = {b1, . . . , bt} ⊆

UA such that, for each bl ∈ B, {ai, bl} forms a blocking pair relative to M ′
H with ai at a

particular point in the execution of phase two.

1. If any agent ak in UA finds aj acceptable, then ak and all agents in B are in the
same odd party.

2. If phase two of the algorithm replaces the pair {ai, aj} with {ai, bk} at this time, then,
at any subsequent step in the execution of phase two, no agent in UA\A(P (bk)) forms
a blocking pair with ai, relative to M ′

H , and no agent in UA\A(P (bk)) finds bk or aj
acceptable.

3. The pair {ai, bk} described in (2) is never removed from M ′
H , therefore it is added

to M at the end of phase two.

Proof. (1). If an agent ak in UA finds aj acceptable, and is not in the same odd party as
some agent bl ∈ B, then P (ak) - P (aj) - P (ai) - P (bl) is an augmenting path for MH ,
contradicting that MH is a maximum matching for H.

(2). Let al ∈ UA\P (bk). If, after replacing the pair {ai, aj} with {ai, bk}, al blocks
with ai, then the choice of bk was not valid, as bk was chosen to be ai’s most preferred
blocking agent. If al finds bk acceptable, then there is an edge {P (al), P (bk)} in H. Since
P (al) and P (bk) were both in UP prior to the pair {P (ai), P (aj)} being removed from
MH , MH cannot be a maximum matching. Lastly, it follows from (1) that al cannot find
aj acceptable, as he is in a different odd party than bk, who was in B. As the set UA only
decreases with each iteration of the while loop, al still cannot block with ai, and he clearly
cannot change his preference list in order to find bk or aj acceptable.

(3). This follows immediately from the proof of 2. For the pair {ai, bk} to be removed
from M ′

H , some agent al in the set UA at a later iteration of the while loop has to form a
blocking pair with either ai or bk, a contradiction.

The next lemma identifies the facts we need regarding phase three of the algorithm.

Lemma 10. Let P be a non-elitist odd party of size ≥ 3 that is undestroyed at the end of
phase two.

1. There exists an agent ai ∈ P who prefers some aj 6= Π(ai) to Π−1(ai).

2. P is in the set UP at the start and end of phase two.

3. If aj is not in P , then aj is matched in M , and does not block with ai (relative to
M).

Proof. (1). This follows immediately from the definition of being a non-elitist odd party.
(2). Since P is undestroyed, it was never matched in MH , and therefore it was in UP

at the end of phase two. Since the contents of UP at the end of phase 2 form a proper
subset of its contents at the start of phase 2, P was in UP at the start of phase two as
well.

13

(3). Suppose aj is not in P , and that {ai, aj} form a blocking pair relative to M at the
moment the party P is selected by phase three. By property (2) of the stable partition, we
know that since ai prefers aj to Π−1(ai), aj prefers Π−1(aj) to ai. Hence if aj is matched
to Π−1(ai) or Π−1(aj), he does not block with ai. So, suppose that aj is in a different
odd party P (aj) (he cannot be in an even one, nor by assumption can he be in P (ai)),
and is not matched to Π−1(ai) or Π(ai). Since MH is maximum and (by part (2) of this
lemma) P (ai) was never matched in MH , P (aj) must be matched in MH , and therefore
destroyed in phase two. Since aj is not matched to Π−1(aj) or Π(aj), phase two must
have decomposed and matched P (aj)\{aj}, meaning that aj was in M ′

H at some point.
If aj remains matched in M ′

H at the end of phase two, then ai does not block with aj –
otherwise the loop cannot have terminated. If aj is unmatched in M ′

H at the end of phase
two, then by part 2 of Lemma 9, ai cannot find aj acceptable, a contradiction. Hence, ai
does not block with aj relative to M .

We are now ready to present the main theorem of this section.

Theorem 11. In polynomial-time, a matching M can be constructed with at most (d −
2)|Pne

O | + (d − 1)|Pe
O| blocking pairs, where Pe

O (Pne
O) is the set of elitist (respectively,

non-elitist) odd parties in P.

Proof. The algorithm clearly runs in polynomial-time. To establish the upper bound,
Lemma 5 and Corollary 6 imply that we need only prove an upper bound on the number
of blocking pairs involving agents ar in odd parties of size ≥ 3 that are not matched to
Π(ar) or Π

−1(ar). There is exactly one such agent per odd party.
First, observe that by property (1) of the stable partition, ar cannot block with ar+1 =

Π(ar), who is matched to ar+2 = Π(ar+1). Hence, ar can conceivably block with all the
other agents on his list, and is therefore in at most d− 1 blocking pairs. This establishes
the claimed number of blocking pairs for the elitist odd parties. Next, we show that we can
identify another agent on ar’s list that he does not block with if his party was decomposed
and matched in phases two or three.

