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1 INTRODUCTION

1 Introduction

All over the developed world, governments operate mandatory pension sys-
tems to replace income and minimize old-age poverty. In general, the manda-
tory system is complemented by a voluntary pension system. As a rule, par-
ticipants of a voluntary system can only withdraw their voluntary savings
after retirement and as a compensation, their savings enjoy tax advantages.

The proponents of voluntary systems justify the subsidies as follows: a
mandatory system does not and cannot ensure high enough pensions, and the
mostly shortsighted workers must be made interested in raising their old-age
incomes through a voluntary system (e.g. Poterba, Venti and Wise, 1996).
The opponents are afraid that these subsidies are poorly targeted, mostly
subsidize the well-paid savers, while worsening the burden of the others by
generating the tax expenditures (Engen, Gale and Scholz, 1996; Duflo, Gale,
Liebman, Orszag and Saez, 2007). (In a more general context, Campbell
(2006) noted that “confusing financial products generate cross-subsidy from
naive to sophisticated households.”) Hubbard and Skinner (1996) tried to
synthesize both approaches, while OECD (2005) summarized the practice of
various OECD countries. Up to now those tax expenditures have generally
been quite low though nonnegligible (about 0.7% in the US), but in a possible
contraction of the mandatory system they may become much higher.

Since Modigliani and Brumberg (1954) and Samuelson (1958), the mod-
els of life-cycle saving and of overlapping generations have been extensively
studied, respectively. A new era started with Auerbach and Kotlikoff (1987)
which generalized the partial equilibrium framework into a general equilib-
rium one: not only savings depend on the interest rates but the interest rates
also depend on savings through accumulated capital. Adding mandatory and
voluntary pensions, these models have became more realistic. For example,
Fehr, Habermann and Kindermann (2008) showed that reforming the volun-
tary pillar, existing generations lose, future generations gain. In addition, the
assumption of rational expectations makes the foregoing models extremely
complex (for an alternative, see Molnár and Simonovits, 1998).

A common problem of these models, however, is that they presuppose
that the individuals have an extraordinary sophistication to solve them and
the willpower to achieve the results. It is widely documented, however, that
a large share of the population have quite limited cognitive abilities (for a
survey, see Lusardi and Mitchell (2014)), quite limited information (Barr and
Diamond, 2008, Box 4.2) and have weak willpower.
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1 INTRODUCTION

A class of very simple life-cycle models operate with given interest rates
and wages (small open economy). In such models, various workers’ ordinary
life-cycle saving processes are independent, but adding government matching
via a voluntary pension system introduces interdependence. Indeed, even if
somebody does not participate in the scheme, he pays according to the same
earmarked tax rate. This may be the reason that in voluntary systems, indi-
vidual optimization is very difficult (see Appendix B) even if only young and
old workers (and pensioners) are distinguished. Only by neglecting even this
dimension was Simonovits (2011) able to analyze the impact of the matching
rate and the cap on income redistribution in such a transfer system.

A more realistic approach to life-cycle savings is based on behavioral
economics (started with Laibson (1997) and crowned by a recent survey
by Chetty, 2015). An interesting alternative was initiated by Findley and
Caliendo (2008) by assuming short planning horizons.

It is agent-based models (for short, ABM), which may enhance the realism
of economic modeling (see Gigerenzen and Selten, 2002 and Tesfatsion, 2006).
The main innovation of ABMs is that by resigning from analytical results,
they are able to describe more realistic behavior of heterogeneous agents.
This methodology has been used at several fields of economics. For the topic
of tax evasion, related to our problem, see Pickhard and Prinz (2013) and
Méder, Simonovits and Vincze (2012).

Quite recently, Varga and Vincze (2015) used an ABM to analyze a very
abstract model of ordinary saving. They assumed a very long (practically
infinite) horizon and excluded mandatory as well as voluntary pensions. They
distinguished two types of agents: ants (who follow the prescriptions of the
life-cycle model, smooth the consumption path by saving) and crickets (who
spend most of their disposable income on current consumption). The main
message of that paper is that notwithstanding permanent learning, different
types can coexist for a very long time.

The present paper applies the ABM approach to life-cycle savings, espe-
cially to voluntary pension. Already Duflo and Saez (2003) emphasized the
influence of colleagues’ choices on participation in voluntary pension plans.
We try to explain an empirically verified fact: though the share and the ex-
tent of participation in the tax favored systems are increasing functions of the
wages; even controlling for wages, both indicators are heterogeneous. We take
homogeneous wages, neglect the cap on the voluntary contributions, thereby
eliminate unmatched savings. We consider the following dimensions: (a) We
introduce age dependency into the model: the agents are young and savers in
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1 INTRODUCTION

their first R ≥ 1 periods, then old and dissavers in their remaining D−R > 0
periods. (b) Having a medium-size old-age mandatory pension, to smooth
their consumption paths, workers have to save only a reduced amount, while
credit constraints prevent them from accumulating any debt. (c) Adding
tax-favored voluntary savings the weight of the mandatory pensions can be
diminished but at the cost of raising the taxes financing the matching. For
simplicity, we assume a stationary population without growth, inflation and
interest. To make the impact of the individual decisions on the macro state
negligible, we assume that there are a continuum of workers. We also dis-
tinguish two types: far- and shortsighted workers (Feldstein, 1985). The
inadequacy of the shortsighted workers’ savings is measured by the variance
in their life-cycle consumption, while the redistribution from the shortsighted
to the farsighted workers is measured by the variance between their lifetime
consumptions. For the sake of brevity, the two variances are distinguished
by adjectives internal and external.

Our results are as follows: (a) By saving in a tax-favored system, the far-
sighted workers simply exploit the shortsighted ones. To simplify the calcula-
tions, we assume that the farsighted workers try to smooth their consumption
paths without any intertemporal substitution. (b) Turning to dynamics, we
assume a special form of global learning: the shortsighted workers guess the
amount of farsighted counterparts’ saving as the ratio of the tax rate and
the matching rate and they save a given share of this estimation: relative
propensity to save. Note that if the share of the farsighted workers is very
low, then they only play the role of the catalyzer but without them the system
ceases working. The process converges to a steady state and the degree of
exploitation is significantly reduced. (c) We disaggregate shortsighted work-
ers according to their different relative saving propensities and assume that
these subtypes also learn locally from each other.

