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Abstract

We study coalitional games where the coalitional payoffs depend

on the embedding coalition structure. We introduce a noncooperative,

sequential coalition formation model and show that the set of equilib-

rium outcomes coincides with the recursive core, a generalisation of

the core to such games. In order to extend past results limited to to-

tally recursive-balanced partition function form games we introduce a

more permissive perfectness concept, subgame-consistency that only

requires perfectness in selected subgames. Due to the externalities,

the profitability of deviations depends on the partition formed by the

remaining players: the stability of core payoff configurations is ensured

by a combination of the pessimism of players going for certain profits

only and the assumption that players base their stationary strategies
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on a made-up history punishing some of the possible deviators – and

getting this sometimes right.

Subject classification: C71, C72

Keywords and phrases: partition function, externalities, imple-

mentation, recursive core, stationary perfect equilibrium, time consis-
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1 Introduction

The classical theory of coalitional games studied games with orthogonal, iso-

lated coalitions, that can be studied independently of each other. The char-

acteristic function of a TU-game, for instance, assigns a payoff to a coalition

disregarding other players and coalitions. For the usual interpretations of

coalitions, be those trading blocks (Yi, 1996), trusts (Bloch, 1995) or inter-

national environmental agreements (Funaki and Yamato, 1999; Eyckmans

and Tulkens, 2003), the orthogonality assumption is difficult to maintain; we

believe it is the exception rather than the rule that coalitions can be studied

independently of each other.

Since Thrall and Lucas (1963) introduced partition function form games

numerous solution concepts have been proposed to solve cooperative games

with externalities (Chander and Tulkens, 1995; Ray and Vohra, 1997; Hynd-

man and Ray, 2007). A solution concept is well-founded if it is fully charac-

terised by a collection of elementary, usually independent properties, axioms

or if it naturally emerges as the equilibrium of a noncooperative game. Few

concepts for partition function form games have backing of either kind; for the

axiomatic framework see for instance Bloch and van den Nouweland (2014),

here we present an implementation by non-cooperative equilibria.

The implementation of cooperative solution concepts, such as the core in
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charancteristic function form games has an extensive literature (Chatterjee

et al., 1993; Lagunoff, 1994; Perry and Reny, 1994), but these results do not

directly generalise to games with externalities. In this domain Huang and

Sjöström (2006) and Kóczy (2009) have provided partial results using sequen-

tial coalition formation games that have stationary perfect equilibria. Such

games have non-empty cores in all subgames – a property that does not even

hold for simple TU games. We therefore look for a condition that is weaker

than subgame perfectenss. Subgame-consistency holds for a broader game

class and the set of payoff-configurations generated by subgame-consistent

strategies coincides with the recursive core.

Subgame-consistency is a weaker concept than subgame-perfectness, but

more demanding than time-consistency (Kydland and Prescott, 1977). The

latter insists only on the consistency of the equilibrium play, subgame-consistency

also requires the perfectness of subgames that are relevant for the stabil-

ity of the equilibrium, at last subgame-perfectness requires it in all sub-

games. Subgame-perfect equilibria are therefore also subgame-consistent and

all subgame-consistent equilibria are also time-consistent. Moreover, station-

ary perfect equilibria are stationary consistent. For more on the relation of

subgame-perfect and time-consistent strategies see Fershtman (1989) and

Asilis (1995).

Unlike Huang and Sjöström (2006) and Kóczy (2009) we do not assume

a fixed payoff division within coalitions, but allow an endogenous allocation.

In a more recent paper Huang and Sjöström (2010) provide results for the

r-core that closely correspond to ours, but the assumption that the game is

totally r-balanced, that is, the r-core of each residual subgame is non-empty

remains. This difference turns out to be minor compared to the approach

to handle a technical difficulty in the proofs. We explain these differences in
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the conclusion of the paper, after introducing our model.

The structure of the paper is as follows. After this introduction a long

second section follows introducing both the cooperative and noncooperative

theories to solve games in partition function form, we introduce the notation

and simple terminology we are going to use. We present the cooperative so-

lution, namely the recursive core and similarly the noncooperative coalition

formation game and its equilibria. A novel equilibrium concept, subgame

consistency and the corresponding notion of relevant subgame are also intro-

duced here. We state and prove our main result in the third section. The

paper ends with a brief conclusion.

2 Preliminaries

Let N denote the set of players. Subsets are called coalitions. A partition

S of S is a splitting of S into disjoint coalitions. Π(S) denotes the set of

partitions of S. In general we use capital and calligraphic letters to denote

a set and its partition (the set of players N being an exception), indexed

capital letters are elements of the partition. We write i ∈ S if there exists Sk

such that i ∈ Sk ∈ S and if i ∈ S we write S(i) for the coalition embedded

in S containing i.

