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ABSTRACT 

The dynamics of a harmonically driven spherical 

gas/vapour bubble has been studied intensely in the 

last decades. The collapse of a bubble induce 

extreme conditions, such as high pressure and 

temperature or even shock waves. The ultrasonic 

technology exploit these conditions in various fields 

of industry, for example, ultrasonic pasteurization, 

alteration of the viscosity of thixotropic fluids, 

production of new kind of copolymers, or in cancer 

therapy. The present study intends to aid the 

applications through the numerical investigation of a 

harmonically excited spherical gas bubble placed in 

the highly viscous glycerine. We seek parameter 

regions where the bubble wall velocities as high as 

possible, perhaps even higher than the sound speed 

in the liquid domain. Such kind of high amplitude, 

collapse-like radial oscillations are difficult to find 

due to the very high viscosity, which is 

approximately three orders of magnitude greater than 

of water. The two investigated parameters were the 

pressure amplitude and the frequency of the 

harmonic forcing. The applied model was the 

Keller—Miksis equation, which is a second order 

nonlinear ordinary differential equation, describing 

the bubble wall motion and taking into account liquid 

compressibility as a first order approximation. 

Keywords: Bubble dynamics, bifurcation 

structure, non-linear analysis, Keller-Miksis 

equation, glycerine, chaos 

NOMENCLATURE  

𝑀 [-] Mach number 

𝑃∞  [bar] ambient pressure 

𝑅 [mm] bubble radius 

𝑅0 [mm] reference bubble radius 

𝑅𝐸 [mm] equilibrium radius 

�̇� [m/s] bubble wall velocity 

�̈� [m/s2] bubble wall acceleration 

𝑇∞ [°C] ambient temperature 

𝑐 [m/s] sound velocity 

𝑓 [Hz] frequency of the bubble oscillation 

𝑓0 [Hz] linear eigenfrequency of the 

 undamped bubble oscillation 

𝑚𝐺 [g] mass of the gas inside the bubble 

𝑝𝐺0 [Pa] reference gas pressure 

𝑝 [Pa] pressure 

𝑝𝐴 [bar] pressure amplitude 

𝑝∞ [bar] pressure away from bubble 

𝑡 [s] time 

𝑡0 [s] period of driving time 

𝜅 [-] ratio of specific heats 

𝜇 [Pa∙s] dynamic viscosity 

𝜈 [Hz] driving frequency 

𝜌 [kg/m3] density 

𝜎 [N/m] surface tension 

𝜏 [-] dimensionless time 

𝜏0 [-] dimensionless period of driving 

𝜔 [rad/s] angular frequency of excitation 

𝜔0 [rad/s] linear angular eigenfrequency of 

 undamped system 

𝜔𝑅 [-] relative frequency 

 

Subscripts and Superscripts 

 

𝐺, 𝐿, 𝑉 gas, liquid, vapour 

𝑀𝑎𝑥 maximal 

𝑟𝑒𝑓 reference quantity 

1. INTRODUCTION 

Cavitation causes serious damage in common 

engineering application, such as in turbomachinery 

and in hydraulic systems. In most cases, cavitation 

occurs as sheet cavitation or bubble swarm, thus the 

applicability of numerical results on a single 
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spherical bubble is limited. However, there are 

special applications in which the spherical geometry 

is a proper assumption, such as in case of 

microbubbles [1], since the surface tension contract 

the bubble as small and as spherical as possible.  

Although the spherical geometry is rather 

simple, the dynamics of the bubble can be very 

complicated. The excited bubble behave as an 

oscillatory system. During its oscillation, the bubble 

wall velocity can be extremely high due to the inertia 

of the liquid domain, resulting in many orders of 

magnitude smaller bubble size than the equilibrium 

state. This process is called as collapse phase. At the 

minimum bubble radius, the pressure and the 

temperature can reach 1000 bar and 8000 K [2]. Due 

to the high temperature, chemical reactions can take 

place, producing free radicals such as 𝐻′, 𝐻2, 𝑂′, 
𝑂𝐻’, 𝐻𝑂2

′  𝐻𝑂′, 𝐻2𝑂2, [3, 4], which are the keen 

interest of a special field of chemistry, called 

sonochemistry. Taleyarkhan et al. [5] and Lahey et 

al. [6] observe neutron emission in deuterated 

acetone, indicating the presence of fusion. 