We mention the following ABM-results: (i) in the basic run, some het-
erogeneity in savings of the short-sighted workers remains; (ii) increasing the
spread between the propensities diminishes both variances but with serious
oscillations; (iii) the increase of the number of types diminishes the external
variance but increases the internal variance; (iv) randomly perturbing the
network may homogenize the shortsighted workers’ savings; (v) the rise in
the number of acquaintances does not reduce the variances; (vi) reducing
the density of the connections by factor 4, the convergence is much slower;
and (vii) speeding up the learning process does not influence the external
variance but increases the internal variance. Further work is needed to check
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1 INTRODUCTION

the robustness of these results.
We add Table 0 which shows how our model relates to five selected coun-

tries’ pension systems according to the strength of progressivity and the size
of the mandatory (public+private) and voluntary systems. (Note that it is
not easy to define the size of a pension system, because in addition to the
relative size of the cap; the contribution rate and the matching rate also
influence the size of the mandatory and the voluntary systems, respectively.)
We see that our model goes even beyond the German and the Hungarian
systems in eliminating any redistribution in the mandatory system, and it
copies the US system’s medium size. Concerning the voluntary system, our
model is similar to the US, the Dutch and the Hungarian systems having
no progressivity. Not shown in the table, but our model copies the Ger-
man voluntary system of having mandatory life annuities, and approximates
Hungary of having very high cap on the voluntary system. In summary, we
have copied various features of various countries arbitrarily, just to make the
model as simple as possible but reflecting the learning dimension.

Table 0. Features of pension systems of selected countries

Mandatory Voluntary
Country Progressive Size Progressive Size
Uinted States medium medium no medium
Germany weak large medium small
Netherlands strong large no medium
Czech Republic strong large strong small
Hungary weak large no large
Model no medium no large

The structure of the remainder of the present paper is as follows: Section
2 discusses an analytical model of life-cycle saving, where the shortsighted
workers do not care at all: they are passive. Section 3 makes them active.
Section 4 studies the corresponding ABM. Section 5 concludes. Appendix
A gives analytical results on the stability of the steady state with active
shortsighted workers in the case R = 2 and D = 3 (fat letters refer to
decades rather than years). Appendix B sketches the rational decision version
allowing for intertemporal substitution and discounting.
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2 PASSIVE SHORTSIGHTED WORKERS

2 Passive shortsighted workers

We shall consider a simple model of mandatory and voluntary pensions. To
simplify exposition, we consider a stationary population, with overlapping
cohorts. At the end of every time-period, D cohorts live together and every
cohort becomes older by one period except for the old, which dies and the
youngest, which just enters the labor market. There are R > 0 working co-
horts and D − R > 0 retired cohorts, where R and D are positive integers.
The workers earn unitary wages, pay τ > 0 as a mandatory pension contri-
bution. The retired cohorts receive universal pension benefits b. Introducing
notations for the ratios of working span to total adult life span and that of
working span to retirement span,

ρ =
R

D
< 1 and β =

ρ

1− ρ
,

the benefit is

b =
Rτ

D −R
=

ρτ

1− ρ
= βτ. (1)

It is easy to see that the net wage and the pension benefit are equal if

τ = τ̄ = 1− ρ.

Due to incentive constraints, the government keeps the contribution rate
well below this critical value: τ < τ̄ and encourages private savings in a
voluntary pension system: the annual saving is denoted by s ≥ 0. To promote
participation, every euro paid into the voluntary system is matched by α > 0
euros. In contrast to the bulk of the literature, we explicitly model the
earmarked tax needed to finance such matching from wage taxes with a
flat rate θ. There is no other tax in our models. A basic observation is
that different types of workers—even with identical earnings—save different
amounts in voluntary systems.

Until the end of this Section, we shall assume that there are only two
types: shortsighted (L) and farsighted (H), with shares fL, fH > 0 and fL +
fH = 1. In this Section, the shortsighted worker is passive, does not save
at all: sL = 0 and the farsighted worker saves sH . Denoting worker i’s and
pensioner i’s consumption by c1,i and cD,i, respectively, we have the following
tax equation:

θ = αfHsH (2)
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2 PASSIVE SHORTSIGHTED WORKERS

and consumption equations:

c1,L = 1− τ − θ, cD,L = b (3− L)

and

c1,H = 1− τ − θ − sH , cD,H = β[τ + (1 + α)sH ]. (3−H)

We assume that H saves as much as needed to smooth out her projected
consumption path. Introducing χ = 1− (1 + β)τ > 0, we have then

1− τ − θ − sH = β[τ + (1 + α)sH ], i.e. sH =
χ− θ

1 + β(1 + α)
. (4)

We display the special value of sH at α = 0:

sH(0) =
χ

1 + β
. (4′)

Substituting (4) into (2) yields an implicit equation for the balanced tax
rate:

θ = αfH
χ− θ

1 + β(1 + α)
.

Hence follows

Theorem 1. In the two-type model with passive shortsighted workers,
the government sets the balanced tax rate

θo =
αfHχ

1 + β(1 + α) + αfH
> 0. (5)

Then every farsighted worker chooses her saving sH = θo/(αfH) and every
shortsighted worker saves nothing.

Remarks. 1. In this model, the introduction of voluntary saving simply
redistributes from the shortsighted to the farsighted workers. The higher the
matching rate, the stronger the redistribution is.

2. In such a zero-sum game, the use of voluntary pensions is only justifi-
able if there is wage heterogeneity (wi) and the mandatory (public) pension
is progressive: bi = B0 + Bwi, with B0 > 0 and B > 0, but this is beyond
the scope of this paper.
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2 PASSIVE SHORTSIGHTED WORKERS

3. Even these formulas are quite cumbersome, therefore the impact of
various parameters are far from clear. For example, what happens if the
matching rate (unrealistically) goes to infinity? Dividing the numerator and
the denominator of (5) by α, α→∞ then implies that θo∞ = fHχ/(β + fH).
But sH∞ = 0!