The game (N, V ) is given by a player set N and a partition function

(Thrall and Lucas, 1963) V : Π(N) → (2N → R), where V (Si,S) denotes

the payoff for coalition Si embedded in partition S. In the examples we

will abbreviate partitions; for instance we write [1, 23] for {{1} , {2, 3}}. We

also write V (P) = (V (S1,P), . . . , V (Sk,P)) if P = [S1, . . . , Sk] to denote the

vector of coalitional payoffs embedded in the partition P .

For vectors x, y ∈ RN we write xS for the restriction to the set S and
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xS > yS if xi ≥ yi for all i ∈ S ⊂ N and there exists j ∈ S such that xj > yj.

Due to the externalities in the partition function form game the standard

solution concepts do not work; we consider outcomes instead of imputations

and the recursive core (Kóczy, 2007), a generalisation of the core, as the

solution concept.

The pair ω = (x,P) consisting of a payoff vector x ∈ RN and a partition

P ∈ Π(N) is a payoff configuration (or outcome) if
∑

i∈S xi = V (Pi,P) for

all Pi ∈ P . The set of outcomes of game (N, V ) is denoted Ω(N, V ).

Let S ( N and S the partition of S = N \ S. Then the residual game

S, V S is the partition function game played over S such that V S(Si,S) =

V (Si,S ∪ S) for all Si ⊆ S and S ∈ Π(S).

Definition 1 (Recursive core (Kóczy, 2007)). For a single-player game the

recursive core is trivially defined. Now assume that the core C(N, V ) has

been defined for all games with |N | < k players. Then for an |N |-player

game an outcome (x,P) is dominated if there exists a coalition Q forming

partition Q such that yQ > xQ for all outcomes (y,Q ∪ Q) ∈ Ω(N, V ) such

that (yQ,Q) ∈ C(Q, V Q) if C(Q, V Q) 6= ∅. The core C(N, V ) of (N, V ) is

the set of undominated outcomes.

5



Example 1. Consider the following 6-player partition function form game.

V ([123456]) = (12)

V ([i, 123456 \ i]) = (1, 10) ∀i ∈ N

V ([ij, 123456 \ ij]) = (2, 4) ∀i 6= j, i, j ∈ N

V ([1, i, 23456 \ i]) = (1, 1, 8) ∀i ∈ N \ {1}

V ([1, 23, 456]) = (1, 6, 3)

V ([1, 23, 4, 56]) = (0, 6, 1, 2)

V ([1, 23, 5, 46]) = (2, 6, 1, 2)

V ([1, 23, 6, 45]) = (3, 2, 1, 2)

V ([1, 23, 4, 5, 6]) = (3, 6, 0, 0, 0)

other payoffs are 0.

A quick inspection of the partition function reveals that the (recursive)

core consists of a single element ((2, 2, 2, 2, 2, 2), [123456]). See Appendix A

for the detailed calculations.

Example 2. Consider also a 4-player game ({1, 2, 3, 4} , U), where

U([1234]) = (8)

U([i, jkl]) = (1, 5)

U([ij, kl]) = (4, 4)

U([i, j, kl]) = (1, 1, 4)

U([1, 2, 3, 4]) = (1, 1, 1, 1)

if {i, j, k, l} = {1, 2, 3, 4}.

A quick inspection of the partition function reveals that there are no

deviations that could potentially give higher payoffs than under the payoff
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configuration ((1, 1, 1, 1), [1234]), while it can readily be verified that any pair

can secure a (total) payoff of 4.

Huang and Sjöström’s (2003) r-core coincides with the recursive core on

a broad class of games that does not, however include the standard TU-

games without externalities. Ray’s (2007) standard equilibrium, defined for

symmetric partition function form games has a similar recursive structure.

For an interpretation and the discussion of the properties of the recursive

core see Kóczy (2007, 2009); Huang and Sjöström (2010).

3 Sequential coalition formation

The sequential coalition formation game we define is similar to Bloch’s (1996)

and Perry and Reny’s (1994). First a player proposes the formation of some

coalitions. The offer specifies not only who should be the members of these

coalitions, but also how the coalitional payoffs will be shared. If all involved

players accept the offer, the coalitions form and leave the game. When the

offer is rejected, a new proposal is made and so on, until all players exit.