Suppose P (ar)\{ar} was decomposed and matched during phase two. We consider
two cases. First, suppose that ar is matched in M at the end of phase two to an agent as.
Since the pair {ar, as} is never removed from M , ar cannot block with as or Π(ar), and is
therefore in at most d− 2 blocking pairs. Secondly, suppose that ar is not matched in M
at the end of phase two. For ar to be unmatched, it must be that ar was matched to some
as in M ′

H , and the pair {ar, as} was replaced with a different pair {as, bt} in the while
loop of phase two, so that as prefers bt to ar. By part 3 of Lemma 9, the pair {as, bt}
is never removed from M ′

H , and is therefore added to M at the end of phase two, where
it must remain. Hence, ar does not block with as or Π(ar), and is thus in at most d − 2
blocking pairs.

If P (ar)\{ar} was decomposed and matched in phase three, then ar was chosen because
there exists an as 6= Π(ar) that he prefers to Π−1(ar). If as is not in his party, then by part
3 of Lemma 10, as does not block with ar. If, instead as is in P (ar), then as is matched
to either Π(as) or Π

−1(as) when P (ar)\{ar} is decomposed and matched in phase three,
and does not block with ar. Thus, ar is in at most d− 2 blocking pairs.

5.4 The performance guarantee

We now show that the matching M implies an approximation algorithm with a perfor-
mance guarantee of 2d − 3. Let M∗ be an optimal solution, i.e., a matching such that
|bp(M∗)| = bp(I). Let S = bp(M) and let S∗ = bp(M∗). For ease of notation, let q1 = |P

ne
O |

and q2 = |P
e
O| with q = q1 + q2. The following lemma provides an additional lower bound

14

(to that of Proposition 7) on the optimal solution in terms of the number of elitist odd
parties in P.

Lemma 12. Let M∗ be a matching with the minimum number of blocking pairs, and S∗

the set of blocking pairs relative to M∗. Then, |S∗| ≥ |Pe
O|, where P

e
O is the set of elitist

odd parties in G.

Proof. Let P = (u0, . . . , uk) denote any arbitrary elitist odd party. Since P contains an
odd number of agents, in any matching M for G, at least one agent ai ∈ P must be
either unmatched, or matched to at most his third choice, aj . Since agent Π−1(ai) ranks
ai first on his list, {ai,Π

−1(ai)} is a blocking pair for M . Therefore, M contains at least
one blocking pair for each elitist odd party, and thus S∗ contains at least |Pe

O| blocking
pairs.

The proof of the overall performance guarantee consists of two cases.

Case 1: q1 ≤ q/2. We have the following bounds (the third of which is due to Lemma
12): q1 ≤

q
2 , q2 ≥

q
2 , and |S

∗| ≥ q2. By Theorem 11 it follows that:

|S| ≤ (d− 2)q1 + (d− 1)q2 ≤
(d− 2)q

2
+ (d− 1)|S∗|

.Hence,

|S|

|S∗|
≤

(d− 2)q

2|S∗|
+ (d− 1) ≤

(d− 2)q

2

(

2

q

)

+ (d− 1) ≤ 2d− 3.

Case 2: q1 > q/2. We have the following bounds (the third of which is due to Proposition
7): q1 >

q
2 , q2 <

q
2 , and |S

∗| ≥ q
2 . It follows by Theorem 11 that:

|S| ≤ (d− 2)q1 + (d− 1)q2 = (d− 2)q1 + (d− 1)(q − q1) ≤
(2d− 3)q

2
.

Hence,
|S|

|S∗|
≤

(2d− 3)q

2|S∗|
≤ 2d− 3.

This leads us to the following theorem.

Theorem 13. For each fixed d ≥ 3, min bp d-sri is approximable within 2d− 3.

Lastly, we note that in the absence of elitist odd parties, we have that the number of
blocking pairs relative to M is at most (d− 2)q1, the number of odd parties. Since q1

2 is,
by Proposition 7, a lower bound on an optimal solution, we have the following theorem.

Theorem 14. For each fixed d ≥ 3, min bp d-sri is approximable within 2d − 4 for
instances where a stable partition contains no elitist odd party.

