CARATHÉODORY-FEJÉR TYPE EXTREMAL PROBLEMS ON LOCALLY COMPACT ABELIAN GROUPS

SÁNDOR KRENEDITS AND SZILÁRD GY. RÉVÉSZ

Abstract

We consider the extremal problem of maximizing a point value $|f(z)|$ at a given point $z \in G$ by some positive definite and continuous function f on a locally compact Abelian group (LCA group) G, where for a given symmetric open set $\Omega \ni z, f$ vanishes outside Ω and is normalized by $f(0)=1$.

This extremal problem was investigated in \mathbb{R} and \mathbb{R}^{d} and for Ω a 0 -symmetric convex body in a paper of Boas and Kac in 1943. Arestov and Berdysheva extended the investigation to \mathbb{T}^{d}, where $\mathbb{T}:=\mathbb{R} / \mathbb{Z}$. Kolountzakis and Révész gave a more general setting, considering arbitrary open sets, in all the classical groups above. Also they observed, that such extremal problems occurred in certain special cases and in a different, but equivalent formulation already a century ago in the work of Carathéodory and Fejér.

Moreover, following observations of Boas and Kac, Kolountzakis and Révész showed how the general problem can be reduced to equivalent discrete problems of "Carathéodory-Fejér type" on \mathbb{Z} or $\mathbb{Z}_{m}:=\mathbb{Z} / m \mathbb{Z}$. We extend their results to arbitrary LCA groups.

Mathematics Subject Classification (2000): Primary 43A35, 43A70.
Secondary 42A05, 42A82.
Keywords: Carathéodory-Fejér extremal problem, pointwise Turán problem, locally compact Abelian groups, abstract harmonic analysis, Haar measure, convolution of functions and of measures, positive definite functions, Bochner-Weil theorem, convolution square, Fejér-Riesz theorem.

1. Introduction

In this work we consider the following fairly general problem.
Problem 1.1. Let $\Omega \subset G$ be a given set in the Abelian group G and let $z \in \Omega$ be fixed. Consider a positive definite function $f: G \rightarrow \mathbb{C}($ or $\rightarrow \mathbb{R})$, normalized to have $f(0)=1$ and vanishing outside of Ω. How large can then $|f(z)|$ be?

The analogous problem of maximizing $\int_{\Omega} f$ under the same hypothesis was recently well investigated by several authors under the name of "Turán's extremal problem", although later it turned out that the problem was already considered well before Turán, see the detailed survey [20]. The problem in our focus, in turn, was also investigated on various classical groups (the Euclidean space, \mathbb{Z}^{d} and \mathbb{T}^{d} being the most general ones) and was also termed by some as "the pointwise Turán problem", but the paper [11] traced it back to Boas and Kac [2] in the 1940's and even to the work of Carathéodory [3] and Fejér [5] [6, I, page 869] as early as in the 1910's.

So based on historical reasons to be further explained below, this problem we will term as the Carathéodory-Fejér type extremal problem on G for z and Ω. This clearly requires some explanation, since Carathéodory and Fejér worked on their extremal problem well before the notion of positive definiteness was introduced at all.

[^0]Positive definite functions on \mathbb{R} were introduced by Matthias in 1923 [14]. For Abelian groups positive definite functions are defined analogously [21, p. 17] by the property that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in G, \forall c_{1}, \ldots, c_{n} \in \mathbb{C} \quad \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \overline{c_{k}} f\left(x_{j}-x_{k}\right) \geq 0 \tag{1.1}
\end{equation*}
$$

In other words, positive definiteness of a real- or complex valued function f on G means that for all n and all choice of n group elements $x_{1}, \ldots, x_{n} \in G$, the $n \times n$ square matrix $\left[f\left(x_{j}-x_{k}\right)\right]_{j=1, \ldots, n}^{k=1, \ldots, n}$ is a positive (semi-)definite matrix. We will use the notation $f \gg 0$ for a short expression of the positive definiteness of a function $f: G \rightarrow \mathbb{C}$ or $G \rightarrow \mathbb{R}$.

Perhaps the most well-known fact about positive definite functions is the celebrated Bochner theorem, later extended to locally compact Abelian groups (LCA groups for short) in several steps and in this generality termed as the Bochner-Weil theorem. This states that a continuous function $f: G \rightarrow \mathbb{C}$ on a LCA group G is positive definite if and only if on the dual group \widehat{G} there is an essentially unique (positive) Borel measure $d \mu(\gamma)$ such that f is the inverse Fourier transform of $d \mu: f(x)=\int_{\widehat{G}} \gamma(x) d \mu(\gamma)(\forall x \in G)$, see e.g. [21, page 19].

We will not need this general theorem in its full strength, but only the special case of positive definite sequences, obtained actually in Carathéodory's and Fejér's time, preceding the introduction and general investigation of positive definite functions.

Theorem 1.2 (Herglotz). Let $\psi: \mathbb{Z} \rightarrow \mathbb{C}$ be a sequence on \mathbb{Z}. Then $\psi \gg 0$ (i.e ψ is positive definite) if and only if there exists a positive Borel measure μ on \mathbb{T} such that

$$
\begin{equation*}
\psi(n)=\int_{\mathbb{T}} e^{2 \pi i n t} d \mu(t) \quad(n \in \mathbb{Z}) \tag{1.2}
\end{equation*}
$$

Furthermore, in case $\operatorname{supp} \psi \subset[-N, N]$ we have $\psi \gg 0$ if and only if $T(t):=\check{\psi}(t)=$ $\sum_{n=-N}^{N} \psi(n) e^{2 \pi i n t} \geq 0(t \in \mathbb{T})$, and then $d \mu(t)=T(-t) d t$ and $\psi(n)=\int_{\mathbb{T}} T(t) e^{-2 \pi i n t} d t$.

Proof. The fact that any sequence represented in the form of (1.2) is necessarily positive definite directly follows from the definition, as the reader can easily check. (The same direct verification works in any LCA group, too).

The existence of such a representation for an arbitrary positive definite sequence on \mathbb{Z} was first proved by Herglotz in [9], preceding the later analogous result of Bochner on \mathbb{R} and the development of the theory of positive definite functions. The general proof on all LCA groups belongs to Weil [24]; for the proof and further details see also [21, 1.4.3].

The special case of finitely supported sequences can be fully proved by a simple direct calculation.

For further use we also introduce the extremal problems

$$
\begin{align*}
& \mathcal{M}(\Omega):=\sup \{a(1): a: {[1, N] \rightarrow \mathbb{R}, N \in \mathbb{N}, a(n)=0(\forall n \notin \Omega), } \tag{1.3}\\
&\left.T(t):=1+\sum_{n=1}^{N} a(n) \cos (2 \pi n t) \geq 0(\forall t \in \mathbb{T})\right\},
\end{align*}
$$

which is called in [11] the Carathéodory-Fejér type trigonometric polynomial problem and

$$
\begin{align*}
& \mathcal{M}_{m}(\Omega):=\sup \left\{a(1): a: \mathbb{Z}_{m} \rightarrow \mathbb{R}, a(0)=1, a(n)=0(\forall n \notin \Omega)\right. \tag{1.4}\\
&\left.T\left(\frac{r}{m}\right):=\sum_{n \bmod m} a(n) \cos \left(\frac{2 \pi n r}{m}\right) \geq 0(\forall r \bmod m)\right\} .
\end{align*}
$$

which is termed in [11 as the Discretized Carathéodory-Fejér type extremal problem.

Remark 1.3. Obviously we have $\mathcal{M}_{m}(\Omega) \geq \mathcal{M}(\Omega)$, because the restriction on the admissible class of positive definite functions to be taken into account is lighter for the discrete problem: we only need to have $T\left(\frac{r}{m}\right) \geq 0$, while for $\mathcal{M}(\Omega)$ the restriction is $T(t) \geq 0(\forall t \in \mathbb{T})$.

Let us recall that Carathéodory and Fejér solved the following extremal problem. Let $n \in \mathbb{N}$ be fixed, and assume that the 1-periodic trigonometric polynomial $T: \mathbb{T} \rightarrow \mathbb{R}$ of degree (at most) n is nonnegative. Under the normalization that the constant term $a(0)=\int_{\mathbb{T}} T=1$, what is the possible maximum of $a(1)$ (solved already in [3]), and what are the respective extremal polynomials (solved - at all probability independently - in [5])?

Clearly the original Carathéodory-Fejér extremal problem is a special case of the above $\mathcal{M}(\Omega)$ problem - just take $\Omega:=[0, n]$, and observe that the possible odd part of T (i.e. the sine series part of the trigonometric expansion) can be neglected, for $a(1)$ is the same for a general $T(x)$ and for $\frac{1}{2}(T(x)+T(-x))$, the even part of T.

Let us now consider Problem 1.1] on $G:=\mathbb{Z}$, with $\Omega:=[-n, n]$, but with real valued functions (instead of general complex valued ones). Denote a function from the admissible class (that is, a finite sequence of real values on $[-n, n]$) as ψ and assume that $\psi \gg 0$ on \mathbb{Z}. As $\widehat{\mathbb{Z}}=\mathbb{T}$, this is equivalent to say (in view of Theorem (1.2) that the trigonometrical polynomial $T(t):=\check{\psi}(t):=\sum_{k=-n}^{n} \psi(k) \exp (2 \pi i k t)$ is nonnegative, so also real. It follows that $\bar{T}(t)=T(t)$, that is, $\psi(k)=\psi(-k)$. (Note that positive definiteness of ψ in itself implies that $\psi(k)=\overline{\psi(-k)}$, as is seen from the general introduction below, see (2.2), and so in case ψ is real-valued, we end up with the same relation). Take now $a(0):=\psi(0), a(k):=2 \psi(k)(k=$ $1, \ldots, n)$. Then the extremal problem translates to the $\mathcal{M}([0, n])$ problem, showing that for real valued functions Problem 1.1 on \mathbb{Z} with $\Omega:=[-n, n]$ is just the same as the $\mathcal{M}([0, n])$ problem (with a factor 2 between the resulting extremal quantities). Below in Proposition 3.1 (ii) we show the easy fact that considering real or complex valued functions does not matter (in this case of sequences on \mathbb{Z}) - therefore, we obtain that the original Carathéodory-Fejér extremal problem is a (very) special case of Problem 1.1. This explains our terminology.

2. A short overview of basics about positive definite functions

Definition 1.1 has some immediate consequences $\sqrt{1}$, the very first being that $f(0) \geq 0$ is nonnegative real (just take $n:=1, c_{1}:=1$ and $x:=0$).

For any function $f: G \rightarrow \mathbb{C}$ the converse, or reversed function \tilde{f} (of f) is defined as

$$
\begin{equation*}
\widetilde{f}(x):=\overline{f(-x)} \tag{2.1}
\end{equation*}
$$

E.g. for the characteristic function χ_{A} of a set A we have $\widetilde{\chi_{A}}=\chi_{-A}$ (where, as usual, $-A:=\{-a: a \in A\}$), because $-x \in A$ if and only if $x \in-A$.

Now let $f: G \rightarrow \mathbb{C}$. Then in case f is positive definite we necessarily have

$$
\begin{equation*}
f=\widetilde{f} \tag{2.2}
\end{equation*}
$$

Indeed, take in the defining formula (1.1) of positive definiteness $x_{1}:=0, x_{2}:=x$ and $c_{1}:=c_{2}:=1$ and also $c_{1}:=1$ and $c_{2}:=i$: then we get both $0 \leq 2 f(0)+f(x)+f(-x)$ entailing that $f(x)+f(-x)$ is real, and also that $0 \leq 2 f(0)+i f(x)-i f(-x)$ entailing that also $i f(x)-i f(-x)$ is real. However, for the two complex numbers $v:=f(x)$ and $w:=f(-x)$ one has both $v+w \in \mathbb{R}$ and $i(v-w) \in \mathbb{R}$ if and only if $v=\bar{w}$.