To help understanding, we shall numerically illustrate our results. Let
us calculate in decades: R = 4, D = 6, ρ = 2/3 and choose a contribution
rate τ = 0.2 far below the maximum: τ̄ = 1/3. Table 1 displays the two-
type characteristics for three matching rates: α = 0, 0.5, 1; for population
shares fL = 3/4 and fH = 1/4. To display perverse redistribution, we also
show the shortsighted workers’ average lifetime consumption cL = ρcLR +(1−
ρ)cLR+1. As the matching rate increases, so decreases the average shortsighted
consumption: at α = 1, the earmarked tax is equal to 0.019 and the average
consumption of the shortsighted type drops from 0.667 to 0.654. Using the
obvious formula for the expected average consumption: c = fLc

L + fHc
H =

ρ, the simplest measure of perverse redistribution is the (squared) external
variance of the average lifetime consumptions:

ε2E = fL(cL − ρ)2 + fH(cH − ρ)2.

In addition, to measure the internal variance, we also introduce

ε2I = fLρ(cL1 − cL)2 + fL(1− ρ)(cLD − cL)2.

The former grows from zero to 0.022, while the latter diminishes from 0.163
to 0.156. To relate these values to the absolute maximum where everybody
is shortsighted and there is no mandatory pension, we give the the corre-
sponding maximum: ε̄I = 0.47.
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3 ACTIVE SHORTSIGHTED WORKERS

Table 1. Paths for mandatory and voluntary systems: passive L

Consumption of Variance
Matching
rate

Tax rate H-type L-
worker

L-pen-
sioner

L-ave-
rage

internal external

α θ cH cLR cLR+1 cL εI εE
0.0 0 0.667 0.800 0.4 0.667 0.163 0
0.5 0.012 0.691 0.788 0.4 0.659 0.159 0.014
1.0 0.019 0.705 0.781 0.4 0.654 0.156 0.022

3 Active shortsighted workers

In Section 2, we assumed that shortsighted workers are passive, they do not
understand anything from the logic of the system. Here we assume that these
workers are active, they understand something and react to exploitation.
First we rely on steady state analysis, then we turn to the dynamics.

3.1 Steady state

Type L presumes that all the others are type H and knowing the tax rate
θ and the matching rate α, relying on (2), he naively presumes their saving
is equal to θ/α. Due to his myopia, he is ready to save only γ times this
quantity, (0 < γ ≤ 1), therefore

sL =
γθ

α
.

We shall refer to γ as relative propensity to save. Retaining (4), the modified
tax balance equation (2) becomes

θ = γfLθ + αfH
χ− θ

1 + β(1 + α)
. (6)

With a simple calculation, we have obtained

9



3 ACTIVE SHORTSIGHTED WORKERS

Theorem 2. The steady state with active shortsighted workers is

θo =
αfHχ

ν
, sH =

(1− γfL)χ

ν
and sL =

γfHχ

ν
, (7)

where
ν = (1− γfL)[1 + β(1 + α)] + αfH > 0.

Remarks. 1. Looking at the steady state balanced tax rate (7) (ac-
tive), note that the higher the relative propensity to save γ, the higher is
the balanced tax rate, and the lower is the redistribution. For γ = 1, the
shortsighted becomes farsighted and exploitation disappears.

2. Disaggregating the shortsighted workers into n − 1 > 1 types with
different γis, we can open the door to multitype models (to be studied in
Section 4). Indeed, let fi be the population share of the shortsighted workers
with relative saving propensities γi < 1, i = 1, 2, . . . , n−1. Then the detailed
model can be aggregated as

fL =
n−1∑
i=1

fi < 1 and γ =

∑n−1
i=1 fiγi
fL

≤ 1.

Then sL in Theorem 2 can also be disaggregated:

si =
γifHχ

ν
, i = 1, . . . , n− 1. (7M)

Table 2 displays the impact of the relative propensity to save γ with
α = 1. The first row replicates the third row of Table 1. As γ increases
from 0 to 1, the earmarked tax rate rises from 0.019 to 0.067, and even the
shortsighted type’s consumption paths becomes smooth, i.e. age-invariant.
Eventually both the internal and the external variances drop to zero.
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3 ACTIVE SHORTSIGHTED WORKERS

Table 2. Paths for mandatory and voluntary systems: active L, α = 1

Consumption of Variance
Relative
propen-
sity to
save

Tax rate H-type L-worker L-
pensioner

L-
average

internal external

γ θ cH cLR cLR+1 cL εI εE
0.00 0.019 0.705 0.781 0.400 0.654 0.156 0.022
0.25 0.023 0.701 0.771 0.423 0.655 0.142 0.020
0.50 0.030 0.696 0.756 0.459 0.657 0.121 0.017
0.75 0.041 0.687 0.728 0.523 0.660 0.084 0.012
1.00 0.067 0.667 0.667 0.667 0.667 0 0

3.2 Dynamic model

In a standard overlapping generations model, the agents differ not only by
age but also by the time they start working. We shall denote age for workers
by a = 1, 2, . . . , R and for pensioners by a = R + 1, . . . , D. Every period
t, D adult cohorts overlap: those entering the labor market in period t, t −
1, . . . , t−D + 1, respectively. For technical reasons we assume that the new
cohort entered the labor market in period t+1 rather than t. Subindex triple
(a, i, t+a) refers to type i of age a in time t+a. To have a recursive model, we
assume that in every period, the government determines and announces the
appropriate tax rate and then the various types calculate the corresponding
age-dependent savings.

For each pair (a, i), the accumulated savings satisfy a dynamic relation:

Sa,i,t+a = Sa−1,i,t+a−1 + sa,i,t+a, t = 0, 1, 2, . . . , (8)

where the initial conditions are given:

Sa−1,i,−1, a = 2, . . . , R and i = 1, 2.

For informational reasons we relax the previous tax equation (6) and allow
the government to run temporary surpluses and deficits. Let Et be the tax

11



3 ACTIVE SHORTSIGHTED WORKERS

expenditure in period t and Dt be the stock of government debt at the end
of period t. We have the following two identities:

Et = α

H∑
i=L

fi

R∑
a=1

sa,i,t (9)

and
Dt = Dt−1 + Et −Rθt, t = 0, 1, 2, . . . , D−1 = 0. (10)

Using a trial-and-error method, at the beginning of period t the government
chooses and announces the tax rate which would have covered the expendi-
tures in the previous period:

θt =
Et−1

R
. (11)

Note that this leads to Dt = Dt−1 + Et − Et−1 = Et.
By definition, we have two classes of consumption equations.