3.1 The game

Consider a game (N, V ) with a player set N and partition function V . Time

t is continuous, but we assume that there is always an open time interval

between two actions: there is time to respond. Let Qt ⊆ N denote those

who have already quit the game by time t, forming partition Qt. Player i

can make proposals

P t
i =

(P t, wt)

∣∣∣∣∣∣P t ∈ Π(P t), P t ⊆ Qt, P t 3 i, wt ∈ RP t

,∀P t
k ∈ P t

∑
j∈P t

k

wtj = 1


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the current proposer is it making the proposal pt = (P t, wt) to the players

in P t, already accepted by the players in At ⊆ P t (we assume it ∈ At) have

already accepted the proposal. At t a player i can

1. accept the proposal pt if i ∈ P t,

2. make a new proposal, or

3. do nothing.

The strategy σi of a player i specifies a complete protocol of actions for all

times and contingencies during the game and σti the action at t. Let σ denote

the strategy profile collecting the strategies of all players.

A state st is a snapshot of the game and is given by a tuple (Qt, it, pt, At).

History h is a complete record of actions – we actually use only a small

part of this information. Technically let t1, t2, ... be points in time such that

stk = st 6= stk+1 for all tk < t < tk+1 . Then h = {stk}k. Let ht be a

truncation of history up to time t. There is a one-to-one correspondence

between history truncations and decision nodes in the game tree. We will

identify subgames by truncated histories. Let σ|ht denote the restriction of

strategy σ to the subgame ht.

There is no guarantee that the game ends, that all players quit. We

therefore specify the payoffs for coalitions Qk embedded in an incomplete

partition Q. We take a conservative approach: players only receive their

guaranteed payoff, the lowest value the coalition can obtain in a partition

embedding the coalition structure of departed players:

V (Qk,Q) =

minP⊃Q V (Qk,P) Qk ∈ Q

0 otherwise.

(3.1)
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For instance in Example 2 the departure of a singleton, say player 1 results

in a simple majority residual game. For such games no stationary equilibria

exist and so the bargaining will be inconclusive, but we can allocate the

minimum achievable payoff U({1} , [1]) = minP3[1] {U({1} ,P)} = 1 to this

player – which is incidentally also the maximum, as in this case the payoff of

this player does not depend on what happens in the rest of the game.

Given a strategy profile σ the payoff of player i is xi(σ).

3.2 Equilibria

Now that we have specified the available strategies (actions) and the resulting

payoffs (incentives), we can focus on the outcomes of the coalition formation

game. We hope to answer two questions simultaneously: (i) which coalitions

will form (ii) how are coalitional payoffs distributed.

Recall that players are conservative and only go for certain profits: If

different beliefs lead to different subsequent actions from the other players,

a deviation may or may not be profitable under all such scenarios.

Definition 2. The strategy profile σ∗ is a subgame-perfect equilibrium if for

all h ∈ H, time t, i ∈ N , strategies σi the corresponding restrictions σ∗|ht

and σi|ht to the subgame at ht we have

xi(σ
∗|ht) ≥ xi(σi|ht , σ∗−i|ht). (3.2)

The set of perfect equilibria may be too inclusive (see Muthoo (1990,

1995); Perry and Reny (1994); Osborne and Rubinstein (1990) for a discus-

sion of folk-theorem-like results) so we focus on stationary strategies.

Definition 3. A strategy σ is stationary if it does not depend on time.

Formally: if for all h and t1, t2 with ht1 = ht2 we have σ|ht1 = σ|ht2 .
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Definition 4. A stationary perfect equilibrium σ∗ is a strategy profile that

is both subgame-perfect and stationary.

For games with nonempty residual cores the set of stationary perfect

equilibrium partitions coincide with the recursive core (Kóczy, 2009). This

equivalence result predicts that games containing empty residual cores do

not have stationary perfect equilibria.

Bloch (1996) presents a 3-player example, where player 1 would like to

form a coalition with 2, 2 with 3, 3 with 1. This game does not have

stationary-perfect equilibria. Since residual games are also partition func-

tion form games, the smallest residual game for which the corresponding

subgame of the sequential game has no stationary strategies has an empty

core. By a sufficiently large payoff for the grand coalition the core of the

original game is nevertheless empty. Perfectness only holds globally, that is,

if the tiniest subgame fails to have stationary perfect equilibria this failure

extends to the entire game. On the other hand, just as the recursive core

may be non-empty even if the game has empty residual cores, with a weaker

concept of perfection we may retain an essentially perfect behaviour in the

corresponding sequential coalition formation games, too.