Taleyarkhan et al. [5] numerically revealed that the 

temperature inside a highly compressed bubble can 

reach 106 to 107 K, supporting the experimental 

observation. 

In the last decades, many industrial applications, 

related to the ultrasonic technology, have emerged. 

The main aim is to enhance the mass, heat and 

momentum transfer between various phases by 

exploiting the physical effects of the collapse of 

gas/vapour bubbles. For instance, a promising 

process in food preservation is the ultrasonic 

pasteurization. At moderate temperature, 

approximately at 50 °C, the membrane of the 

bacterial weakens and become less resistant against 

cavitation damage. Knorr et al. [7] successfully 

reduce the amount of E. Coli bacteria in whole eggs. 

Ultrasound used widely in polymer research. A 

number of studies reported that, the molecular 

weight and the chain length can be reduced during 

high intensity ultrasound irradiation [8]. The 

ultrasonic technology can be used in cancer therapy 

as well [9-11]. The collapse of the bubble damage the 

solid tumours aiding the transport of genes and 

medicines through the cell.  

The main motivation to support the applications 

through the numerical investigation of a 

harmonically excited spherical gas bubble placed in 

the highly viscous glycerine. We seek parameter 

regions where the bubble wall velocities as high as 

possible, even higher than the sound speed in the 

liquid domain. The viscosity of the glycerine is 

approximately three times larger than that of water, 

therefore the system has a high damping effect, 

which makes the hunting for high amplitude 

collapse-like bubble oscillation difficult. The applied 

bubble model is the Keller—Miksis equation [12], 

which is a second order nonlinear ordinary 

differential equation describing the bubble wall 

motion and taking into account liquid 

compressibility as a first order approximation. 

According to the ultrasonic technology, the two 

investigated parameters are the pressure amplitude 

𝑝𝐴 and the frequency 𝜈 of the harmonic excitation. 

2. MATHEMATICAL MODEL 

During the numerical investigation, the well-

known Keller—Miksis equation was used with some 

minor modification according to Lauterborn and 

Kurz [13]:  
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It is a second order, nonlinear ordinary differential 

equation describing the variation of the bubble radius 

𝑅(𝑡) in time, where 𝑐𝐿 sound velocity in the liquid 

domain, 𝜌𝐿 liquid density, 𝑝𝐿  pressure at the bubble 

wall. The material properties depend on the ambient 

temperature T∞ of the liquid domain. The pressure far 

away from the bubble 𝑝∞(𝑡) consist of a static and a 

periodic component, according to the ultrasonic 

irradiation: 

 

𝑝∞(𝑡) = 𝑃∞ + 𝑝𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡), (2) 

 

there 𝑃∞ is the ambient pressure in the liquid domain, 

pA and 𝜔 = 2𝜋𝜈 are the pressure amplitude and 

angular frequency of the harmonic excitation. The 

bubble content assumed to be a mixture of non-

condensable diatomic ideal gas, and glycerine 

vapour. Therefore the pressure inside the bubble is 

the sum of the partial pressures of the gas (air) 𝑝𝐺  and 

vapour 𝑝𝑉. The pressure of gas content was 

approximated by an adiabatic relationship: 

 

𝑝𝐺 = 𝑝𝐺0 (
𝑅0

𝑅
)

3𝜅

. (3) 

 

The ratio of specific heats is 𝜅 = 1.4. The mass of 

the gas inside the bubble are determined by the 

reference pressure pG0, and the reference bubble 

radius R0: 

 

𝑚𝐺 =
4𝑝𝐺0𝑅0

3𝜋

3ℜ𝑇∞

, (4) 

 

where ℜ is the specific gas constant. The connection 

between the pressures in the liquid and the 

gas/vapour domain at the bubble wall, is described 

by the mechanical balance: 

 

𝑝𝐺 + 𝑝𝑉 = 𝑝𝐿 +
2𝜎

𝑅
+ 4𝜇𝐿

�̇�

𝑅
, (5) 



where σ is the surface tension and μL is the dynamic 

viscosity of the glycerine, both depend on the 

ambient temperature T∞. The material properties 

were taken from the results of The Dow Chemical 

Company [14]. 