Consumption at work:

ca,i,t+a = 1− τ − θt+a − sa,i,t+a, a = 1, 2, . . . , R. (12)

Consumption at retirement:

ca,i,t+R+1 = · · · = ca,i,t+D = b+ di,t+R, a = R + 1, . . . , D, (13)

where the private life annuity is given by

di,t+R = ψ(1 + α)SR,i,t+R, where ψ =
1

D −R
, i = L,H.

Instead of the steady state estimation of sL, assume that the age- and
time-dependent saving varies with the time-variant θt+a:

sa,L,t+a =
γθt+a

α
, a = 1, . . . , R. (14)

Even the farsighted workers do not know their future savings, they naively
assume that they will save the same amount until retiring as they save now.
Projected private life-annuity at age a:

da,H,t+R = ψ[(1 + α)Sa−1,H,t+a−1 + (1 + α)(R− a+ 1)sa,H,t+a]. (15)
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3 ACTIVE SHORTSIGHTED WORKERS

Projected consumption at retirement:

c̃a,H,t+R+1 = · · · = c̃a,H,t+D = b+ da,H,t+R. (16)

While working, type H always tries to smooth her consumption path,
ca,H,t+a = c̃a,H,t+R+1, i.e. by (15)–(16):

1−τ−θt+a−sa,H,t+a = b+ψ(1+α)Sa−1,H,t+a−1 +ψ(R−a+1)(1+α)sa,H,t+a,

hence her age- and time-dependent saving is given by

sa,H,t+a =
χ− ψ(1 + α)Sa−1,H,t+a−1 − θt+a

1 + ψ(R− a+ 1)(1 + α)
= ϕa(χ− θt+a)− σaSa−1,H,t+a−1.

(17)

3.3 Dynamic analysis

To use (9)–(11), we shall need the saving rules in t rather than in t + a,
therefore we shift (14), (17), (9) and (8) back by a.
L-saving

sa,L,t =
γθt
α
, a = 1, . . . , R. (14′)

H-savings

sa,H,t = ϕa(χ− θt)− σaSa−1,H,t−1, a = 1, . . . , R. (17′)

Tax expenditure

Et−1 = α
H∑
i=L

fi

R∑
a=1

sa,i,t−1. (9′)

Accumulated H-savings

Sa,H,t = Sa−1,H,t−1 + sa,H,t, a = 1, 2, . . . , R, (8′)

where the initial conditions are given:

θ−1 = 0, Sa−1,H,−1, sa−1,H,−1, a = 1, . . . , R.

To minimize the dimension of the system, we drop the debt dynamics
as a reducible component, and (Sa−1,L,−1)

R
a=2 as reducible initial conditions.

Substituting (14′) into (17′) and then into (11) and repeating the remaining

13



3 ACTIVE SHORTSIGHTED WORKERS

equations of the irreducible system, namely (17′) and (8′) for t = 1, 2, . . ., for
α 6= 0:

θt = γfLθt−1 + αR−1fH

R∑
a=1

sa,H,t−1, (18)

sa,H,t = ϕaχ− ϕaγfLθt−1 − ϕaR
−1αfH

R∑
x=1

sx,H,t−1 − σaSa−1,H,t−1, (19)

and (8′).
System (18)–(19)–(8′) is an inhomogeneous linear system of dimension

m = 2R− 1.

Theorem 3. a) In the two-type OLG model, the government sets the tax
rate θt according to (18), the farsighted and the active shortsighted workers
save according to (19)–(8′) and (14′), respectively.

b) For any sufficiently low matching rate α, the system converges to the
steady state of Theorem 2.

Remarks. 1. It is implicitly assumed that the initial values are
sufficiently close to their steady state values to generate viable paths, i.e.
sa,i,t+a, ca,i,t+a ≥ 0 for all (a, i, t+ a)s.

2. It is an open question how low matching rates guarantee the stability
of the steady state in general but we shall give partial answers later.

3. The model can be generalized for heterogeneous shortsighted workers
with different γis as in Theorem 2.

Proof. (a) We have proved part a) above.
(b) To prove stability, we can drop the constant terms from (19). Then

we have a simple solution for α = 0 = θt:

sa,H,t = −σaSa−1,H,t−1. (19′)

Substituting (19′) into (8′) results in

Sa,H,t = (1− σa)Sa−1,H,t−1 = (1− σa) · · · (1− σ1)S0,H,t−a = 0 (t ≥ a). (20)

By continuity, stability survives for sufficiently low matching rate.

To deepen our understanding, we consider the simplest case, OLG 1-1.

14



3 ACTIVE SHORTSIGHTED WORKERS

Example 1. Let R = 1 and D = 2. In this case, S1,H,t = s1,H,t:

θt = γfLθt−1 + αfHs1,H,t−1 (18′′)

and

s1,H,t =
χ− θt
2 + α

. (19′′)

Shifting (19′′) back by 1 period and inserting the shifted (19′′) into (18′′)
yields

θt = αfH
χ

2 + α
+

[
γfL −

αfH
2 + α

]
θt−1.

The path generated by this first-order linear difference equation is obviously

stable. For γ∗ =
αfH

(2 + α)fL
, the tax rate jumps to the steady state. For 0 <

γ < γ∗, the tax rate oscillates around the steady state, while for γ∗ < γ ≤ 1,
the tax rate increasingly converges to the steady state. (Note that the second
interval is empty, i.e. γ∗ > 1 if and only if (2 + α)/[2(1 + α)] < fH ≤ 1.) In
Appendix A we discuss the more realistic and more complex case of R = 2,
D = 3.

Finally, three parts of Table 3 display the numerical illustrations for R = 4
and D = 6 (decades), matchin rate α = 1 and the relative propensity to save
γ = 1/2 (Table 2, middle row). We expect that the process converges to the
steady state described in row 2 in Table 2. Our expectations are correct,
at least for the initial values θ0 = 0, D−1 = 0, furthermore we choose the
initial values for L and H savings as 0 and sH(0), belonging to α = 0. Table
3a displays the paths of the debt, of the tax rate and of the H-saving. As
expected, the debt converges (to 0.12) while the tax rate converges to the
steady state 0.03. As the matching system builds up, the H-savings drop to
the steady state values of sH = 0.074, regardless of age. The internal and
external variances converge to their respective steady state values.