Time-consistency (Kydland and Prescott, 1977) requires the equilibrium

strategy to be consistent or revision-free and is therefore unaffected by empty

cores elsewhere. Most subgames are never reached anyway so following this

promising direction for weakening subgame perfectness we are focussing on

the immediate neighbourhood of the equilibrium play σ. A strategy profile

is in this immediate neigbourhood if it is an elementary deviation from σ,

that is, it only differs in the action of a single player in a single decision

node. Subgame-consistency, that we introduce below, is such that the per-

fectness/consistency criterion is only required in relevant subgames. What
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is relevant?

Definition 5. For a strategy profile σ a subgame at t is relevant if

1. it is the original game (t = 0),

2. it can be reached via an elementary profitable deviation from σ, or

3. it is a relevant subgame of a relevant subgame.

Let σ|h denote the truncation of σ to the subgame corresponding to h.

Definition 6. The strategy profile σ∗ is a subgame-consistent equilibrium if

for all relevant subgames ht, i ∈ N , strategies σi the corresponding restric-

tions σ∗|ht and σi|ht to ht we have

xi(σ
∗|ht) ≥ xi(σi|ht , σ∗−i|ht). (3.3)

For an equilibrium strategy profile, this requires checking the equilibrium

path only: Since no profitable deviation exist, other subgames need not be

checked. Were there profitable deviations they would have to be supported

by a strategy that is subgame perfect along that strategy. The equilibrium

in Example 2 is to propose and accept the core payoff configuration. We

must of course check possible deviations, but if a particular deviation cannot

possibly be profitable irrespective of what happens in the rest of the game,

it is actually unnecessary to check what would happen there. As such, since

player 1 can never get more than 2, so there is no need to evaluate the

(problematic) subgame induced by its departure.

Clearly, subgame perfect equilibrium strategies are also subgame-consistent.

3.3 Alternative histories

For a general implementation result we seek equilibrium strategy profiles

that produce core outcomes. In Subsection 3.2 we have solved the issue due
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Figure 1: Stationary strategies cannot react to different histories.

to empty residual cores, here we describe and solve another problem due to

stationarity.

Consider Example 1 again. As we have seen it, in equilibrium players get a

payoff of 2 each. We, however, consider the scenario when the partition [1, 23]

has already been formed. What is the strategy for the remaining players and

in particular: what will be the payoff of 1, 2, and 3? In the cooperative

game the reaction depends on the history that has led to this state. If [1]

deviated first, then in the induced subgame players 2 to 5 should have formed

the “grand coalition” in this game. This would give player 1 a payoff of 1

that would make the deviation non-profitable. In this smaller grand coalition

players 2 and 3 would get a payoff of 2 each and leave the game prematurely

only if they are sure to obtain more. In the cooperative game their departure

is followed by the formation of a residual payoff configuration; here coalition

{2, 3} fears that the partition [45, 6] emerges giving a lower payoff than in the

residual grand coalition. Since the core includes payoff configurations with
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this partition, it would make sense for the players 4,5 and 6 to choose this

strategy. Except that there is another possibility. Perhaps it is 2 and 3 that

said first no to the original proposal and left. The equilibrium answer was

then subsequently sabotaged by 1, who would have a payoff of 1, but now

hopes to get 3. We are, again in the same subgame, but in the cooperative

game we now look at residual core-supporting partitions that are bad for [1],

such as [4, 56]. Note that [45, 6], what was the only good partition before,

does not work here. For the last deviation by {1, 2, 3} to form partition [1, 23]

either of the two strategies would “work”, but otherwise the equilibrium

strategy seems to depend on the history.

When looking at the sequential game we must explicitly determine which

equilibrium strategy responds to a particular history, which equilibrium strat-

egy can render the same deviations non-profitable. When looking at station-

ary strategies, history is masked from the players, who only see the current

state of the game. At some point players may see a state that is very differ-

ent from the equilibrium play. What is the equilibrium that prevents such

deviations?

Before elaborating on this issue we must stress that in the sequential

coalition formation game players do not “respond” to formed coalitions and

especially not punish those. On the other hand there may be different strate-

gies that constitute equilibrium behaviour in a given subgame and we are

interested in those that contribute to stability in the larger game, too.

Although players do not know the history, given the current state s they

can reconstruct one of the possible histories h(s) satisfying sh
t(s) = s for some

t. This history h(s) provides a plausible, but not necessarily true explanation

of the current state. Let H(s) =
{
h
∣∣∃t : sh

t
= s

}
be the set of plausible

histories to the current state s.
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Figure 2: Stationary decision with possible histories

In Example 1 the existing partition [1, 23] is possible with – essentially –

three different histories. Since 4, 5 and 6 do not know which of these is the

true one, they make up a history and follow the strategy conditional on that.

