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Abstract - A conformational epitope is a part of a protein-

based vaccine. It is challenging to identify using an experiment. 

A computational model is developed to support identification. 

However, the imbalance class is one of the constraints to 

achieving optimal performance on the conformational epitope B 

cell prediction. In this paper, we compare several 

conformational epitope B cell prediction models from non-

ensemble and ensemble approaches. A sampling method from 

Random undersampling, SMOTE, and cluster-based 

undersampling is combined with a decision tree or SVM to build 

a non-ensemble model. A random forest model and several 

variants of the bagging method is used to construct the ensemble 

model. A 10-fold cross-validation method is used to validate the 

model.  The experiment results show that the combination of the 

cluster-based under-sampling and decision tree outperformed 

the other sampling method when combined with the non-

ensemble and the ensemble method. This study provides a 

baseline to improve existing models for dealing with the class 

imbalance in the conformational epitope prediction. 
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I. INTRODUCTION 

The development of computational methods for 

epitope prediction is an active research area for more 

than 30 years. Although more than 90 percent of B cell 

epitopes are conformational epitopes, a linear epitope 

prediction model was developed first. The 

conformational epitope's prediction model was started 

by CEP, which utilizes solvent accessibility properties 

[1].  Various methods have utilized the 

physicochemical properties of amino acids (Amino 

Acid Index, B factor), structure (ASA, RSA, Protrusion 

Index, CN, HSE), and statistics (log odd ratio), which 

have been implemented to improve the performance of 

the model. Several machine learning models have been 

created [2-6], but the resulting models' performance is 

still not satified. 

Among the existing methods to handle the class 

imbalance, sampling is the simple approach and 

independent to the classifier. The undersampling 

method is superior to oversampling [7]. The combined 

method of undersampling and oversampling is superior 

to the undersampling method. Still, according to [7], in 

the ensemble approach, the Bagging Method is superior 

to other methods such as Boosting and cost-sensitive. 

Some sampling approaches have been implemented in 

the conformational epitope's predictive models [2-3], 

[5]. The other approach is cost-sensitive method [6]. 

The cost sensitive is superior compared to several 

ensemble methods, both boosting and hybrid between 

boosting and bagging (Easy ensemble and Balance 

Cascade [8]). However, performance of modified 

bagging model in conformational epitope prediction is 

unknown. Study of [9] show that bagging extention 

based can improve the model’s performance in class 

imbalace problems.  

The handling of class imbalance is still active 

research. Many methods have been applied to handle 

class imbalance, namely the data level approach, the 

algorithm level, the cost-sensitive approach that can 

work at both levels, and the use of an ensemble [7]. A 

simple approach that is easy to implement and 

independent of the classification method used is 

sampling-based. The most simple sampling is random 

oversampling and random undersampling [10-11]. 

Several sampling approaches that consider sample 

conditions can improve model performance [11-12]. 

The ensemble approach includes bagging and boosting. 

The boosting approach selects the sample and gives the 

sample weight based on misclassification costs. The 

bagging approach uses a simple approach by forming a 

dataset at the bootstrapping stage. The sample with 

replacement mechanism in bagging still produces 

resampling results with a distribution still imbalance. 

Some sampling methods, such as random oversampling, 

SMOTE, simple undersampling, and cluster-based 

sampling, is used to change the bootstrapping [9]. 
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The remainder of this paper is organized as follows. 

Section II briefly explains the methods for handling 

class imbalance. Sections III discuss the experiment 

result and their significance. The last section provides 

the conclusion of the study. 

II. METHOD 

This section describes preparing a dataset for model 

building and methods for handling machine learning-

based class returns.  

A. Data Preparation 

Preparation of the dataset, as depicted in Fig. 1, 

consists of four steps: (1) Data collection of the 3D, Ag-

Ab complex structure and separation of the antigen 

chains, (2) Identification of the residue exposed to the 

specified antigen, (3) Labelling the exposed residue as 

epitope or non-epitope, (4) Formation of feature vectors. 

The final goal of this stage is the formation of a 

conformational epitope dataset with the arff format. 

Each row in the dataset represents a characteristic 

vector of a residue that is part of the residue exposed to 

a particular antigen. 

The process of collecting the 3D structure of Ag-Ab 

complex data and separating certain antigen chains is 

described in the diagram in Fig. 2. The 3D structure of 

the Ag-Ab complex is collected by downloading it from 

the PDB database by the PDBID. The list of PDBID 

and its antigen chains used in this study refers to [13]. 