2.1 Reducing the number of parameters 

In Eqs. (1) to (5) all parameters can be 

determined with five quantities [15]. The ambient 

pressure P∞ and the ambient temperature T∞ specify 

the material properties of a pure substances. In our 

special case, all material properties of glycerine 

depend on only the ambient temperature T∞, the 

dependence of 𝑃∞ is neglected. The equilibrium 

radius of the bubble was prescribed, 𝑅𝐸 = 0.1 𝑚𝑚, 

to determine the size of the bubble. For unexcited 

system (𝑝𝐴 = 0), and all time derivates are zeros, 

thus Eq. (5) can be rewritten:  

 

0 = 𝑝𝑉 − 𝑃∞ + 𝑝𝐺0 (
𝑅0
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)
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−
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. (6) 

 

Since the mass of the bubble depend on the product 

of (𝑝𝐺0𝑅0
3), either the reference pressure pG0 or the 

reference bubble radius R0 can be chosen arbitrarily. 

In our case, the reference bubble radius was chosen 

to be equal to equilibrium radius R0=RE, thus from 

Eq. (6) the reference gas pressure can be calculated:  

 

𝑝𝐺0 =
2𝜎

𝑅𝐸

− (𝑝𝑉 − 𝑃∞). (7) 

 

The remaining two parameters are the pressure 

amplitude pA and the angular frequency ω of the 

excitation, see Eq. (2). The angular frequency can 

vary between several orders of magnitude, therefore 

it was normalized with the linear eigenfrequency of 

the undamped system [2]: 

 

𝜔0 = √
3𝜅(𝑃∞ − 𝑝𝑉)

𝜌𝐿𝑅𝐸
2 +
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The dimensionless relative frequency, which was 

used during the computations is defined as: 

 

𝜔𝑅 =
𝜔

𝜔0

. (9) 

 

The Mach number corresponding to the bubble wall 

velocity: 

 

𝑀 =
�̇�

𝑐𝐿

. (10) 

 

During the simulation, the bubble radius, the bubble 

wall velocity and the time was normalized with 

reference quantities. The reference bubble radius was 

the equilibrium radius 𝑅𝑟𝑒𝑓 = 𝑅𝐸, the reference 

velocity defined as 𝑣𝑟𝑒𝑓 = 𝑅𝐸/𝑡𝑟𝑒𝑓, where 𝑡𝑟𝑒𝑓 =

𝜔/2𝜋. 

3. PROPERTIES OF THE BUBBLE 
OSCILLATOR  

3.1. Computation of stable solutions 

The Keller—Miksis model can be viewed as a 

two dimensional nonlinear oscillator. Closed 

analytic solutions are not known, except for empty 

bubble [13], however, numerical solutions are easily 

obtained. The simplest method is to use an initial 

value problem solver with suitable initial conditions 

for the radius of the bubble 𝑅(0) and for the velocity 

of the bubble wall �̇�(0), then integrate the system 

forward in time. After some transient period, the 

trajectory progressively converges to a stable state, 

called attractor.  

 

Figure 1. Dimensionless bubble radius and 

bubble wall velocity vs. time curves at 𝒑𝑨 = 𝟒 𝒃𝒂𝒓 

and 𝝎𝑹 = 𝟏. 𝟐𝟓. The solid line denotes the 

attractor, the dashed line denotes the transient 

solution. The lower graph represent the pressure 

excitation in time. The black dots are the points of 

the Poincaré sections. 

A typical example of solution is presented in 

Figure 1 at 𝑝𝐴 = 4𝑏𝑎𝑟 and 𝜔𝑅 = 1.25. On the upper, 

chart, the dimensionless bubble radius 𝑅/𝑅𝐸, on the 

middle chart the dimensionless bubble wall velocity 



�̇�/𝑣𝑟𝑒𝑓 are presented as a function of time. The solid 

line denotes the attractor, and the dashed line denotes 

the transient solutions. The lower graph represent the 

harmonic pressure excitation (see Eq. (2)).  

The solution can be represented in the (𝑅, �̇�) 

phase plane. In the simplest case, the trajectory of an 

attractor construct a closed curve on the phase plane. 

Figure 2 shows the attractor of the solutions apparent 

in Fig. 1, in the phase plane. The transient trajectory 

(dashed curve) starts from the initial condition 

(denoted by empty circle) and converges to the 

steady state (solid cure).  

 

Figure 2. The normalized bubble radius–bubble 

wall velocity phase plane. Dots are the points of 

Poincaré sections, and the round denotes the 

initial conditions.  