Unfortunately in a stationary process these possible histories only pro-

vide a temporary explanation as they get forgotten, too. We assume that h

is arbitrarily regenerated when the partition Qt changes, that is, each time

some players quit the game. It is common knowledge among the remaining

players, who choose their strategies treating h as the true history, but taking

into account that future deviations may generate a new alternative history.

“History” is not preserved, subsequent alternative histories are totally unre-

lated, it may well be that the current state will not have happened at all. Let

H(σ) denote the set of all possible histories happening as σ is played (and

there are no deviations). Finally H(σ, s) ⊆ H(σ) ∩ H(s) denotes the set of

possible histories passing through s when σ is played after s is reached. Let

us stress that many of the h ∈ H(σ, s) will believe that s did not exist at all,
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but at s players are aware of their limited rationality in the future.

The coalitional payoffs are not related to history and are thus unaf-

fected, but what happens to the payoff of the individual players? In the

non-stationary game players can calculate the payoffs by just looking at the

strategies. With stationarity we must take the subsequent updating of the

history into account. The subsequent development of the game therefore

depends on the current state s – in particular, the partition Q – and the

strategy restricted to this subgame. Since we focus on stationary strategies

it is sufficient to say that these strategies are restricted to a subgame s.

Then the subsequent development of history depends on some strategy σ|s
restricted to s. Let x(σ, h) ∈ RN denote the vector of payoffs in case σ is

played along the history h. Then the payoff players can expect is

x(σ, s) = min
h∈H(σ,s)

x(σ, h). (3.4)

Note the pessimism of the players. When uncertain about the subse-

quent development of the game, they assume that the remaining players will

fabricate histories that are the least favourable to them. While subgame per-

fectnes can be formulated with these expectations, too, the resulting equilib-

ria are different in general. Since the additional “information” comes from the

past, the concepts of stationarity and stationary equilibria are not affected,

the stationary equilibria remain the same and the recursive core equivalence

result remains valid. Likewise, subgame consistency can be redefined in this

environment, but we first clarify what is a relevant subgame.

Definition 7. For a strategy profile σ a subgame at ht is relevant if

1. it is the original game (Qht = ∅),

2. there exists an elementary deviation σ′ producing Q′ such that

xi(σ, s
ht) < xi(σ

′,Q′,∅), (3.5)
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3. or it is a relevant subgame of a relevant subgame.

The subgame-consistency is accordingly modified replacing h by an arbi-

trary (compatible) history h(s) in Inequality 3.3 and payoffs are now given

by Equation 3.4 and are conditional on the current s via the different updates

of made-up history.

xi(σ
∗|ht(s), s) ≥ xi(σi|ht(s), σ∗−i|ht(s), s). (3.6)

The condition becomes clear now: it has implications not so much for the

present, but for the reactions of the remaining players.

Let σ be a stationary strategy and σ|s its restriction to a state s.

A stationary consistent equilibrium σ∗ is a strategy profile that is both

subgame-consistent and stationary, that is, if for all relevant subgames cor-

responding to some s we have

xi(σ
∗|s, s) ≥ xi(σi|s, σ∗−i|s, s). (3.7)

We denote the set of stationary consistent equilibria by SCE(N, V ) and

outcomes resulting from playing such equilibrium strategies by Ω∗(N, V ).

4 Results

Theorem 1. Let (N, V ) be a partition function form game. Then its recur-

sive core C(N, V ) coincides with the set Ω∗(N, V ) of outcomes supported by

stationary consistent equilibrium strategy profiles.

The rest of this section is devoted to the inductive proof of this theorem.

As the proof is long, we break it into a number of propositions and finally

present a summary of these results. The first proposition requires no proof:
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Proposition 2. Let ({1} , V ) be a trivial, single-player partition function

form game. Then C({1} , V ) = Ω∗({1} , V ).

Now assume that Theorem 1 holds for all games with less than k players.

In the following we extend it to games with k players. In order to show

Ω∗(N, V ) = C(N, V ), first we show Ω∗(N, V ) ⊆ C(N, V ) then Ω∗(N, V ) ⊇

C(N, V ).

Lemma 3. If Theorem 1 holds for all games with up to k − 1 players,

Ω∗(N, V ) ⊆ C(N, V ) for all k-player games.

Proof. If Ω∗(N, V ) = ∅ the result is trivial, otherwise there exists a SCE

σ producing ω(σ, h) = (x(σ, h),P(σ, h)) ∈ Ω∗(N, V ) for some sequence of

possible histories h ∈ H(σ,∅). In particular, we assume that ω(σ, h) 6∈

C(N, V ) and prove contradiction.