6 Concluding remarks

As already mentioned in the Introduction, the performance guarantee of our approximation
algorithm, as presented in Section 5, is in contrast with the findings of Hamada et al.
[8], namely that the problem of finding a maximum matching with minimum number of
blocking pairs is not approximable within n1−ε, for any ε > 0 (unless P=NP), even if
the underlying graph is bipartite and all preference lists are of length at most 3, where n
is the number of agents. The intuition for this phenomenon is the following. When the
overriding priority is to find a maximum matching, the number of blocking pairs in an

15

optimal solution can increase in an uncontrolled way even if the instance admits a stable
matching (which is always the case for a bipartite graph). However, in our case, we start
with a stable partition and its structure, especially the number of odd parties of size at
least three, provides both lower and upper limits for the minimum number of blocking
pairs. This was a finding of Abraham et al. [1] and our new results can be seen as an
extension of that theory. We suspect that the idea of using stable partitions for this and
related problems can result in further and/or stronger findings.

An equivalent problem to min bp d-sri is to find, given an sri instance I, a smallest
set of edges S such that I\S admits a stable matching, where I\S is the sub-instance
of I obtained by deleting the acceptable pairs in S. Clearly the underlying graph of
I\S is G′ = (A,E\S), where G = (A,E) is the underlying graph of I. In turn, this
problem is polynomially equivalent to the following problem, which we call max stable

subgraph: find a largest set of edges S ⊆ E such that I\(E\S) admits a stable matching
(clearly G′ = (A,S) is the underlying graph of this sub-instance of I). Hence max stable

subgraph is NP-hard in general.
Here is a simple 2-approximation for max stable subgraph, independent of the

lengths of the preference lists. First, find a cut C in G having at least m/2 edges (such a
cut exists, and is easily found in polynomial-time). Let E′ be the set of cut edges. Then,
G′ = (A,E′) is bipartite and thus has a stable matching. Since m is an upper bound on
any optimal solution, we have the claimed 2-approximation. Is there a better guarantee?

Note that the problem solved by Tan [16] (find a smallest set of agents that need
to be removed from I in order to leave a stable matching) can be regarded as being
polynomially equivalent to an induced subgraph counterpart of max stable subgraph,
which is therefore solvable in polynomial time.

References

[1] D.J. Abraham, P. Biró, and D.F. Manlove. “Almost stable” matchings in the Room-
mates problem. In Proceedings of WAOA ’05: the 3rd Workshop on Approximation
and Online Algorithms, volume 3879 of Lecture Notes in Computer Science, pages
1–14. Springer, 2006.

[2] P. Berman, M. Karpinski, and Alexander D. Scott. Approximation hardness of short
symmetric instances of MAX-3SAT. Electronic Colloquium on Computational Com-
plexity Report, number 49, 2003.

[3] P. Biró, D.F. Manlove, and S. Mittal. Size versus stability in the marriage problem.
Theoretical Computer Science, 411:1828–1841, 2010.

[4] K. Eriksson and O. Häggström. Instability of matchings in decentralized markets with
various preference structures. International Journal of Game Theory, 36(3-4):409–
420, 2008.

[5] P. Floréen, P. Kaski, V. Polishchuk, and J. Suomela. Almost stable matchings by
truncating the Gale-Shapley algorithm. Algorithmica, 58(1):102–118, 2010.

[6] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9–15, 1962.

[7] D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

16

[8] K. Hamada, K. Iwama, and S. Miyazaki. An improved approximation lower bound
for finding almost stable stable maximum matchings. Information Processing Letters,
109(18):1036–1040, 2009.

[9] K. Hamada, K. Iwama, and S. Miyazaki. The hospitals/residents problem with quota
lower bounds. In Proceedings of ESA ’11: the 19th European Symposium on Algo-
rithms, volume 6942 of Lecture Notes in Computer Science, pages 180–191. Springer,
2011.

[10] R.W. Irving. An efficient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6:577–595, 1985.

[11] S. Khuller, S.G. Mitchell, and V.V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science, 127:255–267, 1994.

[12] D.E. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976. English
translation in Stable Marriage and its Relation to Other Combinatorial Problems,
volume 10 of CRM Proceedings and Lecture Notes, American Mathematical Society,
1997.

[13] B.G. Pittel and R.W. Irving. An upper bound for the solvability probability of a
random stable roommates instance. Random Structures and Algorithms, 5:465–486,
1994.

[14] A.E. Roth, T. Sönmez, and M. Utku Ünver. Pairwise kidney exchange. Journal of
Economic Theory, 125:151–188, 2005.

[15] J.J.M. Tan. A necessary and sufficient condition for the existence of a complete stable
matching. Journal of Algorithms, 12:154–178, 1991.

[16] J.J.M. Tan. Stable matchings and stable partitions. International Journal of Com-
puter Mathematics, 39:11–20, 1991.

17

	citation_temp.pdf
	http://eprints.gla.ac.uk/66396/