15



3 ACTIVE SHORTSIGHTED WORKERS

Table 3a. H-saving in overlapping generations

Variance Saving of H-workers
Period Debt Tax rate internal external youn-

gest
younger older oldest

t Dt θt εI,t εE,t s1,H,t s2,H,t s3,H,t s4,H,t

0 0.048 0 0.240 0.063 0.080 0.067 0.044 0
1 0.101 0.012 0.224 0.005 0.078 0.077 0.080 0.098
2 0.111 0.025 0.196 0.027 0.075 0.074 0.073 0.070
3 0.116 0.028 0.178 0.017 0.074 0.074 0.074 0.075
4 0.118 0.029 0.174 0.018 0.074 0.074 0.074 0.074
5 0.118 0.029 0.172 0.017 0.074 0.074 0.074 0.074
6 0.118 0.030 0.171 0.017 0.074 0.074 0.074 0.074

Turning to the farsighted workers’ consumption paths, note that before
the introduction of the transfers, H saved much more than just after it:
0.133 > 0.08. Therefore when the transfer system is introduced in period t =
0, the farsighted workers’ savings drop and their consumption jumps, at least
temporarily. We experience the same fast convergence to the age-invariant
steady state. The life-cycle average consumption is also displayed though not
for a longitudinal path but for a cross-section profile: cit = D−1

∑D
a=1 ca,i,t,

i = H,L.

Table 3b. H-consumption profiles in overlapping generations

Consumption
H-workers of type H

Period youngest younger older oldest pensioner average
t c1,H,t c2,H,t c3,H,t c4,H,t c5,H,t cHt
0 0.720 0.733 0.756 0.800 0.933 0.813
1 0.710 0.711 0.708 0.690 0.591 0.667
2 0.700 0.700 0.701 0.705 0.734 0.712
3 0.698 0.698 0.698 0.697 0.692 0.696
4 0.697 0.697 0.697 0.697 0.698 0.697
5 0.696 0.696 0.697 0.696 0.696 0.696
6 0.696 0.696 0.696 0.696 0.696 0.696
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4 AN ABM FOR LIFE-CYCLE SAVINGS

Ending the presentation with the shortsighted workers’ consumption paths,
similar overconsumption can be observed which stabilizes quite fast at 0.76,
while pensioner’s consumption rises from 0.4 to 0.453. Comparing the two
life-consumptions at t = 6, we see the difference: cL6 = 0.656 < 0.698 = cH6 .

Table 3c. L-consumption profiles in overlapping generations

Consumption
L-workers of type L

Period youngest younger older oldest pensioner average
t c1,L,t c2,L,t c3,L,t c4,L,t c5,L,t cLt
0 0.800 0.800 0.800 0.800 0.400 0.667
1 0.782 0.782 0.782 0.782 0.400 0.655
2 0.762 0.762 0.762 0.762 0.424 0.649
3 0.758 0.758 0.758 0.758 0.451 0.656
4 0.756 0.756 0.756 0.756 0.456 0.656
5 0.756 0.756 0.756 0.756 0.458 0.657
6 0.756 0.756 0.756 0.756 0.459 0.657

It is evident that adding a given part of the past debt to the past expen-
diture in (11), will eventually eliminate the debt. Formally,

θt =
Et−1

R
+ ζDt−1, (11′)

where ζ > 0 is an adjustment coefficient, for example, ζ = 1/R. Then (18)
modifies to

θt = γfLθt−1 + αR−1fH

R∑
a=1

sa,H,t−1 + ζDt−1.

4 An ABM for life-cycle savings

In the previous model, even the active shortsighted workers learn relatively
little. An important feature of the ABM is that everybody learns from others,
therefore we shall apply ABM to make shortsighted workers to learn not only
globally but also locally.

We assume that there are n types, where n > 1 is a relatively small
integer. Type i is characterized by relative propensity to save γi = i/n,

17



4 AN ABM FOR LIFE-CYCLE SAVINGS

i = 1, 2, . . . n − 1, with rational frequencies fi > 0,
∑n−1

i=1 fi = fL and γ =
f−1L

∑n−1
i=1 fiγi. Type n with frequency fH = 1 − fL is farsighted. (Without

assuming the existence of farsighted agents, the steady state tax rate would
not be defined in (25) below.) We assume that there are a finite but large
number of workers (M = RN) with the total mass of each cohort normalized
to unity. Therefore at the start of each cohort, the number of type i workers
aged 1 is about Nfi, indexed by k = Ni−1+1, . . . , Ni, where Ni+1 = Ni+Nfi,
N0 = 0.

First we modify (9) as

Et = α
n∑

i=1

fi

Ni∑
k=Ni−1+1

R∑
a=1

sa,k,t, t = 0, 1, 2, . . . . (25)

Before outlining the ABM framework, we have to touch on the issue of
the lifetime utility function, which is maximized in standard economics. Let
u(·) be a strictly concave increasing per-period utility function, and then the
lifetime utility function is equal to the discounted sum:

U(c1,k,t+1, . . . , cD,k,t+D) =
D∑

a=1

δa−1k u(ca,k,t+a), (0 ≤ δk ≤ 1). (26)

For our type H, U(c1,k,t+1, . . . , cD,k,t+D) = minD
a=1 ca,k,t+a. In Section 2, δL = 0

and δH = 1.
Unfortunately, the worker at age a < R does not know her future saving

path. As before, we assume that she extrapolates her current saving for the
future, yielding the projected private annuity and consumption path:

c̃a,k,t+y = 1− τ − θt+a − sa,k,t+a, y = a, a+ 1, . . . , R (27)

and

da,k,t+R = ψ[(1+α)Sa−1,k,t+a−1+(R−a+1)sa,k,t+a], c̃a,k,t+R+1 = b+da,k,t+R.
(28)

We are now able to formulate the projected lifetime utility function as well:

Ũa,k,t+a(c1,k,t+1, . . . , ca,k,t+a, c̃a,k,t+a+1 . . . , c̃D,k,t+D)

=
a−1∑
x=1

δx−1k u(cx,k,t+x) +
R∑

y=a

δy−1k u(ca,k,t+a) +
D∑

z=R+1

δz−1k u(c̃R+1,k,t+R+1). (29)
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4 AN ABM FOR LIFE-CYCLE SAVINGS

Evidently, the middle term can be further simplified:

R∑
y=a

δy−1k u(ca,k,t+a) = δak
1− δR−a+1

k

1− δk
u(ca,k,t+a).