Next observe that for any positive definite function $f: G \rightarrow \mathbb{C}$ and any given point $z \in G$

$$
\begin{equation*}
|f(z)| \leq f(0) \tag{2.3}
\end{equation*}
$$

[^1]and so in particular if $f(0)=0$ then we also have $f \equiv 0$. Indeed, let $z \in G$ be arbitrary: if $|f(z)|=0$, then we have nothing to prove, and if $|f(z)| \neq 0$, let $c_{1}:=1, c_{2}:=-\overline{f(z)} /|f(z)|$ and $x_{1}:=0, x_{2}:=z$ in (1.1); then in view of (2.2) $f(-z)=\overline{f(z)}$, which yields $0 \leq$ $2 f(0)+c_{2} f(z)+\overline{c_{2}} f(-z)=2 f(0)-2|f(z)|$ and (2.3) obtains.

Therefore, all positive definite functions are bounded and $\|f\|_{\infty}=f(0)$. That is an important property which makes the analysis easier: in particular, we immediately see that the answer to our extremal problem formulated in Problem 1.1 cannot exceed 1.

Note also that similar elementary calculations show that continuity of a positive definite function on a LCA group holds if and only if the function is continuous at 0 c.f. 21, (4), p. 18] This we will not use, however.

For LCA groups, characters play a fundamental role, so it is of relevance to mention that all characters $\gamma \in \widehat{G}$ of a LCA group G are positive definite. To see this one only uses the multiplicativity of the characters to get

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \overline{c_{k}} \gamma\left(x_{j}-x_{k}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \gamma\left(x_{j}\right) \overline{c_{k} \gamma\left(x_{k}\right)}=\left|\sum_{j=1}^{n} c_{j} \gamma\left(x_{j}\right)\right|^{2} \geq 0
$$

for all choices of $n \in \mathbb{N}, c_{j} \in \mathbb{C}$ and $x_{j} \in G(j=1, \ldots, n)$. Similarly, for any $f \gg 0$ and character $\gamma \in \widehat{G}$ also the product $f \gamma \gg 0$ since for all choices of $n \in \mathbb{N}, c_{j} \in \mathbb{C}$ and $x_{j} \in G$ $(j=1, \ldots, n)$ applying (1.1) with $a_{j}:=c_{j} \gamma\left(x_{j}\right)$ in place of $c_{j}(j=1, \ldots, n)$ gives

$$
\begin{align*}
\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \overline{c_{k}} \gamma\left(x_{j}-x_{k}\right) f\left(x_{j}-x_{k}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \gamma\left(x_{j}\right) \overline{c_{k} \gamma\left(x_{k}\right)} f\left(x_{j}-x_{k}\right) \\
=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} \overline{a_{k}} f\left(x_{j}-x_{k}\right) \geq 0 \quad\left(a_{j}:=c_{j} \gamma\left(x_{j}\right) \quad(j=1, \ldots, n)\right) \tag{2.4}
\end{align*}
$$

It is equally easy to see directly from the definition that for a positive definite function f also $\bar{f} \gg 0, f^{\sharp}(x):=f(-x) \gg 0$ and $\Re f \gg 0$, and that for $f, g \gg 0$ and $\alpha, \beta>0$ also $\alpha f+\beta g \gg 0$.

The perhaps most fundamental tool in topological groups is the Haar measure, which is a non-negative regular and translation invariant Borel measure μ_{G}, existing and being unique up to a positive constant factor in any LCA group, see [21, p. 1,2] with a full proof. As a direct consequence of uniqueness, we also have $\mu_{G}(E)=\mu_{G}(-E)$ for all Borel measurable set $E,[21,1.1 .4]$.

Following standard notations, in particular that of Rudin, we simply write $d x, d y, d z$ etc. in place of $d \mu_{G}(x), d \mu_{G}(y), d \mu_{G}(z)$ etc. Throughout the sequel we will consider the convolution of functions with respect to the Haar-measure μ_{G}, that is

$$
\begin{equation*}
(f \star g)(x):=\int_{G} f(y) g(x-y) d y=\int_{G} f(x+z) g(-z) d z \tag{2.5}
\end{equation*}
$$

defined for all functions $f, g \in L^{1}\left(\mu_{G}\right)$, or pairs of functions $f \in L^{p}\left(\mu_{G}\right), g \in L^{q}\left(\mu_{G}\right)$ with $1 / p+1 / q=1$, see e.g. [21, p. 3]. Convolution is commutative and associative on any LCA group, see [21, 1.6.1.Theorem].

We will consider convolution of (bounded, complex valued, regular Borel) measures and convolution of such measures and functions as well. Rudin defines convolution of bounded regular measures μ and λ in [21, 1.3.1] with reference to the product measure $\mu \times \lambda$ on $G^{2}=G \times G$: to each Borel set $E \subset G$ the derived set $E^{\prime}:=\left\{(x, y) \in G^{2}: x+y \in E\right\}$ is constructed and then $\mu \star \lambda(E):=\mu \times \lambda\left(E^{\prime}\right)$. In particular this also means that for $E \subset G$ a

Borel set we have - see [21, (1) page 17] - the formula

$$
\begin{equation*}
\mu \star \lambda(E)=\int_{G} \mu(E-y) d \lambda(y) . \tag{2.6}
\end{equation*}
$$

With this construction, convolution of any two (bounded, regular, complex valued) measures is defined and yields another such measure, moreover, convolution is commutative and associative on any LCA group $G,[21$, 1.3.2 Theorem]. It is also easy to see, as is remarked in [21, (4), page 15], that one can equivalently define convolution of measures by the relation

$$
\begin{equation*}
\int_{G} f d(\mu \star \lambda):=\int_{G} \int_{G} f(x+y) d \mu(x) d \lambda(y)=\int_{G} \int_{G} f(x+y) d \lambda(y) d \mu(x)\left(f \in L^{\infty}(G)\right) . \tag{2.7}
\end{equation*}
$$

Indeed, let the set of complex valued continuous functions with compact support be denoted as $C_{0}(G)$: then, by the Riesz representation theorem, the set $M(G)$ of all regular Borel bounded (i.e. of finite total variation) measures is the topological dual of $C_{0}(G)$ and thus can be written as $M(G) \cong C_{0}^{*}(G)$. Now if $\mu, \lambda \in M(G)$, then their convolution $\mu \star \lambda$ is defined according to (2.7) for all $f \in C_{0}(G)$, which then extends easily also to all $f \in L^{\infty}(G)$. Note that (2.6) can be regarded as the special case of $f=\chi_{E}$, for $\mu(E-y)=\int_{G} \chi_{E-y}(x) d \mu(x)=$ $\int_{G} \chi_{E}(y+x) d \mu(x)$.

Convolution of functions can then be regarded as a special case of convolution of measures, for $f \star g$ is the density function w.r.t. μ_{G} of the measure $\nu \star \sigma$ with $d \nu:=f d \mu_{G}$ and $d \sigma:=g d \mu_{G}$. Also convolutions of measures with functions or functions with measures can be obtained the same way. It is easy to see that for any $f \in L^{1}\left(\mu_{G}\right)$ and $\nu \in M(G)$ we have the formula

$$
\begin{equation*}
f \star \nu(x)=\nu \star f(x)=\int_{G} f(x-y) d \nu(y) . \tag{2.8}
\end{equation*}
$$

Another way to obtain this is to approximate f by simple functions and then use linearity and (2.6) for each characteristic functions. It is then immediate that the formula extends to $L^{\infty}(G)$, too.

Also, analogously to (2.1) the converse measure $\widetilde{\mu}(x):=\bar{\mu}(-x)$ (i.e. $\widetilde{\mu}(E):=\bar{\mu}(-E))$ is defined to any $\mu \in M(G)$. Then if $\phi \in C_{0}(G)$, then $\int_{G} \phi d(\widetilde{\mu \star \nu})=\int_{G} \phi(-x) \overline{d(\mu \star \nu)}=$ $\int_{G} \int_{G} \phi(-x-y) d \bar{\mu}(x) d \bar{\nu}(y)=\int_{G} \int_{G} \phi(x+y) d \widetilde{\mu}(x) d \widetilde{\nu}(y)=\int_{G} \phi d(\widetilde{\nu} \star \widetilde{\mu})$, so that $\widetilde{\mu \star \nu}=\widetilde{\mu} \star \widetilde{\nu}$.

For further use let us record here a few concrete formulae with convolutions. By (2.7) for any $u, v \in G$ the formula $\delta_{u} \star \delta_{v}=\delta_{u+v}$ holds true (where $\delta_{u} \in M(G)$ denotes the Dirac measure (unit point mass) at $u \in G)$: for $\int_{G} \phi d\left(\delta_{u} \star \delta_{v}\right)=\int_{G} \int_{G} \phi(x+y) d \delta_{u}(x) d \delta_{v}(y)=$ $\phi(u+v)=\int_{G} \phi d \delta_{u+v}$. Also, if $\phi \in L^{\infty}(G)$ and $u \in G$, then we have in view of (2.8)

$$
\begin{equation*}
\delta_{u} \star \phi(x)=\int_{G} \phi(x-y) d \delta_{u}(y)=\phi(x-u) . \tag{2.9}
\end{equation*}
$$

If for some Borel measurable A we put $\phi:=\chi_{A}$, we obtain similarly

$$
\begin{equation*}
\delta_{u} \star \chi_{A}(x)=\chi_{A}(x-u)=\chi_{A+u}(x) . \tag{2.10}
\end{equation*}
$$

As (2.5) holds for all L^{1} functions, it also holds for χ_{A}, χ_{B} with A, B Borel measurable sets with finite measure, yielding
$\chi_{A} \star \chi_{B}(x)=\int_{G} \chi_{A}(y) \chi_{B}(x-y) d y=\int_{G} \chi_{A} \chi_{(x-B)} d \mu_{G}=\int_{G} \chi_{A \cap(x-B)} d \mu_{G}=\mu_{G}(A \cap(x-B))$.
The same obtains also from calculating the measure convolution $\left.\left.\mu_{G}\right|_{A} \star \mu_{G}\right|_{B}=\chi_{A} \mu_{G} \star \chi_{B} \mu_{G}$.

In this paper a particular role is played by the case of $G=\mathbb{Z}$, where $\mu_{\mathbb{Z}}=\#$ is just the counting measure, and thus all locally finite measures ν are absolutely continuous and can as well be represented by their "density function" $\varphi_{\nu}(k):=\nu(\{k\})$, and conversely, any function φ defines the respective measure ν_{φ} with $\nu_{\varphi}(\{k\}):=\varphi(k)$, i.e. $\nu_{\varphi}=\sum_{k \in \mathbb{Z}} \varphi(k) \delta_{k}$; moreover, clearly $L^{1}(\mathbb{Z})=\ell^{1} \cong M(\mathbb{Z})$. In particular for $\varphi, \psi \in \ell^{1}, \rho:=\varphi \star \psi$ is the density function of the measure $\tau \in M(G)$ with $\tau=\nu \star \sigma$ and with $\nu:=\varphi_{\nu} d \#, \sigma:=\psi d \#$ being the measures with density φ, ψ respectively.

We will need the next well-known assertion (which we will use only in the special case of compactly supported step functions, however).
Lemma 2.1. Let $f \in L^{2}\left(\mu_{G}\right)$ be arbitrary. Then the "convolution square" of f exists, moreover, it is a continuous positive definite function, that is, $f \star \widetilde{f} \gg 0$ and belongs to $C(G)$.
Proof. This can be found for LCA groups in [21, §1.4.2(a)].
Although it is very useful when it holds, in general this statement cannot be reversed. Even for classical Abelian groups, it is a delicate question when a positive definite continuous function has a "convolution root" in the above sense. For a nice survey on the issue see e.g. [4]. We will however be satisfied with a very special case, where this converse statement is classical.
Lemma 2.2. (i) Let $\psi: \mathbb{Z} \rightarrow \mathbb{C}$ be a finitely supported positive definite sequence. Then there exists another sequence $\theta: \mathbb{Z} \rightarrow \mathbb{C}$, also finitely supported, such that $\theta * \widetilde{\theta}=\psi$. Moreover, if $\operatorname{supp} \psi \subset[-N, N]$, then we can take $\operatorname{supp} \theta \subset[0, N]$.
(ii) If $\psi: \mathbb{Z}_{m} \rightarrow \mathbb{C}, \psi \gg 0$ on \mathbb{Z}_{m}, then there exists $\theta: \mathbb{Z}_{m} \rightarrow \mathbb{C}$ with $\theta * \widetilde{\theta}=\psi$.