The trajectories of the complex solution may 

intersect themselves, making the representation of 

the results difficult. To avoid this difficulty, one can 

represent only the Poincaré map, obtained by 

sampling the continuous trajectory at every integer 

multiple of the period of driving time 𝑡0. The dots in 

Fig. 1 and Fig. 2 are the points of Poincaré sections.  

During our investigation, the whole trajectories 

was not recorded, only the Poincaré maps and the 

maximum values of bubble radius and wall velocity. 

With these quantities, the main characteristics of the 

oscillation can be described without the 

representation of the trajectories. The employed 

software was Matlab, and the numerical method was 

a 4th order Runge—Kutta scheme with 5th order 

embedded error estimation.  

3.2. The different types of stable 
solution 

Besides the the simplest solution with period 𝑡0, 

sub-harmonic oscillations may occur, which only 

repeat after 2, 3 or more period of excitation, hence 

the attractor returns exactly to the starting value after 

2, 3, or more acoustic cycles. If the solution return to 

themselves after 𝑁 period of excitation, where 𝑁 is 

integer, the solution called period 𝑁 solution.  

Since the solution is sampled every integer 

multiple of  𝑡0 in the phase plane, the period 𝑁 

solutions are represented by 𝑁 dots. In Figure 3, 

period 1 (solid line), 2 (dashed line) and 3 (dotted 

line) solutions are demonstrated. On the upper panel, 

the normalized bubble radius 𝑅 𝑅𝐸⁄  as a function of 

normalized time 𝜏 = 𝑡 𝑡𝑟𝑒𝑓⁄ , on the lower panel the 

periodic attractors in the dimensionless phase plane 

are represented, respectively. Observe that the 

solution demonstrated on Fig. 1 and Fig 2 was 2 

period solution. 

 

Figure 3. Examples of different periodic 

attractors: period 1, 2 and 3 solutions are denoted 

by solid, dashed and dotted lines.  

The period may even go to infinity to yield never 

repeating bubble oscillations. In this case, 

trajectories never closing. This type of solution is 

called chaotic attractor.  

An example for chaotic solution is demonstrated 

in Figure 4. On the phase plane (lower panel), 

trajectories are not plotted, only the points of 

Poincaré points are represented, to avoid overbidding 

the figure.  

In Figure 5 the spectrum of the period 1, 2, 3 and 

chaotic solutions, which were demonstrated in Fig. 3 

and Fig. 4 are represented. The frequency of the 

bubble oscillation 𝑓 was normalized with the driving 

frequency 𝜈. On subplot a) (period 1 solution), the 

fundamental frequency is same as the frequency of 

the excitation, there are peaks at 𝑓 𝜈⁄ = 1 and at its 

harmonics. The spectrum on subplot b) belongs to 

the period 2 solution. It shows that a sub-harmonic 

frequency appeared at 𝑓 𝜈⁄ = 1/2, therefore, the 

bubble oscillation repeat after two acoustic cycles. 



On subplot c), sub-harmonics appearing at 𝑓 𝜈⁄ =
1/3 and 𝑓 𝜈⁄ = 2/3. This spectrum belongs to the 

period 3 solution. The spectrum of the chaotic 

solution subplot d) is continuous, where a broad band 

noise is superimposed on the fundamental frequency, 

but it’s from a deterministic system. 

 

Figure 4. Example of chaotic attractor.  

 

Figure 5. The spectrum of the different types of 

solution. 

4. BIFURCATION DIAGRAMS 

A usual way to investigate a periodically driven 

dynamic system, is to present the bifurcation 

diagrams. In a bifurcation diagram, only one 

coordinate of the Poincaré section is plotted as a 

function of a parameter, called “control parameter”. 

In Figure 6, the upper chart is a pressure amplitude 

bifurcation diagram, in which the normalized bubble 

radius of the points of the Poincaré section (𝑅𝑃 𝑅𝐸⁄ ) 

were plotted as a function of the pressure amplitude 

𝑝𝐴 at constant 𝜔𝑅 = 1.25 driving frequency. During 

the computation, the pressure amplitude was 

increased by 0.01 bar from 0.01 to 5 bar. At each 

parameter, 5 randomly generated initial conditions 

were applied in the simulations to reveal the 

coexisting stable solutions. The period 𝑁 solutions 

generate 𝑁 points on the bifurcation diagram. If the 

solution was chaotic, 512 points were plotted, which 

appear in a scattered way along a vertical line 

bounded by the size of the attractor.  