By (28)–(29), in period t + a, this function only depends on sa,k,t+a, but
we cannot expect that every ordinary worker can evaluate such a function
even with the simplest parameterization, when u(c) = log c. In this case we
cannot pretend that our worker chooses her decision by copying the fittest
decision of another type.

We try with a simpler indicator, the average lifetime consumption men-
tioned in Section 2. In our new setting, its projected value at (a, k, t+ a) is
given by

cka,t+a =
1

D
[Ca−1,k,t+a−1 + (R− a+ 1)ca,k,t+a + (D −R)c̃a,k,R+1], (30)

where

Ca,k,t+a =
a∑

x=1

cx,k,t+x = Ca−1,t+a−1 + ca,k,t+a.

Again, by (30), in period t + a, cka,t+a is a simple linear function of a single
variable sa,k,t+a. Finally, at retirement, the projected value is crystalized into
ckt = ckR,t+R. This indicator is far from ideal, because it does not reflect the
main aim of the pension system: consumption smoothing. Nevertheless, in
the world of bounded rationality, together with εI and εE [(31) below] it
reflects the undersaving of L and the exploitation of L by H in Sections 2
and 3.

We generalize the variances of the average consumption along the M
paths. Let the expected average consumption be denoted by ct, therefore the
squared variances are respectively

ε2t,E = 1
N

N∑
k=1

(ckt − ct)2 and ε2t,I = 1
NR

N∑
k=1

D∑
a=1

(cka,t − ckt )2. (31)

We assume that every shortsighted worker k knows a small number of
other shortsighted workers, indexed as l ∈ Lk. (For the sake of simplicity, we
forbid shortsighted workers to lean from farsighted workers.) We also assume
that no set of acquaintances changes in time; the number of acquaintances is
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4 AN ABM FOR LIFE-CYCLE SAVINGS

denoted by |Lk| > 0, k = 1, 2, . . . , N . For simplicity, the acquaintances are
just one period older than the foregoing worker. Except for Hs, every agent
k at every age and time signals his current type i(a, k, t+ a).

Having dropped the age index, as a starting point, we shall experiment
with the simplest network, described as follows. Let e be a positive integer,
called radius, 0 < e� N :

Le
k = {l, |l − k| ≤ e},

where the N agents of the same cohort are allocated randomly on the circle
with N points, and artificial types N + 1, N + 2, etc. stand for 1, 2, etc. For
example, the set of 1’s acquaintances is

Le
1 = {1, 2, 3, . . . , e, e+ 1;N − e,N − e+ 1, . . . , N − 1, N}.

We assume that worker (a, k) in period t+ a adopts that type ia,k,t−1+a’s
γ which produced the highest average projected consumption among her ac-
quaintances:

cla,k,t+a ≤ c
ia,k,t−1+a

a,k,t+a , l ∈ Lk. (32)

If there is more than one optimal decision, he will pick one with the minimal
index i or randomize.

To start the dynamic system at period 0, we have to define the initial
conditions. For comparability with Table 3a, we assume that all the previous
shortsighted savings were zero and those of the farsighted were sH(0) in (4-
0). Hoping that the process converges fast enough, we choose T = 10, which
represents ten decades, i.e. 100 years.

First the number of types is n = 4: f1 = f2 = f3 = f4 = 1/4 with
γ1 = 1/4, γ2 = 1/2 and γ3 = 3/4, and type 4 is H. Note that the average
relative saving propensity, γ = 0.5 is as in Table 3, therefore the two cases
are comparable. Adding debt servicing, we choose ζ = 1/R in (11′). The
number of workers at each cohort is N = 120 and e = 1, i.e. everybody
has 3 acquaintances. The parameter values are as follows: D = 6, R = 4,
strategies: H, LL, LM, LH, no learning from H types.

(i) Figure 1 shows the four types’ average saving paths. Note that on
average, the middle shortsighted workers catch up with the higher ones, but
the lower ones lag behind. The H types create “walls” that separate dif-
ferent types of behavior. Agents within such a domain can only become as
smart as the initially smartest agent was inside the domain. The average
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4 AN ABM FOR LIFE-CYCLE SAVINGS

L-learning remains below 0.015, slightly less than previously. (Note that
even extending the learning from farsighted workers would not significantly
improve learning.)

Figure 1: Rise of savings in time
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(ii) Next we continuously change the distance between the extreme γs,
the spread ξ, while fixing the middle at γ2 = 1/2: γ1 = 1/2 − ξ and γ3 =
1/2 + ξ, ξ ∈ (0, 1/2). Figure 2 (left-hand scale) shows the degree of perverse
redistribution εE as a function of ξ, for a fixed T = 10. We expected εE
is decreasing with ξ and we see now its extent. But we see peaks around
ξ = 0.2, 0.3 and 0.4, which is unexpected. This is probably due to the induced
change in the tax rate dynamics. Even in the case ξ = 0.5, variance εT cannot
become zero, because of two reasons. Firstly, LL types do not save in their
first working period. Secondly, the domain structure can prevent some LL
type agents from becoming LH types. We get a similar curve for the internal
variance (right scale).

(iii) In the third round, we increase the number of types from n = 4 to
6, 8 and 10. Retaining symmetry, we have n = 2m,

γi =
i

2m
, i = 1, 2, . . . ,m, . . . , 2m− 1.

We expect that εE is decreasing with m and Figure 3 shows its strength
because the learning process eventually turns most L types into LH types
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Figure 2: Wider spread, typically smaller variance of lifetime average con-
sumption: n = 4
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(with maximal γ), which become more and more similar to H types as m
increases. It is of interest that the internal variances (right scale) rises rather
than sinks.