Note the slight loss of precision in (ii) - it does not provide also localization, i.e. we cannot bound the support of θ in terms of a control of the support of ψ. This is natural, for the same finitely supported sequence can be positive definite on \mathbb{Z}_{m} more easily than on \mathbb{Z}, as the equivalent restriction $T(2 \pi n / m) \geq 0$ can be satisfied more easily than $T(t) \geq 0(\forall t \in \mathbb{T})$. However, here the support remains finite anyway, which is the only essential fact we need in our arguments below.
Proof of Part (i). Here we invoke the special case of Bochner's Theorem as formulated in Theorem 1.2 to get that $T(t):=\check{\psi}(t) \geq 0(\forall t \in \mathbb{T}=\widehat{\mathbb{Z}})$. Since ψ is finitely supported, T is a 1-periodic trigonometrical polynomial (with complex coefficients $\psi(k)$).

Let n stand for $\operatorname{deg} T$, so that $\operatorname{supp} \psi \subset[-N, N]$ translates to $n \leq N$. Write $T(t)$ in its trigonometric form as $T(t)=\sum_{k=0}^{N} a_{k} \cos (2 \pi k t)+b_{k} \sin (2 \pi k t)$ with $a_{k}:=\psi(k)+\psi(-k)$ and $b_{k}=(\psi(k)-\psi(-k)) / i$. A glance at (2.2) yields $\psi(-k)=\overline{\psi(k)}$, so that then $a_{k}=$ $2 \Re \psi(k)$ and $b_{k}=2 \Im \psi(k)$, whence in its trigonometrical form T must have real coefficients $a_{k}, b_{k} \in \mathbb{R}$ for all $0 \leq k \leq N$. This is of course obvious also from the usual trigonometric version of the coefficient formulas: $a_{0}=\int_{\mathbb{T}} T(x) d x, b_{0}=0, a_{k}=2 \int_{\mathbb{T}} T(x) \cos (2 \pi k x) d x$, $b_{k}=2 \int_{\mathbb{T}} T(x) \sin (2 \pi k x) d x(k=1, \ldots, N)$.

Now the well-known classical theorem of L. Fejér and F. Riesz, see [23, Theorem 1.2.1], [5], or [6, I, page 845], applies: there exists another trigonometrical polynomial $P(t)$ of degree n and with complex coefficients - more precisely, an algebraic polynomial $p(z)$ of degree n with $P(t)=p\left(e^{2 \pi i t}\right)-$ such that $T(t)=|P(t)|^{2}$.

However, $|P|^{2}=P \cdot \bar{P}$ and by the well-known properties of the Fourier transform, this means that there exists a finitely supported $\theta: \mathbb{Z} \rightarrow \mathbb{C}$, (the coefficient sequence of P; whence actually it can be written as $\theta:[0, n] \rightarrow \mathbb{C}$, otherwise vanishing) such that $\check{\theta}(t)=P(t)$ (and thus also $\check{\tilde{\theta}}=\bar{P}$) and $\psi=\theta \star \tilde{\theta}$. Note that $\operatorname{supp} \theta=[0, n] \subset[0, N]$, as needed.

Proof of Part (ii). Consider $\widehat{\psi}(\nu):=\frac{1}{m} \sum_{j=0}^{m-1} \psi(j) \exp \left(-2 \pi i \frac{j \nu}{m}\right)$ which gives rise the representation $\psi(n)=\sum_{\nu \bmod m} \widehat{\psi}(\nu) \exp \left(2 \pi i \frac{n \nu}{m}\right)$ (Fourier inversion on \mathbb{Z}_{m}).

First, observe that $\widehat{\psi}(\nu) \geq 0$ for all $\nu \in \mathbb{Z}_{m}$, for by definition (1.1) of positive definiteness we must have with $x_{j}:=j \in \mathbb{Z}_{m}$ and $c_{j}:=\frac{1}{m} \exp \left(-2 \pi i \frac{j \nu}{m}\right)$ the inequality $0 \leq$ $\sum_{j \in \mathbb{Z}_{m}} \sum_{j^{\prime} \in \mathbb{Z}_{m}} \psi\left(j-j^{\prime}\right) \frac{1}{m} \exp \left(-2 \pi i \frac{j \nu}{m}\right) \frac{1}{m} \exp \left(2 \pi i \frac{j^{\prime} \nu}{m}\right)=\sum_{k \in \mathbb{Z}_{m}} \psi(k) \frac{1}{m} \exp \left(-2 \pi i \frac{k \nu}{m}\right)=\widehat{\psi}(\nu)$.

Second, take $\widehat{\theta}(\nu):=\frac{1}{\sqrt{m}} \sqrt{\widehat{\psi}(n)} e^{i \varphi_{\nu}}\left(\forall \nu \in \mathbb{Z}_{m}\right)$, with arbitrary real $\varphi_{\nu} \in[-\pi, \pi)$. This gives rise to $\theta(n):=\sum_{\nu \in \mathbb{Z}_{m}} \widehat{\theta}(\nu) \exp \left(2 \pi i \frac{n \nu}{m}\right)$. Then we obtain

$$
\begin{aligned}
\theta \star \widetilde{\theta}(n) & :=\sum_{k \in \mathbb{Z}_{m}} \theta(k) \overline{\theta(k-n)}=\sum_{k \in \mathbb{Z}_{m}} \sum_{\nu \in \mathbb{Z}_{m}} \widehat{\theta}(\nu) \exp \left(2 \pi i \frac{k \nu}{m}\right) \sum_{\mu \in \mathbb{Z}_{m}} \overline{\hat{\theta}(\mu)} \exp \left(2 \pi i \frac{(n-k) \mu}{m}\right) \\
& =\sum_{\nu \in \mathbb{Z}_{m}} \widehat{\theta}(\nu) \sum_{\mu \in \mathbb{Z}_{m}} \widehat{\widehat{\theta}(\mu)} \exp \left(2 \pi i \frac{n \mu}{m}\right) \sum_{k \in \mathbb{Z}_{m}} \exp \left(2 \pi i \frac{k \nu}{m}\right) \exp \left(-2 \pi i \frac{k \mu}{m}\right) \\
& =\sum_{\nu \in \mathbb{Z}_{m}}|\widehat{\theta}(\nu)|^{2} \exp \left(2 \pi i \frac{n \nu}{m}\right) m=\sum_{\nu \in \mathbb{Z}_{m}} \widehat{\psi}(\nu) \exp \left(2 \pi i \frac{n \nu}{m}\right)=\psi(n)
\end{aligned}
$$

Clearly, here we have found a convolution squareroot θ, but it is not guaranteed here that $\operatorname{supp} \theta \subset[0, N]$ or at least $[-N, N]$, even if $\operatorname{supp} \psi \subset[-N, N]$. On the other hand this can still suffice, as \mathbb{Z}_{m}, whence all supports, are a priori finite, hence compact.

3. Function classes and variants of the Carathéodory-Fejér type EXTREMAL PROBLEM

Already the above introductory discussion exposes the fact that Problem 1.1 may have various interpretations depending on how we define the exact class of positive definite functions what we consider, and also on what topology we use on G, if any (which determines what functions may be continuous, Borel measurable, compactly supported, Haar summable, etc.). Fixing the meaning of positive definiteness as in (1.1), similarly to [12], in principle we may consider many different function classes and corresponding extremal quantities. With respect to f "living" in Ω only, three immediate possibilities are that $f(x)=0(\forall x \notin \Omega)$, that supp $f \subset \Omega$ and that supp $f \Subset \Omega$ (the latter notation standing for compact inclusion). For "nicety" of the function f one may combine conditions of belonging to $C(G)$ (continuous functions), $L^{1}(G)$ (summable functions), $L_{\text {loc }}^{1}(G)$ (locally summable functions) etc.

In case of the analogous "Turán problem" one maximizes the integral $\int_{G} f d \mu_{G}$ rather than just a fixed point value $|f(z)|$. In this question considerations of various classes are more delicate, and although several formulations were shown to be equivalent, see [12, Theorem 1], the authors call attention to cases of deviation as well. In the Carathéodory-Fejér extremal problem, however, we will find that the solution is largely indifferent to any choice of these classes, a somewhat unexpected corollary of our general approach. So instead of formally introducing all kind of function classes and corresponding extremal quantities, let us restrict to the two extremal cases, that is the possibly widest and smallest function classes, and define here only

$$
\begin{align*}
& \mathcal{F}_{G}^{\sharp}(\Omega):=\{f: G \rightarrow \mathbb{C}: f \gg 0, f(0)=1, f(x)=0 \forall x \notin \Omega\}, \tag{3.1}\\
& \mathcal{F}_{G}^{c}(\Omega):=\{f: G \rightarrow \mathbb{C}: f \gg 0, f(0)=1, f \in C(G), \operatorname{supp} f \Subset \Omega\} . \tag{3.2}
\end{align*}
$$

Let us note, once again, that the first formulation is absolutely free of any topological or measurability structure of the group G. On the other hand, equipping G with the discrete
topology the latter gives back a formulation close to the former but with restricting f to have finite support only.

The respective "Carathéodory-Fejér constants" are then

$$
\begin{equation*}
\mathcal{C}_{G}^{\sharp}(\Omega, z):=\sup \left\{|f(z)|: f \in \mathcal{F}_{G}^{\sharp}(\Omega)\right\}, \quad \mathcal{C}_{G}^{c}(\Omega, z):=\sup \left\{|f(z)|: f \in \mathcal{F}_{G}^{c}(\Omega)\right\} . \tag{3.3}
\end{equation*}
$$

In view of (2.3) giving that for $f \gg 0\|f\|_{\infty}=f(0)$, the trivial estimate or trivial (upper) bound for the Carathéodory-Fejér constants $\mathcal{C}_{G}^{\sharp}(\Omega, z)$ and $\mathcal{C}_{G}^{c}(\Omega, z)$ is thus simply $f(0)=1$.

As for a lower estimation, in the most classical cases it is easy to show that there exists a (real-valued) $f \in \mathcal{F}_{G}^{c}(\Omega)$ with $f(z) \geq 1 / 2$, so $\mathcal{C}_{G}^{c}(\Omega, z) \geq 1 / 2$. We will work out this for the general case, too, in Proposition 3.2 below, as later this may be instructive for comprehending the proofs of our main results. However, preceding it we discuss another issue.