A period 1 solution is bifurcated from the 

equilibrium state of the unexcited system (𝑝𝐴 =
0 𝑏𝑎𝑟 and 𝑅𝑃 𝑅𝐸⁄ = 1). As the pressure amplitude 

increasing, the solution undergoes a period doubling 

sequence, then approximately at pressure amplitude 

𝑝𝐴 = 4 𝑏𝑎𝑟 the bubble oscillation became chaotic. 

After a short chaotic segment, simple periodic and 

chaotic windows alternate. The relevant periodic 

solutions are marked by numbers on the diagram. 

 

Figure 6. Pressure amplitude bifurcation diagram 

and Lyapunov exponent at 𝝎𝑹 = 𝟏. 𝟐𝟓 driving 

frequency 

On the lower panel, the Lyapunov exponent 𝜆 

(see [13], [16-17]), was plotted as a function of the 

pressure amplitude 𝑝𝐴. The Lyapunov exponent 

lower than zero for periodic oscillation. When the 

oscillation approaches a period doubling point, the 

Lyapunov exponent approaches zero. For chaotic 

solutions the Lyapunov exponent gets positive value.  

Figure 7 shows similar bifurcation diagrams, but 

the control parameter was the relative frequency ω𝑅. 



It increased from 0.01 to 3 with the increment of 

0.01, and again 5 random initial conditions were 

applied to reveal the coexisting stable attractors. In 

this case, the pressure amplitude was chosen constant 

during the simulation (𝑝𝐴 = 4 𝑏𝑎𝑟).  

On the upper panel, the normalized bubble 

radius 𝑅𝑃 𝑅𝐸⁄  versus relative frequency 𝜔𝑅 was 

plotted. The Arabic numbers mark the periodic 

solutions. The figure shows that there is a saddle-

node bifurcation [15] at 𝜔𝑅 = 0.25, then the period 

1 solutions undergoes a period doubling sequence. 

Near to 𝜔𝑅 = 1 (the frequency of the excitation 

equal with the eigenfrequency of the undamped 

system, 𝜈 = 𝑓0 = 29,3 𝑘𝐻𝑧) a chaotic window 

appeared. After the chaotic window, period halving 

processes can be observable. On the lower graph, the 

Lyapunov exponent as the function of the relative 

frequency was plotted, which aids to distinguish the 

simple periodic and chaotic solutions. 

 

Figure 7. Frequency response curves and 

Lyapunov exponent at 𝒑𝑨 = 𝟒 𝒃𝒂𝒓 pressure 

amplitude. 

5. DETAILED PARAMETER STUDY 

It was mentioned earlier that the oscillation of 

bubble depends only on five parameters. In the 

present investigation, the effect of the pressure 

amplitude 𝑝𝐴 and the frequency 𝜔𝑅 were studied in 

detail. Further pressure amplitude bifurcation 

diagrams, and frequency response curves were 

calculated at different relative frequencies 𝜔𝑅, and at 

different pressure amplitudes 𝑝𝐴. The ambient 

temperature 𝑇∞ = 40 °𝐶, the ambient pressure 𝑃∞ =
1 𝑏𝑎𝑟 and the equilibrium radius 𝑅𝐸 = 0.1 𝑚𝑚 was 

constant during each simulation. The parameter set, 

which was used in the present research is 

summarized in Table 1.  

 

 

Table 1. Parameter set during numerical 

computation 

Equilibrium radius RE 0,1 [mm] 

Ambient pressure P∞ 1 [bar] 

Ambient temperature T∞ 40 [°C] 

Relative frequency ωR 0-3 [-] 

Pressure amplitude pA 0-5 [bar] 

 

After the convergence of the solutions, the points 

of the Poincaré section, the maximum values (radius 

and wall velocity) of the oscillation, and the 

Lyapunov exponent were recorded. The results of the 

computation can be summarized on two dimensional 

contour plots. 

Fig. 6 and Fig. 7 showed that the Lyapunov 

exponent helps to distinguish the simple periodic and 

chaotic oscillations. Figure 8 represents the values of 

the Lyapunov exponent 𝜆 as a function of the 

pressure amplitude 𝑝𝐴 and the relative frequency 𝜔. 