By this assumption there exists a profitable deviation D by some set D

of players. By this we really mean a deviation by a single player i ∈ D that

results in the departure of D, that is, in a state s′ with Qs′ = D, where,

without loss of generality, we assume that the deviation occurs at s when

no other players have yet left the game. The induced subgame has fewer

players so the inductive assumption can be applied. In the sequential game

the deviation at ht is expressed by the strategy profile σ′ = (σi|−ht , σ′i|ht , σ−i)

differing only for i and only in the subgame ht. We discuss three cases.

Case 1. For the strategy profile σ′ the subgame at D is not relevant.

Then for all σ−i there exists i ∈ D and h′ ∈ H(σ′, s′) such that xi(σ
′, h′) <

xi(σ, h) – thus the deviation cannot be profitable in the cooperative game;

contradiction.

Case 2. The subgame is relevant, the core of the corresponding residual
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subgame is empty. Then V (D,D ∪D) >
∑

i∈S xi(σ, h) for all D ∈ Π(D). As

V (D,D ∪D) = min
h′∈H(σ′,D)

∑
i∈S

xi(σ
′, h′),

a player i in D should immediately propose to form D. By subgame con-

sistency all in D will accept. Therefore σ is not a stationary consistent

equilibrium, moreover the outcome ω(σ, h) cannot be supported by other

equilibria either. Contradiction.

Case 3. The induced subgame is relevant and the core of the correspond-

ing residual subgame is not empty. Since σ is a SCE its restriction σ|s to

this relevant subgame s is stationary consistent, too. Moreover the deviation

from σ to form D is not profitable, therefore

xD(σ|s, s) ≥ xD(σ′|s′ , s′) (4.1)

On the other hand, by the inductive assumption,

ω(σ′|s′ , s′) ∈ C(D, V D). (4.2)

This, however, implies that the deviation D is not profitable in the coopera-

tive game; contradiction.

We have discussed all cases, and found the assumptions contradicting.

Therefore ω(σ,H) ∈ C(N, V ).

Punishment strategy Before we move on to our next lemma, we specify a

“response” to each deviation that turns these deviations unprofitable. In the

recursive core a deviation is only profitable if it represents an improvement

in the payoffs for all residual assumptions. In a game (N, V ) the core is

nonempty if for all outcomes (x,P) ∈ C(N, V ) and for all deviations D there

exists an outcome (yD,D) ∈ Ω(D, V D) such that
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1. there exists D1 ∈ D such that
∑

i∈D1
xi ≥ V (D1,D ∪D) and

2. (yD,D) ∈ C(D, V D) if C(D, V D) 6= ∅.

Generally, for a residual game (S, V S) the response to D is denoted as

(xS(D),S(D)).

In the sequential game, there may be equilibrium strategies for the sub-

game that make the deviation D unattractive. Such strategies deserve special

attention as these help to preserve the equilibrium in the greater game. We

call these strategies “punishment strategies” although – recall – these players

do not react to the deviation, as such, but simply play an equilibrium that

works. Note that finding the right punishment can be quite difficult.

In the following we specify the punishment strategy to a deviation know-

ing that some other coalitions left, too. We assume that Q has already left

the game, but Q̃ ⊆ Q was (or at least Q think it was) the last to exit. In the

partition function form game (Q \ Q̃, V Q\Q̃) the partition Q̃, as a deviation,

defines a residual game (Q, V Q), where the response to Q̃ is (xQ(Q̃),Q(Q̃)).

Lemma 4. If Theorem 1 holds for all games with less than k players, then

Ω∗(N, V ) ⊇ C(N, V ) for all k-player games (N, V ).

Proof. The proof is partly inspired by Bloch’s (1996, Proposition 3.2), and is

by construction. We show that if (x∗,P∗) ∈ C(N, V ) there exists a stationary

consistent strategy profile σ∗ such that for all for all possible histories h ∈

H(σ∗,∅) we have ω(σ∗, h) ∈ C(N, V ).

In the following we define the stationary strategy σ∗i for player i. Due

to stationarity it is sufficient to specify the strategy for each triple (Q, Q̃, p)

consisting of the partition of players who have already quit, the subpartition

consisting of the coalitions that left last according to the current made-up
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history and the current proposal p = (T , w). Then the strategy of player i

is given as

σ∗i (Q, Q̃, T , w) =



accept if xi(σ
∗,Q∪ T ,∅) > xi(σ

∗,Q,∅)(
P∗, x∗

|x∗|

)
if T = Q = ∅(

Q(Q̃),
xQ(Q̃)

|xQ(Q̃)|

)
if T = ∅, but Q 6= ∅

wait otherwise.