By the above general definition, for $G=\mathbb{Z}$ and $G=\mathbb{Z}_{m}:=\mathbb{Z} / m \mathbb{Z}$ the Carathéodory-Fejér constants (3.3) with $z:=1$ - and denoting by H the fundamental set in place of Ω in this case and writing $\mathcal{F}_{\mathbb{Z}_{m}}(H):=\mathcal{F}_{\mathbb{Z}_{m}}^{\#}(H)=\mathcal{F}_{\mathbb{Z}_{m}}^{c}(H)$ - are

$$
\begin{align*}
\mathcal{C}^{\#}(H) & :=\mathcal{C}_{\mathbb{Z}}^{\#}(H, 1):=\sup \left\{|\varphi(1)|: \varphi \in \mathcal{F}_{\mathbb{Z}}^{\#}(H)\right\} \\
& :=\sup \{|\varphi(1)|: \varphi: \mathbb{Z} \rightarrow \mathbb{C}, \varphi \gg 0, \varphi(0)=1, \operatorname{supp} \varphi \subset H\}, \\
\mathcal{C}^{c}(H) & :=\mathcal{C}_{\mathbb{Z}}^{c}(H, 1):=\sup \left\{|\varphi(1)|: \varphi \in \mathcal{F}_{\mathbb{Z}}^{c}(H)\right\} \tag{3.4}\\
& :=\sup \{|\varphi(1)|: \varphi: \mathbb{Z} \rightarrow \mathbb{C}, \varphi \gg 0, \varphi(0)=1, \operatorname{supp} \varphi \subset H, \# \operatorname{supp} \varphi<\infty\}, \\
\mathcal{C}_{m}(H) & :=\mathcal{C}_{\mathbb{Z}_{m}}^{\#}(H, 1)=\mathcal{C}_{\mathbb{Z}_{m}}^{c}(H, 1):=\sup \left\{|\varphi(1)|: \varphi \in \mathcal{F}_{\mathbb{Z}_{m}}(H)\right\} \\
& :=\sup \left\{|\varphi(1)|: \varphi: \mathbb{Z}_{m} \rightarrow \mathbb{C}, \varphi \gg 0, \varphi(0)=1, \operatorname{supp} \varphi \subset H\right\} .
\end{align*}
$$

Similarly to discussion of various function classes, at this point also discussion of the issue whether we consider functions $f: G \rightarrow \mathbb{C}$ or just real valued functions, occurs naturally.

Note that in case of maximization of the integral $\int_{\Omega} f$ in place of the single function value $|f(z)|$ (that is, in case of the "Turán problem") the paper [12] easily concludes that even in the generality of LCA groups the restriction to real valued functions does not change the extremal quantity. Indeed, $S:=\operatorname{supp} f \Subset \Omega$ is always symmetric (for $f \gg 0$ implies $f=\widetilde{f}$) and so $\int_{S} f=\int_{(-S)} \widetilde{f}=\int_{S} \bar{f}$, whence $\int_{S} f=\int_{S} \Re f$, too.

However here, while extremalizing in various function classes are generally easier to compare and remain equivalent, the issue of real- or complex valued functions becomes more interesting and in fact it splits in some cases while it remains equivalent for others. In this preliminary section we consider only the fundamental cases of \mathbb{Z} and \mathbb{Z}_{m} for various $m \in \mathbb{N}$. For a more concise notation first let us write similarly to the complex valued case

$$
\begin{gather*}
\mathcal{K}_{G}^{\#}(\Omega, z):=\sup _{\varphi \in \mathcal{F}_{G}^{\# \mathbb{R}}(\Omega)}|\varphi(z)|, \quad \mathcal{K}_{G}^{c}(\Omega, z):=\sup _{\varphi \in \mathcal{F}_{G}^{c \mathbb{R}}(\Omega)}|\varphi(z)|, \tag{3.5}\\
\mathcal{K}^{\#}(H):=\mathcal{K}_{\mathbb{Z}}^{\#}(H, 1), \quad \mathcal{K}^{c}(H):=\mathcal{K}_{\mathbb{Z}}^{c}(H, 1), \quad \mathcal{K}_{m}(H):=\mathcal{K}_{\mathbb{Z}_{m}}(H, 1):=\sup _{\varphi \in \mathcal{F}_{\mathbb{R}_{m}}^{\mathbb{R}}(H)}|\varphi(1)|,
\end{gather*}
$$

where naturally we write for any group, (and so in particular for $G=\mathbb{Z}$ and $G=\mathbb{Z}_{m}$)

$$
\mathcal{F}_{G}^{\# \mathbb{R}}(\Omega):=\left\{\varphi: G \rightarrow \mathbb{R}: \varphi \in \mathcal{F}_{G}^{\#}(\Omega)\right\}, \quad \mathcal{F}_{G}^{c \mathbb{R}}(\Omega):=\left\{\varphi: G \rightarrow \mathbb{R}: \varphi \in \mathcal{F}_{G}^{c}(\Omega)\right\}
$$

Proposition 3.1. We have the following.
(i) $\mathcal{M}(H)=2 \mathcal{K}^{c}(H)$ and for all $m \in \mathbb{N} \mathcal{M}_{m}(H)=2 \mathcal{K}_{m}(H)$.
(ii) We have $\mathcal{K}^{c}(H)=\mathcal{C}^{c}(H)$ and $\mathcal{K}^{\#}(H)=\mathcal{C}^{\#}(H)$.
(iii) For all $m \in \mathbb{N}, \cos (\pi / m) \mathcal{C}_{m}(H) \leq \mathcal{K}_{m}(H) \leq \mathcal{C}_{m}(H)$.
(iv) [Ruzsa] If $4 \leq m \in \mathbb{N}$, then in general (iii) is the best possible estimate with both inequalities being attained for some symmetric subset $H \subset \mathbb{Z}_{m}$.
(v) If $m=2,3$, then for any admissible H we must have $H=\mathbb{Z}_{m}$ and thus $\varphi(x) \equiv 1$ shows $\mathcal{C}_{m}(H)=\mathcal{K}_{m}(H)=1$.

Proof. As regards (i), $\mathcal{M}(H)=2 \mathcal{K}^{c}(H)$ is quite easy and was already discussed in the final part of Section 1. The analogous relation $\mathcal{M}_{m}(H)=2 \mathcal{K}_{m}(H)(m \in \mathbb{N})$ is seen the same way.
It remains to compare the respective extremal quantities for the cases of real- and complex valued functions. The obvious direction is that $\mathcal{K}^{c}(H) \leq \mathcal{C}^{c}(H), \mathcal{K} \#(H) \leq \mathcal{C}^{\#}(H)$; and also $\mathcal{K}_{m}(H) \leq \mathcal{C}_{m}(H)$ for all $m \in \mathbb{N}$.

For proving some estimate in the other direction, let now $G=\mathbb{Z}_{m}$ or \mathbb{Z} and $\psi \in \mathcal{F}_{G}^{c}(H)$ be arbitrary. Let further $\gamma_{t} \in \widehat{G}$ be the character belonging to the parameter t, i.e. $\gamma_{t}(k):=$ $\exp (2 \pi i t k)$, where $t \in \mathbb{T}$ in case $G=\mathbb{Z}$, and $t:=j / m$ with $j \in \mathbb{Z}_{m}$ in case $G=\mathbb{Z}_{m}$.
As said above, together with ψ, also $\psi \gamma_{t} \gg 0$ and even $\varphi:=\Re\left\{\psi \gamma_{t}\right\} \gg 0$-see (2.4) and around- while belonging to the same function class $\mathcal{F}_{G}^{c}(H)$, as we also have $\varphi(0)=\psi(0)$ and $\operatorname{supp} \varphi \subset \operatorname{supp} \psi=: S$. Thus $\mathcal{K}_{G}^{c}(H, 1) \geq \sup _{\psi \in \mathcal{F}_{G}^{c}(H), \gamma_{t} \in \widehat{G}} \Re\left\{\psi(1) \gamma_{t}(1)\right\} \geq \sup _{\psi \in \mathcal{F}_{G}^{c}(H)} \min _{\alpha \in \mathbb{T}}$ $\sup _{\gamma_{t} \in \widehat{G}} \Re\left\{|\psi(1)| e^{2 \pi i \alpha} \gamma_{t}(1)\right\}=\mathcal{C}_{G}^{c}(H, 1) \cdot \min _{\alpha \in \mathbb{T}} \sup _{\gamma_{t} \in \widehat{G}} \Re\left\{e^{2 \pi i \alpha} \gamma_{t}(1)\right\}$.

With the choice of $t:=-\alpha$ this latter estimate gives for $G=\mathbb{Z}$ that $\mathcal{K}^{c}(H) \geq \mathcal{C}^{c}(H)$, and by a completely analogous computation with $\psi \in \mathcal{F}_{\mathbb{Z}}^{\#}(H)$ we also find $\mathcal{K}^{\#}(H) \geq \mathcal{C}^{\#}(H)$. As the converse inequalities are obvious, these furnish (ii).

Furthermore, for $G=\mathbb{Z}_{m}$ we can always choose $t:=-[m \alpha+1 / 2] / m$ and thus obtain $\mathcal{K}_{m}(H) \geq \min _{\alpha \in \mathbb{T}} \cos (2 \pi(\alpha-[m \alpha+1 / 2] / m)) \mathcal{C}_{m}(H)=\cos (\pi / m) \mathcal{C}_{m}(H)$, so also (iii) obtains.

To find an example of equality $\mathcal{K}_{m}(H)=\mathcal{C}_{m}(H)$ is trivial, as $H:=\mathbb{Z}_{m}$ suffices. To obtain the other extreme, for $4 \leq m \in \mathbb{N}$ we use a construction communicated to us by I. Z. Ruzsa. Namely, we take $H:=\{-1,0,1\} \subset \mathbb{Z}_{m}$, compute the extremal quantity $\mathcal{K}_{m}(H)$ and then compare it to $\mathcal{C}_{m}(H)$ as follows.

To start with, we prove $\mathcal{K}_{m}(H)=1 / 2$ for an arbitrary $m \geq 4$. First, for any positive definite real sequence ψ supported on $\{-1,0,1\}$ with $\psi(0)=1$, by $\widetilde{\psi}=\psi$ we must have $\psi(-1)=\psi(1)$. Second, take now $x_{j}:=j \quad(\bmod m)$ and $c_{j}=(-1)^{j} \quad(j=1, \ldots, m)$. Then we will get from the definition (1.1) that $m-2 m \psi(1) \geq 0$, so $\psi(1) \leq 1 / 2$. Third, the real sequence $1 / 2,1,1 / 2$ on H is positive definite according to Lemma [2.1, because it is the convolution square of the function $\theta: \mathbb{Z}_{m} \rightarrow \mathbb{R}$ defined as $\theta(0):=\theta(1):=1 / \sqrt{2}$ and $\theta(k):=0$ for all $k \not \equiv 0,1 \bmod m$.

Now let us find a lower estimate for the value of $\mathcal{C}_{m}(H)$ for $m \geq 4$ even. We consider the function $\psi(0)=1, \psi(1)=r \exp (\pi i / m)$, where $r>0$ is a parameter, and $\psi(-1)=\overline{\psi(1)}$, as is needed to satisfy $\widetilde{\psi}=\psi$. We want $\psi \in \mathcal{F}_{\mathbb{Z}_{m}}(H)$ and r maximal possible. Let us compute now the Fourier transform $\widehat{\psi}(n)=\int_{\mathbb{Z}_{m}} \psi(k) e^{2 \pi i k n / m} d \mu_{\mathbb{Z}_{m}}(k)=\sum_{k \bmod m} \psi(k) e^{2 \pi i k n / m}=$ $1+r e^{\pi i(2 n+1) / m}+r e^{-\pi i(2 n+1) / m}=1+2 r \cos ((2 n+1) \pi / m)$. This remains nonnegative, for all $n \bmod m$ if and only if $r \leq 1 /(2 \cos (\pi / m))$; if r equals this bound, then for $n:=m / 2$ $\widehat{\psi}(m / 2)=0$. (Here it is essential that m is even!) So now we find that to keep the Fourier transform, that is the scalar product with all characters, nonnegative, it is necessary and sufficient that $r \leq 1 /(2 \cos (\pi / m))$.

In fact it is a very special, trivial instance of the general Bochner-Weil theorem that $\widehat{\psi}(n) \geq 0(\forall n \bmod m)$ is further equivalent to positive definiteness of the sequence ψ on \mathbb{Z}_{m}. For this particular case of the general theorem let us note that characters are positive definite, and so are their (finite) positive linear combinations as said above, therefore also any function on \mathbb{Z}_{m} with nonnegative Fourier transform. To see the converse statement, that
is $\widehat{\psi} \geq 0$ if $\psi \gg 0$, we can fix any $k \bmod m$, take $n:=m, c_{j}:=e^{2 \pi i j k / m}, x_{j}:=j \bmod m$ $(j=1, \ldots, m)$ and compute

$$
0 \leq \sum_{j=1}^{m} \sum_{\ell=1}^{m} e^{2 \pi i(j-\ell) k / m} \psi(j-\ell)=m \sum_{a \bmod m} e^{2 \pi i a k / m} \psi(a)=m \widehat{\psi}(k)
$$

So we thus find that $\mathcal{C}_{m}(H)$ is at least the maximal r in the above construction, which reaches $r=1 /(2 \cos (\pi / m))$. It also follows that for m even and at least $4, \mathcal{C}_{m}(H) \geq$ $\cos ^{-1}(\pi / m) \mathcal{K}_{m}(H)$.