TreeD (3D) antigen structure data obtained by 

separating the antigen chain from the Ag-Ab complex 

based on the information in the .pdb file metadata on 

the keyword CMPND. There are 78 antigen chains 

derived from the 60 Ag-Ab complexes. In Fig. 3, the 

separation of the C antigen chain from the 1A2Y 

complex structure is shown. 

Identification of exposed residues was carried out 

based on the RSA threshold value. In detail, the steps 

for identifying the exposed residue are described in the 

diagram in Fig. 4. RSA is defined as the ASA value 

divided by Maximum ASA. The investigators used 

different RSA limits in defining the residual exposed. In 

this study, the RSA limits were 0.01. 

The next step is labeling the exposed residue as 

epitope residue or non-epitope residue. Epitope residues 

are antigen residues that interact with antibody residues. 

Interactions between residues were identified using the 

Euclid distance function with the PSAIA [14]. Two 

residues are said to interact if their distance is less than 

4 Angstroms. The distance between residue d (a, b) is 

defined as the minimum Euclidean distance between Cα 

residue a and C α residue b. In detail, the residue 

labeling process is explained by the diagram in Fig. 5. 

The last stage of preparing the dataset is the 

extraction of residual features. Each residue is 

characterized as ASA, RSA, CN, HSE 2, QSE 8, FSE 4, 

EFSE 8, SFSE 8, b factor, b factor ca, lo, PSAIA 23, 

AAI 544 [4]. ASA, RSA, CN, HSE, QSE 8, FSE 4, 

EFSE 8, SFSE 8, and PSAIA values represent their 

geometric structures' residues. The value of B factor, 

log odds ratio, and AAindex represent atomic or residue 

flexibility, propensity score, and amino acid residues' 

physicochemical properties, respectively [5], [15-16]. 

The dataset is presented in arff format with 602 feature 

vectors. The small RSA threshold accommodates more 

epitope data taken from the complex while increasing 

the negative class taken. The ratio of positive to 

negative classes at the RSA threshold is 0.07: 0.93. 

B. Conformational Epitope Prediction Model 

In this study, some models that combined the SVM 

or decision tree and sampling method are developed to 

predict conformational epitope. As shown in Table I, 

the sampling methods are SMOTE, borderline SMOTE, 

random undersampling, random oversampling, and 

cluster-based undersampling. The sampling method is 

also implemented in the Bagging method variations. 

The Model comparisons were carried out on the 

performance parameters AUC, Gmean, Adjusted G 

mean, and F score. 
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Fig. 1 Data preprocessing steps 

 

 

Fig. 2 Flow of the Ag-Ab complex 3D structure data collection 
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Fig. 3 (a) 3D structure of 1A2Y; (b) 3D structure of chain C (part of 1A2Y) (visualized by Biovia Software) 

 

Fig. 4 Identification of exposed amino acid residues 

 

Fig. 5 Residue labeling process 
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TABEL I  

DEVELOPED CONFORMATIONAL EPITOPE PREDICTION MODELS 

Category Conformational Epitope Prediction Method Abbreviation 

F1: 

Non-ensemble 

with  

balancing 

SMOTE + SVM/DT 
SMOTESVM,  

SMOTEDT 

Borderline SMOTE + SVM/DT 
BorderSMOTESVM, 

BorderSMOTEDT 

Random Under sampling + SVM/DT RusSVM, RusDT 

Cluster-based Under sampling + SVM/DT CusSVM, CusDT 

F2: Ensemble 

RandomForest   RF 

Bagging with sampling modification + DT 

OvBag DT, EBBag 

DT, SMOTEBag DT, 

CusBag DT 

Several methods proposed to handle imbalance in 

the conformational epitope prediction shown in Table I 

is briefly explained in this section. 

1)  Sampling Methods: Random oversampling and 

Random undersampling are the simplest method to 

rabalance data. Over and under sampling are the 

simplest method to rebalance data.  In oversampling, 

data from minority class is resampled with replacement 

until it number balance to data from majority class.  

Otherwise, in Random undersampling, majority class is 

sampled with replacement randomly as much as 

minority class number so that a balance data achieved.  

The main issue in Random oversampling and Random 

undersampling are overfitting and the loss of main 

features, respectively. Under-sampling result in better 

classifier than oversampling and the combination of 

both is better than oversampling or undersampling [11]. 

Oversampling is selected when minority data avaiable 

in dozens and undersampling is choosen when data 

available at hundreds. When the data size is large, 

combination of under and oversampling is appropriate. 

The other approach is SMOTE [11], where the 

oversampling is done not by replacement, but is done 

by create synthetic data which is consider the 

neighborhood sample data around the sample point of 

min class. New data points are generated using (1). 