(4.3)

In equilibrium P(σ∗) = P∗ and the strategy is stationary by construction

so we only need to verify subgame-consistency. We show this by induction.

As subgame-consistency holds for a trivial game we may assume that it holds

for all games of size less than |N |.

Now consider game (N, V ) and observe that if Q departed to form Q the

subgame is simply a coalition formation game with less players. We discuss

two cases based on the emptiness of the residual core.

1. If the residual core is not empty, the proposed strategy exhibits the

same similarity property: in equilibrium the core partition is proposed and

accepted, while residual cores form off-equilibrium.

The inductive assumption then ensures that the off-equilibrium path is

subgame-consistent so we only need to check whether a deviation Q̃ is ever

accepted. This deviation corresponds to a deviation in the partition function

game. Since (x∗,P∗) ∈ C(N, V ), by the construction of

(
Q(Q̃),

xQ(Q̃)

|xQ(Q̃)|

)
we

know that for some history h(Q) there exists a player in Q̃ for whom the

deviation Q̃ is not profitable. Given the pessimism of the players, this is

sufficient to deter this player from accepting the proposal to deviate.

2. The emptiness of the residual core, by our assumption, implies that
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there are no stationary consistent equilibrium strategy profiles. In the ab-

sence of such strategy profiles the strategy σ∗ will be abandoned and so

the players in Q̃ cannot predict the partition of Q – in this case, by Ex-

pression 3.1, they, individually, expect the worst. As Q̃ only forms if it is

a profitable deviation, that is, only if xi(σ
∗, h) is an improvement for all

h ∈ H(σ∗,Q,∅). Since (x∗,P∗) ∈ C(N, V ) this is not the case. This, implies

that post-deviation subgame is not relevant. Also, the formation of P∗ is un-

affected by possible deviations in this subgame, meeting the first condition

of subgame-consistency.

Proof of Theorem 1. The proof is by induction. The result holds for trivial,

single-player games. Assuming that the result holds for all k−1 player games,

the result for k-player games is a corollary of Lemmata 3 & 4.

5 Conclusion

Theorem 1 holds for arbitrary games in discrete partition function form, but

of course it is most interesting for games where some of the residual cores

contain payoff configurations with different partitions or are empty. When

a proposal is made in a game without externalities the invited players do

not even (need to) consider the residual game and therefore the emptiness

of a residual core is not addressed. Huang and Sjöström (2006) and Kóczy

(2009) focus on games where the residual cores are non-empty, in fact the

r-core (Huang and Sjöström, 2003) is not even defined for games with empty

residual cores. As already pointed out by Kóczy (2007) this is not only an

enormous limitation given the number of conditions such games must satisfy

(one for each residual game), but the definitions/results do not apply to

some games without externalities and so they are not generalisations of the
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well-known results for TU-games. The present paper heals this deficiency.

We have already indicated in our introduction the similarity with the

results by Huang and Sjöström (2010). While Huang and Sjöström (2010)

insist on totally r-balanced games, the main conceptual difference seems to

be the way alternative histories are handled. Their solution is admittedly

elegant and simple: the process “remembers” the coalition that deviated

last. When subgame perfect equilibria exist, we can basically say that the

remaining players can select a retaliation to punish this coalition. In contrast

we insist on the memoryless nature of the process: no information on past

actions is kept, only the result of the actions. Instead, players have a common

understanding of what may have happened in the past and react to that.

Given the conservativism of the players it is enough if the players in the

subgame get it right occasionally. This approach is more in line with the

recursive definition of the recursive core, where the residual game is a game

on its own: influenced by the deviating coalitions, but played independently

of these.

If the concept is a generalisation of the core for TU-games, it is natural

to ask how our game proceeds in the special case when the partition function

form game at hand is actually a TU-game as it does not have externali-

ties. In the absence of externalities, there is no way to “punish” deviating

coalitions as their payoff does not depend on the partition of the remaining

players. Since there are no punishments, any strategy profile resulting in a

core outcome in the remaining game will equally be a punishment strategy

and therefore considering alternative histories does not really have a bite

here.

Similarly, the expectation that the residual players will form a residual

core outcome does not influence the decisions of active players: their payoff
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will not depend on the coalitions formed in the residual game. Perry and

Reny (1994) study market games (Shapley and Shubik, 1969), which are

totally-balanced. For such games the “residual core” is always non-empty and

therefore i) the game always terminates with all players leaving the game and

ii) there always exist stationary perfect equilibria. For such games subgame

consistency and subgame perfectness coincide and so the two procedures

provide the same implementation.