Let now $m>4$ be odd. For a similar construction as above for even m, we now choose $\psi(0):=1, \psi(1):=r \exp (2 \pi i[m / 2] / m)$ and consequently $\psi(-1):=r \exp (-2 \pi i[m / 2] / m)$. Again, we use the Bochner characterization that $\psi>0$ on \mathbb{Z}_{m} if (and only if) $\widehat{\psi} \geq 0$ on $\widehat{\mathbb{Z}_{m}}=$ \mathbb{Z}_{m}. This means that for $k \bmod m$ we must have $0 \leq \widehat{\psi}(k)=\sum_{\ell \bmod m} \psi(\ell) \exp (2 \pi i k \ell / m)=$ $1+r \exp (2 \pi i(k+[m / 2]) / m)+r \exp (-2 \pi i(k+[m / 2]) / m)=1+2 r \cos (2 \pi(k+[m / 2]) / m)=$ $1-2 r \cos (\pi(2 k-1) / m)$, which holds true for all $k \bmod m$ if and only if its minimum, with respect to k, satisfies nonnegativity, that is, when $0 \leq 1-2 r \cos (\pi / m)$ and thus $r \leq 1 /\{2 \cos (\pi / m)\}$. This leads to exactly the same estimate as before, that is, $\mathcal{C}_{m}(H) \geq$ $\cos ^{-1}(\pi / m) \mathcal{K}_{m}(H)$. Therefore, (iv) obtains.

In view of $0,1 \in H$ and H being symmetric, for both $m=2$ and $m=3 H=\mathbb{Z}_{m}$ is clear, whence also (v) is obvious. The Proposition is proved.

Now we can formulate the already announced lower estimation with the somewhat more precise form containing the same lower estimate even with real functions.

Proposition 3.2. For any $L C A$ group $G, z \in G$ and $0, \pm z \in \Omega \subset G$ open set we have $\mathcal{C}_{G}^{c}(\Omega, z) \geq 1 / 2$, moreover, there exists a real-valued function $f \in \mathcal{F}_{G}^{c \mathbb{R}}(\Omega)$ with $f(z) \geq 1 / 2$.
Proof. Basically, we want to utilize the fact that the measure $\nu:=2 \delta_{0}+\delta_{z}+\delta_{-z}$ is a positive definite Borel measure. Instead of formally defining the notion of positive definiteness of measures, let us remark here that clearly $\nu=\sigma \star \widetilde{\sigma}$ with $\sigma:=\delta_{0}+\delta_{z}$ (and, as is easy to see, $\widetilde{\sigma}=\delta_{0}+\delta_{-z}$). From this starting point we then wish to construct a positive definite, real-valued, continuous function F, compactly supported within Ω, and with $F(z) \geq \frac{1}{2} F(0)$.

As $0, \pm z \in \Omega \subset G$ and Ω is open, in the locally compact group G there exists an open set $U \ni 0, z,-z$ with its compact closure $\bar{U} \Subset \Omega$. Next we take another open neighborhood V of 0 satisfying $V-V, V-V-z, V-V+z \subset U$. Such a V exists for all three functions $(x, y) \rightarrow x-y,(x, y) \rightarrow x-y-z,(x, y) \rightarrow x-y+z$ are continuous from $G \times G$ to G mapping 0 to $0,-z, z$, respectively, while all these images $0, \pm z$ lie in U. (Or, saying it a bit differently: this is equivalent to $V-V \subset U^{\prime}:=U \cap(U+z) \cap(U-z)$, which is still an open neighborhood of 0 and is thus such that there is V with $V \times V \rightarrow U^{\prime}$ under $(x, y) \rightarrow x+y$.)

So formally with the characteristic function χ_{V} of V we now take $\Phi:=\chi_{V}+\chi_{V+z}=$ $\chi_{V} \star\left(\delta_{0}+\delta_{z}\right)$ and accordingly $\widetilde{\Phi}=\widetilde{\chi_{V}}+\widetilde{\chi_{V+z}}=\chi_{-V}+\chi_{-V-z}$, so that using (2.11)

$$
\begin{aligned}
F(x):=\Phi \star \widetilde{\Phi}(x)= & \left(\chi_{V}+\chi_{V+z}\right) \star\left(\chi_{-V}+\chi_{-V-z}\right)(x)= \\
= & \chi_{V} \star \chi_{-V}(x)+\chi_{V} \star \chi_{-V-z}(x)+\chi_{V+z} \star \chi_{-V}(x)+\chi_{V+z} \star \chi_{-V-z}(x) \\
= & \mu_{G}(V \cap(x+V))+\mu_{G}(V \cap(x+z+V)) \\
& +\mu_{G}((V+z) \cap(x+V))+\mu_{G}((V+z) \cap(x+z+V)) \\
= & 2 \mu_{G}(V \cap(x+V))+\mu_{G}(V \cap(x-z+V))+\mu_{G}(V \cap(x+z+V))
\end{aligned}
$$

By Lemma 2.1, $F \gg 0, F$ is continuous, and obviously $\operatorname{supp} F \subset \operatorname{supp} \Phi+\operatorname{supp} \widetilde{\Phi}=$ $\overline{(V \cup(V+z))+((-V) \cup(-V-z))}=\overline{(V-V) \cup(V-V-z) \cup(V-V+z)} \subset \bar{U} \Subset \Omega$ by
construction, so $F \in C_{0}(G)$, too and in fact $F / F(0) \in \mathcal{F}_{G}^{c}(\Omega)$. Moreover, F is real-valued, too.

Finally, denote $\alpha:=\mu_{G}(V), \beta:=\mu_{G}(V \cap(z+V))$ and $\gamma:=\mu_{G}(V \cap(2 z+V))$. Then $F(0)=2 \mu_{G}(V)+\mu_{G}(V \cap(V-z))+\mu_{G}(V \cap(z+V))=2 \alpha+2 \beta$, and similarly $F(z)=2 \beta+\alpha+\gamma$. It follows that $F(z) / F(0)=1 / 2+(\beta+\gamma) /(2 \alpha+2 \beta) \geq 1 / 2$, as we wanted.

Note that the construction also shows that if $o(z)=2$, i.e. $2 z=0$, then $\gamma=\alpha$ and $F(z)=F(0)=1$, i.e. $\mathcal{K}_{G}(\Omega, z)=1$ taking into account the trivial estimate from above, too.

We have noted in Proposition 3.1 (v) that in \mathbb{Z}_{2}, when $m=2$ (and thus in particular $o(1)=2)$ and also in \mathbb{Z}_{3}, the trivial choice of $f \equiv 1$ proves $\mathcal{C}_{\mathbb{Z}_{2}}(H, z)=1, \mathcal{C}_{\mathbb{Z}_{3}}(H, z)=1$. Now we obtained also this in quite a larger generality.

Next let us mention a continuity-type result.
Proposition 3.3. Let $H \subset \mathbb{Z}$ be a fixed symmetric finite set containing 0 and 1. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathcal{K}_{m}(H)=\lim _{m \rightarrow \infty} \mathcal{C}_{m}(H)=\mathcal{C}^{c}(H) \tag{3.6}
\end{equation*}
$$

Proof. Consider first only the statement that $\lim _{m \rightarrow \infty} \mathcal{K}_{m}(H)=\mathcal{K}^{c}(H)$, that is, restrict to real-valued positive definite functions only. Note that even the existence of the limit must be proved.

Since we deal with $m \rightarrow \infty$, we can assume $m>2 \max H$. Then obviously $\mathcal{F}_{\mathbb{Z}}^{c \mathbb{R}}(H) \subset$ $\mathcal{F}_{\mathbb{Z}_{m}}^{\mathbb{R}^{2}}(H)$, hence $\mathcal{K}^{c}(H) \leq \mathcal{K}_{m}(H)$, as was remarked for the cosine formulation already in Remark 1.3, Whence $\mathcal{K}^{c}(H) \leq \liminf \operatorname{inc}_{m} \mathcal{K}_{m}(H)$.

For an estimate from the other direction, let $\varepsilon>0$ be arbitrarily fixed, and let $\varphi_{m} \in$ $\mathcal{F}_{\mathbb{Z}_{m}}^{\mathbb{R}}(H)$ be such that $\varphi_{m}(1) \geq(1-\varepsilon) \mathcal{K}_{m}(H)$. We can then define the corresponding extension $\psi_{m}: \mathbb{Z} \rightarrow \mathbb{R}$ with $\left.\psi_{m}\right|_{H}=\left.\varphi_{m}\right|_{H}$ and $\left.\psi_{m}\right|_{\mathbb{Z} \backslash H}=0$. Then $\check{\psi}_{m}(k / m):=\sum_{j \in H} \varphi_{m}(j) e^{2 \pi i j k / m} \geq 0$ $(k \in \mathbb{Z})$ (even if positive definiteness of φ_{m} on \mathbb{Z}_{m} does not imply $\check{\psi}_{m}(t) \geq 0$ for all $t \in \mathbb{T}$).

Now first we select a subsequence $\left(m_{\ell}\right)$ of the indices with $\psi_{m_{\ell}}(1) \rightarrow \lim \sup _{m \rightarrow \infty} \mathcal{K}_{m}(H)$. By the Bolzano-Weierstrass Theorem we can select a further subsequence $\left(m_{\ell_{n}}\right) \subset\left(m_{\ell}\right)-$ which for simplicity we shall denote as $\left(m_{n}\right)$ from now on - such that the function sequence $\left(\psi_{m_{n}}\right)$ converges: $\psi_{m_{n}}(j) \rightarrow \psi(j)$ for every $j \in H$ with some finite value $\psi(j)$. (Here for the application of the Bolzano-Weierstrass Theorem it is essential that $\# H<\infty$, and also that by positive definiteness and normalization of $\varphi_{m} \in \mathcal{F}_{\mathbb{Z}_{m}}^{\mathbb{R}}(H)$ we necessarily have $\left|\psi_{m}(j)\right|=\left|\varphi_{m}(j)\right| \leq \varphi_{m}(0)=1$.) Note that the limit values are also even $(\psi(-j)=\psi(j))$, as by positive definiteness and having real values this property holds for all φ_{m} by (2.2).

Next let $\eta>0$ be arbitrary, and assume that for $n>N$ we already have $\left|\psi_{m_{n}}(j)-\psi(j)\right|<$ η. For an arbitrary $t \in \mathbb{T}$ let us choose a suitable $k_{n} \in \mathbb{Z}$ with $\left|k_{n} / m_{n}-t\right|<1 / m_{n}$: then we find

$$
\check{\psi}(t)=\sum_{j \in H} \psi(j) e^{2 \pi i j t} \geq \sum_{j \in H} \psi_{m_{n}}(j) e^{2 \pi i j t}-\# H \eta \geq \check{\psi}_{m_{n}}\left(\frac{k_{n}}{m_{n}}\right)-\# H \frac{2 \pi}{m_{n}}-\# H \eta
$$

because $\left|e^{2 \pi i t}-e^{2 \pi i s}\right|=\left|e^{2 \pi i(t-s)}-1\right|=2|\sin (\pi(t-s))| \leq 2 \pi|t-s|$. However, $\varphi_{m} \gg 0$ (on $\left.\mathbb{Z}_{m}\right)$ implies $\check{\psi_{m_{n}}}\left(\frac{k_{n}}{m_{n}}\right)=\check{\varphi_{m_{n}}}\left(\frac{k_{n}}{m_{n}}\right) \geq 0$, and thus we are led to

$$
\check{\psi}(t) \geq-\# H\left(\frac{2 \pi}{m_{n}}+\eta\right)
$$

Letting $n \rightarrow \infty$ and noting that $\eta>0$ was arbitrary yields $\check{\psi}(t) \geq 0$, which shows $\psi \gg 0$ on \mathbb{Z} in view of Theorem 1.2. Furthermore, clearly $\psi(0)=1$ and $\operatorname{supp} \psi \subset H$, hence $\psi \in \mathcal{F}_{\mathbb{Z}}^{c \mathbb{R}}(H)$, while by construction $\psi(1)=\lim _{n \rightarrow \infty} \psi_{m_{n}}(1) \geq(1-\varepsilon) \lim \sup _{m \rightarrow \infty} \mathcal{K}_{m}(H)$ for any $\varepsilon>0$.