        ( ̂    )                            (1)                                                                                                   

where Xi is the random sample from the k neighbor and  

  is a random number in the interval [0,1]. The 

combination of SMOTE and undersampling give the 

best performance [11]. Considering the influence of 

data points in the borderline area to the classifier 

performance, ref. [12] use Borderline-SMOTE in which 

the synthetic data is generated from the minority sample 

in the border area. Han uses the same technique with 

Chawla et al. [11] to generate the synthetic data point. 

If k is sum of the nearest neighbor from ip sample, then 

ip will be categorized as the border sample if the sum 

of neighbour from majority class is larger than from 

minority class (
 

 
     ). 

If the oversampling method generates new data 

points based on existing sample points, the 

undersampling method uses the information on the 

sample to select the sample. Among the methods used 

to select samples is clustering. Researchers use a 

different approach in determining the dataset group 

used in model building. The first approach is to include 

the entire dataset without paying attention to the class 

label [17]. The second approach is only to use the 

majority class to form the dataset [19-20]. 

2)  Bagging: Bagging (Bootstrap AGGregatING) 

categorized as a parallel ensemble method (Fig. 6). 

Creating the subsets of the data sample in the 

bootstrapping mechanism is conducted by sampling 

with replacement. Bagging should use unstable base-

learner such as decision tree. Among the extension of 

bagging algorithm to handle imbalance class are 

Exactly Balance Bagging (EBBag), OverBagging 

(OvBag), and SMOTEBagging (SMOTEBag) [21]. 

EBBag is the derivative of Bagging with Random under 

sampling mechanism. In the EBBag the number of 

samples is fixed. OvBag and SMOTEBag are the 

variant of random oversampling. In OverBagging, The 

bootstrap sample is created by Random oversampling 

with replacement in the minority data. In SMOTEBag, 

the minority data is oversampled by SMOTE. The 

resampling rate of SMOTE is changed in each bootstrap 

to increase deversity of each sample. Another method 

which is combine undersampling with SMOTE is 

Resampling Ensemble Algorithm (REA) [22]. 



JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 9, No. 1, May 2021 

136  The Empirical Comparison of Machine Learning ... | Solihah, B., Azhari, A., Musdholifah, A., 131 – 138 

 

Fig. 6 Bagging method 

3)  Random Forest: Random Forest is the Bagging 

extension with trees as the base-learner. Random Forest 

differ from Bagging at how to use features to build the 

tree. Each tree is generated with features randomly 

selected from the available features. 

III. RESULTS AND DISCUSSION 

Experiments were carried out on a dataset that had 

been built using the steps described in Section III. The 

experimental scenario is described in the validation and 

performance section.  

A. Validation and Performance Measurement 

Internal model validation was done by using 10-fold 

cross-validation. The dataset is divided into ten parts, 9 

of which are used as training data, and one is used as 

testing data. The prediction model of the 

conformational epitope is a prediction model developed 

with binary classification. A positive class is a class for 

epitope residues, and a negative class is a class for non-

epitope residues. The test results of the model are 

presented in a confusion matrix. In the confusion matrix, 

there are four categories of prediction results, namely 

True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN). Each class's 

performance is stated in the True Positive Rate (TPR) 

and True Negative Rate (TNR). The overall model 

performance is expressed by Area Under the Curve 

(AUC), Geometric mean (Gmean), Adjusted Graph, and 

F-score. Accuracy is not used as a performance measure 

due to bias in the class imbalance case.  

B. Experiment Result 

The model is implemented with the Netbean IDE in 

Java language and the JSAT statistics library [23]. The 

parameter settings are the same as in [4]. The non-

ensemble model's performance on a dataset with a 

threshold of RSA ≥ 0.01 is shown in Table 2. Each cell 

in the table describes the average performance of the 

model. The highest performance SVM model 

performance is achieved in the BorderSMOTE SVM 

model. The results of statistical tests with the Friedman 

test and post hock analysis with alpha 0.05 at the AUC 

value resulted in a p-value of 1.29422E-11. There are 

significant differences between the various variants of 

the models developed with the SVM. Post hock test 

with nemenyi shows that there is no significant 

difference between the SVM model and other model 

variants except for Cus SVM, which is stated by a p-

value of 0.002. 

In the decision tree-based model, the highest model 

performance on the three measurement methods AUC, 

Gmean, and Adjusted Gmean, is achieved in the CusDT 

model. The best performance of the model at the F-

score was achieved in the BorderSMOTE DT model. 