Figure 3: More types, lower external variance and higher internal variance
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(iv) Next we return to Figure 1: n = 4 strategies: H, LL, LM and LH, but
change the network’s structure as well. We experiment with a random graph
(Erdős and Rényi, 1959): we replace the original connections with randomly
chosen ones. Links were created with probability p = 2

119
, thus we expect

to have the same amount of edges as in the previous cases. This ensures
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4 AN ABM FOR LIFE-CYCLE SAVINGS

that the expected value of connections remains invariant. As Figure 4 shows,
the introduction of the random graph not only homogenizes the savings but
raises their average with respect to Figure 1.

Figure 4

The impact of different structure on the saving dynamics
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(v) What happens if we retain the better configured network of Figure
4, the density of the network is drastically reduced, diminishing the proba-
bility of being connected from 2/119 to 1/238? Figure 6 displays persistent
heterogeneity and the stabilized average saving is also lower.

(vi) We also change the characteristics of the network, while fixing m = 5,
n = 10. We increase the radius e from 1 to 2, 3 and 4, and expect that εT
to increase with radius e. The parameter e controls the domain structure of
the system, and therefore defines who can learn from whom. As e increases,
more agents should become able to learn from L types with higher γ values,
but this also changes the tax dynamics, so increasing e does not necessarily
lead to a decrease in εE. Indeed, our calculation (omitted) show practically
constant external variance.

(vii) Until now we have fixed the length of the period at 10 years. At the
end, we change this important parameter as well. We expect that the shorter
the length of period, the faster the shortsighted agents learn, diminishing
both relative variances. (We turn to relative variances to neutralize the
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Figure 5

The impact of less connections on the saving dynamics
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impact of changing time units.) Note, however, that our modification change
the debt dynamics as well, which may have unexpected repercussions as well.
To check our conjecture we diminish h = 10 first to 5 then to 2 and end with
1. Table 4 displays the internal and external variances at T [1] = 100 to be
denoted as εI(h) and εE(h). Contrary to our conjecture, the speeding up of
the learning process does not decrease the variances, moreover, the internal
variance slightly increases.

Table 4. Variances and length of period

Length of period Internal variance External variance
h εI(h) εE(h)
10 0.143 0.013

5 0.147 0.014
2 0.160 0.014
1 0.166 0.014
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5 Conclusions

We have studied a family of utterly simple life-cycle/overlapping generations
models with mandatory and voluntary pensions. In the first model, (passive)
short- and farsighted workers lived together, and the former did not learn
anything. In the second model, the (active) shortsighted workers learned the
use of participation in the voluntary system, and diminished exploitation.
The third model added local learning to the global learning: in the arising
ABM, the variance of heterogeneity in the relative propensities of saving
decreases the variance of lifetime average consumptions, while the rise in the
number of acquaintances is indifferent.

At the end we recall our qualifications (also referring to their significance).
(a) The system is stationary, no rules changed after the transfer system
started its operation in period 0. (This is only a technical assumption but the
expected and the unexpected changes obviously affect the workers’ behavior.)
(b) The earnings are age-, type- and time-invariant. (c) There is no cap on
private savings. (Simonovits (2011) emphasized the impact of the negative
dependence of discounting on wages and the role of the cap.) (d) Savings do
not earn interest. (This is a technical assumption but taking into account
the riskiness of savings, it is not so bad an assumption.) (e) The private
savings are used as private life annuities. (Though it would be desirable,
very few countries operate such a voluntary system, and just in 2015, a most
important semi-voluntary system, that of Great Britain, annulled mandatory
annuatization even in the mandatory private pillar.) (f) The government
revises its calculation as infrequently as the agents. If we relaxed these
qualifications, the quantitative features would be changed. We can only
hope that the qualitative results survive: local learning adds to a global one.

Appendix A: The case of R = 2 and D = 3

In the main text we proved stability for the trivial Example 1. In this Ap-
pendix, we shall discuss the second simplest case. Recall notations

χ = 1− 3τ > 0, ψ = 1,

ϕ1 =
1

3 + 2α
, σ1 = (1 + α)ϕ1 and ϕ2 =

1

2 + α
, σ2 = (1 + α)ϕ2.
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Dropping the constant terms, equations (18′)–(8′′) simplify to

θt = γfLθt−1 +
αfH

2
(s1,H,t−1 + s2,H,t−1), (A.1)

s1,H,t = −ϕ1γfLθt−1 −
ϕ1αfH

2
s1,H,t−1 −

ϕ1αfH
2

s2,H,t−1 (A.2)

and

s2,H,t = −ϕ2γfLθt−1 −
(
ϕ2αfH

2
+ σ2

)
s1,H,t−1 −

ϕ2αfH
2

s2,H,t−1 (A.3)

We have the following limited analytical stability result.

Theorem A.1. The 3-dimensional system (A.1)–(A.3) is stable if the
following sufficient conditions hold:

γfL

(
1 +

1

3 + 2α
+

1

2 + α

)
< 1, (A.4)

and
α

2
fH

(
1 +

1

3 + 2α
+

1

2 + α

)
+

1 + α

2 + α
< 1, (A.5)

Proof. Take the absolute values of entries and calculate the column
sums of the matrix implicitly defined by system (A.1)–(A.3). If they are all
less than 1, then stability is proved. (A.4) and (A.5) are respectively the
conditions for the first and the third columns, and the second condition is
implied by (A.5)

It is easy to see that a lot of triples (γ, α, fH) satisfy the two conditions.
For example, for the maximal matching rate α = 1, the pair of inequalities
γfL < 0.546 and fH < 0.79 provide a wide range. Since γ ≤ 1, fL < 0.546
or fH > 0.454 is also sufficient. One has only to calculate the dominant
characteristic root of matrix M for two intervals: [0, 0.454] and [0.8, 1]. The
numerical calculations put “all” the dominant characteristic roots inside the
open unit disk, suggesting (asymptotic) stability. (We used quotations marks
for all, because we only calculated a sufficiently dense grid of the parameters.)
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Appendix B. Intertemporal substitution and

discounting: R = 2 and D = 3

We claimed in the main text (Section 4) that apart from its dubious realism,
it is technically quite cumbersome to model workers who discount the future
and save while intertemporally substitute future for present consumption in
a voluntary pension system. To substantiate our claim, we confine now our
attention to the steady state analysis (cf. Theorem 2) of R = 2 and D = 3,
distinguishing types with various discount factors. First we determine the
optimal savings for a given tax rate, second we determine the balanced tax
rate and third we illustrate our results numerically.

