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A SIMPLE PROOF OF THE LEBESGUE DECOMPOSITION THEOREM

TAMÁS TITKOS

The aim of this short note is to present an elementary, self-contained, and direct proof for the

classical Lebesgue decomposition theorem. In fact, I will show that the absolutely continuous part

just measures the squared semidistance of the characteristic functions from a suitable subspace.

This approach also gives a decomposition in the finitely additive case, but it differs from the

Lebesgue-Darst decomposition [1], because the involved absolute continuity concepts are different.

Notations. Let A be a σ-algebra over X 6= ∅, and consider the finite measures µ, ν : A → R+ on it.

The measure µ is ν-absolutely continuous (µ ≪ ν, in symbols) if ν(A) = 0 implies µ(A) = 0 for all

A ∈ A. Singularity of µ and ν (denoted by µ ⊥ ν) means that the only measure dominated by both

µ and ν is the zero measure. As it is known, this is equivalent with the existence of a measurable set

P ∈ A such that µ(P ) = ν(X \ P ) = 0.

Theorem. Let µ and ν be finite measures on A. Then µ splits uniquely into µac ≪ ν and µs ⊥ ν.

Proof. Consider the real vector space E of real valued A-measurable step-functions and let N be

the linear subspace generated by the characteristic functions of those measurable sets A such that

ν(A) = 0. Define the set function µac by

µac(A) := inf
ψ∈N

∫

X

|1A − ψ|2 dµ (A ∈ A).

It is clear that µac ≤ µ (ψ := 1∅), and that ν(A) = 0 implies µac(A) = 0 (ψ := 1A). Furthermore,

trivial verification shows that if A and B are disjoint elements of A, then

inf
ψ∈N

∫

X

|1
A∪B

− ψ|2 dµ = inf
ψ∈N

∫

X

|1
A
− ψ|2 dµ+ inf

ψ∈N

∫

X

|1
B
− ψ|2 dµ.

Since µac is nonnegative, additive, and dominated by the measure µ, we infer that µac is a measure

itself.

What is left is to show that µs := µ−µac and ν are singular, and that the decomposition is unique.

Both follow immediately from the fact that µac is maximal among those measures ϑ such that ϑ ≤ µ

and ϑ≪ ν. Indeed, let ϑ be such a measure, ψ ∈ N , and observe that

ϑ(A) =

∫

X

|1A|
2 dϑ =

∫

X

|1A − ψ|2 dϑ ≤

∫

X

|1A − ψ|2 dµ.

Taking the infimum over N we obtain that ϑ ≤ µac.

Now, let η be a measure, such that η ≤ ν and η ≤ µ − µac. In this case, µac + η ≤ µ and

µac + η ≪ ν, thus η = 0. If µ = µ1 + µ2, where µ1 ≪ ν and µ2 ⊥ ν, then µac − µ1 is a measure, which

is simultaneously ν-absolutely continuous and ν-singular. This yields that µ1 = µac. �
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