A The core of the game in Example 1

In the following we present the calculations to determine the core of the game

in Example 1.

Firstly note that the game is cohesive: the payoff of the grand coalition

is strictly the highest among all partitions and therefore all core payoff-

configurations must have the grand coalition as partition. It is also clear

that no player can have a payoff greater than 2 as any five players can obtain

10 by deviating – in this case the residual game is trivial – and therefore

all players must have a payoff of 2 exactly. Therefore the core is a subset

of {((2, 2, 2, 2, 2, 2), [123456])}, are there other deviations that would make it

empty? In the following we look at all deviations that may be profitable.

Consider a deviation by player 1. In order to determine its payoff we must

first evaluate the induced residual game This deviation leads to the following

residual game:
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V [1]([23456]) = (10)

V [1]([i, 23456 \ i]) = (1, 8) ∀i ∈ N \ {1}

V [1]([23, 456]) = (6, 3)

V [1]([23, 4, 56]) = (6, 1, 2)

V [1]([23, 5, 46]) = (6, 1, 2)

V [1]([23, 6, 45]) = (2, 1, 2)

V [1]([23, 4, 5, 6]) = (6, 0, 0, 0)

other payoffs are 0.

This game is also cohesive and any four players can get 8, so the candidate

for the residual core is {((2, 2, 2, 2, 2), [23456])}. No single-player deviation

can be profitable, however a deviation by {2, 3} can lead to a payoff of 2 or

6 depending on what happens in the induced residual game.

V [1,23]([456]) = (3)

V [1,23]([i, jk]) = (1, 2) ∀ {i, j, k} = {4, 5, 6}

V [1,23]([4, 5, 6]) = (0, 0, 0).

This game is also cohesive, but not strictly. Any pair can obtain a payoff of

2, but not more. It is easy to verify that the core consists of the following

payoff configurations

{((1, 1, 1), [456]), ((1, 1, 1), [4, 56]), ((1, 1, 1), [5, 46]), ((1, 1, 1), [6, 45])} .

So what does this imply for {2, 3}? Their initial restricted payoff vector

is (2, 2) and the payoff of their coalition is 6, 6, 6, 2 respectively for the
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different residual core partitions. The recursive core assumes that players are

pessimistic: unless the deviation is profitable under all circumstances it does

not go through. Note that no other deviation promises to be profitable, so

{((2, 2, 2, 2, 2), [23456])} is undominated. Then the payoff of 1 in the primary

deviation is 1 and therefore the deviation is not profitable.

We do not need to look at residual subgames where the deviating coalition

can never have a payoff higher than the total payoff obtained under the core

(that is: 2). This includes all other singletons and in fact all other coalitions

except for the pair [23].

A deviation by [23] gives

V [23]([1456]) = (4)

V [23]([1, 456]) = (1, 3)

V [23]([1, 4, 56]) = (0, 1, 2)

V [23]([1, 5, 46]) = (2, 1, 2)

V [23]([1, 6, 45]) = (3, 1, 2)

V [23]([1, 4, 5, 6]) = (3, 0, 0, 0)

other payoffs are 0. We show that the core includes {((1, 1, 1, 1), [1456]) ,

((1, 1, 1, 1), [1, 456]), ((0, 1, 1, 1), [1, 4, 56]), ((2, 1, 1, 1), [1, 5, 46]), ((3, 1, 1, 1), [1, 6, 45])}.

The only deviation that could challenge such outcomes is by the singleton [1].

(We make the – somewhat debatable – assumption that a subset of the cur-

rent partition may also deviate.). We have already studied the induced sub-

game V [1,23] above and found that the core consists of the following payoff con-

figurations {((1, 1, 1), [456]), ((1, 1, 1), [4, 56]), ((1, 1, 1), [5, 46]), ((1, 1, 1), [6, 45])}.

A pessimistic player 1 will then expect a payoff of 0 that is no improvement.

At last we must also look for coalitions that deviate by forming a –

non-trivial – partition. Here the deviation is profitable even if only one
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of the coalitions has a higher total payoff as long as none of the other coali-

tions loose payoff. We only need to look at the coalition {1, 2, 3} forming

a partition [1, 23]. We have already looked at the induced residual game

({4, 5, 6} , V [1,23]), found that (1) the core is not empty, and (2) for some core

elements the deviation is unworthy therefore, under pessimism the deviation

is not profitable.
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Huang, C.-Y. and T. Sjöström, 2003, Consistent solutions for cooperative

games with externalities, Games and Economic Behavior 43, 196–213.
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