So it follows that $\mathcal{K}^{c}(H) \geq \lim \sup _{m \rightarrow \infty} \mathcal{K}_{m}(H) \geq \liminf _{m \rightarrow \infty} \mathcal{K}_{m}(H) \geq \mathcal{K}^{c}(H)$ (as recorded in the very first part), furnishing $\lim _{m \rightarrow \infty} \mathcal{K}_{m}(H)=\mathcal{K}^{c}(H)$. Note that according to Proposition $3.1($ ii $), \mathcal{K}^{c}(H)=\mathcal{C}^{c}(H)$. However, the positive sequences $\mathcal{K}_{m}(H)$ and $\mathcal{C}_{m}(H)$ must be equivalent regarding convergence in view of Proposition 3.1 (iii), so the first, and hence also the last equality of (3.6) holds true.

Proposition 3.4. We have

$$
\begin{equation*}
\mathcal{C}^{\#}(H)=\mathcal{C}^{c}(H) \tag{3.7}
\end{equation*}
$$

Therefore, taking into account also Proposition 3.1 (ii) we can put $\mathcal{C}(H):=\mathcal{K}^{c}(H)=$ $\mathcal{K}^{\#}(H)=\mathcal{C}^{c}(H)=\mathcal{C}^{\#}(H)$ for any $H \subset \mathbb{Z}$.

Proof. Clearly the supremum is taken on a smaller set in $\mathcal{C}^{c}(H)$, hence $\mathcal{C}^{c}(H) \leq \mathcal{C}^{\#}(H)$.
Conversely, let $\varphi \in \mathcal{F}_{\mathbb{Z}}^{\#}(H)$ and let us consider the representation, given by Theorem 1.2 of Herglotz: $\varphi(n)=\int_{\mathbb{T}} e^{2 \pi i n t} d \nu(t)$, with ν a positive regular Borel measure on \mathbb{T}.

Let $N \in \mathbb{N}$ be arbitrary. Then we can consider $\psi:=\psi_{N}:=\varphi \cdot \Delta_{N}$, where $\Delta_{N}(n):=$ $\left(1-\frac{|n|}{2 N+1}\right)_{+}$, and so in particular Δ_{N} and ψ_{N} have finite support.

First let us observe that Δ_{N} is positive definite. This follows from Lemma 2.1] writing

$$
\left(\chi_{[-N, N]} \star \chi_{[-N, N]}\right)(n)=\int_{\mathbb{Z}} \chi_{[-N, N]}(n-j) \chi_{[-N, N]}(j) d \mu_{\mathbb{Z}}(j)=\sum_{|j|,|n-j| \leq N} 1=(2 N+1) \Delta_{N}(n)
$$

Also, it easily follows from the fact that $\Delta_{N}(n)=\check{F_{N}}(n)=\int_{\mathbb{T}} e^{2 \pi i n t} F_{N}(t) d t$, where $F_{N}(t):=$ $\frac{1}{2 N+1}\left(\frac{\sin (\pi(2 N+1) t)}{\sin (\pi t)}\right)^{2} \geq 0$ is the classical Fejér kernel, providing the positive representation of Herglotz described in Theorem 1.2. Note that this means that $\Delta_{N}(n)$ is just the Fourier transform, (i.e. the sequence of Fourier coefficients) of F_{N}.

Now the Herglotz-type positive representation for ψ_{N} obtains from the usual rules of convolutions and the above: $\psi_{N}(n)=\left(F_{N} \star \nu\right)(n)=\int_{\mathbb{T}} e^{2 \pi i n t}\left(\int_{\mathbb{T}} \frac{1}{2 N+1}\left(\frac{\sin (\pi(2 N+1)(t-s))}{\sin (\pi(t-s))}\right)^{2} d \nu(s)\right) d t$. That is, $\psi_{N}:=\varphi \cdot \Delta_{N} \gg 0$, too.

Since now $\psi_{N}(1)=\varphi(1)\left(1-\frac{1}{2 N+1}\right)$, clearly $\mathcal{C}^{c}(H) \geq \sup _{N}\left\{\left|\psi_{N}(1)\right|\right\}=|\varphi(1)|$, and as this holds for all possible $\varphi \in \mathcal{F}_{\mathbb{Z}}^{\#}(H)$, we get $\mathcal{C}^{c}(H) \geq \mathcal{C}^{\#}(H)$ concluding the proof.

Kolountzakis and Révész proves in [11, §2, p. 404] that in \mathbb{R}^{d} and for an unbounded symmetric open set Ω the bounded parts $\Omega_{N}:=\Omega \cap B_{N}$, where $B_{N}=N B$ and $B \subset \mathbb{R}^{d}$ is the unit ball, approximate Ω in such a way that $\mathcal{C}_{\mathbb{R}^{d}}^{c}\left(\Omega_{N}\right) \rightarrow \mathcal{C}_{\mathbb{R}^{d}}^{c}(\Omega)$ as $N \rightarrow \infty$. (The argument is essentially the same as the one above for Proposition (3.4.) Analogously, $\mathcal{C}^{c}\left(\Omega_{N}\right) \rightarrow \mathcal{C}^{c}(\Omega)$ also in the group \mathbb{Z}. These seem to suggest that a limiting argument should give Proposition 3.3 even if $\Omega \subset \mathbb{Z}$ is infinite. However, this is false.

Remark 3.5. For any $\varepsilon>0$ there exists an infinite set $H \subset \mathbb{Z}$, sparse enough to have $\mathcal{C}^{c}(H) \leq 1 / 2+\varepsilon$ but still containing a copy of \mathbb{Z}_{m} for every $m \in \mathbb{N}$, and hence having $\mathcal{C}_{m}(H)=1$, the maximal possible value.

In fact, $H:=\{0, \pm 1, \pm N, \pm(N+1), \pm(N+2), \ldots\}$ has $\mathcal{C}^{c}(H)=1 /\left(2 \cos \frac{2 \pi}{N+2}\right)$, see [11, Theorem 4.4 (iii)].

This underlies the importance of carefully distinguishing between the cases when we work in \mathbb{Z} or in any \mathbb{Z}_{m}, which explains why we formulated separately the two, otherwise rather similar theorems in 95 .

4. Previous work on Carathéodory-Fejér type extremal problems

For general domains in arbitrary dimension d the problem was formulated in [11]. With our above notations and general definition we can now recall it simply as follows.

Problem 4.1 (Boas-Kac - type pointwise extremal problem for the space). Find $\mathcal{K}_{\mathbb{R}^{d}}^{c}(\Omega, z)$.
Problem 4.2 (Turán - type pointwise extremal problem for the torus). Find $\mathcal{K}_{\mathbb{T}^{d}}^{c}(\Omega, z)$.
As is easy to see, c.f. [11, Remark 1.4], $\mathcal{K}_{\mathbb{T}^{d}}^{c}(\Omega, z) \geq \mathcal{K}_{\mathbb{R}^{d}}^{c}(\Omega, z)$, always.
The extremal value in the above Problem 4.1 was estimated together with its periodic analogue Problem 4.2 in the work [1] in dimension $d=1$ for an interval $\Omega:=(-h, h)$. Note that Boas and Kac have already solved the interval (hence dimension $d=1$) case of Problem 4.1 in [2], a fact which seems to have been unnoticed in [1].

These problems are not only analogous, but also related to each other, and, in fact, Problem4.1 is only a special, limiting case of the more complex Problem4.2, see 11, Theorem 6.6]. On the other hand, Boas and Kac have already observed, that Problem 4.1 (dealt with for \mathbb{R} in [2]) is connected to trigonometric polynomial extremal problems. In particular, from the solution to the interval case they deduced the value $\mathcal{M}([0, n])=2 \cos \frac{2 \pi}{n+2}$ of the original extremal problem due to Carathéodory [3] and Fejér [5] or [6, I, page 869]. They also established a connection (see [2, Theorem 6]) what corresponds to the one-dimensional case of the first part of [11, Theorem 2.1].

Our results will extend these results together with the until now most general results of [11], comprising all these and much more. So first let us record these results here.
Theorem 4.3 (Kolountzakis-Révész). In \mathbb{R}^{d} and for any $z \in \mathbb{R}^{d}$ and $\Omega \subset \mathbb{R}^{d}$ an open, symmetric neighborhood of $\mathbf{0} \in \mathbb{R}^{d}$, we have with $H(\Omega, z):=\{k \in \mathbb{Z}: k z \in \Omega\}$ the relation

$$
\begin{equation*}
\mathcal{K}_{\mathbb{R}^{d}}^{\#}(\Omega, z)=\mathcal{K}_{\mathbb{R}^{d}}^{c}(\Omega, z)=\mathcal{K}(H(\Omega, z)) \tag{4.1}
\end{equation*}
$$

If $\Omega \subset \mathbb{T}^{d}$ is an open symmetric neighborhood of $\mathbf{0} \in \mathbb{T}^{d}$, and the order of z is infinite (i.e. z has no torsion), then we have with $H(\Omega, z):=\{k \in \mathbb{Z}: k z \in \Omega\}$

$$
\begin{equation*}
\mathcal{K}_{\mathbb{T}^{d}}^{\#}(\Omega, z)=\mathcal{K}_{\mathbb{T}^{d}}^{c}(\Omega, z)=\mathcal{K}(H(\Omega, z)) . \tag{4.2}
\end{equation*}
$$

Finally, if the order of $z \in \mathbb{T}^{d}$ is $o(z)=m$, then with $H_{m}(\Omega, z):=\left\{k \in \mathbb{Z}_{m}: k z \in \Omega\right\}$ we have

$$
\begin{equation*}
\mathcal{K}_{\mathbb{T}^{d}}^{\#}(\Omega, z)=\mathcal{K}_{\mathbb{T}^{d}}^{c}(\Omega, z)=\mathcal{K}_{m}\left(H_{m}(\Omega, z)\right) \tag{4.3}
\end{equation*}
$$

Actually, the above can be collected from [11, Theorem 2.1] and [11, Theorem 2.4]. The most important aspect of it is perhaps the understanding that the above point-value extremal problems depend only on the set $H(\Omega, z)$ and the order of z itself, and are in fact equivalent to the trigonometric polynomial extremal problems given in (1.3) and (1.4). In other words, the result is transferring information to the given more general problem from the corresponding equivalent other problem in \mathbb{Z} or in \mathbb{Z}_{m} in all cases. Until that work the equivalence remained unclear in spite of the fact that, e.g., Boas and Kac found ways to deduce the solution of the trigonometric extremal problem (1.3) from their results on Problem 4.1. Kolountzakis and Révész also obtained a clear picture of the limiting relation between torus problems and space problems, formulated above as Problem 4.1 and Problem 4.2, and parallel to this, between the finitely conditioned trigonometric polynomial extremal problem (1.4) and the positive definite trigonometric polynomial extremal problem (1.3). Furthermore, the investigation was extended to arbitrary (symmetric open) sets $\Omega \subset \mathbb{R}^{d}$ or \mathbb{T}^{d}, dropping the condition of convexity of Ω.