Conditional saving functions

We shall need the following notations: t̂ = 1− τ − θ and ᾱ = 1 + α. Then
Consumption–saving:

c1 = t̂− s1, c2 = t̂− s2 and c3 = 2τ + ᾱ(s1 + s2). (B.1)

Lifetime utility function:

U(c1, c2, c3) = log c1 + δ log c2 + δ2 log c3. (B.2)

Inserting (B.1) into (B.2) yields the reduced lifetime utility function:

U [s1, s2] = log(t̂− s1) + δ log(t̂− s2) + δ2 log(2τ + ᾱ(s1 + s2)). (B.3)

Equating the partial derivatives to zero yields the first-order optimality con-
ditions:

U ′1[s1, s2] =
−1

t̂− s1
+

δ2ᾱ

2τ + ᾱ(s1 + s2)
= 0 (B.4− 1)

and

U ′2[s1, s2] =
−δ
t̂− s2

+
δ2ᾱ

2τ + ᾱ(s1 + s2)
= 0. (B.4− 2)

Comparing (B.4–1) and (B.4–2) implies

1

t̂− s1
=

δ

t̂− s2
, hence s2 = (1− δ)t̂+ δs1. (B.5)
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Rearranging (B.4–1) and inserting (B.5) imply

δ2ᾱ(t̂− s1) = 2τ + ᾱ(s1 + s2) = 2τ + ᾱ[(1− δ)t̂+ (1 + δ)s1].

Using t̂ = τ̂ − θ, s1 can be expressed as a linear function of θ:

s1 =
ᾱ(δ2 + δ − 1)(τ̂ − θ)− 2τ

ᾱ(δ2 + δ + 1)
. (B.6)

To make the formula shorter, we introduce notations

A =
ᾱ(δ2 + δ − 1)τ̂ − 2τ

ᾱ(δ2 + δ + 1)
and B =

δ2 + δ − 1

δ2 + δ + 1

resulting in s1 = A−Bθ. By (B.5),

s2 = (1− δ)(τ̂ − θ) + δ(A−Bθ) = (1− δ)τ̂ + δA− (1− δ + δB)θ.

Introducing F = (1− δ)τ̂ + δA and G = 1− δ + δB, s2 = F −Gθ.
Until now we have fixed the discount factor δ. From now on we differen-

tiate a low and a high factor δL and δH and add subscript i = L,H to s1 and
s2. In summary:

s1,i = Ai −Biθ and s2,i = Fi −Giθ, i = L,H. (B.7)

We have not yet considered the credit constraints, namely that life-cycle
savings of workers cannot be negative. Mathematical convenience would
dictate neglecting the issue and make workers with negative saving sa,i pay
a fee αsa,i. We rather exclude this case.

Balanced tax rate

Having determined the conditional savings as functions of the tax rate, we
are now able to determine the balanced tax rate. Inserting (B.7) into the tax
equation

2θ = α

H∑
i=L

fi(s1,i + s2,i)

yields

2θ = α

H∑
i=L

fi[Ai + Fi − (Bi +Gi)θ].
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Solving for θ:

θo =
α
∑H

i=L fi(Ai + Fi)

2 + α
∑H

i=L fi(Bi +Gi)
. (B.8)

Indeed, the solution is quite involved even in the simplest case.

Numerical illustration

To obtain numerical experiences we keep fL = 3/4 and fH = 1/4 with δH = 1
and τ = 0.2. The upper discount factor is maximal: δH = 1. Furthermore,
to avoid negative savings, we run δL and α from 1 to 0.75, having four runs.
Note that the lower discount factor calculated annually is equal to 0.986,
quite a weak discounting! Tables B.1a and b show the following.

Rows 1: If both types are farsighted, i.e. δL = 1 and the matching rate
is maximal: α = 1, then the savings are uniformly 0.15, equal to the tax
rate. The working-age consumption is just half the total wage but the old-
age consumption is the double of the working age consumption and is equal
to the total wage. (This is clearly wasteful.)

Rows 2: Retaining farsighted L-types, just lowering the matching rate to
α = 0.75 leads to a reduced tax rate θo = 0.107 without hardly raising the
saving rates and changing the consumption path.

Rows 3: If the shortsighted workers’ period discount factor is only δL =
0.75, while α = 1 again, then they hardly save at all when they are young
workers but save a little bit more than the farsighted workers at middle
age: 0.178 > 0.163. The balanced tax rate is slightly higher: θ = 0.11.
The farsighted workers’ and old-age consumption are slightly higher than in
the ideal case but the shortsighted workers’ middle-age consumption is only
0.512.

Rows 4: The reduced lower discount factor δL = 0.75 and the reduced
matching rate α = 0.75 diminishes the otherwise excessive old-age consump-
tion of the shortsighted workers from c3,L = 0.769 to 0.713 while raising
middle age consumption from c2,L = 0.512 to 0.544.
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Table B.1a. Neoclassical life-cycle saving paths

Saving of Saving of
L-workers H-workers

L discount Matching Tax rate younger older younger older
factor rate

δL α θ s1,H s2,H s1,L s2,L
1.00 1.00 0.150 0.150 0.150 0.150 0.150
1.00 0.75 0.107 0.155 0.155 0.155 0.155
0.75 1.00 0.110 0.163 0.163 0.007 0.178
0.75 0.75 0.076 0.165 0.165 –0.001 0.180

Table B.1b. Neoclassical life-cycle consumption paths

L-Consumption H-Consumption
L-
discount

Matching younger older pensioner younger older pensioner

factor rate
δL α c1,H c2,H c3,H c1,L c2,L c3,L
1.00 1.00 0.500 0.500 1.000 0.500 0.500 1.000
1.00 0.75 0.538 0.538 0.942 0.538 0.538 0.942
0.75 1.00 0.527 0.527 1.053 0.683 0.512 0.769
0.75 0.75 0.559 0.559 0.978 0.725 0.544 0.713

In summary, we have seen that the neoclassical model of life-cycle saving
is much more cumbersome than our ad-hoc learning model. Moreover, it
cannot be applied to a large domain of the parameter space, namely when
the workers are too shortsighted or the matching rate is moderate. Finally,
its welfare properties are far from being attractive: middle-age consumption
is too low with respect to old-age consumption.
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