The diagram helps to identify the chaotic region, 

where the Lyapunov exponent bigger than zero 

(black area). It shows that the oscillation become 

chaotic between 𝜔𝑅 = 0.75 − 1.5 and above 𝑝𝐴 =
3.5 𝑏𝑎𝑟. The white colour corresponding to the zero 

values of the Lyapunov exponent, where the period 

doubling bifurcations or the transition of periodic to 

chaotic solution takes place. If the Lyapunov 

exponent smaller than zero (grey area) the solution 

converges to a simple periodic attractor. The driving 

frequency 𝜈 is denoted on the secondary (top) 𝑥 axes. 

 

Figure 8. Lyapunov exponent 𝝀 as a function of 

the pressure amplitude 𝒑𝑨 and frequency 𝝂 (or 

relative frequency 𝝎𝑹) of excitation.  

Behnia et al. [18] emphasize the importance of 

chaos control in medical application such as drug 

delivery. The oscillation of the bubble generate local 

turbulence and liquid microcirculation. It can be 

exploited in application such as micromixing and 



microstreaming [19-20]. These application may 

operate efficiently in the chaotic region.  

In order to investigate the strength of the 

collapse, the maximal bubble wall velocity �̇�𝑀𝑎𝑥, 

rescaled to the Mach number 𝑀𝑀𝑎𝑥, plotted on 

logarithmic scale in the 𝑝𝐴 − 𝜔 parameter plane, 

shown in Figure 9. It shows that the at lower relative 

frequency, lower than 𝜔𝑅 = 0.5, and at higher 

pressure amplitude, higher than 𝑝𝐴 = 1 𝑏𝑎𝑟, the 

bubble wall velocity increase rapidly (dark grey are), 

and reach the speed of sound, where 𝑀𝑀𝑎𝑥 = 1. The 

boundary of 𝑀𝑀𝑎𝑥 = 1  is marked with white colour 

on the contour plot. According to [13], such small 

frequency domain is called as “Giant response 

region”. As the frequency is increasing and the 

pressure amplitude is decreasing, the available 

maximal Mach number is decreasing (light grey 

area) as well. The frequency of irradiation 𝜈 is 

represented on the secondary 𝑥 axis as well. 

 

Figure 9. The maximal Mach number 𝑴𝒎𝒂𝒙 on 

logarithmic scale as a function of the pressure 

amplitude 𝒑𝑨 and relative frequency 𝝎𝑹 of 

excitation. 

More violent collapse of the bubble can be 

reached, when the frequency of the excitation is 

below the main resonance. The applications may 

operate in an efficient way in this regions. 

At higher frequencies the bubble oscillate softly, 

but there are application such as micromixing and 

microstreaming [19-20], where the oscillation of the 

bubble, generate local turbulence and liquid micro-

circulation, which enhance the rate of the transport 

processes. 

6. SUMMARY 

The excited spherical gas/vapour bubbles 

behave like a nonlinear oscillator. During the 

oscillation of the bubble, at the collapse-phase, 

extreme conditions are generated such as high 

temperature, pressure and shock waves. These 

conditions are exploited in many fields of industry 

by the rapidly developing ultrasonic technology. 

This is the main motivation to investigate a spherical 

excited bubble placed into the highly viscous 

glycerine.  

We seek parameter regions, where the bubble 

wall velocities as high as possible, may be even 

higher than the sound speed in the liquid domain. 

The high viscosity of the glycerine means high 

damping rate, which weakens the strength of the 

collapse. The applied bubble model was the modified 

Keller—Miksis equation, which takes into account 

the liquid compressibility. The two investigated 

parameter was the pressure amplitude 𝑝𝐴 and the 

angular frequency 𝜔 of the harmonic excitation, 

according to the ultrasonic irradiation. The other 

parameters were constant during the investigation.  

The results showed that at lower relative 

frequencies below 𝜔𝑅 = 0.5 and higher pressure 

amplitude than 𝑝𝐴 = 1 𝑏𝑎𝑟 the bubble wall velocity 

reaches the sound velocity or even higher, resulting 

in supersonic bubble wall velocity. This region 

called as the giant response region. The application 

could operate efficiently in this parameter region. 

For higher frequencies and smaller pressure 

amplitudes the bubble wall velocity does not reach 

extreme values. This domain can be important in 

cases, when the strong bubble collapse not a strict 

requirement, for example in micromixing or 

microstreaming.  
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