Let us remark, however, that even with the above equivalence result, the actual calculation of the extremal values may still take considerable work and innovation, see e.g. [10]. For the numerous applications see the original paper [11] and the references [1, 2, 16, 17, 18].

Ending this section, let us recall that investigation of so-called Turán-type problems started with keeping an eye on number theoretic applications and connected problems. The interesting papers of Gorbachev and Manoshina [7, 8] mention [13] and character sums; applications to van der Corput sets were mentioned by several authors and in particular by Ruzsa [22]. Here we recall another question of a number theoretic relevance, open for at least two decades by now, and also mentioned in [11].
Problem 4.4. Determine $\Lambda(n):=\sup \{\mathcal{M}(H) / 2: 1 \in H \subseteq \mathbb{N},|H|=n\}$.
We only know (cf [15]) $1-\frac{5}{(n+1)^{2}} \leq \Lambda(n) \leq 1-\frac{0.5}{(n+1)^{2}}$. The question is relevant to the Beurling theory of generalized primes, see [19].

5. Formulation of the main results

For points $z \in G$ with infinite order the problem becomes equivalent to the trigonometric polynomial extremal problem of the sort (1.3).
Theorem 5.1. Let G be any locally compact Abelian group and let $\Omega \subset G$ be an open (symmetric) neighborhood of 0 . Let also $z \in \Omega$ be any fixed point with $o(z)=\infty$, and denote $H(\Omega, z):=\{k \in \mathbb{Z}: k z \in \Omega\}$. Then we have

$$
\begin{equation*}
\mathcal{C}_{G}^{c}(\Omega, z)=\mathcal{K}_{G}^{c}(\Omega, z)=\mathcal{C}_{G}^{\#}(\Omega, z)=\mathcal{K}_{G}^{\#}(\Omega, z)=\mathcal{C}(H(\Omega, z)) \tag{5.1}
\end{equation*}
$$

Corollary 5.2. For G any locally compact Abelian group, $\Omega \subset G$ any open (symmetric) neighborhood of 0 , and $z \in \Omega$ any fixed point with $o(z)=\infty$, we have $\mathcal{C}_{G}^{c}(\Omega, z)=\mathcal{K}_{G}^{c}(\Omega, z)=$ $\mathcal{C}_{G}^{\#}(\Omega, z)=\mathcal{K}_{G}^{\#}(\Omega, z)$, the common value of which can thus be denoted simply by $\mathcal{K}_{G}(\Omega, z)$ or $\mathcal{C}_{G}(\Omega, z)$.

If $z \in G$ is cyclic (has torsion), the situation is analogous: then Problem 1.1 reduces to a well-defined discrete problem of the sort (1.4).
Theorem 5.3. Let G be any locally compact Abelian group and let $\Omega \subset G$ be an open (symmetric) neighborhood of 0 . Let also $z \in \Omega$ be any fixed point with $o(z)=m<\infty$, and denote $H_{m}(\Omega, z):=\left\{k \in \mathbb{Z}_{m}: k z \in \Omega\right\}$. Then we have
(5.2) $\quad \mathcal{C}_{G}^{\#}(\Omega, z)=\mathcal{C}_{G}^{c}(\Omega, z)=\mathcal{C}_{m}\left(H_{m}(\Omega, z)\right) \quad$ and $\quad \mathcal{K}_{G}^{\#}(\Omega, z)=\mathcal{K}_{G}^{c}(\Omega, z)=\mathcal{K}_{m}\left(H_{m}(\Omega, z)\right)$.

Corollary 5.4. For G any locally compact Abelian group, $\Omega \subset G$ any open (symmetric) neighborhood of 0 , and $z \in \Omega$ any fixed point with $o(z)<\infty$, we still have $\mathcal{C}_{G}^{c}(\Omega, z)=\mathcal{C}_{G}^{\#}(\Omega, z)$ and $\mathcal{K}_{G}^{c}(\Omega, z)=\mathcal{K}_{G}^{\#}(\Omega, z)$, the common value of which can thus be denoted by $\mathcal{C}_{G}(\Omega, z)$ and $\mathcal{K}_{G}(\Omega, z)$, respectively.

Note that this also holds true if $o(z)=\infty$, furthermore, than $\mathcal{C}_{G}(\Omega, z)=\mathcal{K}_{G}(\Omega, z)$ according to Corollary 5.2. We will use these notations in the last section.

6. Proofs of the Main Results

Proof of Theorem 5.1. We present the argument only for $\mathcal{C}_{G}^{\#}(\Omega, z)=\mathcal{C}_{G}^{c}(\Omega, z)=\mathcal{C}^{c}(H(\Omega, z))$ (i.e. the complex case), for the real variant $\mathcal{K}_{G}^{\#}(\Omega, z)=\mathcal{K}_{G}^{c}(\Omega, z)=\mathcal{K}^{c}(H(\Omega, z))$ is completely similar. Once these real and complex variants are proved, a combination of Proposition 3.1 (ii) and Proposition 3.4 gives that the right hand sides of these equalities are all equal.

To simplify the notation somewhat, we will write throughout this proof $H:=H(\Omega, z)$.

As we trivially have $\mathcal{C}_{G}^{\#}(\Omega, z) \geq \mathcal{C}_{G}^{c}(\Omega, z)$, to derive the equality of these quantities of the complex setup and $\mathcal{C}(H)$-which is the common value of $\mathcal{C}^{\#}(H)=\mathcal{C}^{c}(H)$ in view of Proposition 3.4-it suffices to prove $\mathcal{C}_{G}^{\#}(\Omega, z) \leq \mathcal{C}(H)\left(=\mathcal{C}^{\#}(H)=\mathcal{C}^{c}(H)\right) \leq \mathcal{C}_{G}^{c}(\Omega, z)$ only.

So we are to prove only two inequalities, the first being that $\mathcal{C}_{G}^{\#}(\Omega, z) \leq \mathcal{C}^{\#}(H)$. Let us take any $f \in \mathcal{F}_{G}^{\#}(\Omega)$, and consider the subgroup $Z:=\langle z\rangle \leq G$.

Observe that $g:=\left.f\right|_{Z} \gg 0$ on Z, for if the defining requirements (1.1) hold for all selections of the $x_{j} \in G$, then obviously they must also hold for all values chosen from Z. So this way we have defined a function $g \in \mathcal{F}_{Z}^{\#}((\Omega \cap Z))$. Finally, let us remark that the natural isomorphism $\eta: \mathbb{Z} \rightarrow Z$, which maps according to $\eta(k):=k z$, carries over g, defined on $Z \leq G$, to a function $\psi:=g \circ \eta$, which is therefore positive definite on \mathbb{Z}, has normalized value $\psi(0)=g(0)=f(0)=1$, and $\operatorname{supp} \psi \subset H$ for $\operatorname{supp} g \subset \operatorname{supp} f \Subset \Omega$.

From here we read that $|f(z)| \leq \sup \left\{|\psi(1)|: \psi \in \mathcal{F}_{\mathbb{Z}}^{\#}(H)\right\}=\mathcal{C}^{\#}(H)$. Taking $\sup _{f \in \mathcal{F}_{G}^{\#}(\Omega)}$ on the left hand side concludes the proof of the first part.

It remains to show the inequality $\mathcal{C}^{c}(H) \leq \mathcal{C}_{G}^{c}(\Omega, z)$.
Let $\psi \in \mathcal{F}_{\mathbb{Z}}^{c}(H)$, so also positive definite and of finite support $S \subset H$, say. We also define the respective measure $\nu:=\sum_{k \in S} \psi(k) \delta_{k z}$, where δ_{s} is the Dirac measure, concentrated at $s \in G$. By definition of $H, S=\operatorname{supp} \nu$ is a finite subset of $H:=H(\Omega, z):=Z \cap \Omega$.

In view of Lemma 2.2 (i), to ψ there exists another sequence $\theta: \mathbb{Z} \rightarrow \mathbb{C}$ of finite support $Q:=\operatorname{supp} \theta$ such that $\psi=\theta \star \widetilde{\theta}$. Let us define the measure $\sigma:=\sum_{k \in Q} \theta(k) \delta_{k z}$. Note that Q, though, is not necessarily included in H, therefore, the finite subset $\operatorname{supp} \sigma \subset Z$ is not necessarily a subset of Ω. Nevertheless, $\psi=\theta \star \tilde{\theta}$ means that for each $k \in \mathbb{Z}$ we have $\psi(k)=\sum_{m \in Q} \theta(m) \widetilde{\theta}(k-m)=\sum_{m \in Q} \theta(m) \overline{\theta(m-k)}$ and so this vanishes outside $S \subset H$, whence

$$
\begin{equation*}
\sigma \star \widetilde{\sigma}=\sum_{m \in Q} \sum_{j \in Q} \theta(m) \overline{\theta(j)} \delta_{m z} \delta_{-j z}=\sum_{k \in \mathbb{Z}}\left(\sum_{m \in Q} \theta(m) \overline{\theta(m-k)}\right) \delta_{k z}=\sum_{k \in S} \psi(k) \delta_{k z}=\nu \tag{6.1}
\end{equation*}
$$

which is supported in $S \subset Z \cap \Omega$.
Now our construction is the following. For a compact neighborhood W of 0 (to be chosen suitably later), the function $g:=\chi_{W} \star \sigma$ is a compactly supported step function, hence is in $L^{2}\left(\mu_{G}\right)$, moreover, it has converse $\widetilde{g}=\widetilde{\chi_{W} \star \sigma}=\widetilde{\sigma} * \chi_{-W}$ and thus the "convolution square" $f:=g \star \widetilde{g}$, positive definite and continuous according to Lemma 2.1, will be just

$$
\begin{align*}
& f:=g \star \widetilde{g}=\chi_{W} \star \sigma \star \widetilde{\sigma} \star \chi_{-W}=\chi_{W} \star \chi_{-W} \star \sigma \star \widetilde{\sigma}=\chi_{W} \star \chi_{-W} \star \nu=\sum_{k \in S} f_{k}, \\
& \quad \text { with } \quad f_{k}(x):=\psi(k)\left(h \star \delta_{k z}\right)(x)=\psi(k) h(x-k z), \quad h:=\chi_{W} \star \chi_{-W}, \tag{6.2}
\end{align*}
$$

using also (2.9). Clearly $\operatorname{supp} f_{k}=\operatorname{supp} h+k z \subset W-W+k z$, which is a compact set itself in view of compactness of W. So because of finiteness of S we also find that $\cup_{k \in S}(W-W+k z)$ is compact, whence supp $f \subset \cup_{k \in S} \operatorname{supp} f_{k} \subset \cup_{k \in S}(W-W+k z)$ shows that also $\operatorname{supp} f$ is compact.

If we choose now disjoint open neighborhoods $U_{k} \subset \Omega$ of $k z \in \Omega$ for each $k \in S$, by continuity of $(x, y) \rightarrow x-y+k z$ from $G \times G \rightarrow G$ we can take a compact neighborhood W_{k} of 0 with $W_{k}-W_{k}+k z \Subset U_{k}$, so intersecting the finitely many W_{k} for all $k \in S$ we arrive at a $W^{*}:=\cap_{k \in S} W_{k}$, compact neighborhood of 0 , such that $W^{*}-W^{*}+k z \Subset U_{k} \subset \Omega(\forall k \in S)$. Therefore if we chose some appropriate $W \Subset W^{*}$, then also $\operatorname{supp} f \Subset \cup_{k \in S} U_{k} \subset \Omega$. In all, for any such choice of W we arrive at $\operatorname{supp} f \Subset \Omega$, as needed. Our last condition on W will be that we want $k z \in W-W$ for a $k \in S$ only if $k=0$, i.e. we require $W-W \cap\{k z: k \in S\}=\{0\}$. So it suffices to fix some open neighborhood $V \subset G$ of

0 such that $V \subset G \backslash\{k z: k \in S, k \neq 0\}$, then choose a compact neighborhood $W^{\prime} \subset G$ of 0 satisfying $W^{\prime}-W^{\prime} \subset V$ (which can again be done according to the continuity of $(x, y) \rightarrow x-y)$, and then take $W:=W^{\prime} \cap W^{*}$.