The results of statistical tests with Friedman test and 

post hock with alpha 0.05 at AUC resulted in a p-value 

of 4.79415E-07. It shows significant differences 

between the various variants of the model developed 

with the decision tree.  The CusDT model is 

significantly different from the DT, SMOTE DT, 

BorderSMOTE DT, and RusDT based on the nemenyi 

post hock analysis. The post hock analysis between the 

CusDT and DT, SMOTE DT, BorderSMOTE DT, and 

RusDT models resulted in p-values of 0.002, 0.03, 0.01, 

and 0.02, respectively. 

In general, the model performance, as stated by the 

AUC, Gmean, Adjusted Gmean, and F-score of the 

decision tree-based model, is superior to that of the 

SVM model (Table II). The combination of SMOTE 

and BorderSMOTE gives better model performance 

based on AUC and Gmean parameters. The 

combination of the sampling method with DT is better 

than combining the sampling method with SVM in 

AGM, except for BorderSMOTE. The p-value of the 

Wilconox test results on the AUC between decision tree 

vs. SVM and BorderSmote SVM vs. BorderSmote DT 

respectively 0.01 and 0.001. The p-value between RUS 

DT vs. RUS SVMand SMOTE SVM vs. SMOTE DT 

respectively 0.001 and 0.001. The p-value between 

CUS DT vs. CUS SVM is 0.03. The model developed 

with Smote SVM, and BorderSMOTE SVM is better 

than Smote DT and BorderSMOTE DT. The models 

developed with DT and RUS DT are better than the 

SVM and RUS SVM models. The use of CUS on DT 

and SVM did not provide a significant difference in 

AUC. 
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TABEL II 

THE PERFORMANCE OF NON-ENSEMBLE MODELS 

Family Model TPR TNR Precision AUC 
G 

Mean 

Adjusted 

G Mean 

F 

Measure 

SVM SVM 0.28 0.95 0.33 0.61 0.50 0.72 0.28 

 SMOTESVM 0,82 0,68 0,19 0,75 0,74 0,68 0,30 

 BorderSMOTESVM 0,76  0,81  0,27  0,78  0,78 0,79 0,39 

 RusSVM 0,25  0,95  0,27 0,60  0,48  0,70  0,25  

 CusSVM 0,72 0,73  0,18  0,73  0,72  0,73  0,29  

         

DT DT 0.29  0.97  0.43  0.63  0.53  0.74  0.35  

 SMOTEDT 0,34  0,96  0,43  0,65  0,57  0,76  0,38  

 BorderSMOTEDT 0,35 0,96  0,44  0,65  0,58  0,76  0,39  

 RusDT 0,32  0,96  0,41  0,64  0,56  0,75   0,36  

 CusDT 0,84  0,78  0,23  0,81  0,81  0,78  0,36  

TABEL III 

THE PERFORMANCE OF ENSEMBLE MODELS 

Model TPR TNR Precision AUC 
G 

Mean 

Adjusted 

G Mean 
F Measure 

BagDT 0,24   0,99   0,56   0,61   0,49  0,73   0,34  

OverBagDT 0,25  0,99  0,57  0,62  0,50  0,73  0,35  

CusBagDT 0,90  0,81  0,26  0,85  0,85  0,83  0,41  

CusRF 0,75  0,83  0,26  0,79  0,79  0,81  0,39  

EBBag 0.25  0.99  0.57  0.62  0.50  0.73  0.35 

RF 0.06  1.00 0.62 0.53 0.25 0.61 0.11 

 

As presented in Table III in the ensemble model, the 

CusBag DT model's performance is the best in the four 

performance parameters. The Friedman test, the AUC 

value on the five models, resulted in a p-value of 

5.61214E-11. The nemenyi analysis results resulted in a 

p-value of 0.02 for the DT Bag and CusBag DT. The 

post-hock analysis between the DT Bag model and the 

other models did not show any significant differences. 

IV. CONCLUSION 

The dataset for developing conformational epitope 

prediction is imbalanced. The machine learning-based 

method is sensitive to class imbalance. Applying 

cluster-based undersampling is quite effective than 

applying other sampling methods. Modified Bagging 

produces better performance than the Random Forest. 

The decision tree in this prediction model produces 

better performance than SVM with linear kernels. The 

performance of the conformational epitope prediction 

model still needs to be improved so that it can be used 

as a tool in vaccine development using the rational 

design method. Apart from handling the imbalance 

class, the use of other more representative features can 

be tried. Another thing that is also important to do is the 

prediction of the antigen with multiple epitopes. 
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