So we arrive at $f \gg 0, f \in C_{0}(G)$, $\operatorname{supp} f \Subset \Omega$, with $\operatorname{supp} f \subset \cup_{k \in S} \operatorname{supp} f_{k}$ and $\operatorname{supp} f_{k} \Subset$ $(W-W+k z)$. It remains to compute the function values of f at 0 and at z. First, as supp $h \subset W-W \subset V, h$ vanishes on all $k z$ with $k \in S \backslash\{0\}$ by construction, so from $f(0)=$ $\sum_{k \in S} \psi(k) h(-k z)$ we get $f(0)=\psi(0) h(0)=1 \cdot \chi_{W} \star \chi_{-W}(0)=\mu_{G}(W)(>0)$, according to (2.11). Second, completely similarly we have $f(z)=\sum_{k \in S} \psi(k) h(z-k z)=\psi(1) \mu_{G}(W)$.

In all, we can take $F:=\frac{1}{\mu_{G}(W)} f$, which then has $F(0)=1$, too, and hence $F \in \mathcal{F}_{G}^{c}(\Omega)$, moreover, $F(z)=\psi(1)$, hence $|\psi(1)| \leq \mathcal{C}_{G}^{c}(\Omega, z)$. Having this for all $\psi \in \mathcal{F}_{\mathbb{Z}}^{c}(H)$, taking supremum yields $\mathcal{C}^{c}(H) \leq \mathcal{C}_{G}^{c}(\Omega, z)$, whence the theorem.

Proof of Theorem 5.3. The proof of the complex and real variants are almost identical to the preceding one, once we carefully change all references from \mathbb{Z} to $\mathbb{Z}_{m}, \mathcal{C}^{c}(H)$ to $\mathcal{C}_{m}(H)$ and $\mathcal{F}_{\mathbb{Z}}^{c}(\Omega, z)$ to $\mathcal{F}_{\mathbb{Z}_{m}}(\Omega, z)$, and using Lemma 2.2 (ii) instead of (i); and similarly in the real case, while noting that $Z:=\langle z\rangle$ is only a finite subgroup with $Z \cong \mathbb{Z}_{m}$, so the natural isomorphism $\eta(k):=k z$ acts between \mathbb{Z}_{m} and Z now. However, here we don't have the equality of the extremal quantities $\mathcal{C}_{m}(H)$ and $\mathcal{K}_{m}(H)$, as in this case only the estimates of Proposition 3.1 (iii) hold. Therefore, the real and complex cases here split as formulated separately in (5.2). We spare the reader from further details of the proof.

7. Final remarks

In view of Theorems 5.1 and 5.3 , the connection between the real and complex cases in \mathbb{Z}, found in Proposition 3.1 (ii) and (iii), extends to all LCA groups. That is, we obtain

Corollary 7.1. Let G be any locally compact Abelian group and let $\Omega \subset G$ be an open (symmetric) neighborhood of 0 . Let also $z \in \Omega$ be any fixed point with $o(z)=m$, and denote $H_{m}(\Omega, z):=\left\{k \in \mathbb{Z}_{m}: k z \in \Omega\right\}$. Then we have

$$
\begin{equation*}
\cos (\pi / m) \mathcal{C}_{G}(\Omega, z) \leq \mathcal{K}_{G}(\Omega, z) \leq \mathcal{C}_{G}(\Omega, z) \tag{7.1}
\end{equation*}
$$

Also the " $m=\infty$ " case holds true giving for torsion-free elements $z \in \Omega$ the equality

$$
\begin{equation*}
\mathcal{K}_{G}(\Omega, z)=\mathcal{C}_{G}(\Omega, z) \tag{7.2}
\end{equation*}
$$

Let us recall that when $\mathcal{M}(H)$ or $\mathcal{C}(H)$ is known for a certain $H \subset \mathbb{Z}$, then further cases can be obtained via the following duality result.

Lemma 7.2. (see [15]). Let $H \subseteq \mathbb{Z}$ be arbitrary with $\{-1,0,1\} \subset H$. Then denoting $H^{\star}:=(\mathbb{N} \backslash H) \cup\{-1,0,1\}$ we have $\mathcal{M}(H) \mathcal{M}\left(H^{\star}\right)=2$.
Remark 7.3. By Proposition 3.1 (i), it is equivalently formulated as $\mathcal{K}(H) \mathcal{K}\left(H^{\star}\right)=\frac{1}{2}$.
Remark 7.4. The analogous finite dimensional duality relation in \mathbb{Z}_{m} is much easier, essentially trivial to obtain along the lines of [15]. It gives with $H_{m}^{\star}:=\left(\mathbb{Z}_{m} \backslash H\right) \cup\{-1,0,1\}$

$$
\mathcal{M}_{m}(H) \mathcal{M}_{m}\left(H^{\star}\right)=2 \quad \text { or, equivalently } \quad \mathcal{K}_{m}(H) \mathcal{K}_{m}\left(H^{\star}\right)=\frac{1}{2}
$$

taking into account Proposition 3.1 (i) again.
It is explained in [11] in the context of the groups \mathbb{R}^{d} and \mathbb{T}^{d} that description of the $\mathcal{C}_{G}(\Omega, z)$ problems by the Carathéodory-Fejér type extremal problems on \mathbb{Z} or \mathbb{Z}_{m} automatically extends these duality results to the more general situation. Regarding Problem 1.1 we have

Corollary 7.5. For any LCA group G, open set $\Omega \subseteq G$ and $z \in \Omega$ we have $\mathcal{K}_{G}(\Omega) \mathcal{K}_{G}\left(\Omega^{\star}\right)=$ $\frac{1}{2}$ where Ω^{*} is any symmetric open set with $Z \cap \Omega \cap \Omega^{*}=\{0, z,-z\}$ and $\left(\Omega \cup \Omega^{*}\right) \supset Z$, with $Z:=\langle z\rangle$, i.e. $\{k z: k \in \mathbb{Z}\}$ or $\left\{k z: k \in \mathbb{Z}_{m}\right\}$, respectively.
Remark 7.6. When $\mathcal{C}_{G}(\Omega, z)=\mathcal{K}_{G}(\Omega, z)$ and $\mathcal{C}_{G}\left(\Omega^{\star}, z\right)=\mathcal{K}_{G}\left(\Omega^{\star}, z\right)$-in particular when $o(z)=\infty$-then we have the analogous formula $\mathcal{C}_{G}(\Omega, z) \mathcal{C}_{G}\left(\Omega^{\star}, z\right)=2$ for the complex quantities. However, it fails whenever $\mathcal{C}_{G}(\Omega, z)=\mathcal{K}_{G}(\Omega, z)$ or $\mathcal{C}_{G}\left(\Omega^{\star}, z\right)=\mathcal{K}_{G}\left(\Omega^{\star}, z\right)$ does so.

This of course covers the corresponding results for \mathbb{R}^{d} and \mathbb{T}^{d} given in [11, Corollary 4.7].
It would be interesting - perhaps by a direct argument extending that in [15] - to derive this duality result without relying on Theorems 5.3 and 5.1 .

References

[1] V. Arestov, E. Berdysheva, H. Berens, On pointwise Turán's problem for positive definite functions, East J. Approx. 9 (2003), no. 1, 31-42.
[2] R. P. Boas Jr., M. Kac, Inequalities for Fourier Transforms of positive functions, Duke Math. J. 12 (1945), 189-206.
[3] C. Carathéodory, Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen, Rendiconti del Circolo Matematico di Palermo, 32 (1911), 193-217.
[4] W. Ehm, T. Gneiting, D. Richards, Convolution roots of radial positive definite functions with compact support, preprint, Trans. Amer. Math. Soc., 356 (2004), no. 11, 4655-4685.
[5] L. Fejér, Über trigonometrische Polynome, J. angew. Math. 146 (1915), 53-82.
[6] L. Fejér, Gesammelte Arbeiten I-II, Akadémiai Kiadó, Budapest, 1970.
[7] D. V. Gorbachev; A. S. Manoshina, The extremal Turán problem for periodic functions with small support. (Russian) Proceedings of the IV International Conference "Modern Problems of Number Theory and its Applications" (Tula, 2001). Chebyshevskiu Sb. 2 (2001), 31-40.
[8] D. V. Gorbachev; A. S. Manoshina, Turán Extremal Problem for Periodic Functions with Small Support and Its Applications, Mathematical Notes, 76 (2004) no. 5, 688-200.
[9] G. Herglotz, Über Potenzreihen mit positivem reelen Teil im Einheitskreis, Leipziger Berichte 63, 501-511.
[10] V. I. Ivanov, A. V. Ivanov, Turan problems for periodic positive definite functions, Annales Univ. Scientiarum Budapestiensis de Ronaldo Eotvos Nominatae. Sectio Computatorica. 33 (2010), 219-237.
[11] M. N. Kolountzakis and Sz. Gy. Révész, On pointwise estimates of positive definite functions with given support, Canad. J. Math. 58 (2006), no. 2, 401-418.
[12] M. N. Kolountzakis and Sz. Gy. Révész, Turán's extremal problem for positive definite functions on groups, J. London Math. Soc., 74 (2006), 475-496.
[13] S. V. Konyagin, I. Sharplinski, Character sums with exponential functions and their applications, Cambridge University Press, Cambridge, 1999.
[14] M. Mathias, Über positive Fourier-Integrale. (German) Math. Zeitschrift 16 (1923), 103-125.
[15] Sz. Gy. Révész, Extremal problems and a duality phenomenon, in Approximation, Optimization and Computing, (A. G. Law, C. L. Wang, eds.), Elsevier, 1990, 279-281.
[16] Sz. Gy. Révész, The Least Possible Value at Zero of Some Nonnegative Cosine Polynomials and Equivalent Dual Problems, J. Fourier Anal. Appl., Kahane Special Issue, 1995, 485-508.
[17] Sz. Gy. RÉvész, Minimization of maxima of nonnegative and positive definite cosine polynomials with prescribed first coefficients, Acta Sci. Math. (Szeged), 60 (1995), 589-608.
[18] Sz. Gy. RÉvÉSz, A Fejér-type extremal problem, Acta Math. Hung., 57 (1991), no. 3-4, 279-283.
[19] Sz. Gy.Révész, On Beurling's Prime Number Theorem, Period. Math. Hung., 28 (1994), 195-210.
[20] Sz. Gy. Révész, Turán's extremal problem on locally compact abelian groups, Analysis Math. $\mathbf{3 7}$ (2011) no. 1, 15-50.
[21] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12 Interscience Publishers (a division of John Wiley and Sons), New York-London 1962 ix +285 pp.
[22] I. Z. Ruzsa, Connections between the uniform distribution of a sequence and its differences, in: Colloquia Mathematica Societatis János Bolyai, 34, G. Halász, ed., North Holland, 1981, 1419-1443.
[23] G. Szegő, Orthogonal Polynomials, 4th Ed. AMS Colloquium Publications, XXXIII, Providence, Rhode Island, 432 p. (1975).
[24] A. Weil, L'intégration dans les groupes topologiques et ses applications, Gauthiers-Villars, Paris, 1938.
A. Rényi Institute of Mathematics

Hungarian Academy of Sciences
Budapest, Reáltanoda utca 13-15.
1053 HUNGARY
AND
Department of Mathematics
Kuwait University
P.O. Box 5969 Safat - 13060 KUWAIT

E-mail address: krenedits@t-online.hu, revesz.szilard@renyi.mta.hu

[^0]: Date: December 12, 2013.
 Supported in part by the Hungarian National Foundation for Scientific Research, Project \#'s K-81658 and K-100461. Work done in the framework of the project ERC-AdG 228005.

[^1]: ${ }^{1}$ These properties are basic and well-known, see e.g. [21, §1.4.1] We prove them just for being selfcontained, as they are easy.

